CA2431159A1 - Battery pack charging system - Google Patents

Battery pack charging system Download PDF

Info

Publication number
CA2431159A1
CA2431159A1 CA002431159A CA2431159A CA2431159A1 CA 2431159 A1 CA2431159 A1 CA 2431159A1 CA 002431159 A CA002431159 A CA 002431159A CA 2431159 A CA2431159 A CA 2431159A CA 2431159 A1 CA2431159 A1 CA 2431159A1
Authority
CA
Canada
Prior art keywords
battery
temperature
charging
charge
charging system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002431159A
Other languages
French (fr)
Inventor
Nobuhito Ohnuma
Masaaki Yoshikawa
Hikokazu Okaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo R&D Co Ltd
Original Assignee
Tokyo R & D Ltd.
Nobuhito Ohnuma
Masaaki Yoshikawa
Hikokazu Okaguchi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo R & D Ltd., Nobuhito Ohnuma, Masaaki Yoshikawa, Hikokazu Okaguchi filed Critical Tokyo R & D Ltd.
Publication of CA2431159A1 publication Critical patent/CA2431159A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

A charging system capable of charging a battery in a full charged state or an almost fully charged state while preventing performance degradation of the battery attributed to heat generation caused by the charging. The battery pack charging system (1) comprises a temperature sensing means (15) for measuring the battery temperature, a charging means (12), and a control means (13) for controlling the charging means (12) according to the battery temperature, and the control means (13) performs temperature feedback charging with a quantity dependent on the temperature (.DELTA.T/.DELTA.t) as a desired value (Y). The battery can be charged in a fully charged state or an almost fully charged state while preventing performance degradation of the battery attributed to heat generation caused by the charging.

Description

SPECIFICATION
CHARGING SYSTEM FOR BATTERIES-SET
Technical Field The invention relates to a technology for charging a battery to be mounted on an electric motor vehicle such as an electric car. More particularly, the invention relates to a charging system for charging a battery to a fully charged state or close to the fully charged state while preventing deterioration of the battery due to heat generated during the charge.
Prior Art As shown in Fig. l, a conventional charging system 9 for an electric car includes a battery-set 91; a charging device or means 92 for charging the battery-set 91; a control device or means 93; a charge current detecting device or means 94 for detecting a charge current in the battery-set 91; a battery temperature detecting device 95 for detecting a temperature of the battery-set 91; and a charge voltage detecting device or means 96 for detecting a terminal voltage of a battery cell constituting the battery-set 91.
As shown in Fig. 2, the battery-set 91 is formed of a plurality of modules Ml, Mz, . . . Mnz, and further the module is formed of a plurality of battery cells C1, C?, . . . Cnz.
The charging device 92 includes an AC/DC converter 921 and a current supply portion 922. The AC/DC converter 921 is connected to a commercial electric power supply G~~ (for example, single phase 100 V electric power supply). The current supply portion 922 generates a pulse IP having a predetermined duty from a DC

output of the AC/DC converter 921 based on a control signal (charge current command CCra~) from the control device 93 (described later), and supplies the pulse IP to the battery-set 91 to charge.
The control device 93 monitors a value of a charge current Ic detected by the charge current detecting device 94, and outputs a control signal (charge current command CCref) to the charging device 92 to maintain the charge current I~ at a predetermined value (allowable maximum current value).
The control device 93 determines whether the battery is fully charged based on a OV peak (described later) of the charge voltage V~, detected by the charge voltage detecting device 96, or based on a time-rate-of-change (OT/Ot) of a temperature T of the batteries-set 91 detected by the battery temperature detecting device 95. As shown in Fig. 3, the charge voltage detecting device 96 conveniently estimates the charge voltage per battery cell by detecting a series connection voltage of a plurality of modules.
The battery temperature detecting device 95 is formed of a sensor 951 and an AD-converter 952. Generally, for a charge start condition, an upper limit is defined for the battery temperature T,j (for example, when an initial temperature is above 45°C, the start of charge is limited). Therefore, it is required to check the battery temperature TB.
Fig. 4 is a graph showing a relationship among the charge voltage V~, charge current I~ and battery temperature TB from an empty state to a fully charged state of the normal secondary batteries of the nickel-metal hydride (Ni-MH) and the like for the electric car.
2 When the charge starts (ta in Fig. 4), the charge voltage Va starts rising (hereinafter, an inclination of the rise will be referred to as "the first inclination"). After the first inclination (t2 in Fig. 9), the charge voltage V~ and the battery temperature TB increase gradually.
When the battery-set 91 is charged up to a fully charged state (for example, 80 to 900 of the fully charged state), the charge voltage V~ starts rising (t3 in Fig. 4; hereinafter, an inclination of the rise will be referred to as "the second inclination"). Then, the battery temperature T~, starts rising (t~ in Fig. 4). As the charge proceeds further, the charge voltage V~ reaches a peak called as "~V peak" (t;, in Fig. 4).
In the conventional charging system 9, the ~V peak is normally detected, and when a voltage decline value (represented by "-L1V") reaches a predetermined value, the charge is stopped (t6 in Fig. 4). Alternatively, without the 4V peak detection, when the time-rate-of-change (~TB/at) of the battery temperature TB exceeds a predetermined value, the charge may be stopped.
Incidentally, in the secondary battery, it has been generally known that when the charge is carried out, an excessive rise in the battery temperature has an adverse effect on the performance and life of the battery. As shown in Fig. 4, in the conventional charging system 9 shown in Fig. 1, the charge is stopped at a time t6 not long after the 0V peak (t~,) .
Accordingly, the battery cells constituting the battery-set 91 do not reach a battery temperature in the graph that causes the deterioration (hereinafter referred to as "critical temperature").
Also, in the charging system 9, since the battery temperature TR
is detected by the battery temperature detecting device 95, the
3 battery cells or modules appear not to reach the critical temperature.
However, as described above, the ~V peak is not detected for each battery cell or module. Therefore, the following problems may occur due to a variation in the capacity, for example, when the battery cells or modules are produced, or due to a difference in the temperature (depending on a location of the battery cell in the whole batteries-set).
That is, it is likely to happen that a battery cell or module whose temperature is not monitored reaches the ~V peak before a battery cell or module whose temperature is monitored by the sensor 951 does not yet reach the OV peak.
Also, it is possible that when a plurality of battery cells or modules is connected in series and the 0V peak is detected, some of the battery cells or modules that the sensor 951 monitors have already passed the ~V peak, but, the entire battery cells or modules connected in series do not yet reach the ~V peak. In each of the battery cells or modules, since the terminal voltage thereof is lowered after the ~V peak, such a situation may occur.
An actual temperature of a battery cell depends on whether the battery cell is placed at a position where the battery cell is easily cooled. In the actual case, the battery temperature detecting device 95 does not detect a temperature of each of the battery cells or modules. Therefore, there may be a case where the actual temperature of a certain battery cell is higher than the temperature detected by the battery temperature detecting device 95.
Moreover, in the conventional charging system, as shown in Fig. 4, when the charge is completed (t6 in Fig. 4), there may be a case that the battery temperature T,~ is higher than the initial
4 temperature, for example, by about 10 to 40°C. Accordingly, some of the battery cells have exceeded the critical temperature before the charge is completed.
Especially, in the electric car, the battery-set is formed of a plurality of the battery cells connected in series. Thus, when a part of the battery cells is deteriorated, the electric car as a whole suffers deteriorated performance. In case such a functional deterioration occurs, it is difficult to find out which battery cell is in trouble.
When two or more module groups (the modules connected in series) are provided for detecting the charge voltage (a plurality of the charge voltage detecting devices is provided), it is possible to solve the above described problems to some extent. However, it is necessary to provide the AD-converters as many as the charge voltage detecting devices.
Since the value of "-OV" per battery cell is a very small, such as several milli-volts, an expensive (i.e. high precision) AD-converter has to be used.
In the conventional power supply device, the production cost needs to be reduced as well. Thus, it is not preferable to use two or more module groups for detecting the charge voltage and two or more AD-converters, which results in a higher cost of the charging system.
Brief Description of the Drawings Fig. 1 is a block diagram showing a conventional charging system;
Fig. 2 is an explanatory diagram showing a battery used in the conventional charging system shown in Fig. 1;
5 Fig. 3 is a view of battery modules in which charge voltage detect means detects a charge voltage per battery cell in the conventional charging system shown in Fig. 1;
Fig. 4 is a graph showing a relationship among a charge current, battery temperature and charge voltage from an empty state to a fully charged state of the conventional charging system shown in Fig. 1;
Fig. 5 is a block diagram showing a charging system according to the present invention;
Fig. 6 is a block diagram showing a battery-set used in the charging system shown in Fig. 5;
Fig. 7 is a control block diagram of the charging system in Fig. 5 in a temperature feedback charging mode;
Fig. 8 is a graph showing a relationship among a charge current, battery temperature and charge voltage from an empty state to a fully charged state of the charging system shown in Fig. 5; and Fig. 9 is a graph showing measured results of the charge current, charge voltage and battery temperature in the temperature feedback charging mode.
Preferred Embodiments for Prosecuting the Invention An embodiment of a charging system according to the present invention will be described with reference to Figs. 5-9.
Fig. 5 is an explanaTory view showing an entire configuration of an embodiment of the invention. As shown in the drawing, a charging system 1 includes a battery-set 11; a charging device or means 12 for supplying a charge current to the battery-set 11; a control device or means 13 for controlling the charging device 12; a charge current detecting device or means 14
6 page 7 for detecting the charge current of the battery-set 11; a battery temperature detecting device or means 15 for measuring a temperature of the battery-set 11; and a charge voltage detecting device or means 16. As shown in Fig. 6, the batteries-set 11 is formed of a plurality of modules M1, M2, . . ., M"1, and each module includes a plurality of battery cells C1, C~, . . ., Cn2. In the present embodiment, a nickel-metal hydride (Ni-MH) type battery may be used as the battery cell, The charging device 12 includes an AC/DC converter 121 and a current supply portion 122. In the present embodiment, a commercial power source G~c (single phase 100V power source) is connected to the AC/DC converter 121. The current supply portion 122 generates a pulse IP of a predetermined duty from a DC output of the AC/DC converter 121 based on a control signal (charge current command CCrefl from the control device 13, and supplies the pulse IP to the batteries-set 11.
The control device 13 includes a OT/Ot calculating (operation) portion 131; a charge rate operation portion 132;
and an average value operation device or part 133. Control modes of. the control device 13 include a temperature feedback charging mode TFB-CM and a low current charging mode TCL-CM.
According to the control mode, the control device 13 sends the charge current command CCzes to the charging device 12. In the temperature feedback charging mode TFB-CM, the control device 13 controls the charging device 12 through the feedback control using a time-rate-change of a temperature as a target value.
In the present embodiment, "a time-rat-change of a temperature" is a value representing a time-rate-of-change (OT/~t) of the temperature TB of the battery-set 11. The average value operation device 133 calculates an average temperature value of an N number of the modules as a battery temperature T~.
Fig. 7 shows a control block diagram of the charging system 1 in the temperature feedback charging mode TFB-CM. First, the battery temperature detecting device 15 detects the battery temperature TF~ and sends the battery temperature T,~ to the control device 13.
In the control device 13, the ~T/Ot calculating portion 131 determines a time-rate-of-change (OT/t1t)T_TB of the battery temperature T~. The charging rate operation portion 132 outputs the charge current command CCret to the charging device 12 based on a deviation E between the time-rate-of-change (OT/~t)T=TR and the target value Y. The charging device 12 supplies the charge current I~ to the battery-set 11 based on the charge current command CCre~ .
In the low current charging mode TCL-CM, the control device 13 controls the charging device 12 to charge at a predetermined maintenance current ITS, Incidentally, a transition condition from the temperature feedback charging mode TFB-CM to the low current charging mode TCL-CM will be described later.
The battery temperature detecting device 15 includes a temperature sensor 151 and an AD-converter 152. The charge voltage detecting device 16 detects the charge voltage V~ of the batteries-set 11. However, not like in the conventional technology shown in Figs. 1 through 4, the charge voltage detecting device 16 does not detect the t!V peak or -OV. As described above, it is necessary to use a high-precision (i.e.
expensive) AD-converter to detect the OV peak or -4V. In the present embodiment, it is not necessary to use such an expensive AD-converter, so it is possible to use a less expensive AD-converter as the AD-converter constituting the charge voltage detecting device 16.
Incidentally, in the present embodiment, the charge voltage detecting device 16 is used for monitoring and managing the lower limit voltage and upper limit voltage of the batteries-set 11.
Fig. 8 is a graph showing a relationship among the charge current I~, battery temperature T,~, and charge voltage V,- from an empty state to a fully charged state of the charging system 1 shown in Fig. 5.
When the charge of the battery-set 11 is started (t1 in Fig.
8), the charge voltage V~ starts increasing. When the charge voltage V~ passes through the first inclination (t2 in Fig. 8), the charge voltage Vc generally becomes a steady state. At this time, the battery temperature T,, _is also generally in a steady state. Incidentally, in Fig. 8, the initial value of the battery temperature TB is substantially the same as the battery temperature TB in the steady state.
When the battery-set 11 is charged close to a full charge (for example, when the battery-set 11 is charged up to 80'-~ of the full charge), the battery temperature T~ starts increasing (ts in Fig. 8). As described above, in the temperature feedback charging mode TFB-CM, the control device 13 contrals the charging device 12 with Y as the target value. At this time, the charging rate operation portion 132 in Fig. 7 may output the charge current command CCref to the charging device 12 so that the charge current (charging rate) Ic is defined, for example, by the following equation (1):
I~ =IS x [1-(GP ~E+Gi~~Edt+Gd ~DE)) (1) wherein I~ is a charge current, IS is a rated current, E is a deviation (= Y- (OT/~.t ) T=TS) .
DE is a deviation difference, GP is a proportional gain, G~ is an integral gain, and Gd is a differential gain.
After the charge current I~, passes through the peak, the charge current I~ decreases gradually. In the present embodiment, when the charge current becomes I~rc (t5 in Fig. 8), the control device 13 switches to the low current charging mode TCL-CM.
In Fig. 9, actual results of the charge current I~., charge voltage V~ and battery temperature TB in the temperature feedback charging mode TFB-CM are shown. Incidentally, in the measurement, the control in the low current charging mode TCL-CM was not carried out.
In the measurement, Is (rated current) is equa_1 to 5 ~>~;, Y
(desired value) is equal to 0.1°C/minute, G~, (proportional gain) is equal to 5.0, G; (integral gain) is equal to 5.0, and G~
(differential gain) is equal to 0 in Equation (1).
In calculating the time-rate-of-change (OT/~1t)T=Ta of the temperature, and updating the deviation E, the deviation product ~Edt and the deviation difference ~E, each cycle was set at 10 seconds, the damping time constant was set at one minute, and the lower limit value of the charge current I~ was set at 0.5 A. The charge was determined to be completed at a point of 30 minutes after the charge current I~ became less than 1 A for the first time.
As shown in Fig. 9, 0.12"C/minute of the battery temperature Tg was obtained with respect to the target value Y of 0.1°C/minute. The temperature increase TW from the start to the page 11 completion of the charge was 7°C. The time T~r°rai from the empty state to the charge completion was 110 minutes.
After the completion of the charge, a discharge test was carried out to obtain the battery capacity, and it was found that the battery capacity was substantially the same as that obtained in the conventional charging system.
In the above measurement, the temperature increase T was about 7°C irrespective of the charging initial temperature of the battery-set 11 (an outside temperature). When the outside temperature is abruptly increased during the charge, the charging rate, i.e. charge current command CCref, is temporarily lowered. In the present invention, since the charging device 12 is controlled so that the time-rate-of-change OT/Ot of the temperature of the battery-set 11 becomes the steady value (Y), the charging rate lowered as described above returns to the original value.
As shown in Fig. 4, the conventional charging system shows the temperature increase TW of about 12°C. Therefore, there is a risk that a certain battery cell reaches the critical temperature. In the conventional charging system, it is necessary to provide a plurality of battery temperature detecting devices to detect that the battery cell or module reaches the critical temperature at an early stage. Also, when the initial temperature is high, it is necessary to delay the charge.
In the present embodiment, it is possible to charge the battery-set while the temperatures of all the battery cells are controlled to be sufficiently lower than the critical temperature. Therefore, the risk that a certain battery cell reaches the critical temperature is reduced. Even if the initial temperature is high to a certain extent and still the charging is started, it is possible to prevent the battery cells from reaching the critical temperature.
Industrial Applicability It is possible to avoid such a situation that any of the battery cells reaches the critical temperature due to the charge.
Also, it is possible to avoid such a situation that unnecessary stress is applied to any of the battery cells. Therefore, the life of the battery cells or modules constituting the batteries set is expected to be longer and uniform.
The present charging system can be applied to a system wherein secondary batteries having a characteristic that a temperature is raised at a terminal stage of the charge are used.
Therefore, the present charging system can be applied to various instruments using the secondary batteries in addition to the electric car.
Since the charge voltage detecting device in the present system does not detect the OV peak, a less expensive AD-converter can be employed, thereby reducing a cost of the entire system.
As described above, according to the present invention, it is possible to prevent the sudden increase in the charge voltage, and to reduce the risk that a certain battery cell reaches the critical temperature without relying on the ~V peak. Further, it is possible to charge the battery to the fully charged state, or a state almost equal to the fully charged state.
As described above, the object of the present invention is to provide the charging system without increasing the cost. With the charging system, it is possible to eliminate or reduce tree risk where all the battery cells constituting the battery-set reaches the critical temperature, and to charge the battery-set up to the so-called full charged state. The present invention provides the following preferred embodiment.
In the conventional charging system, after the second inclination, the battery-set is almost (specifically about 80$) fully charged, and the current is consumed as heat. As a result, the charging efficiency is lowered, and the battery temperature is increased after the second inclination.
Also, it is determined that the charging is completed based on the ~V peak showing the full charge or based on the time-rate-of-change of the battery temperature. Thus, a certain battery cell may reach the critical temperature.
In view of the above problems, the present invention has been made based on a relationship between the battery temperature and the charge current. Through that approach, it was found to be possible to (1) prevent a sudden charging voltage increase, and (2) eliminate or reduce the risk that any of the battery cells reaches the critical temperature without relaying on the L1V
peak. Further, it is possible to charge the battery-set to the full charged state or the equivalent state.
According to the present invention, the charging system for charging a battery includes the temperature detecting device for detecting the temperature of the battery; the charging device for charging the battery; and the control device for controlling the charging device. The control device controls the charging device based on the temperature of the battery through temperature feedback.
A batteries-set of an electric car is formed of a plurality of battery cells. For example, a battery-set is constituted of a plurality of modules, and each module includes a plurality of the battery cells.

page 14 In the present invention, the temperature detecting device detects a value typically representing temperatures of the modules constituting the battery-set or a temperatures of the battery cells as a "battery temperature". The temperature detecting device may detect a temperature of one module among the modules as the "battery temperature", or detect an average value of more than two modules as the "battery temperature".
Also, the temperature detecting device may detect a temperature of one battery cell among a plurality of the battery cells as the "battery temperature", or detect an average value of more than two battery cells as the "battery temperature".
In the present invention, the temperature detecting device includes a temperature sensor and an AD-converter. When an average value of more than two modules is detected as the battery temperature, an average value operation device may be included therein. Incidentally, an appropriate processor such as CPU in the control device may function as the average value operation device. Alternatively, although substantially the same and just depending on a definition of "the temperature detecting device", the average value operation device may be included in the control device, not in the temperature detecting device.
In the present invention, the control device may control the charging device through the temperature feedback with "the time-rate-of-change (~T/~t) of the temperature T", as a target value.
In other words, the control device controls a charge current so that the time-rate-of-change of the temperature T
does not exceed a constant value. As a result, it is possible to prevent the temperatures of all the battery cells constituting the page 15 battery-set from increasing suddenly, i.e. from reaching the critical temperature.
In the conventional charging system, the charge is stopped when the time-rate-of-change (~T/Ot) of the battery temperature TB exceeds a predetermined value. Therefore, when the "true OT/Ot" is not detected correctly due to an elevation of the outdoor temperature, the charge is stopped before the charge is fully completed. On the other hand, in the charging system according to the present invention, the control device controls the charging device through the temperature feedback. Therefore, when the "original OT/~t" is not detected correctly due to an elevation of the outdoor temperature, the control device reduces the charging current. After the "~T/Ot" decreases, the charge current is again increased.
In the present invention, as described above, the control device basically controls the charging device through the temperature feedback. The control device may control the output current in a constant current charge mode before the time-rate-of-change (OT/~t) of the temperature T exceeds a predetermined value. When the value based on the battery temperature exceeds a predetermined value, the control device may control the charging device through the temperature feedback.
In the present invention, during the control through the temperature feedback, the control device may control the charging device so that when the charge current becomes below a certain value, the charge current becomes zero or a low current charge is carried out. The "low current charge" is defined as a charge with a current value in the order of not having an adverse affect on the battery life.

Further, in the present invention, the control device may control the charging device so that the charge current becomes zero or the low current charge is carried out after a predetermined time since the charge current becomes below a certain value. The control device may control the charging device so that the charge current becomes zero or the low current charge is carried out when the battery temperature reaches a certain value. The control device may also control the charging device so that the charge current becomes zero or the low current charge is carried out when the battery temperature increases by a predetermined value since the battery temperature reached a certain value.

Claims

What is claimed is:

1. A charging system for charging a battery-set, comprising a temperature detecting device for detecting a battery temperature; a charging device; and a control device for controlling the charging device based on the battery temperature, said control device performing a temperature feedback charge and continuously controlling a charge current of the charging device with a quantity representing the temperature as a target value.

5. A charging system for charging a battery-set according to aruy one of claims 1-4, wherein said control device controls the charging device in a temperature feedback control in one of control methods such that a charging current becomes zero when the charge current becomes below a certain value; that the charging current becomes zero after a predetermined time is elapsed since the charge current becomes below a certain value:
that the charging current becomes zero when the battery temperature reaches a certain value; and that the charging current becomes zero when the battery temperature increases by a predetermined value after the battery temperature reaches a certain value predetermined value after the battery temperature reaches a certain value.

6. A charging system for charging a battery-set according to any one of claims 1-5, wherein said control device controls the charging device in a temperature feedback control with one of methods such that when a charge current becomes below a certain value, low current charge is performed; that after a predetermined time To since the charge current becomes below a certain value, the low current charge is performed; that when the battery temperature reaches a certain value, the low current charge is performed; and that when the battery temperature increases by a predetermined value since the battery temperature reaches a certain value, the low current charge is performed.

7. A charging system for charging a battery-set according to any one of claims 1-6, wherein said battery-set is formed of a plurality of battery cells, and wherein said temperature detecting device detects the battery temperature based on a part of the battery cells.

8. A charging system for charging a battery-set according to any one of claims 1-7, wherein said battery-set is formed of a plurality of modules and the modules are formed of a plurality of battery cells, and wherein said temperature detecting device detects, as the battery temperature, a temperature of one module in the plurality of the modules or a temperature of one battery cell in the plurality of the battery cells, or a temperature based on temperatures of more than two modules in the plurality of modules or a temperature based on temperatures of more than two battery cells in the plurality of the battery cells.

9. A charging system for charging a battery-set according to claim 7 or 8, wherein said temperature detecting device detects an average of temperatures of more than two modules in the plurality of the modules, or an average of temperatures of more than two battery cells in the plurality of the battery cells as the battery temperature, or said temperature detecting device detects a maximum temperature of the plurality of the modules, or a maximum temperature of the plurality of the battery cells as the battery temperature.

10. A charging system for charging a battery-set according to any one of claims 1-9, wherein said charging system is installed in an electric motor vehicle.
CA002431159A 2000-11-24 2001-11-26 Battery pack charging system Abandoned CA2431159A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000357936A JP2002165380A (en) 2000-11-24 2000-11-24 Charging system of battery set
JP2000-357936 2000-11-24
PCT/JP2001/010277 WO2002043219A1 (en) 2000-11-24 2001-11-26 Battery pack charging system

Publications (1)

Publication Number Publication Date
CA2431159A1 true CA2431159A1 (en) 2002-05-30

Family

ID=18829925

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002431159A Abandoned CA2431159A1 (en) 2000-11-24 2001-11-26 Battery pack charging system

Country Status (7)

Country Link
US (1) US7285936B2 (en)
EP (1) EP1345304A4 (en)
JP (1) JP2002165380A (en)
KR (1) KR100582639B1 (en)
CN (1) CN1314182C (en)
CA (1) CA2431159A1 (en)
WO (1) WO2002043219A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110337A (en) 2003-09-26 2005-04-21 Sanyo Electric Co Ltd Charger for a plurality of batteries
JP2006280060A (en) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Charger
US7675269B2 (en) * 2006-11-03 2010-03-09 Broadcom Corporation Circuit and method for battery charging and discharging protection
US7973515B2 (en) 2007-03-07 2011-07-05 O2Micro, Inc Power management systems with controllable adapter output
US20080218127A1 (en) * 2007-03-07 2008-09-11 O2Micro Inc. Battery management systems with controllable adapter output
US8222870B2 (en) 2007-03-07 2012-07-17 O2Micro, Inc Battery management systems with adjustable charging current
JP4915273B2 (en) * 2007-04-25 2012-04-11 トヨタ自動車株式会社 Electrical device and method for controlling electrical device
JP4228086B1 (en) * 2007-08-09 2009-02-25 トヨタ自動車株式会社 vehicle
JP4640391B2 (en) * 2007-08-10 2011-03-02 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
JP4660523B2 (en) 2007-09-19 2011-03-30 レノボ・シンガポール・プライベート・リミテッド Charging system that controls charging at the surface temperature of the battery cell
US9118238B2 (en) * 2007-11-21 2015-08-25 O2Micro, Inc. Charge pump systems with adjustable frequency control
US8111038B2 (en) 2008-06-12 2012-02-07 O2 Micro, Inc Vehicle electronic systems with battery management functions
JP2010029015A (en) * 2008-07-23 2010-02-04 Mitsubishi Heavy Ind Ltd Battery pack system
CN102958740B (en) * 2010-06-25 2014-11-12 丰田自动车株式会社 Electrically driven vehicle and method of controlling thereof
JP2012034425A (en) * 2010-07-28 2012-02-16 Panasonic Corp Charging/discharging control circuit of secondary battery, battery pack, and battery power supply system
CN103503274B (en) 2011-04-22 2016-09-14 丰田自动车株式会社 Charging device and charging method
WO2013008397A1 (en) * 2011-07-08 2013-01-17 Necエナジーデバイス株式会社 Battery pack, charging control system and charging method
JPWO2013008396A1 (en) * 2011-07-08 2015-02-23 Necエナジーデバイス株式会社 Battery pack, charging control system, and charging method
JP5803848B2 (en) * 2012-08-24 2015-11-04 トヨタ自動車株式会社 Storage device control device
CN106816916B (en) * 2015-11-27 2020-01-31 南京德朔实业有限公司 Charging system and charging method
CN105680541B (en) * 2016-03-28 2017-11-03 西安特锐德智能充电科技有限公司 A kind of charging method of low temperature charging strategy
US9921272B2 (en) * 2016-05-23 2018-03-20 Lg Chem, Ltd. System for determining a discharge power limit value and a charge power limit value of a battery cell
KR101867225B1 (en) * 2017-03-31 2018-06-12 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 Lithium-ion battery quick charging method
CN107037376B (en) * 2017-05-28 2023-06-30 贵州电网有限责任公司电力科学研究院 Storage battery pack charge-discharge current monitoring system and monitoring method
CN107482724B (en) * 2017-08-29 2020-05-19 普联技术有限公司 Charging control method and device and computer readable storage medium
US10948543B2 (en) * 2019-01-28 2021-03-16 Lg Chem, Ltd. System for determining a discharge power limit value and a charge power limit value of a battery cell
JP7314666B2 (en) * 2019-07-09 2023-07-26 トヨタ自動車株式会社 charging controller
JP7234892B2 (en) * 2019-10-02 2023-03-08 株式会社デンソー charging controller
CN116190831B (en) * 2023-04-25 2023-09-15 宁德时代新能源科技股份有限公司 Battery temperature control method and system

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE621990C (en) * 1932-05-03 1935-11-16 Lon Ladislaus Von Kramolin Process for the derivation of currents from gas or vaporous media, in which electrical currents are generated through relative movement between these media and electromagnetic force fields
US3852652A (en) * 1973-08-06 1974-12-03 Motorola Inc Rapid battery charging system and method
US5493199A (en) * 1982-06-07 1996-02-20 Norand Corporation Fast battery charger
CA2022802A1 (en) * 1989-12-05 1991-06-06 Steven E. Koenck Fast battery charging system and method
US5391974A (en) * 1990-10-15 1995-02-21 Toshiba Battery Co., Ltd. Secondary battery charging circuit
US5563496A (en) * 1990-12-11 1996-10-08 Span, Inc. Battery monitoring and charging control unit
JPH0568347A (en) * 1991-09-09 1993-03-19 Sony Corp Battery discharge control circuit
EP0539640A1 (en) * 1991-10-30 1993-05-05 Texas Instruments Limited Improvements in or relating to batteries
DE4200693C1 (en) * 1992-01-14 1993-05-06 Robert Bosch Gmbh, 7000 Stuttgart, De
EP0623986B1 (en) * 1993-05-05 1998-04-29 Sgs-Thomson Microelectronics Pte Ltd. Battery charger
JP2732204B2 (en) * 1993-09-29 1998-03-25 株式会社ジップチャージ Method and apparatus for fast charging secondary battery
US5519303A (en) * 1993-09-30 1996-05-21 Motorola, Inc. Fast battery charging method and apparatus with temperature gradient detection
US5550453A (en) * 1994-01-24 1996-08-27 Motorola, Inc. Battery charging method and apparatus
US5548201A (en) * 1994-09-13 1996-08-20 Norand Corporation Battery charging method and apparatus with thermal mass equalization
JP3157686B2 (en) * 1994-11-08 2001-04-16 松下電器産業株式会社 Battery charging control device
FR2739724B1 (en) * 1995-10-05 1997-11-14 Accumulateurs Fixes METHOD FOR CHARGING WATERPROOF NICKEL-CADMIUM BATTERIES
US5668461A (en) * 1996-02-13 1997-09-16 Reserve Battery Cell, L.P. Reserve battery having temperture compensation
FR2745433B1 (en) * 1996-02-27 1998-04-03 Sgs Thomson Microelectronics DEVICE FOR CONTROLLING THE CHARGE OF AT LEAST ONE BATTERY
JPH09294337A (en) * 1996-04-24 1997-11-11 Fuji Heavy Ind Ltd Battery charging controlling system for electric vehicle
FR2760293B1 (en) * 1997-03-03 1999-04-16 Alsthom Cge Alcatel METHOD FOR CHARGING METALLIC HYDRIDE BATTERIES WITHOUT MAINTENANCE
WO1999005768A1 (en) * 1997-07-21 1999-02-04 Chartec Laboratories A/S Method and apparatus for charging a rechargeable battery
US5825159A (en) * 1997-09-29 1998-10-20 Motorola, Inc. Battery charging method for properly terminating rapid charge
JPH11178231A (en) 1997-12-09 1999-07-02 Denso Corp Temperature control device of set battery for electric vehicle
JP3378189B2 (en) * 1998-02-28 2003-02-17 株式会社マキタ Charging device and charging method
JP4438109B2 (en) 1998-06-15 2010-03-24 株式会社ジーエス・ユアサコーポレーション Temperature sensor mounting structure for battery pack
JP3495636B2 (en) * 1999-03-25 2004-02-09 株式会社マキタ Charging device
JP3495637B2 (en) * 1999-03-26 2004-02-09 株式会社マキタ Charging device and charging system
US6476584B2 (en) * 1999-03-25 2002-11-05 Makita Corporation Battery charger and battery charging method
JP3652191B2 (en) * 1999-11-10 2005-05-25 株式会社マキタ Charger
JP3581064B2 (en) * 1999-11-10 2004-10-27 株式会社マキタ Charging device

Also Published As

Publication number Publication date
WO2002043219A1 (en) 2002-05-30
CN1395756A (en) 2003-02-05
US20050099154A1 (en) 2005-05-12
US7285936B2 (en) 2007-10-23
EP1345304A4 (en) 2006-02-01
KR100582639B1 (en) 2006-05-23
CN1314182C (en) 2007-05-02
KR20020083153A (en) 2002-11-01
JP2002165380A (en) 2002-06-07
EP1345304A1 (en) 2003-09-17

Similar Documents

Publication Publication Date Title
US7285936B2 (en) Charging system for battery-set
US8004239B2 (en) Battery management system for calculating charge and disharge powers
US10254351B2 (en) Voltage monitoring system and voltage monitoring module
JP5090477B2 (en) Method for balance charging a lithium ion or lithium polymer battery
JP4886008B2 (en) Battery pack and charging method thereof
KR100265709B1 (en) A secondary charginf apparatus
US7489108B2 (en) Method of controlling battery current limit values
US5945811A (en) Pulse charging method and a charger
KR100338293B1 (en) Power supply
US20130278221A1 (en) Method of detecting battery degradation level
US20060220619A1 (en) Remaining capacity calculating device and method for electric power storage
US20070075678A1 (en) Life cycle extending batteries and battery charging means, method and apparatus
US10554064B2 (en) Battery controlling device
US8143854B2 (en) Adjusting method of battery pack and adjusting method of battery pack with controller
KR100626801B1 (en) Apparatus and method for controlling output of secondary battery, battery back system, and electric vehicle
US20200112183A1 (en) Full-charge-capacity estimating device for power supply device
US20040130294A1 (en) Life cycle extending batteries and battery charging means, methods and apparatus
KR101875536B1 (en) Method of UPS battery charge
JP7001519B2 (en) Battery management device, battery management method, power storage system
CN1941546B (en) Rechargeable battery charging method
JP5421111B2 (en) Method for controlling end point of rechargeable battery discharge
JP2002170599A (en) Monitor, controller, and battery module
CN117678140A (en) Monomer balancing method and battery pack using same

Legal Events

Date Code Title Description
FZDE Discontinued