CA2403432A1 - Immune mediators and related methods - Google Patents
Immune mediators and related methods Download PDFInfo
- Publication number
- CA2403432A1 CA2403432A1 CA002403432A CA2403432A CA2403432A1 CA 2403432 A1 CA2403432 A1 CA 2403432A1 CA 002403432 A CA002403432 A CA 002403432A CA 2403432 A CA2403432 A CA 2403432A CA 2403432 A1 CA2403432 A1 CA 2403432A1
- Authority
- CA
- Canada
- Prior art keywords
- gly
- thr
- glu
- ser
- val
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70539—MHC-molecules, e.g. HLA-molecules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0008—Antigens related to auto-immune diseases; Preparations to induce self-tolerance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/605—MHC molecules or ligands thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Rheumatology (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Toxicology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present invention relates to nucleic acids encoding single chain MHC class II molecules that form multimers via inter-chain multimerization domains, and methods of treating autoimmune disease using the same.
Description
IMMUNE MEDIATORS AND RELATED METHODS
CROSS-REFERENCES TO RELATED APPLICATIONS
This application is related to U.S. Serial No. 60/191,274, filed March 22, 2000; U.S. Serial No. 60/204,249, filed May 15, 2000; and U.S. Serial No.
60/264,003, filed January 23, 2001. Each of the aforementioned applications are herein incorporated by reference in their entirety.
This application is also related to U.S. Serial No. 09/261,811, filed March 3, 1999; which is a continuation of U.S. Serial No. 08/657,581, filed June 7, 1996, now abandoned; which is a continuation in part of U.S. Serial No. 08/480,002, filed June 7, 1995, now abandoned; U.S. Serial No 09/184,692, filed November 2, 1998, now abandoned; U.S. Serial No. 08/483,241, filed June 7, 1995; U.S. Serial No.
08/482,133, filed June 7, 1995; and U.S. Provisional Application No. 60/005,964, filed October 27, 1995.
BACKGROUND OF THE INVENTION
T cells, unlike B cells, do not directly recognize antigens. Instead, an accessory cell must first process an antigen and present it in association with an MHC
molecule in order to elicit a T cell-mediated immunological response. The major function of MHC glycoproteins appears to be the binding and presentation of processed antigen in the form of short antigenic peptides. ' In addition to binding foreign or "non-self antigenic peptides," MHC
molecules can also bind "self' peptides. If T lymphocytes then respond to cells presenting "self" or autoantigenic peptides, a condition of autoimmunity results. Over 30 autoimmune diseases are presently known, including myasthenia gravis (MG), multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), insulin-dependent diabetes mellitus (IDDM) , etc. Characteristic of these diseases is an attack by the immune system on the tissues of the host. In non-diseased individuals, such attack does not occur because the immune system recognizes these tissues as "self."
Autoimmunity occurs when a specific adaptive immune response is mounted against self tissue antigens.
There is therefore currently a great interest in developing pharmaceuticals based on the growing understanding of the structure and function of the major histocompatibility complex (MHC) antigens. Identification of synthetic autoantigenic peptides, and demonstration that these peptides bind selectively to MHC
molecules associated with disease and that stimulates T cells would help to implicate a particular peptide or peptide:MHC complex in susceptibility to an autoimmune disease. In particular, the development of single chain MHC class II complexes would be particularly useful in treatment of a number of diseases associated with antigen presentation by MHC
molecules. Furthermore, the development of single chain, multimeric complexes would be of interest (see, e.g., WO 93/10220, WO 98/05684, WO 97/35991, WO 98/03552, WO
99/13095, WO 98/06749, WO 99/09064, and U.S. Patent 5,869,270).
SUMMARY OF THE INVENTION
The present invention provides recombinant nucleic acid constructs that encode single chain, recombinant MHC class II molecules comprising a [31 domain and an al domain that may or may not be further linked to an antigenic peptide. In one embodiment, the single chain polypeptide is a /31 domain and an al domain. In another embodiment, the single chain polypeptide is a (31 domain-[32 domain (a (3 chain) and an al domain- a2 domain (an a chain). The single chain constructs of the invention can be further dimerized or multimerized by inter-chain fusion. The fusion sequence (also referred to as a dimerization or multimerization sequence) can be any sequence that allows for covalent or non-covalent linkages between the molecules of the invention. As shown below, a preferred means for carrying this out is through use of segments from immunoglobulin family proteins (e.g., antibodies, MHC molecules, T cell receptors and the like) that have cysteine residues capable of forming interchain disulfide bonds (e.g., constant regions from Ig light chains, e.g. Cx or C~,, or constant regions from Ig heavy chains, e.g., CH1, hinge, CH2, or CH3). In another embodiment, a leucine zipper domain forms a non-covalent linkage. One of skill will recognize that any of a number of polypeptide sequences can be used for this purpose. The single chain molecules of the invention thus can be multimers wherein each single chain molecule is from a different MHC class II allele. In addition, each single chain molecule in the multimer can be bound to a different antigen.
In one embodiment, monomeric and dimeric forms of recombinant single chain mouse I-AS-peptide complexes, fused to an antigenic MBP 90-101 peptide with flexible linkers were constructed. The recombinant single chain I-AS proteins share structural similarity to that of crystallized native human MHC class II
protein as determined by protein modeling. The recombinant single chain proteins were expressed in E. coli and in an insect expression system and purified by affinity chromatography and FPLC. The purified single chain recombinant I-AS proteins showed ih vitro biological activity as assayed using an antigen-specific mouse T cell clone. The in vivo activity of the recombinant single chain I-AS fusion proteins in the EAE model using susceptible SJL mice shows that treatment with the recombinant single chain I-AS proteins prevents mortality and significantly reduces paralysis induced by myelin homogenate.
Histological examination of sections from animal spinal cord reveals that these treatments also reduce the inflammatory lesions. These results demonstrate that the single chain MHC class II molecules have therapeutic benefit as antigen-specific drugs for the treatment of autoimmune diseases.
In another embodiment, novel linkers are provided for forming single chain MHC class II molecules. These linkers can be used with the multimer constructs described above. In another embodiment, the constructs of the invention are optimized for prokaryotic expression, using codons adjusted for E. coli codon bias.
The present invention also provides MHC class II heterodimers, wherein a recombinant (3 chain and a recombinant a chain are covalently linked using polypeptide fusion segments, e.g., from immunoglobulin family proteins (e.g., antibodies, MHC
molecules, T cell receptors and the like) that have cysteine residues capable of forming interchain disulfide bonds (e.g., constant regions from Ig light chains, e.g.
Cx or C7~, or constant regions from Ig heavy chains, e.g., CH1, hinge, CH2, or CH3). Such a heterodimer can also be "dimerized" or "multimerized" by the use of additional fusion domains, such as leucine zipper domains or immunoglobulin domains (see Figure 10).
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1. Schematic structure of the recombinant single chain I-AS
.MBP.(3lal (monomer) and I-AS.MBP.(31(32a1a2.CK (dimer) proteins.
Figure 2. In vitro biological activities of the recombinant I-AS proteins compared with APC+ antigenic peptide in the mouse T cell clone, HS-1.
A. I-AS.MBP.(31a1, monomer, B. I-AS.MBP.Ck, dimer, and C. APC+ antigenic peptide. The positive (anti-CD3) and the negative (HS-1 cell alone) controls are also shown in each panel.
Figure 3. Diagram of the EAE model and standard for EAE scoring.
Figure 4. The EAE model studies. The recombinant I-AS proteins were administered to SJL mice on day 1, 4, 7, and II by i.v. injection after inducing the disease with myelin emulsified in CFA. The animals were evaluated for neurological dysfunction. Panel A: Untreated, injected with same amount of PBS solution.
Panel B.
Treated with the recombinant I-AS.MBP.Ck protein, a dimer form. Panel C:
Treated with the recombinant I-AS.(3lal. This recombinant molecule does not carry the antigenic peptide. Panel D: Treated with the recombinant I-AS.MBP.(31a1, a monomer form.
Figure 5 shows a schematic representation of a (il-al single chain MHC
class II peptide complex that is a dimer with two peptide specificities.
Figure 6 shows a schematic representation of a j31 J32-ala2 single chain MHC class II peptide complex that is a dimer with two peptide specificities.
Figure 7 shows a schematic representation of a (31 /32-al a2 single chain MHC class II peptide complex that is a tetramer with four peptide specificities.
Figure 8 shows a schematic representation of a (31 (32-a 1 a2 single chain MHC class II peptide complex that is a tetrarner with two peptide specificities and two different MHC class II alleles.
Figure 9 shows the effect of different recombinant MHC class II molecules on the development of EAD (day 60+).
Figure 10. Diagram of [31-al single chain MHC class II peptide complex;
diagram of recombinant (3132 chains fused to recombinant ala2 chains via a fusion domain from an immunoglobulin; and diagram of multimerized MHC class II
molecules.
Figure 11. Sequence comparison of mouse C0608 single chain molecules.
Figure 12. Sequence comparison of mouse C0561 single chain molecules.
DETAILED DESCRIPTION OF THE INVENTION
Introduction The present invention provides recombinant DNA constructs that encode single chain MHC class II molecules that may or may not be further linked to an antigenic peptide. Typically, the constructs comprise a first DNA segment encoding a (31 domain of a selected MHC class II molecule; a second DNA segment encoding a al domain of the selected MHC class II molecule; and a first linker DNA segment connecting in-frame the first and second DNA segments; wherein linkage of the first DNA segment to the second DNA segment by the first linker DNA segment results in a fused first DNA-first 5 linker-second DNA polysegment. The constructs of the invention may also comprise a third DNA segment encoding an antigenic peptide capable of associating with a peptide binding groove of the selected MHC class II molecule and a second linker DNA
segment connecting in-frame the third DNA segment to the fused first DNA-first linker-second DNA polysegment.
In another embodiment, the present invention also provides recombinant components of an MHC class II heterodimer, which comprise a fusion domain. One recombinant component comprises a (31 domain, or optionally a (31 domain-(32 domain (i.e., a (3 chain). One recombinant component comprises an al domain, or optionally an al domain- a2 domain (i.e., an a chain). The two recombinant chains are linked, either covalently, e.g., via a disulfide bond, or non covalently, using the fusion domain. Such molecules can also be made into multimers using additional fusion or multimerization domains. In one embodiment, the invention provides the following recombinant components of an MHC class II heterodimer: pCB220, which is an IAS.MBP.alpha chain fused to an IgG2a CH1 and truncated hinge region; pCB223, which is an IAS.MBP.alpha chain fused to an IgG2a CH1.H.CH2.CH3; and pCB229, which is an IAS.MBP.beta chain fused to a mouse CK domain. These recombinant components can be fused via the fusion domain to form a MHC class II heterodimer molecule that is covalently linked via a disulfide bond at the fusion domain.
The present invention provides single chain MHC class II molecules that comprise an additional polypeptide sequence that allows for inter-chain dimerization of the single chain molecules of the invention. The additional polypeptide allows multimerization of the single chain MHC class II molecules, to produce, e.g., dimers and tetramers. The sequence can be any sequence that allows for covalent or non-covalent linkages between the molecules of the invention. In one embodiment, the single chain molecules axe covalently linked using chemical methods known to those of skill in the art, e.g., photoaffinity methods or homo-bifunctional protein cross-linkers (see, e.g., Hermanson et al., Bioconjugate Techniques, (1996)). In one embodiment, the molecules are covalently linked using heterobifunctional protein cross-linkers. As shown below, one means for carrying this out is through use of segments form immunoglobulin family proteins (e.g., antibodies, MHC molecules, T cell receptors and the like) that have cysteine residues capable of forming interchain disulfide bonds. An example shown below is the use of the constant region of the kappa chain of an antibody (CK), from either a heavy or a light chain. Other dimerization sequences include a leucine zipper, a STAT
protein N-terminal domain, or the FK506 binding protein (see, e.g., O'Shea, Science 254:
539 (1991), Barahmand-Pour et al., C'urr. Top. Microbiol. Immunol. 211:121-128 (1996);
Klemm et al., Anuu. Rev. Immur~ol. 16:569-592 (1998); Ho et al., Nature 382:822-826 (1996)). One of skill will recognize that any of a number of polypeptide sequences can be used for this purpose.
In addition, the multimeric, single chain class II molecules of the invention comprise at least two different MHC class II alleles that are associated with an autoimmune disease state, and/or at least two different autoantigenic peptides that are associated with a particular autoimmune disease state. In one example, the multimeric, single chain class II molecules have chains from different D1R2 alleles, e.g., DRBS*0101 and DItB 1 * 1501. In another embodiment, the autoantigenic peptides are peptides associated with multiple sclerosis, e.g., MBP (e.g., amino acid residues 83-102Y83), PLP
(e.g., amino acid residues 40-60, 89-106, 95-117, and 185-206); and MOG. In addition, other antigens associated with autoimmune disease, such as acetylcholine receptor and type II collagen, can be linked to the single chain molecules of the invention..
In a further embodiment, the single chain class II molecules of the invention have novel linkers, as described herein. The mammalian MHC class II
single chain constructs of the invention may also be constructed to use preferred prokaryotic codons, for expression, e.g., in E. coli, using codon preference tables and methods known to those of skill in the art.
Definitions Prior to setting forth the invention, it may be helpful to an understanding thereof to provide definitions of certain terms to be used hereinafter:
Single chain MHC class II molecule: As used herein this term refers to a fusion protein such as the recombinant single chain MHC class II complex of the invention, which optionally also is fused to a peptide to form a single chain MHC
class:peptide complex. The fusion proteins of the invention can also be multimers, having two, four or more single chain molecules linked covalently or non-covalently through multimerization domains in the single chain molecule. A single chain molecule of the invention typically comprises at least an MHC class II (31 domain and an MHC
class II al domain, optionally (31 (32 al a2 domains or any combination thereof in any order. Such molecules are also known as "fused heterodimers." Optionally, the single chain molecules are soluble, that is, they lack the naturally occurnng cytoplasmic and transmembrane MHC class II domains.
A domain of a selected MHC molecule: A portion of an MHC domain which is sufficient to form, either alone, or in combination with another portion of an MHC domain, a peptide binding site which is capable of presenting an antigenic peptide in such a fashion that it is recognized by a T cell receptor. Such MHC domains would include the extracellular portion of the two polypeptide chains of Class II
MHC. This would include the a chain (al and a2 domains) and (3 chain (~31 and (32 domains) of Class II MHC. This would include (31 and al, (31, (32 and al, a2, a1 or a2 independent of the other, or al and a2 in tandem (ala2). It would also include (31 or (32 independent of the other, or (31 and (32 in tandem ((31 (32). This would also include any suitable combination of the al, a2, (31, and (32 domains. The domains can be directly linked, or can be linked via an amino acid linker.
Linker DNA segment: A segment of DNA encoding from about 1 to about 50, preferably from about 5 to about 25 amino acids, which forms a flexible link between two DNA segments. This flexible link allows the two DNA segments to attain a proper configuration, such as an MHC peptide binding groove, or allows a peptide to properly bind into such a groove.
Anti e~ nic ~e tn ide: The immunological properties of MHC
histocompatibility proteins are largely defined by the antigenic peptide that is bound to them. An antigenic peptide is one which contains an epitope (an amino acid sequence) recognized by immune cells, e.g., T cells, and is capable of stimulating an MHC-mediated immune response.. Antigenic peptides for a number of autoimmune diseases are known.
For example, in experimentally induced autoimmune diseases, antigens involved in pathogenesis have been characterized: in arthritis in rat and mouse, native type II collagen is identified in collagen-induced arthritis, and mycobacterial heat shock protein in adjuvant arthritis (Stuart et al., Ann. Rev. Immunol. 2:199-218, 1984; and van Eden et al., Nature 331:171-173, 1988); thyroglobulin has been identified in experimental allergic thyroiditis (EAT) in mice (Marion et al., J. Exp. Med. 152:1115-1120, 1988);
acetyl-choline receptor (AChR) in experimental allergic myasthenia gravis (EAMG) (Lindstrom et al., Adv. Immunol. 42:233-284, 1988) ; and myelin basic protein (MBP) and proteolipid protein (PLP) in experimental allergic encephalomyelitis (EAE) in mouse and rat (Acha-Orbea et al., Ann. Rev. Imm. 7:377-405, 1989). In addition, target antigens have been identified in humans: type II collagen in human rheumatoid arthritis (Holoshitz et al., Lancet ii:305-309, 1986), acetylcholine receptor in myasthenia gravis (Lindstrom et al., Adv. Immunol. 42.:233-284, 1988), and MBP, PLP, and MOG in multiple sclerosis in humans.
MHC: The major histocompatibility complex (NIFiC) is a family of highly polymorphic proteins, divided into two classes, Class I and Class II, which are membrane-associated and present antigen to T lymphocytes (T cells). MHC Class I and Class II molecules are distinguished by the types of cells on which they are expressed, and by the subsets of T cells which recognize them. Class I MHC molecules (e.g., HLA-A, -B and -C molecules in the human system) are expressed on alinost all nucleated cells and are recognized by cytotoxic T lymphocytes (CTL), which then destroy the antigen-bearing cells. Class II MHC molecules (HLA-DP, -DQ and -DR, for example, in humans) are expressed primarily on the surface of antigen-presenting cells, such as B
lymphocytes, dendritic cells, macrophages, and the like. Class II MHC is recognized by CD4+ T helper lymphocytes (TH). TH cells induce proliferation of both B and T
lymphocytes, thus amplifying the immune response to the particular antigenic peptide that is displayed (Takahashi, Microbiol. Immunol., 37:1-9, 1993).
Two distinct antigen processing pathways are associated with the two MHC classes. Intracellular antigens, synthesized inside of the cell, such as from viral or newly synthesized cellular proteins, for example, are processed and presented by Class I
MHC. Exogenous antigens, taken up by the antigen-presenting cell (APC) from outside of the cell through endocytosis, are processed and presented by Class II MHC.
After the antigenic material is proteolytically processed by the MHC-bearing cell, the resulting antigenic peptide forms a complex with the antigen binding groove of the MHC
molecule through various noncovalent associations. The MHC-peptide complex on the cell surface is recognized by a specific T cell receptor on a cytotoxic or helper T cell.
The MHC of humans (also referred to as human leukocyte antigens (HLA)) on chromosome 6 has three loci, HLA-A, HLA-B and HLA-C, the first two of which have a large number of alleles encoding alloantigens. An adjacent region, known as HLA-D, is subdivided into HLA-DR, HLA-DQ and HLA-DP. The HLA region is now known as the human MHC region, and is equivalent to the H-2 region in mice.
HLA-A, -B and -C resemble mouse H-2K, -D, and -L and are the Class I MHC molecules.
HLA-DP, -DQ and -DR resemble mouse I-A and I-E and are the Class II molecules. MHC
glycoproteins of both classes have been isolated and characterized (see Fundamental Immunology, 2d Ed., Paul (ed.), (1989); and Roitt et al., Immunology, 2d Ed., (1989) , which are both incorporated herein by reference).
Human MHC Class I molecules consist of a polymorphic type I integral membrane glycoprotein heavy chain of about 46 kD, noncovalently associated with a 12 kD soluble subunit, (32-microglobulin. The heavy chain consists of two distinct extracellular regions, the membrane distal, peptide binding region formed by the al and a2 domains, and the membrane proximal, CD8-binding region derived from the a3 domain. (32- microglobulin is a single, compact immunoglobulin-like domain that lacks a membrane anchor, and exists either associated with the class I heavy chain or free in plasma (Germain and Margulies, Annu. Rev. Immunol. 11:403-50, 1993).
Human MHC Class II is a heterodimeric integral membrane protein. Each dimer consists of one a and one [3 chain in noncovalent association: The two chains are similar to each other, with the a chain having a molecular weight of 32-34 kD
and the (3 chain having a molecular weight of 29-32 kD. Both polypeptide chains contain N-linked oligosaccharide groups and have extracellular amino termini and intracellular carboxy termini.
The extracellular portions of the a and (3 chain that comprise the class II
molecule have been subdivided into two domains of about 90 amino acids each, called al, a2, and ail, (32, respectively. The a2 and /32 domains each contain a disulfide-linked loop. The peptide-binding region of the class II molecule is formed by the interaction of the al and al domains. This interaction results in an open-ended, antigenic peptide-binding groove made up of two a helices, and an eight-stranded (3-pleated sheet platform.
The a and (3 chains of Class II molecules are encoded by different MHC
genes and are polymorphic (see Addas et al., Cellular and Molecular Immunology, 2d Ed.
(1994), which is incorporated by reference in its entirety). Within the present invention, a preferred a chain is DRA*0101 and a preferred (3 chain is DR(31* 1501.
MHC Class II alleles The single chain MHC class II:peptide complexes of the present invention can incorporate cDNA from any allele that predisposes or increases the likelihood of susceptibility to a specific autoimmune disease. Specific autoimmune diseases are 10 correlated with specific MHC types. Specific haplotypes have been associated with many of the autoimmune diseases. For example, HLA-DR2+ and HLA-DR3+ individuals are at a higher risk than the general population to develop systemic lupus erythematosus (SLE) (Reinertsen et al., N. Engl. J. Med. 299:515-18, 1970). Myasthenia gravis has been linked to HLA-D (Safwenberg et al., Tissue Antigens 12:136-42,1978.
Susceptibility to rheumatoid arthritis is associated with HLA-D/DR in humans. Methods for identifying which alleles, and subsequently which MHC-encoded polypeptides, are associated with an autoimmune disease are known in the art. Exemplary alleles for H~DM include DR4, DQB, DR3, DQ3.2.
Uses of single chain MHC class II molecules Single chain MHC class II molecules and/or single chain MHC class II:peptide complexes of the present invention can be used as antagonists to therapeutically block the binding of particular T cells and antigen-presenting cells. In addition, the molecules can induce anergy, or proliferative nonreponsiveness, and possibly apoptosis, in targeted T cells, both in vivo and in vitro. A single chain MHC class Il:peptide molecule directed toward a desired autoimmune disease contains the antigenic peptide implicated for that autoimmune disease properly positioned in the binding groove of the MHC molecule, without need for solublization of MHC or exogenous loading of an independently manufactured peptide.
Previous methods for producing desirable MHC Class II histocompatibility proteins have provided material that contains a mixture of antigenic peptides (Buus et al., Science 242:1045-1047, 1988; and Rudensky et al., Nature 353:622-627, 1991), which can be only partially loaded with a defined antigenic peptide (Watts and McConnel, Pro.
Natl. Acad. Sci. USA 83:9660-64, 1986; and Ceppellini et al., Nature 339:392-94, 1989).
Various methods have been developed to produce heterodimers that do not present endogenous antigens (Stern and Wiley, Cell 68:465-77, 1992; Ljunggren et al., Nature 346:476-80, 1990; and Schumacher et al., Cell 62:563-67, 1990) that can be loaded with a peptide of choice. WO 95123814 and Kozono et al. have described production of soluble marine Class II molecules, I-Eak and I-Aa, each with a peptide attached by a linker to the N terminus of the (3 chain. Ignatowicz et al. (J. Immunol. 154:38-62, 1995) have expressed membrane-bound I-Ad with peptide attached. These methods incorporate the use of both membrane-bound heterodimer and soluble heterodimer.
The current invention offers the advantage of a recombinant single chain MHC class II molecule made up of two or more MHC domains joined together via a flexible linkage, and onto which is tethered (via an additional flexible linkage) an antigenic peptide which is able to bind to the peptide binding groove presented by the single chain MHC class II molecule. Such a complex provides an MHC molecule which is soluble and, because the MHC class II components and corresponding antigenic peptide are permanently linked into a single chain configuration, there is no need for complex heterodimer truncation or formation. These complexes eliminate inefficient and nonspecific peptide loading. Producing the claimed MHC:peptide complexes by recombinant methodology results in specific, high yield protein production, where the final product contains only the properly configured MHC:peptide complex of choice.
As used herein, a soluble MHC class II molecules is one that does not contain the naturally occurring membrane-associated MHC class II sequences.
The soluble MHC molecules of the present invention has never been membrane-associated.
Further, the soluble MHC class II molecules do not contain an amino acid sequence that acts as a transmerribrane domain or as a cytoplasmic domain.
The present invention therefore provides a single chain MHC class II
molecule which optionally includes an antigenic peptide covalently attached to the amino terminal portion of an a or (3 chain of MHC through a peptide linkage, and the C terminal of the linked a or j3 chain may be attached to the N terminal portion of another a or (3 chain, there by creating a two, three, or four domain MHC molecule. The invention further provides a multimerization domain to provide a multimeric single chain MHC
class II molecules. The invention further provides novel linkers, and multimeric MHC
class II molecules that are bound to different antigenic peptides.
The amino acid sequence of each of a number of Class I and Class II
proteins are known, and the genes or cDNAs have been cloned. Thus, these nucleic acids can be used to express MHC polypeptides. If a desired MHC gene or cDNA is not available, cloning methods known to those skilled in the art may be used to isolate the genes. One such method that can be used is to purify the desired MHC
polypeptide, obtain a partial amino acid sequence, synthesize a nucleotide probe based on the amino acid sequence, and use the probe to identify clones that harbor the desired gene from a cDNA or genomic library.
Linkers Linkers of the current invention may be from about 1 to about 50 amino acids in length, depending on the molecular model of the MHC or MI-IC:peptide complex.
In one embodiment, flexible linkers are made of repeating Gly residues separated by one or more Ser residues to permit a random, flexible motion. In the case of Class II MHC
complexes this flexibility accommodates positioning of the a and (3 segments to properly configure the binding groove, and also allows for maximum positioning of the peptide in the groove. In another embodiment, the linker comprises a CD4 binding site, as described below in the Example section (see also Table 1). In another embodiment, longer linkers between the chains contain flexible residues (e.g. alanine or glycine) and polar residues (e.g. serine and threonine). To inhibit the continuation of secondary structure across the linker, prolines can be added to bracket the linkers.
These prolines are known to inhibit the formation of alpha helices and beta sheets. In another embodiment, flexible regions present in the human MHC and in the marine MHC
could be used to make a linker by extending the region of interest and ligating the ends together.
Finally, a combination of these types of linkers could also be used.
Linker position and length can be modeled based on the crystal structure of MHC Class II molecules (Brown et al., Nature 364:33-39, 1993), where al and (31 are assembled to form the peptide binding groove. Linkers joining segments of the a and (3 chains together are based on the geometry of the region in the hypothetical binding site and the distance between the C terminus and the N terminus of the relevant segments.
Molecular modeling based on the X-ray crystal structure of Class II MHC (Stern et al., NatuYe 368:215-221, 1994) dictates the length of linkers joining antigenic peptide, a chain segments and (3 chain segments. The recombinant portions of the molecules of the invention can also be directly linked, without additional amino acids linkers.
Identification of autoantigens The invention also provides methods for preparing responder T-cell clones that proliferate when combined with a selected antigenic peptide presented by a stimulator cell. Such clones can be used to identify and map antigenic peptides associated with autoimmune disease. These peptides can then be incorporated into the single chain MHC class II molecule:peptide complexes of the invention. The method provides isolation and enrichment of non-adherent, CD56-, CD8- T cells that are reactive with a selected antigenic peptide. These cells are herein referred to as responder cells.
Suitable responder cells can be isolated, for example, from peripheral blood mononuclear cells (PBMNC) obtained from patients prior to or after onset of an autoimmune disease of interest. For example, PBMNCs can be obtained from prediabetic and new onset diabetic patients. These patients can be pre-screened for specific HLA markers, such as DR4 or DQ3.2, which have the highest association with susceptibility to IDDM.
From the collected PBMNCs, a portion is kept to serve as stimulator cells. From the remainder, the desired autoreactive responder cells are purified and isolated by two rounds of plating, to remove adherent cells from the population, followed by removal of monocytes and B
cells with nylon wool. Enrichment for non-adherent CD4~ T cells is completed by sequential plating of the cells onto plates coated with anti-CD8 and anti-CDS6 antibodies.
The stimulator cells are pulsed or primed with whole GAD or an appropriate antigenic peptide. For example, stimulator cells from the PBMNCs of 1DDM
patients can be stimulated with antigenic GAD peptides then combined with PBMNCs or responder cells. After seven or 14 days, responder cell (T cell) clones are generated through limiting dilution and tested for antigen reactivity.
These responder cell (T cell) clones can then be used, for example, to map epitopes which bind to MHC and are recognized by a particular T cell. One such method uses overlapping peptide fragments of the autoantigen which are generated by tryptic digestion, or more preferably, overlapping peptides are synthesized using known peptide synthesis techniques. The peptide fragments are then tested for their ability to stimulate the responder T cell clones or lines (for example, Ota et al., Nature 346:183-187, 1990).
Once such a peptide fragment has been identified, synthetic antigenic peptides can be specifically designed, for example, to enhance the binding affinity for MHC and to out-compete any naturally processed peptides. Such synthetic peptides, when combined into a single chain MHC class II molecule:peptide complex, would allow manipulation of the immune system in vivo, in order to tolerize or anergize disease-associated activated T cells, thereby ameliorating the autoimmune disease.
Dissecting the functional role of individual peptides and peptide clusters in the interaction of a peptide ligand with an MHC molecule, and also in subsequent T cell recognition and reactivity, is a difficult undertaking due to the degeneracy of peptide binding to the MHC. Changes in T cell recognition or in the ability of an altered peptide to associate with MHC can be used to establish that a particular amino acid or group of amino acids comprises part of an MHC or T cell determinant. The interactions of altered peptides can be further assessed by competition with the parental peptide for presentation to a T cell, or through development of direct peptide-MHC binding assays.
Changes to a peptide that do not involve MHC binding could well affect T cell recognition.
For example, in a peptide, specific MHC contact points might only occur within a central core of a few consecutive or individual amino acids, whereas those amino acids involved in T cell recognition may include a completely different subset of residues.
In a preferred method, residues that alter T cell recognition are determined by substituting amino acids for each position in the peptide in question, and by assessing whether such change in residues alters the peptide's ability to associate with MHC (Allen et al., Nature 327:713-15, 1987; Sette et al., Nature 328:395-99, 1987;
O'Sullivan et al., J. Immunol. 147:2663-69, 1991; Evavold et al., J. Immunol. 148:347-53, 1992;
Jorgensen et al., Anrzu. Rev. Immunol. 10:835-73, 1992; Hammer et al., Cell 74:197-203, 1993;
Evavold et al., Immunol. Today 14:602-9, 1993; Hammer et al., Proc. Natl.
Acad. Sci.
USA 91:4456-60, 1994; and Reich et al., J. Immunol. 154:2279-88, 1994). One method would involve generating a panel of altered peptides wherein individual or groups of amino acid residues are substituted with conservative, semi-conservative or non conservative residues. A preferred variant of this method is an alanine scan (Ala scan) where a series of synthetic peptides are synthesized wherein each individual amino acid is substituted with L-alanine (L-Ala scan). Alanine is the amino acid of choice because it is found in all positions (buried and exposed), in secondary structure, it does not impose steric hindrances, or add additional hydrogen bonds or hydrophobic side chains. Alanine substitutions can be done independently or in clusters depending on the information desired. Where the information pertains to specific residues involved in binding, each residue in the peptide under investigation can be converted to alanine and the binding affinity compared to the unsubstituted peptide. Additional structural and conformational information regarding each residue and the peptide as a whole can be gained, for 10 example, by synthesizing a series of analogs wherein each residue is substituted with a D-amino acid such as D-alanine (D-Ala scan) (Galantino et al., in Smith, J. and Rivier, J.
(eds.), Peptides Chemistry and Biology (Proceedings of the Twelfth American Peptide Symposium), ESCOM, Leiden, 1992, pp. 404-OS). Essential residues can be identified, and nonessential residues targeted for modification, deletion or replacement by other 15 residues that may enhance a desired quality (Cunningham and Wells, Scienee 244:1081-1085, 1989; Cunningham and WeIIs, Natl. Acad. Sci. USA, 88:3407-3411, 1991;
Ehrlich et al., J. Biol. Chem. 267:11606-11, 1992; Zhang et al., Proc. Natl. Acad.
Sci. USA
90:4446-50, 1993; see also "Molecular Design and Modeling: Concepts and Applications Part A Proteins, Peptides, and Enzymes," Methods in Enzymology, Vol. 202, Langone (ed.), Academic Press, San Diego, CA, 1991).
Truncated peptides can be generated from the altered or unaltered peptides by synthesizing peptides wherein amino acid residues are truncated from the N-or C-terminus to determine the shortest active peptide, or between the N- and C-terminus to determine the shortest active sequence. Such peptides could be specifically developed to stimulate a response when joined to a particular MHC to form a peptide ligand to induce anergy in appropriate T cells in vivo or in vitro.
Analysis of single chain MHC class II molecule:peptide complexes The physical and biological properties of the single chain MHC class II
molecule:peptide complexes may be assessed in a number of ways. Mass spectral analysis methods such as electrospray and Matrix-Assisted Laser Desorption/Ionization Time Of Flight mass spectrometry (MALDI TOF) analysis are routinely used in the art to provide such information as molecular weight and confirm disulfide bond formation.
FACs analysis can be used to determine proper folding of the single chain complex.
An ELISA (Enzyme-linked Immunosorbent Assay) can be used to measure concentration and confirm correct folding of the single chain MHC
class II
molecule:peptide complexes. This assay can be used with either whole cells;
solubilized MHC, removed from the cell surface; or free single chain MHC class II
molecule:peptide complexes of the current invention. In an exemplary ELISA, an antibody that detects the recombinant MHC haplotype is coated onto wells of a microtiter plate. In a preferred embodiment, the antibody is L243, a monoclonal antibody that recognizes only correctly folded HLA-DR MHC dimers. One of skill in the art will recognize that other MHC
Class IT-specific antibodies are known and available. Alternatively, there are numerous routine techniques and methodologies in the field for producing antibodies (for example, Hurrell, (ed)., Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC
Press Inc., Boca Raton, FL, 1982), if an appropriate antibody for a particular haplotype does not exist. Anti-MHC Class II antibodies can also be used to purify Class II
molecules through techniques such as affinity chromatography, or as a marker reagent to detect the presence of Class II molecules on cells or in solution. Such antibodies are also useful for Western analysis or immunoblotting, particularly of purified cell-secreted material. Polyclonal, affinity purified polyclonal, monoclonal and single chain antibodies are suitable for use in this regard. In addition, proteolytic and recombinant fragments and epitope binding domains can be used herein. Chimeric, humanized, veneered, CDR-replaced, reshaped or other recombinant whole or partial antibodies are also suitable.
In the ELISA format, bound MHC molecules can be detected using an antibody or other binding moiety capable of binding MHC molecules. This binding moiety or antibody may be tagged with a detectable label, or may be detected using a detectably labeled secondary antibody or binding reagent. Detectable labels or tags are known in the art, and include fluorescent, colorimetric and radiolabels, for instance.
Other assay strategies can incorporate specific T-cell receptors to screen for their corresponding MHC-peptide complexes, which can be done either in vitro or in vivo. For example, an in vitro anergy assay determines if non-responsiveness has been induced in the T cells being tested. Briefly, an MHC molecule containing antigenic peptide in the peptide binding groove can be mixed with responder cells, preferably peripheral blood mononuclear cells (PBMI~ (a heterogeneous population including B and T lymphocytes, monocytes and dendritic cells), PBMNC lymphocytes, freshly isolated T
lymphocytes, in vivo primed splenocytes, cultured T cells, or established T
cell lines or clones. Responder cells from mammals immunized with, or having a demonstrable cellular immune response to, the antigenic peptide are particularly preferred.
Subsequently, these responder cells are combined with stimulator cells (antigen presenting cells; APCs) that have been pulsed or primed with the same antigenic peptide. In a preferred embodiment, the stimulator cells are antigenic peptide-presenting cells, such as PBMNCs, PBMNCs that have been depleted of lymphocytes, appropriate antigenic peptide-presenting cell lines or clones (such as EBV-transformed B
cells), EBV
transformed autologous and non-autologous PMNCs, genetically engineered antigen presenting cells, such as mouse L cells or bare lymphocyte cells BLS-1, in particular, DRBI*0401, DRBI*0404 and DRBI*0301 (Kovats et al., J. Exp. Med. 179:2017-22, 1994), or in vivo or in vitro primed or pulsed splenocytes. Stimulator cells from mammals immunized with, or having a demonstrable cellular immune response to, the antigenic peptide are particularly preferred. For certain assay formats, it is preferred to inhibit the proliferation of stimulator cells prior to mixing with responder cells. This inhibition may be achieved by exposure to gamma irradiation or to an anti-mitotic agent, such as mitomycin C, for instance. Appropriate negative controls are also included (nothing; syngeneic APC; experimental peptide; APC + Peptide; MHC:peptide complex;
control peptide +/- APC). Further, to assure that non-responsiveness represents anergy, the proliferation assay may be set up~in duplicate, +/- recombinant IL-2 since it has been demonstrated that IL-2, can rescue anergized cells.
After an approximately 72 hour incubation, the activation of responder cells in response to the stimulator cells is measured. In a preferred embodiment, responder cell activation is determined by measuring proliferation using 3H-thymidine uptake (Crowley et al., J. Immunol. Meth. 133:55-66, 1990). Alternatively, responder cell activation can be measured by the production of cytokines, such as IL-2, or by determining the presence of responder cell-specific, and particularly T cell-specific, activation markers. Cytokine production can be assayed by testing the ability of the stimulator + responder cell culture supernatant to stimulate growth of cytokine-dependent cells. Responder cell- or T cell-specific activation markers may be detected using antibodies specific for such markers.
Preferably, the single chain MHC class II molecule:peptide complex induces non-responsiveness (for example, anergy) in the antigenic peptide-reactive responder cells. In addition to single chain MHC class II molecule:peptide complex recognition, responder cell activation requires the involvement of co-receptors on the stimulator cell (the APC) that have been stimulated with co-stimulatory molecules. By blocking or eliminating stimulation of such co-receptors (for instance, by exposing responder cells to purified single chain MHC class II molecule:peptide complex, by blocking with anti-receptor or anti-ligand antibodies, or by "knocking out"
the genes) encoding such receptors), responder cells can be rendered non-responsive to antigen or to single chain MHC class II molecule:peptide complex.
In a preferred embodiment, responder cells are obtained from a source manifesting an autoimmune disease or syndrome. Alternatively, autoantigen-reactive T
cell clones or lines are preferred responder cells. In another preferred embodiment, stimulator cells are obtained from a source manifesting an autoimmune disease or syndrome. Alternatively, APC cell lines or clones that are able to appropriately process and/or present autoantigen to responder cells are preferred stimulator cells.
In a particularly preferred embodiment, responder and stimulator cells are obtained from a source with diabetes or multiple sclerosis.
At this point, the responder T cells can be selectively amplified and/or stimulated, thereby producing a subset of T cells that are specific for the antigenic peptide. For instance, antigenic peptide-reactive responder cells may be selected by flow cytometry, and particularly by fluorescence activated cell sorting. This subset of responder cells can be maintained by repetitive stimulation with APCs presenting the same antigenic peptide. Alternatively, responder cell clones or lines can be established from this responder cell subset. Further, this subset of responder cells can be used to map epitopes of the antigenic peptide and the protein from which it is derived.
Other methods to assess the biological activity of the single chain MHC
class II molecule:peptide complexes are known in the art and can be used herein, such as using a microphysiometer, to measure production of acidic metabolites in T
cells following interaction with antigenic peptide. Other assay methods include competition assays, comparing single chain MHC class II molecule:complex response with that to the normal antigen. Also measurement production of such indicators as cytokines or y interferon can provide an indication of complex response.
Animal models of autoimmune disease Similar assays and methods can be developed for and used in animal models. For instance, the therapeutic effect of a pharmaceutical composition of the single chain molecule or multimer or a polynucleotide encoding the single chain molecule or multimer can be tested in vivo in a number of animal models of HLA-DR-associated autoimmune disease. These diseases include, but are not limited to, insulin-dependent diabetes mellitus, multiple sclerosis, myasthenia gravis, pernicious anemia, rheumatoid arthritis, and systemic lupus erythematosus.
For example, NOD mice are a spontaneous model of IDDM. Treatment with the pharmaceutical compositions prior to or after onset of disease can be monitored by assay of urine glucose levels in the NOD mouse, as well as by in vitro T
cell proliferation assays to assess reactivity to known autoantigens (see, e.g., I~aufinan et al., Nature 366:69-72 (1993)) for example) . Alternatively, induced models of autoimmune disease, such as EAE, can be treated with pharmaceutical composition.
Treatment in a preventive or intervention mode can be followed by monitoring the clinical symptoms of EAE.
Following is a description of several other animal models of HLA-DR-associated autoimmune disease which can be used to assay in vivo effects of the peptide.
It will be obvious to one of skill in the art that other suitable animal models for autoimmune diseases can be utilized in a similar manner.
Systemic Lunus Er~thematosus fSLEI
F1 hybrids of autoimmune New Zealand black (NZB) mice and the phenotypically normal New Zealand White (NZV~ mouse strain develop severe systemic autoimmune disease, more fulminant than that found in the parental NZB strain.
These mice manifest several immune abnormalities, including antibodies to nuclear antigens and subsequent development of a fatal, immune complex-mediated glomerulonephritis with female predominance, remarkably similar to SLE in humans (Knight et al., J.
Exp. Med.
147:1653 (1978)), which is incorporated hereby by reference.
In both the human and marine forms of the disease, a strong association with MHC gene products has been reported. HLA-DR2 and HLA-DR3 individuals are at 5 a higher risk than the general population to develop SLE (Reinertsen et al., N. Engl. J.
Med. 299:515 (1970)), while in NZB/W F1 mice (H-2~°), a gene linked to the h-2°
haplotype .derived from the NZW parent contributes to the development of the lupus-like nephritis.
The effect of the invention can be measured by survival rates and by the 10 progress of development of the symptoms, such as protenuria and appearance of anti-DNA antibodies.
Proteinuria can be measured by any method known to those of skill in the art, e.g. colorimetrically by the use of Uristix (Miles Laboratories, Inc., Elkhart, III, giving an approximation of proteinuria as follows: trace, 10 mg/dl; 1+, 30 mg/dl; 100 15 mg/dl; 3+, 300 mg/dl; and 4+, 1000 mg/dl. .
The presence of anti-DNA specific antibodies in NZB/W Fl mice can be determined by using a modification of a linked immunosorbent assay (ELISA) described by Zouali et al., J. Immunol. Methods 90:105 (1986)) which is incorporated herein by reference.
Myasthenia Gravis (MGl Myasthenia gravis is one of several human autoimmune diseases linked to HLA-D (Safenberg, et al., Tissue Antigens 12:136 (1978); McDevitt et al., Arth. Rheum.
20:59 (1977)) which are incorporated herein by reference. In MG antibodies to the acetyl choline receptors (AcChoR) impair neuromuscular transmission by mediating loss of AcChoR in the postsynaptic membrane.
SJLIJ female mice are a model system for human MG. In these animals, experimental autoimmune myasthenia gravis (EAMG) can be induced by immunizing the mice with soluble AcChoR protein from another species. Susceptibility to EAMG
is linked in part to the MHC and has been mapped to the region within H-2 (Christadoss et al., .I. Immunol. 123:2540 (1979)).
AcChoR protein can purified from Torpedo californica and assayed according to the method of Waldor et al., Proc. Natl. Acad. Sci. USA 80:2713 (1983), incorporated by reference. For example, emulsified AcChoR, 15 ~,g incomplete Freund adjuvant, is injected intradermally among six sites on the back, the hind foot pads, and the base of the tail. Animals are reimmunized with this same regimen 4 weeks later.
Evaluation can be made by measurement of anti-AcChoR antibodies by any method known to those of skill in the art, e.g., a microtiter ELISA assay as described in Waldor et al., supra. In an exemplary assay, the standard reagent volume is 50 p,1 per well. Reagents are usually incubated in the wells for 2 hr at RT. Five ~,g of AcChoR
diluted in bicarbonate buffer, pH 9.6, is added to each well. After incubation with AcChoR, the plates are rinsed four times with a wash solution consisting of phosphate-buffer saline containing 0.05% Tween and 0.05% NaN3. Mouse sera are diluted in O.O1M
PBS (pH 7.2), 1.5 mfr MgCl2, 2.0 mM 2-mercaptoethanol, 0.05% Tween-80, 0.05%
NaN3 (p-Tween buffer) and incubated on the plate. After the plate is washed, beta-galactosidase-conjugated sheep anti-mouse antibody diluted in P-Tween buffer is added to each well. After a final washing, the enzyme substrate, p-nitrophenylgalctopyranoside is added to the plate, and the degree of substrate catalysis is determined from the absorbance at 405 nm after 1 hr.
Anti-AcChoR antibodies are expected to be present in the mice immunized with AcChoR as compared to nonimmunized mice. Treatment with complex is expected to significantly reduce the titer of anti-AcChoR antibodies in the immunized mice.
The effect of treatment with the invention on clinical EAMG can also be assessed by any method known to those of skill in the art. Myasthenia symptoms include a characteristic hunched posture with drooping of the head and neck, exaggerated arching of the back, splayed limbs, abnormal walking, and difficulty in righting. Mild symptoms are present after a standard stress test, and should be ameliorated by administration of complex.
Rheumatoid Arthritis (RAl In humans, susceptibility to rheumatoid arthritis is associated with HLA
D/DR. The immune response in mice to native type II collagen has been used to establish an experimental model for arthritis with a number of histological and pathological features resembling human RA. Susceptibility to collagen-induced arthritis (CIA) in mice has been mapped to the H-2 I region, particularly the I-A subregion (Ruse et al., Fed.
Proc. 43:1820 (1984)).
Mice from a susceptible strain, DEA-1 can be caused to have CIA by treatment of the mice with native type II collagen, using the technique described in Wooley et al., J. Immunol. 134:2366 (1985), incorporated herein by reference.
In another model adjuvant arthritis in rats is an experimental model for human arthritis, and a prototype of autoimmune arthritis triggered by bacterial antigens (Holoschitz et al., Prospects of Immunology (1986); Pearson, Arthritis Rheum.
CROSS-REFERENCES TO RELATED APPLICATIONS
This application is related to U.S. Serial No. 60/191,274, filed March 22, 2000; U.S. Serial No. 60/204,249, filed May 15, 2000; and U.S. Serial No.
60/264,003, filed January 23, 2001. Each of the aforementioned applications are herein incorporated by reference in their entirety.
This application is also related to U.S. Serial No. 09/261,811, filed March 3, 1999; which is a continuation of U.S. Serial No. 08/657,581, filed June 7, 1996, now abandoned; which is a continuation in part of U.S. Serial No. 08/480,002, filed June 7, 1995, now abandoned; U.S. Serial No 09/184,692, filed November 2, 1998, now abandoned; U.S. Serial No. 08/483,241, filed June 7, 1995; U.S. Serial No.
08/482,133, filed June 7, 1995; and U.S. Provisional Application No. 60/005,964, filed October 27, 1995.
BACKGROUND OF THE INVENTION
T cells, unlike B cells, do not directly recognize antigens. Instead, an accessory cell must first process an antigen and present it in association with an MHC
molecule in order to elicit a T cell-mediated immunological response. The major function of MHC glycoproteins appears to be the binding and presentation of processed antigen in the form of short antigenic peptides. ' In addition to binding foreign or "non-self antigenic peptides," MHC
molecules can also bind "self' peptides. If T lymphocytes then respond to cells presenting "self" or autoantigenic peptides, a condition of autoimmunity results. Over 30 autoimmune diseases are presently known, including myasthenia gravis (MG), multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), insulin-dependent diabetes mellitus (IDDM) , etc. Characteristic of these diseases is an attack by the immune system on the tissues of the host. In non-diseased individuals, such attack does not occur because the immune system recognizes these tissues as "self."
Autoimmunity occurs when a specific adaptive immune response is mounted against self tissue antigens.
There is therefore currently a great interest in developing pharmaceuticals based on the growing understanding of the structure and function of the major histocompatibility complex (MHC) antigens. Identification of synthetic autoantigenic peptides, and demonstration that these peptides bind selectively to MHC
molecules associated with disease and that stimulates T cells would help to implicate a particular peptide or peptide:MHC complex in susceptibility to an autoimmune disease. In particular, the development of single chain MHC class II complexes would be particularly useful in treatment of a number of diseases associated with antigen presentation by MHC
molecules. Furthermore, the development of single chain, multimeric complexes would be of interest (see, e.g., WO 93/10220, WO 98/05684, WO 97/35991, WO 98/03552, WO
99/13095, WO 98/06749, WO 99/09064, and U.S. Patent 5,869,270).
SUMMARY OF THE INVENTION
The present invention provides recombinant nucleic acid constructs that encode single chain, recombinant MHC class II molecules comprising a [31 domain and an al domain that may or may not be further linked to an antigenic peptide. In one embodiment, the single chain polypeptide is a /31 domain and an al domain. In another embodiment, the single chain polypeptide is a (31 domain-[32 domain (a (3 chain) and an al domain- a2 domain (an a chain). The single chain constructs of the invention can be further dimerized or multimerized by inter-chain fusion. The fusion sequence (also referred to as a dimerization or multimerization sequence) can be any sequence that allows for covalent or non-covalent linkages between the molecules of the invention. As shown below, a preferred means for carrying this out is through use of segments from immunoglobulin family proteins (e.g., antibodies, MHC molecules, T cell receptors and the like) that have cysteine residues capable of forming interchain disulfide bonds (e.g., constant regions from Ig light chains, e.g. Cx or C~,, or constant regions from Ig heavy chains, e.g., CH1, hinge, CH2, or CH3). In another embodiment, a leucine zipper domain forms a non-covalent linkage. One of skill will recognize that any of a number of polypeptide sequences can be used for this purpose. The single chain molecules of the invention thus can be multimers wherein each single chain molecule is from a different MHC class II allele. In addition, each single chain molecule in the multimer can be bound to a different antigen.
In one embodiment, monomeric and dimeric forms of recombinant single chain mouse I-AS-peptide complexes, fused to an antigenic MBP 90-101 peptide with flexible linkers were constructed. The recombinant single chain I-AS proteins share structural similarity to that of crystallized native human MHC class II
protein as determined by protein modeling. The recombinant single chain proteins were expressed in E. coli and in an insect expression system and purified by affinity chromatography and FPLC. The purified single chain recombinant I-AS proteins showed ih vitro biological activity as assayed using an antigen-specific mouse T cell clone. The in vivo activity of the recombinant single chain I-AS fusion proteins in the EAE model using susceptible SJL mice shows that treatment with the recombinant single chain I-AS proteins prevents mortality and significantly reduces paralysis induced by myelin homogenate.
Histological examination of sections from animal spinal cord reveals that these treatments also reduce the inflammatory lesions. These results demonstrate that the single chain MHC class II molecules have therapeutic benefit as antigen-specific drugs for the treatment of autoimmune diseases.
In another embodiment, novel linkers are provided for forming single chain MHC class II molecules. These linkers can be used with the multimer constructs described above. In another embodiment, the constructs of the invention are optimized for prokaryotic expression, using codons adjusted for E. coli codon bias.
The present invention also provides MHC class II heterodimers, wherein a recombinant (3 chain and a recombinant a chain are covalently linked using polypeptide fusion segments, e.g., from immunoglobulin family proteins (e.g., antibodies, MHC
molecules, T cell receptors and the like) that have cysteine residues capable of forming interchain disulfide bonds (e.g., constant regions from Ig light chains, e.g.
Cx or C7~, or constant regions from Ig heavy chains, e.g., CH1, hinge, CH2, or CH3). Such a heterodimer can also be "dimerized" or "multimerized" by the use of additional fusion domains, such as leucine zipper domains or immunoglobulin domains (see Figure 10).
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1. Schematic structure of the recombinant single chain I-AS
.MBP.(3lal (monomer) and I-AS.MBP.(31(32a1a2.CK (dimer) proteins.
Figure 2. In vitro biological activities of the recombinant I-AS proteins compared with APC+ antigenic peptide in the mouse T cell clone, HS-1.
A. I-AS.MBP.(31a1, monomer, B. I-AS.MBP.Ck, dimer, and C. APC+ antigenic peptide. The positive (anti-CD3) and the negative (HS-1 cell alone) controls are also shown in each panel.
Figure 3. Diagram of the EAE model and standard for EAE scoring.
Figure 4. The EAE model studies. The recombinant I-AS proteins were administered to SJL mice on day 1, 4, 7, and II by i.v. injection after inducing the disease with myelin emulsified in CFA. The animals were evaluated for neurological dysfunction. Panel A: Untreated, injected with same amount of PBS solution.
Panel B.
Treated with the recombinant I-AS.MBP.Ck protein, a dimer form. Panel C:
Treated with the recombinant I-AS.(3lal. This recombinant molecule does not carry the antigenic peptide. Panel D: Treated with the recombinant I-AS.MBP.(31a1, a monomer form.
Figure 5 shows a schematic representation of a (il-al single chain MHC
class II peptide complex that is a dimer with two peptide specificities.
Figure 6 shows a schematic representation of a j31 J32-ala2 single chain MHC class II peptide complex that is a dimer with two peptide specificities.
Figure 7 shows a schematic representation of a (31 /32-al a2 single chain MHC class II peptide complex that is a tetramer with four peptide specificities.
Figure 8 shows a schematic representation of a (31 (32-a 1 a2 single chain MHC class II peptide complex that is a tetrarner with two peptide specificities and two different MHC class II alleles.
Figure 9 shows the effect of different recombinant MHC class II molecules on the development of EAD (day 60+).
Figure 10. Diagram of [31-al single chain MHC class II peptide complex;
diagram of recombinant (3132 chains fused to recombinant ala2 chains via a fusion domain from an immunoglobulin; and diagram of multimerized MHC class II
molecules.
Figure 11. Sequence comparison of mouse C0608 single chain molecules.
Figure 12. Sequence comparison of mouse C0561 single chain molecules.
DETAILED DESCRIPTION OF THE INVENTION
Introduction The present invention provides recombinant DNA constructs that encode single chain MHC class II molecules that may or may not be further linked to an antigenic peptide. Typically, the constructs comprise a first DNA segment encoding a (31 domain of a selected MHC class II molecule; a second DNA segment encoding a al domain of the selected MHC class II molecule; and a first linker DNA segment connecting in-frame the first and second DNA segments; wherein linkage of the first DNA segment to the second DNA segment by the first linker DNA segment results in a fused first DNA-first 5 linker-second DNA polysegment. The constructs of the invention may also comprise a third DNA segment encoding an antigenic peptide capable of associating with a peptide binding groove of the selected MHC class II molecule and a second linker DNA
segment connecting in-frame the third DNA segment to the fused first DNA-first linker-second DNA polysegment.
In another embodiment, the present invention also provides recombinant components of an MHC class II heterodimer, which comprise a fusion domain. One recombinant component comprises a (31 domain, or optionally a (31 domain-(32 domain (i.e., a (3 chain). One recombinant component comprises an al domain, or optionally an al domain- a2 domain (i.e., an a chain). The two recombinant chains are linked, either covalently, e.g., via a disulfide bond, or non covalently, using the fusion domain. Such molecules can also be made into multimers using additional fusion or multimerization domains. In one embodiment, the invention provides the following recombinant components of an MHC class II heterodimer: pCB220, which is an IAS.MBP.alpha chain fused to an IgG2a CH1 and truncated hinge region; pCB223, which is an IAS.MBP.alpha chain fused to an IgG2a CH1.H.CH2.CH3; and pCB229, which is an IAS.MBP.beta chain fused to a mouse CK domain. These recombinant components can be fused via the fusion domain to form a MHC class II heterodimer molecule that is covalently linked via a disulfide bond at the fusion domain.
The present invention provides single chain MHC class II molecules that comprise an additional polypeptide sequence that allows for inter-chain dimerization of the single chain molecules of the invention. The additional polypeptide allows multimerization of the single chain MHC class II molecules, to produce, e.g., dimers and tetramers. The sequence can be any sequence that allows for covalent or non-covalent linkages between the molecules of the invention. In one embodiment, the single chain molecules axe covalently linked using chemical methods known to those of skill in the art, e.g., photoaffinity methods or homo-bifunctional protein cross-linkers (see, e.g., Hermanson et al., Bioconjugate Techniques, (1996)). In one embodiment, the molecules are covalently linked using heterobifunctional protein cross-linkers. As shown below, one means for carrying this out is through use of segments form immunoglobulin family proteins (e.g., antibodies, MHC molecules, T cell receptors and the like) that have cysteine residues capable of forming interchain disulfide bonds. An example shown below is the use of the constant region of the kappa chain of an antibody (CK), from either a heavy or a light chain. Other dimerization sequences include a leucine zipper, a STAT
protein N-terminal domain, or the FK506 binding protein (see, e.g., O'Shea, Science 254:
539 (1991), Barahmand-Pour et al., C'urr. Top. Microbiol. Immunol. 211:121-128 (1996);
Klemm et al., Anuu. Rev. Immur~ol. 16:569-592 (1998); Ho et al., Nature 382:822-826 (1996)). One of skill will recognize that any of a number of polypeptide sequences can be used for this purpose.
In addition, the multimeric, single chain class II molecules of the invention comprise at least two different MHC class II alleles that are associated with an autoimmune disease state, and/or at least two different autoantigenic peptides that are associated with a particular autoimmune disease state. In one example, the multimeric, single chain class II molecules have chains from different D1R2 alleles, e.g., DRBS*0101 and DItB 1 * 1501. In another embodiment, the autoantigenic peptides are peptides associated with multiple sclerosis, e.g., MBP (e.g., amino acid residues 83-102Y83), PLP
(e.g., amino acid residues 40-60, 89-106, 95-117, and 185-206); and MOG. In addition, other antigens associated with autoimmune disease, such as acetylcholine receptor and type II collagen, can be linked to the single chain molecules of the invention..
In a further embodiment, the single chain class II molecules of the invention have novel linkers, as described herein. The mammalian MHC class II
single chain constructs of the invention may also be constructed to use preferred prokaryotic codons, for expression, e.g., in E. coli, using codon preference tables and methods known to those of skill in the art.
Definitions Prior to setting forth the invention, it may be helpful to an understanding thereof to provide definitions of certain terms to be used hereinafter:
Single chain MHC class II molecule: As used herein this term refers to a fusion protein such as the recombinant single chain MHC class II complex of the invention, which optionally also is fused to a peptide to form a single chain MHC
class:peptide complex. The fusion proteins of the invention can also be multimers, having two, four or more single chain molecules linked covalently or non-covalently through multimerization domains in the single chain molecule. A single chain molecule of the invention typically comprises at least an MHC class II (31 domain and an MHC
class II al domain, optionally (31 (32 al a2 domains or any combination thereof in any order. Such molecules are also known as "fused heterodimers." Optionally, the single chain molecules are soluble, that is, they lack the naturally occurnng cytoplasmic and transmembrane MHC class II domains.
A domain of a selected MHC molecule: A portion of an MHC domain which is sufficient to form, either alone, or in combination with another portion of an MHC domain, a peptide binding site which is capable of presenting an antigenic peptide in such a fashion that it is recognized by a T cell receptor. Such MHC domains would include the extracellular portion of the two polypeptide chains of Class II
MHC. This would include the a chain (al and a2 domains) and (3 chain (~31 and (32 domains) of Class II MHC. This would include (31 and al, (31, (32 and al, a2, a1 or a2 independent of the other, or al and a2 in tandem (ala2). It would also include (31 or (32 independent of the other, or (31 and (32 in tandem ((31 (32). This would also include any suitable combination of the al, a2, (31, and (32 domains. The domains can be directly linked, or can be linked via an amino acid linker.
Linker DNA segment: A segment of DNA encoding from about 1 to about 50, preferably from about 5 to about 25 amino acids, which forms a flexible link between two DNA segments. This flexible link allows the two DNA segments to attain a proper configuration, such as an MHC peptide binding groove, or allows a peptide to properly bind into such a groove.
Anti e~ nic ~e tn ide: The immunological properties of MHC
histocompatibility proteins are largely defined by the antigenic peptide that is bound to them. An antigenic peptide is one which contains an epitope (an amino acid sequence) recognized by immune cells, e.g., T cells, and is capable of stimulating an MHC-mediated immune response.. Antigenic peptides for a number of autoimmune diseases are known.
For example, in experimentally induced autoimmune diseases, antigens involved in pathogenesis have been characterized: in arthritis in rat and mouse, native type II collagen is identified in collagen-induced arthritis, and mycobacterial heat shock protein in adjuvant arthritis (Stuart et al., Ann. Rev. Immunol. 2:199-218, 1984; and van Eden et al., Nature 331:171-173, 1988); thyroglobulin has been identified in experimental allergic thyroiditis (EAT) in mice (Marion et al., J. Exp. Med. 152:1115-1120, 1988);
acetyl-choline receptor (AChR) in experimental allergic myasthenia gravis (EAMG) (Lindstrom et al., Adv. Immunol. 42:233-284, 1988) ; and myelin basic protein (MBP) and proteolipid protein (PLP) in experimental allergic encephalomyelitis (EAE) in mouse and rat (Acha-Orbea et al., Ann. Rev. Imm. 7:377-405, 1989). In addition, target antigens have been identified in humans: type II collagen in human rheumatoid arthritis (Holoshitz et al., Lancet ii:305-309, 1986), acetylcholine receptor in myasthenia gravis (Lindstrom et al., Adv. Immunol. 42.:233-284, 1988), and MBP, PLP, and MOG in multiple sclerosis in humans.
MHC: The major histocompatibility complex (NIFiC) is a family of highly polymorphic proteins, divided into two classes, Class I and Class II, which are membrane-associated and present antigen to T lymphocytes (T cells). MHC Class I and Class II molecules are distinguished by the types of cells on which they are expressed, and by the subsets of T cells which recognize them. Class I MHC molecules (e.g., HLA-A, -B and -C molecules in the human system) are expressed on alinost all nucleated cells and are recognized by cytotoxic T lymphocytes (CTL), which then destroy the antigen-bearing cells. Class II MHC molecules (HLA-DP, -DQ and -DR, for example, in humans) are expressed primarily on the surface of antigen-presenting cells, such as B
lymphocytes, dendritic cells, macrophages, and the like. Class II MHC is recognized by CD4+ T helper lymphocytes (TH). TH cells induce proliferation of both B and T
lymphocytes, thus amplifying the immune response to the particular antigenic peptide that is displayed (Takahashi, Microbiol. Immunol., 37:1-9, 1993).
Two distinct antigen processing pathways are associated with the two MHC classes. Intracellular antigens, synthesized inside of the cell, such as from viral or newly synthesized cellular proteins, for example, are processed and presented by Class I
MHC. Exogenous antigens, taken up by the antigen-presenting cell (APC) from outside of the cell through endocytosis, are processed and presented by Class II MHC.
After the antigenic material is proteolytically processed by the MHC-bearing cell, the resulting antigenic peptide forms a complex with the antigen binding groove of the MHC
molecule through various noncovalent associations. The MHC-peptide complex on the cell surface is recognized by a specific T cell receptor on a cytotoxic or helper T cell.
The MHC of humans (also referred to as human leukocyte antigens (HLA)) on chromosome 6 has three loci, HLA-A, HLA-B and HLA-C, the first two of which have a large number of alleles encoding alloantigens. An adjacent region, known as HLA-D, is subdivided into HLA-DR, HLA-DQ and HLA-DP. The HLA region is now known as the human MHC region, and is equivalent to the H-2 region in mice.
HLA-A, -B and -C resemble mouse H-2K, -D, and -L and are the Class I MHC molecules.
HLA-DP, -DQ and -DR resemble mouse I-A and I-E and are the Class II molecules. MHC
glycoproteins of both classes have been isolated and characterized (see Fundamental Immunology, 2d Ed., Paul (ed.), (1989); and Roitt et al., Immunology, 2d Ed., (1989) , which are both incorporated herein by reference).
Human MHC Class I molecules consist of a polymorphic type I integral membrane glycoprotein heavy chain of about 46 kD, noncovalently associated with a 12 kD soluble subunit, (32-microglobulin. The heavy chain consists of two distinct extracellular regions, the membrane distal, peptide binding region formed by the al and a2 domains, and the membrane proximal, CD8-binding region derived from the a3 domain. (32- microglobulin is a single, compact immunoglobulin-like domain that lacks a membrane anchor, and exists either associated with the class I heavy chain or free in plasma (Germain and Margulies, Annu. Rev. Immunol. 11:403-50, 1993).
Human MHC Class II is a heterodimeric integral membrane protein. Each dimer consists of one a and one [3 chain in noncovalent association: The two chains are similar to each other, with the a chain having a molecular weight of 32-34 kD
and the (3 chain having a molecular weight of 29-32 kD. Both polypeptide chains contain N-linked oligosaccharide groups and have extracellular amino termini and intracellular carboxy termini.
The extracellular portions of the a and (3 chain that comprise the class II
molecule have been subdivided into two domains of about 90 amino acids each, called al, a2, and ail, (32, respectively. The a2 and /32 domains each contain a disulfide-linked loop. The peptide-binding region of the class II molecule is formed by the interaction of the al and al domains. This interaction results in an open-ended, antigenic peptide-binding groove made up of two a helices, and an eight-stranded (3-pleated sheet platform.
The a and (3 chains of Class II molecules are encoded by different MHC
genes and are polymorphic (see Addas et al., Cellular and Molecular Immunology, 2d Ed.
(1994), which is incorporated by reference in its entirety). Within the present invention, a preferred a chain is DRA*0101 and a preferred (3 chain is DR(31* 1501.
MHC Class II alleles The single chain MHC class II:peptide complexes of the present invention can incorporate cDNA from any allele that predisposes or increases the likelihood of susceptibility to a specific autoimmune disease. Specific autoimmune diseases are 10 correlated with specific MHC types. Specific haplotypes have been associated with many of the autoimmune diseases. For example, HLA-DR2+ and HLA-DR3+ individuals are at a higher risk than the general population to develop systemic lupus erythematosus (SLE) (Reinertsen et al., N. Engl. J. Med. 299:515-18, 1970). Myasthenia gravis has been linked to HLA-D (Safwenberg et al., Tissue Antigens 12:136-42,1978.
Susceptibility to rheumatoid arthritis is associated with HLA-D/DR in humans. Methods for identifying which alleles, and subsequently which MHC-encoded polypeptides, are associated with an autoimmune disease are known in the art. Exemplary alleles for H~DM include DR4, DQB, DR3, DQ3.2.
Uses of single chain MHC class II molecules Single chain MHC class II molecules and/or single chain MHC class II:peptide complexes of the present invention can be used as antagonists to therapeutically block the binding of particular T cells and antigen-presenting cells. In addition, the molecules can induce anergy, or proliferative nonreponsiveness, and possibly apoptosis, in targeted T cells, both in vivo and in vitro. A single chain MHC class Il:peptide molecule directed toward a desired autoimmune disease contains the antigenic peptide implicated for that autoimmune disease properly positioned in the binding groove of the MHC molecule, without need for solublization of MHC or exogenous loading of an independently manufactured peptide.
Previous methods for producing desirable MHC Class II histocompatibility proteins have provided material that contains a mixture of antigenic peptides (Buus et al., Science 242:1045-1047, 1988; and Rudensky et al., Nature 353:622-627, 1991), which can be only partially loaded with a defined antigenic peptide (Watts and McConnel, Pro.
Natl. Acad. Sci. USA 83:9660-64, 1986; and Ceppellini et al., Nature 339:392-94, 1989).
Various methods have been developed to produce heterodimers that do not present endogenous antigens (Stern and Wiley, Cell 68:465-77, 1992; Ljunggren et al., Nature 346:476-80, 1990; and Schumacher et al., Cell 62:563-67, 1990) that can be loaded with a peptide of choice. WO 95123814 and Kozono et al. have described production of soluble marine Class II molecules, I-Eak and I-Aa, each with a peptide attached by a linker to the N terminus of the (3 chain. Ignatowicz et al. (J. Immunol. 154:38-62, 1995) have expressed membrane-bound I-Ad with peptide attached. These methods incorporate the use of both membrane-bound heterodimer and soluble heterodimer.
The current invention offers the advantage of a recombinant single chain MHC class II molecule made up of two or more MHC domains joined together via a flexible linkage, and onto which is tethered (via an additional flexible linkage) an antigenic peptide which is able to bind to the peptide binding groove presented by the single chain MHC class II molecule. Such a complex provides an MHC molecule which is soluble and, because the MHC class II components and corresponding antigenic peptide are permanently linked into a single chain configuration, there is no need for complex heterodimer truncation or formation. These complexes eliminate inefficient and nonspecific peptide loading. Producing the claimed MHC:peptide complexes by recombinant methodology results in specific, high yield protein production, where the final product contains only the properly configured MHC:peptide complex of choice.
As used herein, a soluble MHC class II molecules is one that does not contain the naturally occurring membrane-associated MHC class II sequences.
The soluble MHC molecules of the present invention has never been membrane-associated.
Further, the soluble MHC class II molecules do not contain an amino acid sequence that acts as a transmerribrane domain or as a cytoplasmic domain.
The present invention therefore provides a single chain MHC class II
molecule which optionally includes an antigenic peptide covalently attached to the amino terminal portion of an a or (3 chain of MHC through a peptide linkage, and the C terminal of the linked a or j3 chain may be attached to the N terminal portion of another a or (3 chain, there by creating a two, three, or four domain MHC molecule. The invention further provides a multimerization domain to provide a multimeric single chain MHC
class II molecules. The invention further provides novel linkers, and multimeric MHC
class II molecules that are bound to different antigenic peptides.
The amino acid sequence of each of a number of Class I and Class II
proteins are known, and the genes or cDNAs have been cloned. Thus, these nucleic acids can be used to express MHC polypeptides. If a desired MHC gene or cDNA is not available, cloning methods known to those skilled in the art may be used to isolate the genes. One such method that can be used is to purify the desired MHC
polypeptide, obtain a partial amino acid sequence, synthesize a nucleotide probe based on the amino acid sequence, and use the probe to identify clones that harbor the desired gene from a cDNA or genomic library.
Linkers Linkers of the current invention may be from about 1 to about 50 amino acids in length, depending on the molecular model of the MHC or MI-IC:peptide complex.
In one embodiment, flexible linkers are made of repeating Gly residues separated by one or more Ser residues to permit a random, flexible motion. In the case of Class II MHC
complexes this flexibility accommodates positioning of the a and (3 segments to properly configure the binding groove, and also allows for maximum positioning of the peptide in the groove. In another embodiment, the linker comprises a CD4 binding site, as described below in the Example section (see also Table 1). In another embodiment, longer linkers between the chains contain flexible residues (e.g. alanine or glycine) and polar residues (e.g. serine and threonine). To inhibit the continuation of secondary structure across the linker, prolines can be added to bracket the linkers.
These prolines are known to inhibit the formation of alpha helices and beta sheets. In another embodiment, flexible regions present in the human MHC and in the marine MHC
could be used to make a linker by extending the region of interest and ligating the ends together.
Finally, a combination of these types of linkers could also be used.
Linker position and length can be modeled based on the crystal structure of MHC Class II molecules (Brown et al., Nature 364:33-39, 1993), where al and (31 are assembled to form the peptide binding groove. Linkers joining segments of the a and (3 chains together are based on the geometry of the region in the hypothetical binding site and the distance between the C terminus and the N terminus of the relevant segments.
Molecular modeling based on the X-ray crystal structure of Class II MHC (Stern et al., NatuYe 368:215-221, 1994) dictates the length of linkers joining antigenic peptide, a chain segments and (3 chain segments. The recombinant portions of the molecules of the invention can also be directly linked, without additional amino acids linkers.
Identification of autoantigens The invention also provides methods for preparing responder T-cell clones that proliferate when combined with a selected antigenic peptide presented by a stimulator cell. Such clones can be used to identify and map antigenic peptides associated with autoimmune disease. These peptides can then be incorporated into the single chain MHC class II molecule:peptide complexes of the invention. The method provides isolation and enrichment of non-adherent, CD56-, CD8- T cells that are reactive with a selected antigenic peptide. These cells are herein referred to as responder cells.
Suitable responder cells can be isolated, for example, from peripheral blood mononuclear cells (PBMNC) obtained from patients prior to or after onset of an autoimmune disease of interest. For example, PBMNCs can be obtained from prediabetic and new onset diabetic patients. These patients can be pre-screened for specific HLA markers, such as DR4 or DQ3.2, which have the highest association with susceptibility to IDDM.
From the collected PBMNCs, a portion is kept to serve as stimulator cells. From the remainder, the desired autoreactive responder cells are purified and isolated by two rounds of plating, to remove adherent cells from the population, followed by removal of monocytes and B
cells with nylon wool. Enrichment for non-adherent CD4~ T cells is completed by sequential plating of the cells onto plates coated with anti-CD8 and anti-CDS6 antibodies.
The stimulator cells are pulsed or primed with whole GAD or an appropriate antigenic peptide. For example, stimulator cells from the PBMNCs of 1DDM
patients can be stimulated with antigenic GAD peptides then combined with PBMNCs or responder cells. After seven or 14 days, responder cell (T cell) clones are generated through limiting dilution and tested for antigen reactivity.
These responder cell (T cell) clones can then be used, for example, to map epitopes which bind to MHC and are recognized by a particular T cell. One such method uses overlapping peptide fragments of the autoantigen which are generated by tryptic digestion, or more preferably, overlapping peptides are synthesized using known peptide synthesis techniques. The peptide fragments are then tested for their ability to stimulate the responder T cell clones or lines (for example, Ota et al., Nature 346:183-187, 1990).
Once such a peptide fragment has been identified, synthetic antigenic peptides can be specifically designed, for example, to enhance the binding affinity for MHC and to out-compete any naturally processed peptides. Such synthetic peptides, when combined into a single chain MHC class II molecule:peptide complex, would allow manipulation of the immune system in vivo, in order to tolerize or anergize disease-associated activated T cells, thereby ameliorating the autoimmune disease.
Dissecting the functional role of individual peptides and peptide clusters in the interaction of a peptide ligand with an MHC molecule, and also in subsequent T cell recognition and reactivity, is a difficult undertaking due to the degeneracy of peptide binding to the MHC. Changes in T cell recognition or in the ability of an altered peptide to associate with MHC can be used to establish that a particular amino acid or group of amino acids comprises part of an MHC or T cell determinant. The interactions of altered peptides can be further assessed by competition with the parental peptide for presentation to a T cell, or through development of direct peptide-MHC binding assays.
Changes to a peptide that do not involve MHC binding could well affect T cell recognition.
For example, in a peptide, specific MHC contact points might only occur within a central core of a few consecutive or individual amino acids, whereas those amino acids involved in T cell recognition may include a completely different subset of residues.
In a preferred method, residues that alter T cell recognition are determined by substituting amino acids for each position in the peptide in question, and by assessing whether such change in residues alters the peptide's ability to associate with MHC (Allen et al., Nature 327:713-15, 1987; Sette et al., Nature 328:395-99, 1987;
O'Sullivan et al., J. Immunol. 147:2663-69, 1991; Evavold et al., J. Immunol. 148:347-53, 1992;
Jorgensen et al., Anrzu. Rev. Immunol. 10:835-73, 1992; Hammer et al., Cell 74:197-203, 1993;
Evavold et al., Immunol. Today 14:602-9, 1993; Hammer et al., Proc. Natl.
Acad. Sci.
USA 91:4456-60, 1994; and Reich et al., J. Immunol. 154:2279-88, 1994). One method would involve generating a panel of altered peptides wherein individual or groups of amino acid residues are substituted with conservative, semi-conservative or non conservative residues. A preferred variant of this method is an alanine scan (Ala scan) where a series of synthetic peptides are synthesized wherein each individual amino acid is substituted with L-alanine (L-Ala scan). Alanine is the amino acid of choice because it is found in all positions (buried and exposed), in secondary structure, it does not impose steric hindrances, or add additional hydrogen bonds or hydrophobic side chains. Alanine substitutions can be done independently or in clusters depending on the information desired. Where the information pertains to specific residues involved in binding, each residue in the peptide under investigation can be converted to alanine and the binding affinity compared to the unsubstituted peptide. Additional structural and conformational information regarding each residue and the peptide as a whole can be gained, for 10 example, by synthesizing a series of analogs wherein each residue is substituted with a D-amino acid such as D-alanine (D-Ala scan) (Galantino et al., in Smith, J. and Rivier, J.
(eds.), Peptides Chemistry and Biology (Proceedings of the Twelfth American Peptide Symposium), ESCOM, Leiden, 1992, pp. 404-OS). Essential residues can be identified, and nonessential residues targeted for modification, deletion or replacement by other 15 residues that may enhance a desired quality (Cunningham and Wells, Scienee 244:1081-1085, 1989; Cunningham and WeIIs, Natl. Acad. Sci. USA, 88:3407-3411, 1991;
Ehrlich et al., J. Biol. Chem. 267:11606-11, 1992; Zhang et al., Proc. Natl. Acad.
Sci. USA
90:4446-50, 1993; see also "Molecular Design and Modeling: Concepts and Applications Part A Proteins, Peptides, and Enzymes," Methods in Enzymology, Vol. 202, Langone (ed.), Academic Press, San Diego, CA, 1991).
Truncated peptides can be generated from the altered or unaltered peptides by synthesizing peptides wherein amino acid residues are truncated from the N-or C-terminus to determine the shortest active peptide, or between the N- and C-terminus to determine the shortest active sequence. Such peptides could be specifically developed to stimulate a response when joined to a particular MHC to form a peptide ligand to induce anergy in appropriate T cells in vivo or in vitro.
Analysis of single chain MHC class II molecule:peptide complexes The physical and biological properties of the single chain MHC class II
molecule:peptide complexes may be assessed in a number of ways. Mass spectral analysis methods such as electrospray and Matrix-Assisted Laser Desorption/Ionization Time Of Flight mass spectrometry (MALDI TOF) analysis are routinely used in the art to provide such information as molecular weight and confirm disulfide bond formation.
FACs analysis can be used to determine proper folding of the single chain complex.
An ELISA (Enzyme-linked Immunosorbent Assay) can be used to measure concentration and confirm correct folding of the single chain MHC
class II
molecule:peptide complexes. This assay can be used with either whole cells;
solubilized MHC, removed from the cell surface; or free single chain MHC class II
molecule:peptide complexes of the current invention. In an exemplary ELISA, an antibody that detects the recombinant MHC haplotype is coated onto wells of a microtiter plate. In a preferred embodiment, the antibody is L243, a monoclonal antibody that recognizes only correctly folded HLA-DR MHC dimers. One of skill in the art will recognize that other MHC
Class IT-specific antibodies are known and available. Alternatively, there are numerous routine techniques and methodologies in the field for producing antibodies (for example, Hurrell, (ed)., Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC
Press Inc., Boca Raton, FL, 1982), if an appropriate antibody for a particular haplotype does not exist. Anti-MHC Class II antibodies can also be used to purify Class II
molecules through techniques such as affinity chromatography, or as a marker reagent to detect the presence of Class II molecules on cells or in solution. Such antibodies are also useful for Western analysis or immunoblotting, particularly of purified cell-secreted material. Polyclonal, affinity purified polyclonal, monoclonal and single chain antibodies are suitable for use in this regard. In addition, proteolytic and recombinant fragments and epitope binding domains can be used herein. Chimeric, humanized, veneered, CDR-replaced, reshaped or other recombinant whole or partial antibodies are also suitable.
In the ELISA format, bound MHC molecules can be detected using an antibody or other binding moiety capable of binding MHC molecules. This binding moiety or antibody may be tagged with a detectable label, or may be detected using a detectably labeled secondary antibody or binding reagent. Detectable labels or tags are known in the art, and include fluorescent, colorimetric and radiolabels, for instance.
Other assay strategies can incorporate specific T-cell receptors to screen for their corresponding MHC-peptide complexes, which can be done either in vitro or in vivo. For example, an in vitro anergy assay determines if non-responsiveness has been induced in the T cells being tested. Briefly, an MHC molecule containing antigenic peptide in the peptide binding groove can be mixed with responder cells, preferably peripheral blood mononuclear cells (PBMI~ (a heterogeneous population including B and T lymphocytes, monocytes and dendritic cells), PBMNC lymphocytes, freshly isolated T
lymphocytes, in vivo primed splenocytes, cultured T cells, or established T
cell lines or clones. Responder cells from mammals immunized with, or having a demonstrable cellular immune response to, the antigenic peptide are particularly preferred.
Subsequently, these responder cells are combined with stimulator cells (antigen presenting cells; APCs) that have been pulsed or primed with the same antigenic peptide. In a preferred embodiment, the stimulator cells are antigenic peptide-presenting cells, such as PBMNCs, PBMNCs that have been depleted of lymphocytes, appropriate antigenic peptide-presenting cell lines or clones (such as EBV-transformed B
cells), EBV
transformed autologous and non-autologous PMNCs, genetically engineered antigen presenting cells, such as mouse L cells or bare lymphocyte cells BLS-1, in particular, DRBI*0401, DRBI*0404 and DRBI*0301 (Kovats et al., J. Exp. Med. 179:2017-22, 1994), or in vivo or in vitro primed or pulsed splenocytes. Stimulator cells from mammals immunized with, or having a demonstrable cellular immune response to, the antigenic peptide are particularly preferred. For certain assay formats, it is preferred to inhibit the proliferation of stimulator cells prior to mixing with responder cells. This inhibition may be achieved by exposure to gamma irradiation or to an anti-mitotic agent, such as mitomycin C, for instance. Appropriate negative controls are also included (nothing; syngeneic APC; experimental peptide; APC + Peptide; MHC:peptide complex;
control peptide +/- APC). Further, to assure that non-responsiveness represents anergy, the proliferation assay may be set up~in duplicate, +/- recombinant IL-2 since it has been demonstrated that IL-2, can rescue anergized cells.
After an approximately 72 hour incubation, the activation of responder cells in response to the stimulator cells is measured. In a preferred embodiment, responder cell activation is determined by measuring proliferation using 3H-thymidine uptake (Crowley et al., J. Immunol. Meth. 133:55-66, 1990). Alternatively, responder cell activation can be measured by the production of cytokines, such as IL-2, or by determining the presence of responder cell-specific, and particularly T cell-specific, activation markers. Cytokine production can be assayed by testing the ability of the stimulator + responder cell culture supernatant to stimulate growth of cytokine-dependent cells. Responder cell- or T cell-specific activation markers may be detected using antibodies specific for such markers.
Preferably, the single chain MHC class II molecule:peptide complex induces non-responsiveness (for example, anergy) in the antigenic peptide-reactive responder cells. In addition to single chain MHC class II molecule:peptide complex recognition, responder cell activation requires the involvement of co-receptors on the stimulator cell (the APC) that have been stimulated with co-stimulatory molecules. By blocking or eliminating stimulation of such co-receptors (for instance, by exposing responder cells to purified single chain MHC class II molecule:peptide complex, by blocking with anti-receptor or anti-ligand antibodies, or by "knocking out"
the genes) encoding such receptors), responder cells can be rendered non-responsive to antigen or to single chain MHC class II molecule:peptide complex.
In a preferred embodiment, responder cells are obtained from a source manifesting an autoimmune disease or syndrome. Alternatively, autoantigen-reactive T
cell clones or lines are preferred responder cells. In another preferred embodiment, stimulator cells are obtained from a source manifesting an autoimmune disease or syndrome. Alternatively, APC cell lines or clones that are able to appropriately process and/or present autoantigen to responder cells are preferred stimulator cells.
In a particularly preferred embodiment, responder and stimulator cells are obtained from a source with diabetes or multiple sclerosis.
At this point, the responder T cells can be selectively amplified and/or stimulated, thereby producing a subset of T cells that are specific for the antigenic peptide. For instance, antigenic peptide-reactive responder cells may be selected by flow cytometry, and particularly by fluorescence activated cell sorting. This subset of responder cells can be maintained by repetitive stimulation with APCs presenting the same antigenic peptide. Alternatively, responder cell clones or lines can be established from this responder cell subset. Further, this subset of responder cells can be used to map epitopes of the antigenic peptide and the protein from which it is derived.
Other methods to assess the biological activity of the single chain MHC
class II molecule:peptide complexes are known in the art and can be used herein, such as using a microphysiometer, to measure production of acidic metabolites in T
cells following interaction with antigenic peptide. Other assay methods include competition assays, comparing single chain MHC class II molecule:complex response with that to the normal antigen. Also measurement production of such indicators as cytokines or y interferon can provide an indication of complex response.
Animal models of autoimmune disease Similar assays and methods can be developed for and used in animal models. For instance, the therapeutic effect of a pharmaceutical composition of the single chain molecule or multimer or a polynucleotide encoding the single chain molecule or multimer can be tested in vivo in a number of animal models of HLA-DR-associated autoimmune disease. These diseases include, but are not limited to, insulin-dependent diabetes mellitus, multiple sclerosis, myasthenia gravis, pernicious anemia, rheumatoid arthritis, and systemic lupus erythematosus.
For example, NOD mice are a spontaneous model of IDDM. Treatment with the pharmaceutical compositions prior to or after onset of disease can be monitored by assay of urine glucose levels in the NOD mouse, as well as by in vitro T
cell proliferation assays to assess reactivity to known autoantigens (see, e.g., I~aufinan et al., Nature 366:69-72 (1993)) for example) . Alternatively, induced models of autoimmune disease, such as EAE, can be treated with pharmaceutical composition.
Treatment in a preventive or intervention mode can be followed by monitoring the clinical symptoms of EAE.
Following is a description of several other animal models of HLA-DR-associated autoimmune disease which can be used to assay in vivo effects of the peptide.
It will be obvious to one of skill in the art that other suitable animal models for autoimmune diseases can be utilized in a similar manner.
Systemic Lunus Er~thematosus fSLEI
F1 hybrids of autoimmune New Zealand black (NZB) mice and the phenotypically normal New Zealand White (NZV~ mouse strain develop severe systemic autoimmune disease, more fulminant than that found in the parental NZB strain.
These mice manifest several immune abnormalities, including antibodies to nuclear antigens and subsequent development of a fatal, immune complex-mediated glomerulonephritis with female predominance, remarkably similar to SLE in humans (Knight et al., J.
Exp. Med.
147:1653 (1978)), which is incorporated hereby by reference.
In both the human and marine forms of the disease, a strong association with MHC gene products has been reported. HLA-DR2 and HLA-DR3 individuals are at 5 a higher risk than the general population to develop SLE (Reinertsen et al., N. Engl. J.
Med. 299:515 (1970)), while in NZB/W F1 mice (H-2~°), a gene linked to the h-2°
haplotype .derived from the NZW parent contributes to the development of the lupus-like nephritis.
The effect of the invention can be measured by survival rates and by the 10 progress of development of the symptoms, such as protenuria and appearance of anti-DNA antibodies.
Proteinuria can be measured by any method known to those of skill in the art, e.g. colorimetrically by the use of Uristix (Miles Laboratories, Inc., Elkhart, III, giving an approximation of proteinuria as follows: trace, 10 mg/dl; 1+, 30 mg/dl; 100 15 mg/dl; 3+, 300 mg/dl; and 4+, 1000 mg/dl. .
The presence of anti-DNA specific antibodies in NZB/W Fl mice can be determined by using a modification of a linked immunosorbent assay (ELISA) described by Zouali et al., J. Immunol. Methods 90:105 (1986)) which is incorporated herein by reference.
Myasthenia Gravis (MGl Myasthenia gravis is one of several human autoimmune diseases linked to HLA-D (Safenberg, et al., Tissue Antigens 12:136 (1978); McDevitt et al., Arth. Rheum.
20:59 (1977)) which are incorporated herein by reference. In MG antibodies to the acetyl choline receptors (AcChoR) impair neuromuscular transmission by mediating loss of AcChoR in the postsynaptic membrane.
SJLIJ female mice are a model system for human MG. In these animals, experimental autoimmune myasthenia gravis (EAMG) can be induced by immunizing the mice with soluble AcChoR protein from another species. Susceptibility to EAMG
is linked in part to the MHC and has been mapped to the region within H-2 (Christadoss et al., .I. Immunol. 123:2540 (1979)).
AcChoR protein can purified from Torpedo californica and assayed according to the method of Waldor et al., Proc. Natl. Acad. Sci. USA 80:2713 (1983), incorporated by reference. For example, emulsified AcChoR, 15 ~,g incomplete Freund adjuvant, is injected intradermally among six sites on the back, the hind foot pads, and the base of the tail. Animals are reimmunized with this same regimen 4 weeks later.
Evaluation can be made by measurement of anti-AcChoR antibodies by any method known to those of skill in the art, e.g., a microtiter ELISA assay as described in Waldor et al., supra. In an exemplary assay, the standard reagent volume is 50 p,1 per well. Reagents are usually incubated in the wells for 2 hr at RT. Five ~,g of AcChoR
diluted in bicarbonate buffer, pH 9.6, is added to each well. After incubation with AcChoR, the plates are rinsed four times with a wash solution consisting of phosphate-buffer saline containing 0.05% Tween and 0.05% NaN3. Mouse sera are diluted in O.O1M
PBS (pH 7.2), 1.5 mfr MgCl2, 2.0 mM 2-mercaptoethanol, 0.05% Tween-80, 0.05%
NaN3 (p-Tween buffer) and incubated on the plate. After the plate is washed, beta-galactosidase-conjugated sheep anti-mouse antibody diluted in P-Tween buffer is added to each well. After a final washing, the enzyme substrate, p-nitrophenylgalctopyranoside is added to the plate, and the degree of substrate catalysis is determined from the absorbance at 405 nm after 1 hr.
Anti-AcChoR antibodies are expected to be present in the mice immunized with AcChoR as compared to nonimmunized mice. Treatment with complex is expected to significantly reduce the titer of anti-AcChoR antibodies in the immunized mice.
The effect of treatment with the invention on clinical EAMG can also be assessed by any method known to those of skill in the art. Myasthenia symptoms include a characteristic hunched posture with drooping of the head and neck, exaggerated arching of the back, splayed limbs, abnormal walking, and difficulty in righting. Mild symptoms are present after a standard stress test, and should be ameliorated by administration of complex.
Rheumatoid Arthritis (RAl In humans, susceptibility to rheumatoid arthritis is associated with HLA
D/DR. The immune response in mice to native type II collagen has been used to establish an experimental model for arthritis with a number of histological and pathological features resembling human RA. Susceptibility to collagen-induced arthritis (CIA) in mice has been mapped to the H-2 I region, particularly the I-A subregion (Ruse et al., Fed.
Proc. 43:1820 (1984)).
Mice from a susceptible strain, DEA-1 can be caused to have CIA by treatment of the mice with native type II collagen, using the technique described in Wooley et al., J. Immunol. 134:2366 (1985), incorporated herein by reference.
In another model adjuvant arthritis in rats is an experimental model for human arthritis, and a prototype of autoimmune arthritis triggered by bacterial antigens (Holoschitz et al., Prospects of Immunology (1986); Pearson, Arthritis Rheum.
7:80 (1964)). The disease is the result of a cell-mediated immune response, as evidenced by its transmissibility by a clone of T cells which were reactive against the adjuvant (MT); the target self antigen in the disease, based upon studies with the same cloned cells, appears to be parts) of a proteoglycan molecule of cartilage.
Adjuvant disease in rats is produced as described by Pearson supra, i.e., by a single injection of Freund's adjuvant (killed tubercle bacilli or chemical fractions of it, mineral oil, and an emulsifying agent) given into several depot sites, preferably intracutaneously or into a paw or the base of the tail. The adjuvant is given in the absence of other antigens.
The effect of the invention treatment on manifestations of the disease can be monitored by any method known to those of skill in the art. These manifestations are histopathological, and include an acute and subacute synovitis with proliferation of synovial lining cells, predominantly a mononuclear infiltration of the articulax and particular tissues, the invasion of bone and articular cartilage by connective tissue pannus, and periosteal new bone formation, especially adjacent to affected joints. In severe or chronic cases, destructive changes occur, as do fibrous or bony ankylosis.
These histopathological symptoms are expected to appear in control animals at about 12 days after sensitization to the Freund's adjuvant.
Insulin Dependent Diabetes Mellitus (IDDM) IDDM is observed as a consequence of the selective destruction of insulin-secreting cells within the Islets of Langerhans of the pancreas. Involvement of the immune system in this disease is suggested by morphologic evidence of early infiltration of the Islets by mononuclear cells, by the detection of anti-islet cell antibodies, by the high frequency of HLA-DR3 and -DR4 alleles in IDDM populations, and by clinical associations between IDDM and various autoimmune diseases. An animal model for spontaneous IDDM and thyroiditis has been developed in the BB rat. As in humans, the rat disease is controlled in part by the genes encoding the MHC antigens, is characterized by islet infiltration, and is associated with the presence of anti-islet antibodies. The I-E
equivalent class II MHC antigens appear to be involved in manifestation of the autoimmune diseases in the BB rat. Biotard et al., Proc. Natl. Acad. Sci. USA
82:6627 (1985).
In morphologic evaluation, insulitis is characterized by the presence of mononuclear inflammatory cells~within the islets. Thyroiditis is characterized by focal interstitial lymphocytic infiltrate within the thyroid gland, as a minimum criterion. Most severe cases show diffuse extensive lymphocytic infiltrates, disruption of acini, fibrosis, and focal Hurthle call change. See Biotard et al. supra.
Treatment of the BB rats with the invention is expected to ameliorate or prevent the manifestation of the clinical and morphological symptoms associated with IDDM and thyroiditis.
In another model, the NOD mouse strain (H-2Kd Db) is a marine model for autoimmune IDDM. The disease in these animals is characterized by anti-islet cell antibodies, severe insulitis, and evidence for autoimmune destruction of the beta-cells (Kanazawa, et al., Diabetolooia 27:113 (1984)). The disease can be passively transferred with lymphocytes and prevented by treatment with cyclosporin-A (Ikehara et al., Proc.
Natl. Acad. Sci. USA 82:7743 (1985)); Mori et al., Diabetolooia 29:244 (1986).
Untreated animals develop profound glucose intolerance and ketosis and succumb within weeks of the onset of the disease. Seventy to ninety percent of female and 20-30% of male animals develop diabetes within the first six months of life. Breeding studies have defined at least two genetic loci responsible for disease susceptibility, one of which maps to the MHC. Characterization of NOD Class II antigens at both the serologic and molecular level suggest that the susceptibility to autoimmune disease is linked to I-AB
(Acha-Orbea and McDevitt, Proc. Natl. Acad. Sci. USA 84:235 (1907)).
Treatment of Female NOD mice with complex is expected to lengthen the time before the onset of diabetes and/or to ameliorate or prevent the disease.
Experimental Allergic Encephalom elf itis fEAEI
Experimental allergic encephalomyelitis (EAE) is an induced autoimmune disease of the central nervous system which is a model for multiple sclerosis (MS). The disease can be induced in many species, including mice and rats.
The disease is characterized by the acute onset of paralysis. Perivascular infiltration by mononuclear cells in the CNS is observed in both mice and rats. Methods of inducing the disease, as well as symptomology, are reviewed in Aranson, The Autoimmune Diseases (Rose and Mackay, eds., 1985), and in Acha-Orbea et al., Ann.
Rev. Imm. 7:377-405 (1989).
One of the genes mediating susceptibility is localized in the MHC class II
region (Moore et al., J. Immunol. 124:1815-1820 (1980)). The best analyzed encephalitogenic protein is myelin basic protein (MBP), but other encephalitogenic antigens are found in the brain. The immunogenic epitopes have been mapped (see, Acha-Orbea et al., supra.). In the PL mouse strains (H-2°) two encephalitogenic peptides in MBP have been characterized: MBP peptide p35-47 (MBP 35-47), and acetylated NSF
p1-9 (MBP 1-9).
The effect of the invention on ameliorating disease symptoms in individuals in which EAE has been induced can be measured by survival rates, and by the progress of the development of symptoms.
Methods of making the complexes of the invention Expression systems suitable for production of appropriate recombinant single chain MHC class II molecule:peptide complexes are available and known in the art. Various prokaryotic, fungal, and eukaryotic host cells are suitable for expression of recombinatn, single chain MHC class II molecule:peptide complexes, as well as for individual recombinant alpha and beta MHC class II chains.
Prokaryotes that are useful as host cells, according to the present invention, most frequently are represented by various strains of Escherichia coli.
However, other microbial strains can also be used, such as bacilli, for example Bacillus subtilis, various species of Pseudomonas, or other bacterial strains.
According to the invention, the single chain MHC class II
molecule:peptide complexes are expressed from recombinantly engineered nucleotide sequences that encode the single chain MHC class II molecule:peptide polypeptides by operably linking the engineered nucleic acid coding sequence to signals that direct gene expression in prokaryotes. A nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if it effects the transcription of the sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in 10 reading frame.
The genes encoding the single chain MHC class II molecule:peptide complexes may be inserted into an "expression vector," "cloning vector," or "vector,"
terms which are used interchangeably herein and usually refer to plasmids or other nucleic acid molecules that are able to replicate in a chosen host cell.
Expression vectors 15 may replicate autonomously, or they can replicate by being inserted into the genome of the host cell, by methods well known in the art. Vectors that replicate autonomously will have an origin of replication or autonomous replicating sequence (ARS) that is functional in the chosen host cell(s).
Plasmid vectors that contain replication sites and control sequences 20 derived from a species compatible with the chosen host are used. For example, E. coli is typically transformed using derivatives of pBR322, a plasmid derived from E.
coli species by Bolivar et al., Gene 2:95-113, 1977. Often, it is desirable for a vector to be usable in more than one host cell, e.g., in E. coli for cloning and construction, and in a Bacillus cell for expression.
25 The expression vectors typically contain a transcription unit or expression cassette that contains all the elements required for the expression of the DNA
encoding the MHC molecule in the host cells. A typical expression cassette contains a promoter operably linked to the DNA sequence encoding a single chain MHC class II
molecule:peptide complex and a ribosome binding site. The promoter is preferably positioned about the same distance from the heterologous transcription start site as it is from the transcription start site in its natural setting. As is known in the art, however, some variation in this distance can be accommodated without loss of promoter function.
In addition to a promoter sequence, the expression cassette can also contain a transcription termination region downstream of the structural gene to provide for efficient termination. The termination region may be obtained from the same gene as the promoter sequence or may be obtained from a different gene.
Commonly used prokaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the beta-lactamase (penicillinase) and lactose (lac) promoter systems (Change et al., Nature 198:1056, 1977) and the tryptophan (trp) promoter system (Goeddel et al., Nucleic Acids Res. 8:4057-74, 1980) and the lambda-derived PL promoter and N-gene ribosome binding site (Shimatake et al., Nature 292:128-32, 1981). Any available promoter system that functions in prokaryotes can be used.
Either constitutive or regulated promoters can be used in the present invention. Regulated promoters can be advantageous because the host cells can be grown to high densities before expression of the single chain MHC class II
molecule:peptide complexes is induced. High level expression of heterologous proteins slows cell growth in some situations. Regulated promoters especially suitable for use in E. coli include the bacteriophage lambda PL promoter, the hybrid trp-lac promoter (Amann et al., Gene 25:167-78 1983; and the bacteriophage T7 promoter.
For expression of single chain MHC class II molecule:peptide complexes in prokaryotic cells other than E. coli, a promoter that functions in the particular prokaryotic species is required. Such promoters can be obtained from genes that have been cloned from the species, or heterologous promoters can be used. For example, the hybrid trp-lac promoter functions in Bacillus in addition to E. coli.
A ribosome binding site (RBS) is also necessary for expression of single chain MHC class II molecule:peptide complexes in prokaryotes. An RBS in E.
coli, for example, consists of a nucleotide sequence 3-9 nucleotides in length located 3-nucleotides upstream of the initiation codon (Shine and Dalgarno, Nature, 254:34-40, 1975; Steitz, In Biological regulation and development.' Gene expression (ed., Goldberger), vol. 1, p. 349, 1979).
Translational coupling may be used to enhance expression. The strategy uses a short upstream open reading frame derived from a highly expressed gene native to the translational system, which is placed downstream of the promoter, and a ribosome binding site followed after a few amino acid codons by a termination codon.
Just prior to the termination codon is a second ribosome binding site, and following the termination codon is a start codon for the initiation of translation. The system dissolves secondary structure in the RNA, allowing for the efficient initiation of translation.
See Squires, et.
al., J. Biol. Chem. 263:16297-16302, 1988.
The single chain MHC class II molecule:peptide complexes can be expressed intracellularly, or can be secreted from the cell. Intracellular expression often results in high yields. However, some of the protein may be in the form of insoluble inclusion bodies. Although some of the intracellularly produced MHC
polypeptides of the present invention may be active upon being harvested following cell lysis, the amount.
of soluble, active MHC polypeptide may be increased by performing refolding procedures using methods known to those of skill in the art (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual Second Edition, Cold Spring Harbor, NY, 1989.;
Marston et al., BiolTechnology 2:800-804, 1985; Schoner et al., BiolTechnology 3:151-54, 1985).
In one embodiment, for purification and refolding the cell pellet is lysed and refolded in urea-borate-DTT buffer followed by urea-borate buffer and reverse phase HPLC
purification using either silica gel based Vydac (Hewlett Packard, Wilmington, DE) or polymer based Poros-R2 (PerSeptive Biosystems) resins, with bead size varying based on the scale of the culture and is described in further detail below. In one embodiment, e.g., for large scale refolding, the sample can be ultrafiltered into a urea-borate buffer to which is then added 0.2 ~.M to 1 mM copper sulfate, preferably 0.2 to 20 ~,M, after which folding occurs immediately.
More than one MHC:peptide complex may be expressed in a single prokaryotic cell by placing multiple transcriptional cassettes in a single expression vector, or by utilizing different selectable markers for each of the expression vectors which are employed in the cloning strategy.
A second approach for expressing the MHC:peptide complexes of the invention is to cause the polypeptides to be secreted from the cell, either into the periplasm or into the extracellular medium. The DNA sequence encoding the MHC
polypeptide is linked to a cleavable signal peptide sequence. The signal sequence directs translocation of the MHC:peptide complex through the cell membrane. An example of a suitable vector for use in E. coli that contains a promoter-signal sequence unit is pTA1529, which has the E. coli phoA promoter and signal sequence see, e.g., Sambrook et al., supra; Oka et al., Proc. Natl. Acad. Sci. USA 82:7212-16, 1985;
Talinadge et al., Proc. Natl. Acad. Sci. USA 77:39892, 1980; Takahara et al., J. Biol. Chem.
260: 2670-74, 1985). Once again, multiple polypeptides can be expressed in a single cell for periplasmic association. Eukaryotic signal sequences are also well known to those of skill in the art, and cause the MHC:peptide complexes of the invention to be secreted into the extracellular medium.
The MHC:peptide complexes of the invention can also be produced as fusion proteins. This approach often results in high yields, because normal prokaryotic control sequences direct transcription and translation. In E. coli, lacZ
fusions are often used to express heterologous proteins. Suitable vectors are readily available, such as the pUR, pEX, and pMR100 series (see, e.g., Sambrook et al., supra). For certain applications, it may be desirable to cleave the non-MHC amino acids from the fusion protein after purification. This can be accomplished by any of several methods known in the art, including cleavage by cyanogen bromide, a protease, or by Factor X, (see, e.g., Sambrook et al., supra.; Goeddel et al., Proc. Natl. Acad. Sci. USA 76:106-10, 1979;
Nagai et al., Nature 309:810-12, 1984; Sung et al., Proc. Natl. Acad. Sci. USA
83:561-65, 1986). Cleavage sites can be engineered into the gene for the fusion protein at the desired point of cleavage.
Foreign genes, such as single chain MHC class II molecule:peptide complexes, can be expressed in E. coli as fusions with binding partners, such as glutathione-S-transferase (GST), maltose binding protein, or thioredoxin.
These binding partners are highly translated and can be used to overcome inefficient initiation of translation of eukaryotic messages in E. coli. Fusion to such binding partner can result in high-level expression, and the binding partner is easily purified and then excised from the protein of interest. Such expression systems are available from numerous sources, such as Invitrogen Inc. (San Diego, CA) and Pharmacia LKB Biotechnology Inc.
(Piscataway, NJ).
A method for obtaining recombinant proteins from E. coli which maintains the integrity of their N-termini has been described by Miller et al.
Biotechnology 7:698-704 (1989). In this system, the gene of interest is produced as a C-terminal fusion to the first 76 residues of the yeast ubiquitin gene containing a peptidase cleavage site.
Cleavage at the junction of the two moieties results in production of a protein having an intact authentic N-terminal reside.
The vectors containing the nucleic acids that code for the single chain MHC class II molecule:peptide complexes are transformed into prokaryotic host cells for expression. "Transformation" refers to the introduction of vectors containing the nucleic acids of interest directly into host cells by well known methods. The particular procedure used to introduce the genetic material into the host cell for expression of the single chain MHC class II molecule:peptide complex is not particularly critical. Any of the well known procedures for introducing foreign nucleotide sequences into host cells may be used. It is only necessary that the, particular host cell utilized be capable of expressing the gene.
Transformation methods, which vary depending on the type of the prokaryotic host cell, include electroporation; transfection employing calcium chloride, rubidium chloride calcium phosphate, or other substances; microprojectile bombardment;
infection (where the vector is an infectious agent) ; and other methods. See, generally, Sambrook et al, supra, and Ausubel et al., (eds.) Current Protocols in Molecular Biology, John Wiley and Sons, Inc., NY, 1987. Reference to cells into which the nucleic acids described above have been introduced is meant to also include the progeny of such cells.
Transformed prokaryotic cells that contain expression vectors for single chain MIiC class II molecule:peptide complexes are also included in the invention.
After standard transfection or transformation methods are used to produce prokaryotic cell lines that express large quantities of the single chain MHC
class II
molecule:peptide complex polypeptide, the polypeptide is then purified using standard techniques. See, e.g., Colley et al., J. Chem. 64:17619-22, 1989; and Methods in Enzymology, "Guide to Protein Purification", Deutscher, ed., Vol. 182 (1990).
The recombinant cells are grown and the single chain MHC class II molecule:peptide complex is expressed. The purification protocol will depend upon whether single chain MHC class II molecule:peptide complex is expressed intracellularly, into the periplasm, or secreted from the cell. For intracellular expression, the cells are harvested, lysed, and the polypeptide is recovered from the cell lysate (Sambrook et al., supra).
Periplasmic MHC
polypeptide is released from the periplasm by standard techniques (Sambrook et al., supYa). If the MHC polypeptide is secreted from the cells, the culture medium is harvested for purification of the secreted protein. The medium is typically clarified by centrifugation or filtration to remove cells and cell debris.
The MHC polypeptides can be concentrated by adsorption to any suitable 5 resin (such as, for example, CDP-Sepharose, Asialoprothrombin-Sepharose 4B, or Q
Sepharose), or by use of ammonium sulfate fractionation, polyethylene glycol precipitation, or by ultrafiltration. Other means known in the art may be equally suitable.
Further purification of the MHC polypeptides can be accomplished by standard techniques, for example, affinity chromatography, ion exchange 10 chromatography, sizing chromatography, reverse phase HPLC, or other protein purification techniques used to obtain homogeneity. The purified proteins are then used to produce pharmaceutical compositions.
For secretion of a polypeptide or protein of interest, recombinant nucleic acid constructs of the invention may include sequences that encode signal sequences or 15 other sequences that direct secretion. Secretory signal sequences, also called leader sequences, prepro sequences and/or pre sequences, are amino acid sequences that play a role in secretion of mature polypeptides or proteins from a cell. Such sequences are characterized by a core of hydrophobic amino acids and are typically (but not exclusively) found at the amino termini of newly synthesized proteins. The secretory 20 signal sequence may be that of the protein of interest, or may be derived from another secreted protein (e.g., t-PA, a preferred mammalian secretory leader) or synthesized de novo. The secretory signal sequence is joined to the DNA sequence encoding a protein of the present invention in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the polypeptide of interest, 25 although certain signal sequences may be positioned elsewhere in the DNA
sequence of interest (see, e.g., Welch et al., U.S. Patent No. 5,037,743; Holland et al., U.S. Patent No.
5,143,30). Very often the secretory peptide is cleaved from the mature protein during secretion. Such secretory peptides contain processing sites that allow cleavage of the secretory peptide from the mature protein as it passes through the secretory pathway. An 30 example of such a processing site is a dibasic cleavage site, such as that recognized by the Saccharomyces cerevisiae KEX2 gene or a Lys-Arg processing site. Processing sites may be encoded within the secretory peptide or may be added to the peptide by, for example, in vitro mutagenesis.
Secretory signals include the a factor signal sequence (prepro sequence:
Kurjan & Herskowitz, Cell 3:933-943, 1982; Kurjan et al., U.S. Patent No.
4,546,082;
Brake, EP 116, 201), the PHOS signal sequence (Beck et al., WO 86/00637) , the BART
secretory signal sequence (MacKay et al., U.S. Patent No. 4,613,572; MacKay, WO
87/002670), the SUC2 signal sequence (Carlsen et al., Molecular and Cellular Biology 3:
439-447 , 1983) , the a-1-antitrypsin signal sequence (Kurachi et al., Proc.
Natl. Acad. Sci.
USA 78: 6826-6830, 1981) , the a-2 plasmin inhibitor signal sequence (Tone et al., J.
Biochem. (Tokyo) 102: 1033-1042, 1987) and the tissue plasminogen activator signal sequence (Pennica et al., Nature 301: 214-221, 1983). Alternately, a secretory signal sequence may be synthesized according to the rules established, for example, by von Heinje (European Journal of Biochemistry 133: 17-21, 1983; Journal of Molecular Biology 184: 99-105, 1985; Nucleic Acids Research 14: 4683-4690; 1986).
Another signal sequence is the synthetic signal LaC212 spx (1-47). ERLE described in WO
90/10075.
Secretory signal sequences may be used singly or may be combined. For example, a first secretory signal sequence may be used in combination with a sequence encoding the third domain of burner (described in U.S. Patent No. 5,037,243, which is incorporated by reference herein in its entirety). The third domain of barrier may be positioned in proper reading frame 3' of the DNA segment of interest or 5' to the DNA
segment and in proper reading frame with both the secretory signal sequence and a DNA
segment of interest.
The choice of suitable promoters, terminators and secretory signals for all expression systems, is well within the level of ordinary skill in the art.
Methods for expressing cloned genes in Saccharomyces cerevisiae are generally known in the art (see, "Gene Expression Technology," Methods in Enzymology, Vol. 185, Goeddel (ed.), Academic Press, San Diego, CA, 1990 and "Guide to Yeast Genetics and Molecular Biology, "Methods in Enzymology, Guthrie and Fink (eds.), Academic Press, San Diego, CA, 1991; which are incorporated herein by reference). Proteins of the present invention can also be expressed in filamentous fungi, for example, strains of the fungi Aspergillus (McKnight et al., U.S. Patent No. 4,935,349, which is incorporated herein by reference).
Expression of cloned genes in cultured mammalian cells and in E. coli, for example, is discussed in detail in Sambrook et al. (Molecular Cloning: A Laboratory Manual.
Second Edition, Cold Spring Harbor, NY, 1989; which is incorporated herein by reference). As would be evident to one skilled in the art, one could express the proteins of the instant invention in other host cells such as avian, insect and plant cells using regulatory sequences, vectors and methods well established in the literature.
In yeast, suitable yeast vectors for use in the present invention include YRp7 (Struhl et al., Proc. Natl. Acad. Sci. USA 76:1035-1039, 1978), YEpl3 (Broach et al., Gene 8: 121-133, 1979), POT vectors (Kawasaki et al., U.S. Patent No.
4,931,373, which is incorporated by reference herein), pJDB249 and pJDB219 (Beggs, Nature 275:104-108, 1978) and derivatives thereof. Preferred promoters for use in yeast include promoters from yeast glycolytic genes (Hitzeman et al., J. Biol. Chem. 255:
12073-12080, 1980; Alber and Kawasaki, J. Mol. Appl. Genet. 1: 419-434, 1982; Kawasaki, U.S. Patent No. 4,599,311) or alcohol dehydrogenase genes (Young et al., in Genetic Engineering of Microorganisms for Chemicals, Hollaender et al., (eds.), p. 355, 1982;
Ammerer, Meth.
Enzymol. 101: 192-201, 1983). Other promoters are the TPIl promoter (Kawasaki, U.S.
Patent No. 4,599,311, 1986) and the ADH2-4° promoter (Russell et al., Nature 304: 652-654, 1983; Irani and Kilgore, U.S. Patent Application Serial No. 07/784,653, CA
1,304,020 and EP 284 044, which are incorporated herein by reference). The expression units may also include a transcriptional terminator such as the TPI1 terminator (Alber and Kawasaki, ibid.).
Yeast cells, particularly cells of the genus Pichia or Saccharomyces, are a preferred host for use in producing compound of the current invention. Methods for transforming yeast cells with exogenous DNA and producing recombinant proteins therefrom are disclosed by, for example, Kawasaki, U.S. Patent No. 4,599,311;
Kawasaki et al., U.S. Patent No. 4,931,373; Brake, U.S. Patent No. 4,870,008; Welch et al., U.S.
Patent No. 5,037,743; and Murray et al., U.S. Patent No. 4,845,075, which are incorporated herein by reference. Transformed cells are selected by phenotype determined by a selectable marker, commonly drug resistance or the ability to grow in the absence of a particular nutrient (e.g., leucine) . A preferred vector system for use in yeast is the POT1 vector system disclosed by Kawasaki et al. (IJ.S. Patent No.
4,931,373), which allows transformed cells to be selected by growth in glucose-containing media. A
preferred secretory signal sequence for use in yeast is that of the S.
cerevisiae MFal gene (Brake, ibid.; Kurjan et al., U.S. Patent No. 4,546,082) . Suitable promoters and terminators for use in yeast include those from glycolytic enzyme genes (see, e.g., Kawasaki, U.S. Patent No. 4,599,311; Kingsman et al., U.S. Patent No.
4,615,974; and Bitter, U.S. Patent No. 4,977,092, which are incorporated herein by reference) and alcohol dehydrogenase genes. See also U.S. Patent Nos. 4,990,446; 5,063,154;
5,139,936 and 4,661,454, which are incorporated herein by reference. Transformation systems for other yeasts, including Hahsenula polymorpha, Schizosaccharomyces pombe, Kluyveromyces lactis, Kluyveromyces fragilis, Ustilago maydis, Pichia pastoris, Pichia methanolica, Pichia guillermohdii and. Candida maltosa are known in the art.
See, for example, Gleeson et al., J. Geh. Microbiol. 132:3459-65, 1986; Cregg, U.S.
Patent No.
4,882,279; and Stroman et al., U.S. Patent No. 4,879,231.
Other fungal cells are also suitable as host cells. For example, Aspergillus cells may be utilized according to the methods of McKnight et al., U.S. Patent No.
4,935,349, which is incorporated herein by reference. Methods for transforming Acremonium chrysogenum are disclosed by Sumino et al., U.S. Patent No.
5,162,228, which is incorporated herein by reference. Methods for transforming Neurospora are disclosed by Lambowitz, U.S. Patent No. 4,486,533, which is incorporated herein by reference.
Host cells containing DNA constructs of the present invention are then cultured to produce the heterologous proteins. The cells are cultured according to standard methods in a culture medium containing nutrients required for growth of the particular host cells. A variety of suitable media are known in the art and generally include a carbon source, a nitrogen source, essential amino acids, vitamins, minerals and growth factors. The growth medium will generally select for cells containing the DNA
construct by, for example, drug selection or deficiency in an essential nutrient which is complemented by a selectable marker on the DNA construct or co-transfected with the DNA construct.
Yeast cells, for example, are preferably cultured in a chemically defined medium, comprising a non-amino acid nitrogen source, inorganic salts, vitamins and essential amino acid supplements. The pH of the medium is preferably maintained at a pH greater than 2 and less than 8, preferably at pH 6.5. Methods for maintaining a stable pH include buffering and constant pH control, preferably through the addition of sodium hydroxide. Preferred buffering agents include succinic acid and Bis-Tris (Sigma Chemical Co., St. Louis, MO). Yeast cells having a defect in a gene required for asparagine-linked glycosylation are preferably grown in a medium containing an osmotic stabilizer. A preferred osmotic stabilizer is sorbitol supplemented into the medium at a concentration between 0.1 M and 1.5 M, preferably at 0.5 M or 1.0 M. Cultured mammalian cells are generally cultured in commercially available serum-containing or serum-free media. Selection of a medium appropriate for the particular host cell used is within the level of ordinary skill in the art.
Methods for introducing exogenous DNA into mammalian host cells include calcium phosphate-mediated transfection (Wigler et al., Cell 14:725, 1978;
Corsaro and Pearson, Somatic Cell Genetics 7:603, 1981; Graham and Van der Eb, Virology 52:456, 1973) , electroporation (Neumann et al., EMBO J. 1:841-45, 1982) and DEAF-dextran mediated 'transfection (Ausubel et al., (eds), Current Protocols in Molecular Biology, John Wiley and Sons, Inc., NY, 1987), which are incorporated herein by reference. Cationic Iipid transfection using commercially available reagents, including the Boehringer Mannheim TRANSFECTION-REAGENT (N-[1- (2,3-dioleoyloxy)propyl] -N,N,N-trimethyl ammoniummethylsulfate; Boehringer Mannheim, Indianapolis, III or LIPOFECTIN reagent (N-[l-(2,3-dioleoyloxy)propyl~-N,N,N-trimethylammonium chloride and dioleoyl phosphatidylethanolamine; GIBCO-BRL, Gaithersburg, MD) using the manufacturer-supplied directions, may also be used. A
preferred mammalian expression plasmid is Zem229R (deposited under the terms of the Budapest Treaty with American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD on September 28, 1993 as an E. coli HB 101 transformant and assigned Accession Number 69447) . The production of recombinant proteins in cultured mammalian cells is disclosed, for example, by Levinson et al., U.S. Patent No.
4,713,339;
Hagen et al., U.S. Patent No. 4,784,950; Palmiter et al., U.S. Patent No.
4,579,821; and Ringold, U.S. Patent No. 4,656,134, which are incorporated herein by reference.
Preferred cultured mammalian cells include the COS-1 (ATCC No. CRL 1650), COS-(ATCC No. CRL 1651), BHK (ATCC No. CRL 1632), BHK 570 (ATCC No. CRL
10314), DG44, and 293 (ATCC No. CRL 1573; Graham et al., J. Gen. Virol. 36:59-72, 1977) cell lines. Additional suitable cell lines are known in the art and available from public depositories such as the American Type Culture Collection, Rockville, Maryland.
In general, strong transcription promoters are preferred, such as promoters from SV-40 or cytomegalovirus. See, e.g., U.S. Patent No. 4,956,288. Other suitable promoters include those from metallothionein genes (U.S. Patents Nos. 4,579,821 and 4,601,978, which are 5 incorporated herein by reference) and the adenovirus major late promoter.
Drug selection is generally used to select for cultured mammalian cells into which foreign DNA has been inserted. Such cells are commonly referred to as "transfectants." Cells that have been cultured in the presence of the selective agent and are able to pass the gene of interest to their progeny are refeiTed to as "stable 10~ transfectants." A preferred selectable marker is a gene encoding resistance to the antibiotic neomycin. Selection is carried out in the presence of a neomycin-type drug, such as G-418 or the like. Selection systems may also be used to increase the expression level of the gene of interest, a process referred to as "amplification."
Amplification is carried out by culturing transfectants in the presence of a low level of the selective agent 15 and then increasing the amount of selective agent to select for cells that produce high levels of the products of the introduced genes. A preferred amplifiable selectable marker is dihydrofolate reductase, which confers resistance to methotrexate. Other drug resistance genes (e.g. hygromycin resistance, mufti-drug resistance, puromycin acetyltransferase) can also be used.
20 The soluble, fused MHC:peptide complexes of the present invention can be purified by first isolating the polypeptides from the cells followed by conventional purification methods, such as by ion-exchange and partition chromatography as described by, for example, Coy et al. (Peptides Structure and Function, Pierce Chemical Company, Rockford, IL, pp 369-72, 1983) or by reverse-phase.chromatography as described, for 25 example, by Andreu and Mernfield (Eur. J. Biochem. 164: 585-90, 1987), or by HPLC as described, for example, by Kofod et al. (Int. J. Peptide and Protein Res. 32.:
436-40, 1988). Additional purification can be achieved by additional conventional purification means, such as liquid chromatography, gradient centrifugation, and gel electrophoresis, among others. Methods of protein purification are known in the art (see generally, 30 Scopes, R., Protein Purification, Springer-Verlag, NY, 1982, which is incorporated by reference herein) and can be applied to the purification of the recombinant polypeptides described herein. Single chain MHC class II molecule:peptide complexes of at least about 50% purity are preferred, at least about 70-~0% purity more preferred, and about 95-99% or more purity most preferred, particularly for pharmaceutical uses.
Once purified, either partially or to homogeneity, as desired, the single chain MHC
class II
molecule:peptide complexes may then be used diagnostically or therapeutically, as further described below.
Methods of using single chain MHC class II molecule:peptide complexes The single chain MHC class II molecule:peptide complexes of the present invention may be used within methods for down-regulating parts of the immune system that are reactive in autoimmune diseases. The single chain MHC class II
molecule:peptide complexes of the present invention are contemplated to be advantageous for use as immunotherapeutics to induce immunological tolerance or nonresponsiveness (anergy) in patients predisposed to mount or already mounting an immune response those particular autoantigens. A patient having or predisposed to a particular autoimmune disease is identified and MHC type is determined by methods known in the art. The patient's T cells can be examined in vitro to determine autoantigenic peptides) recognized by the patient's autoreactive T cells using complexes and methods described herein. The patient can then be treated with complexes of the invention. Such methods will generally include administering single chain MHC
class II
molecule:peptide complex in an amount sufficient to lengthen the time period before onset of the autoimmune disease and/or to ameliorate or prevent that disease.
Single chain MHC class II molecule:peptide complexes of the present invention axe therefore contemplated to be advantageous for use in both therapeutic and diagnostic applications related to auto immune diseases.
Kits can also be supplied for therapeutic or diagnostic uses. Thus, the subject composition of the present invention may be provided, usually in a lyophilized form, in a container. The single chain MHC class II molecule:peptide complex is included in the kits with instructions for use, and optionally with buffers, stabilizers, biocides, and inert proteins. Generally, these optional materials will be present at less than about 5% by weight, based on the amount of single chain MHC class II
molecule:peptide complex, and will usually be present in a total amount of at least about 0.001 % by weight, based on the single chain MHC class II molecule:peptide complex concentration. It may be desirable to include an inert extender or excipient to dilute the active ingredients, where the excipient may be present in from about 1 to 99%
weight of the total composition.
Within one aspect of the present invention, single chain MHC class II
molecule:peptide complexes are utilized to prepare antibodies for diagnostic or therapeutic uses. As used herein, the term "antibodies" includes polyclonal antibodies, monoclonal antibodies, antigen-binding fragments thereof such as F(ab')2 and Fab fragments, as well as recombinantly produced binding partners. These binding partners incorporate the variable or CDR regions from a gene which encodes a specifically binding antibody. The affinity of a monoclonal antibody or binding partner may be readily determined by one of ordinary skill in the art (see, Scatchard, Ann.
lVYAcad. Sci.
51: 660-72, 1949) Methods for preparing polyclonal and monoclonal antibodies have been well described in the literature (see, for example, Sambrook et al., Molecular Cloning: A
Laboratory Manual, Second Edition, Cold Spring Harbor, NY, 1989; and Hurrell, J. G.
R., Ed., Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC
Press, Ind., Boca Raton, FL, 1982, which is incorporated herein by reference) . As would be evident to one of ordinary skill in the art, polyclonal antibodies may be generated from a variety of warm-blooded animals, such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice, or rats, for example. The immunogenicity of the single chain MHC class II
molecule:peptide complexes may be increased through the use of an adjuvant, such as Freund's complete or incomplete adjuvant. A variety of assays known to those skilled in the art may be utilized to detect antibodies which specifically bind to a single chain MHC
class II molecule:peptide complex. Exemplary assays are described in detail in Antibodies: A Laboratory Manual, Harlow and Lane (Eds.), Cold Spring Harbor Laboratory Press, 1988. Representative examples of such assays include:
concurrent immunoelectrophoresis, radio-immunoassays, radio-immunoprecipitations, enzyme-linked immuno-sorbent assays, dot blot assays, inhibition or competition assays, and sandwich assays.
Additional techniques for the preparation of monoclonal antibodies may be utilized to construct and express recombinant monoclonal antibodies. Briefly, mRNA is isolated from a B cell population and used to create heavy and light chain immunoglobulin cDNA expression libraries in a suitable vector such as the 7~,IMMUNOZAP(H) and 7~.IMMUNOZAP(L) vectors, which may be obtained from Stratagene Cloning Systems (La Jolla, CA). These vectors are then screened individually or are co-expressed to form Fab fragments or antibodies (Ruse et al., Science 81, 1989; Sastry et al., Proc. Natl. Acad. Sci. USA 86: 5728-32, 1989).
Positive plaques are subsequently converted to a non-lytic plasmid which allows high level expression of monoclonal antibody fragments in E. coli.
Antibodies of the present invention may be produced by immunizing an animal selected from a wide variety of warm-blooded animals, such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice, and rats, with a recombinant single chain MHC class II molecule:peptide complex. Serum from such animals are a source of polyclonal antibodies. Alternatively antibody producing cells obtained from the immunized animals are immortalized and screened. As the generation of human monoclonal antibodies to a human antigen, such as a single chain MHC class II
molecule:peptide complex, may be difficult with conventional immortalization techniques, it may be desirable to first make non-human antibodies. Using recombinant DNA techniques, the antigen binding regions of the non-human antibody is transferred to the corresponding site of a human antibody coding region to produce a substantially human antibody molecules. Such methods are generally known in the art and are described in, for example, U.S. Patent No. 4,816,397, and EP publications 173,494 and 239,400, which are incorporated herein by reference.
In another aspect of the invention, the single chain MHC class II
molecule:peptide complexes can be used to clone T cells which have specific receptors for the single chain MHC class II molecule:peptide complex. Once the single chain MHC
class II molecule:peptide complex-specific T cells are isolated and cloned using techniques generally available to the skilled artisan, the T cells or membrane preparations thereof can be used to immunize animals to produce antibodies to the single chain MHC
class II molecule:peptide complex receptors on T cells. The antibodies can be polyclonal or monoclonal. If polyclonal, the antibodies can be marine, lagomorph, equine, ovine, or from a variety of other mammals. Monoclonal antibodies will typically be marine in origin, produced according to known techniques, or human, as described above, or combinations thereof, as in chimeric or humanized antibodies. The anti- single chain MHC class II molecule:peptide complex receptor antibodies thus obtained can then be administered to patients to reduce or eliminate T cell subpopulations that display such receptor. This T-cell population recognizes and participates in the immunological destruction of cells bearing the autoantigenic peptide in an individual predisposed to or already suffering from a disease, such as an autoimmune disease related to the autoantigenic peptide.
The coupling of antibodies to solid supports and their use in purification of proteins is well known in the literature (see, for example, Methods in Molecular Biology.
Yol. 1, Walker (Ed.), Humana Press, New Jersey, 1984, which is incorporated by reference herein in its entirety). Antibodies of the present invention may be used as a marker reagent to detect the presence of MHC heterodimer:peptide complexes on cells or in solution. Such antibodies are also useful for Western analysis or irnmunoblotting, particularly of purified cell-secreted material. Polyclonal, affinity purified polyclonal, monoclonal and single chain antibodies are suitable for use in this regard. In addition, proteolytic and recombinant fragments and epitope binding domains can be used herein.
Chimeric, humanized, veneered, CDR-replaced, reshaped or other recombinant whole or partial antibodies are also suitable.
Pharmaceutical compositions Pharmaceutically acceptable carriers are determined in part by the particular composition being administered (e.g., nucleic acid, protein) as by the particular method used to administer the composition. Accordingly, there are a wide variety of suitable formulations of pharmaceutical compositions of the present invention (see, e.g., Remington's Pharmaceutical Sciences (17th ed., 1989). Administration can be in any convenient manner, e.g., by injection, oral administration, inhalation, or transdermal application.
Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the packaged nucleic acid or polypeptide suspended in diluents, such as water, saline or PEG 400; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin; (c) suspensions in an appropriate liquid; and (d) suitable emulsions.
Tablet forms can include one or more of lactose, sucrose, mannitol, sorbitol, calcium phosphates, corn starch, potato starch, microcrystalline cellulose, gelatin, colloidal silicon dioxide, talc, magnesium stearate, stearic acid, and other excipients, colorants, fillers, binders, diluents, buffering agents, moistening agents, preservatives, flavoring agents, dyes, disintegrating agents, and pharmaceutically compatible caxriers. Lozenge forms can 5 comprise the active ingredient in a flavor, e.g., sucrose, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, Garners known in the art.
The compound of choice, alone or in combination with other suitable 10 components, can be made into aerosol formulations (i.e., they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
Formulations suitable for parenteral administration, such as, for example by intraarticular (in the joints), intravenous, intramuscular, intradermal, intraperitoneal, 15 and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. In the practice of this invention, compositions can 20 be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or iritrathecally. Parenteral administration and intravenous administration are the preferred methods of administration. The formulations of commends can be presented in unit-dose or mufti-dose sealed containers, such as ampules and vials.
Injection solutions and suspensions can be prepared from sterile powders, 25 granules, and tablets of the kind previously described. Cells transduced by nucleic acids for ex vivo therapy can also be administered intravenously or parenterally as described above.
The polypeptides of the invention are administered prophylactically or to an individual already suffering from the disease. The compositions are administered to a 30 patient in an amount sufficient to elicit an effective immune response. An amount adequate to accomplish this is defined as "therapeutically effective dose" or "immunogenically effective dose." Amounts effective for this use will depend on, e.g., the peptide composition, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician, but generally range for the initial immunization dose (that is for therapeutic or prophylactic administration) from about 0.01 mg to about 50 mg per 70 kilogram patient, more commonly from about 0.5-1 mg to about 10-15 mg per 70 kg of body weight. Boosting dosages are typically from about 0.01 mg to about 50 mg of peptide, more commonly about 0.5-1 mg to about 10-15 mg, using a boosting regimen over weeks to months depending upon the patient's response and condition. A
suitable protocol would include injection at time 0, 2, 6, 8, 10 and 14 weeks, followed by booster injections at 24 and 28 weeks. Booster injections can be from one, two, three, four, five or more. Initial and booster injection amounts and timing are determined based on the judgment of the physician and the antigen being administered. In one embodiment, the initial and booster dose is 1.3 mg, 4 mg, or 13 mg, administered via intramuscular injection, with at least one and up to 3 booster injections at 8 week intervals, or at least one and up to 4 booster injections at 6 week intervals.
The therapeutic methods of the present invention may involve oral tolerance (Weiner et al., Nature 376: 177-80, 1995), or intravenous tolerance, for example. Tolerance can be induced in mammals, although conditions for inducing such tolerance will vary according to a variety of factors. To induce immunological tolerance in an adult susceptible to or already suffering from an autoantigen-related disease such as IDDM, the precise amounts and frequency of administration will also vary. For instance for adults about 20-80 pg/kg can be administered by a variety of routes, such as parenterally, orally, by aerosols, intradermal injection, and the like. For neonates, tolerance can be induced by parenteral injection or more conveniently by oral administration in an appropriate formulation. The precise amount administrated, and the mode and frequency of dosages, will vary.
The single chain MHC class II molecule:peptide complexes will typically be more tolerogenic when administered in a soluble form, rather than in an aggregated or particulate form. Persistence of a single chain MHC class II molecule:peptide complex of the invention is generally needed to maintain tolerance in an adult, and thus may require more frequent administration of the complex, or its administration in a form which extends the half life of the complex. See for example, Sun et al., Proc. Natl.
Acad. Sci.
USA 91: 10795-99, 1994.
Within another aspect of the invention, a pharmaceutical composition is provided which comprises a single chain MHC class II molecule:peptide complex of the present invention contained in a pharmaceutically acceptable carrier or vehicle for parenteral, topical, oral, or local administration, such as by aerosol or transdermally, for prophylactic and/or therapeutic treatment, according to conventional methods.
The composition may typically be in a form suited for systemic injection or infusion and may, as such, be formulated with sterile water or an isotonic saline or glucose solution.
Formulations may further include one or more diluents, fillers, emulsifiers, preservatives, buffers, excipients, and the like, and~may be provided in such forms as liquids, powders, emulsions, suppositories, liposomes, transdermal patches and tablets, for example.
Pharmaceutical compositions of the present invention are administered at daily to weekly intervals. An "effective amount" of such a pharmaceutical composition is an amount that provides a clinically significant decrease in a deleterious T
cell-mediated immune response to an autoantigen, for example, those associated with IDDM, or provides other pharmacologically beneficial effects. Such amounts will depend, in part, on the particular condition to be treated, age, weight, and general health of the patient, and other factors evident to those skilled in the art. Preferably the amount of the single chain MHC class II molecule:peptide complex administered will be within the range of 20-80 pg/kg. Compounds having significantly enhanced half lives may be administered at lower doses or less frequently.
Ad~uvants An immunostimulant refers to essentially any substance that enhances or potentiates an immune response (antibody andlor cell-mediated) to an exogenous antigen.
One preferred type of immunostimulant comprises an adjuvant. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Certain adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway; NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc;
an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres;
monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.
The compositions may also include a Mycobacterium species CWS
adjuvant, as described above. The effectiveness of an adjuvant may be determined by measuring the amount of antibodies directed against the immunogenic peptide.
Certain adjuvants for eliciting a predominantly Thl-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A, together with an aluminum salt. MPL~' adjuvants are available from Corixa Corporation (Seattle, WA; see, for example, US Patent Nos.
4,436,727;
4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Thl response.
Such oligonucleotides are well known and are described, for example, in WO
96/02555, WO
99/33488 and U.S. Patent Nos. 6,008,200 and 5,856,462. Immunostimulatory DNA
sequences are also described, for example, by Sato et al., Science 273:352, 1996.
Another preferred adjuvant comprises a saponin, such as Quil A, or derivatives thereof, including QS2I and QS7 (Aquila Biopharmaceuticals Inc., Framingham, MA);
Escin;
Digitonin; or Gypsophila or Chenopodium quinoa saponins . Other preferred formulations include~more than one saponin in the adjuvant combinations of the present invention, for example combinations of at least two of the following group comprising QS21, QS7, Quil A, ~i-escin, or digitonin.
Alternatively the saponin formulations may be combined with vaccine vehicles composed of chitosan or other polycationic polymers, polylactide and polylactide-co-glycolide particles, poly-N-acetyl glucosamine-based polymer matrix, particles composed of polysaccharides or chemically modified polysaccharides, liposomes and lipid-based particles, particles composed of glycerol monoesters, etc. The saponins may also be formulated in the presence of cholesterol to form particulate structures such as liposomes or ISCOMs. Furthermore, the saponins may be formulated together with a polyoxyethylene ether or ester, in either a non-particulate solution or suspension, or in a particulate structure such as a paucilamelar liposorne or ISCOM. The saponins may also be formulated with excipients such as CarbopolR to increase viscosity, or may be formulated in a dry powder form with a powder excipient such as lactose.
In one embodiment, the adjuvant system includes the combination of a monophosphoryl lipid A and a saponin derivative, such as the combination of QS21 and 3D-MPL~ adjuvant, as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739.
Other formulations comprise an oil-in-water emulsion and tocopherol. Another adjuvant formulation employs QS21, 3D-MPL~ adjuvant and tocopherol in an oil-in-water emulsion is described in WO 95/17210.
Another enhanced adjuvant system involves the combination of a CpG-containing oligonucleotide and a saponin derivative particularly the combination of CpG
and QS21 as disclosed in WO 00/09159. Preferably the formulation additionally comprises an oil in water emulsion and tocopherol.
Additional illustrative adjuvants for use in the pharmaceutical compositions of the invention include Montanide ISA 720 (Seppic, France), SAF
(Chiron, California, United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (e.g., SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Enhanzyn~) (Corixa, Hamilton, MT), RC-529 (Corixa, Hamilton, MT) and other aminoalkyl glucosaminide 4-phosphates (AGPs), such as those described in pending U.S. Patent Application Serial Nos. 08/853,826 and 091074,720, the disclosures of which axe incorporated herein by reference in their entireties, and polyoxyethylene ether adjuvants such as those described in WO 99/52549A1.
Other preferred adjuvants include adjuvant molecules of the general formula (I): HO(CH2CHa0)n-A-R, wherein, n is 1-50, A is a bond or -C(O)-, R is Ci-so alkyl or Phenyl Ci-so amyl.
One embodiment of the present invention consists of a vaccine formulation comprising a polyoxyethylene ether of general formula (I), wherein h is between I and 50, preferably 4-24, most preferably 9; the R component is C1_so, preferably C4-C2o alkyl and most preferably C12 alkyl, and A is a bond. The concentration of the polyoxyethylene ethers should be in the range 0.1-20%, preferably from 0.1-10%, and most preferably in the range 0.1-1%. Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether, polyoxyethylene-9-steoryl ether, polyoxyethylene 8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether. Polyoxyethylene ethers such as polyoxyethylene lauryl ether are described in the Merck index (12th edition: entry 7717). These adjuvant 5 molecules are described in WO 99/52549.
The polyoxyethylene ether according to the general formula (I) above may, if desired, be combined with another adjuvant. For example, a preferred adjuvant combination is preferably with CpG as described in the pending UK patent application GB 9820956.2.
Liposome- Nanocapsule- and Microparticle-Mediated Delivery In certain embodiments, the inventors contemplate the use of liposomes, nanocapsules, microparticles, microspheres, lipid particles, vesicles, and the like, for the introduction of the compositions of the present invention into the subjects.
In particular, the compositions of the present invention may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle or the like.
Such formulations may be preferred for the introduction of pharmaceutically-acceptable formulations of the compositions disclosed herein.
The formation and use of liposomes is generally known to those of skill in the art (see, for example,.Couvreur et al., 1977; Couvreur, 1988; Lasic, 1998; which describes the use of liposomes and nanocapsules in the targeted antibiotic therapy for intracellular bacterial infections and diseases). Recently, liposomes were developed with improved serum stability and circulation half times (Gabizon & Papahadjopoulos, 1988; Allen and Choun, 1987; U. S. Patent 5,741,516, specifically incorporated herein by reference in its entirety).
Further, various methods of liposome and liposome-like preparations as potential drug carriers have been reviewed (Takakura, 1998; Chandran et al., 1997; Margalit, 1995; U.
S. Patent 5,567,434; U. S. Patent 5,552,157; U. S. Patent 5,565,213; U. S.
Patent 5,738,868 and U. S. Patent 5,795,587, each specifically incorporated herein by reference in its entirety).
Liposomes have been used effectively to introduce genes, drugs (Heath &
Martin, 1986; Heath et al., 1986; Balazsovits et al., 1989; Fresta & Puglisi, 1996), radiotherapeutic agents (Pikul et al., 1987), enzymes (Imaizumi et al., 1990a;
Imaizumi et al., 1990b), viruses (Falter & Baltimore, 1984), transcription factors and allosteric effectors (Nicolau & Gersonde, 1979) into a variety of cultured cell lines and animals. In addition, several successful clinical trials examining the effectiveness of liposome-mediated drug delivery have been completed (Lopez-Berestein et al., 1985a;
1985b;
Coupe, 1988; Sculier et al., 1988). Furthermore, several studies suggest that the use of liposomes is not associated with autoimmune responses, toxicity or gonadal localization after systemic delivery (Mori & Fukatsu, 1992).
Liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs). MLVs generally have diameters of from 25 run to 4 ~,m.
Sonication of MLVs results in the formation of small unilamellar vesicles (SUVs) with diameters in the range of 200 to 500 A, containing an aqueous solution in the core.
Liposomes bear resemblance to cellular membranes and are contemplated for use in connection with the present invention as earners for the compositions. They are widely suitable as both water- and lipid-soluble substances can be entrapped, i.e., in the aqueous spaces and within the bilayer itself, respectively. It is possible that the drug-bearing liposomes may even be employed for site-specific delivery of active agents by selectively modifying the liposomal formulation.
In addition to the teachings of Couvreur et al. (1977, 1988), the following information may be utilized in generating liposomal formulations.
Phospholipids can form a variety of structures other than liposomes when dispersed in water, depending on the molar ratio of lipid to water. At low ratios the liposome is the preferred structure.
The physical characteristics of liposomes depend on pH, ionic strength and the presence of divalent cations. Liposomes can show low permeability to ionic and polar substances, but at elevated temperatures undergo a phase transition which markedly alters their permeability. The phase transition involves a change from a closely packed, ordered structure, known as the gel state, to a loosely packed, less-ordered structure, known as the fluid state. This occurs at a characteristic phase-transition temperature and results in an increase in permeability to ions, sugars and drugs.
In addition to temperature, exposure to proteins can alter the permeability of liposomes. Certain soluble proteins, such as cytochrome c, bind, deform and penetrate the bilayer, thereby causing changes in permeability. Cholesterol inhibits this penetration of proteins, apparently by packing the phospholipids more tightly. It is contemplated that the most useful liposome formations for antibiotic and inhibitor delivery will contain cholesterol.
The ability to trap solutes varies between different types of liposomes. For example, MLVs are moderately efficient at trapping solutes, but SUVs are extremely inefficient. SLTVs offer the advantage of homogeneity and reproducibility in size distribution. However, a compromise between size and trapping efficiency is offered by large unilamellar vesicles (LWs). These are prepared by ether evaporation and are three to four times more efficient at solute entrapment than MLVs.
In addition to liposome characteristics, an important determinant in entrapping compounds is the physicochemical properties of the compound itself.
Polar compounds are trapped in the aqueous spaces and nonpolar compounds bind to the lipid bilayer of the vesicle. Polar compounds are released through permeation or when the bilayer is broken, but nonpolar compounds remain affiliated with the bilayer unless it is disrupted by temperature or exposure to lipoproteins. Both types show maximum efflux rates at the phase transition temperature.
Liposomes interact with cells via four different mechanisms: endocytosis by phagocytic cells of the reticuloendothelial system such as macrophages and neutrophils; adsorption to the cell surface, either by nonspecific weak hydrophobic or electrostatic forces, or by specific interactions with cell-surface components; fusion with the plasma cell membrane by insertion of the lipid bilayer of the liposome into the plasma membrane, with simultaneous release of liposomal contents into the cytoplasm;
and by transfer of liposomal lipids to cellular or subcellular membranes, or vice versa, without any association of the liposome contents. It often is difficult to determine which mechanism is operative and more than one may operate at the same time.
The fate and disposition of intravenously injected liposomes depend on their physical properties, such as size, fluidity, and surface charge. They may persist in tissues for hours or days, depending on their composition, and half lives in the blood range from minutes to several hours. Larger liposomes, such as MLVs and LUVs, are taken up rapidly by phagocytic cells of the reticuloendothelial system, but physiology of the circulatory system restrains the exit of such large species at most sites.
They can exit only in places where large openings or pores exist in the capillary endothelium, such as the sinusoids of the liver or spleen. Thus, these organs are the predominant site of uptake.
On the other hand, SUVs show a broader tissue distribution but still are sequestered highly in the liver and spleen. In general, this in vivo behavior limits the potential targeting of liposomes to only those organs and tissues accessible to their large size.
These include the blood, liver, spleen, bone marrow, and lymphoid organs.
Targeting is generally not a limitation in terms of the present invention.
However, should specific targeting be desired, methods are available for this to be accomplished. Antibodies may be used to bind to the liposome surface and to direct the antibody and its drug contents to specific receptors located on a particular cell-type surface. Carbohydrate determinants (glycoprotein or glycolipid cell-surface components that play a role in cell-cell recognition, interaction and adhesion) may also be used as recognition sites as they have potential in directing liposomes to particular cell types.
Mostly, it is contemplated that intravenous injection of liposomal preparations would be used, but other routes of administration are also conceivable.
Alternatively, the invention provides for pharmaceutically-acceptable nanocapsule formulations of the compositions of the present invention.
Nanocapsules can generally entrap compounds in a stable and reproducible way (Henry-Michelland et al., 1987; Quintanar-Guerrero et al., 1998; Douglas et al., 1987). To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 p,m) should be designed using polymers able to be degraded in vivo. Biodegradable polyallcyl-cyanoacrylate nanoparticles that meet these requirements are contemplated for use in the present invention. Such particles may be axe easily made, as described (Couvreur et al., 1980; 1988; zur Muhlen et al., 1998; Zambaux et al. 1998; Pinto-Alphandry et al., 1995 and U. S. Patent 5,145,684, specifically incorporated herein by reference in its entirety).
All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
The following example is provided by way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of noncritical parameters that could be changed or modified to yield essentially similar results.
EXAMPLES
Example 1' Construction of DNA sequences encoding~human single chain MHC class II
_peptide complexes, HLA-DR4 molecules(C0563 and 005641.
DNA constructs encoding gp39 ~31/al human molecules were prepared from a cDNA encoding the gp39 peptide fused to the (31/a1 domains of HLA-DR4 according to standard techniques. For the production of "empty" (31/a1 DR4 molecules, a cDNA encoding the fused [31/a1 domains of HLA-DR4 was prepared using cloned a and (3 chains from DR4.
Amino acid sequence of the gp39-(31/al HLA-DR4 human single chain molecule (linkers are shown in bold) MGDTGRSFTLASSETGVGASGGGGSGGGGDTRPRFLEQVKHECH
FFNGTERVRFLDRYFYHQEEYVRFDSDVGEYRAVTELGRPDAEYWNSQKDLLEQ
KRAAVDTYCRHNYGVGESFTVQRRGGIKEEHVIIQAEFYLNPDQSGEFMFDFDG
DEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPIT
N*
aal - aa4: leader sequence aa5 - aal8: gp39 peptide aal9 - aa28: linker aa29 - aa122: HLA-DR4 (31 domain aa123 - aa124: linker aa125 - as 208: HLA-DR4 al domain Amino acid sequence of the "empty" (31/a1 HLA-DR4 human single chain molecule (linkers in bold):
MGDTRPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFDSDVGEYRAVTEL
GRPDAEYWNSQRDLLEQKR.AAVDTYCRHNYGVGESFTVQRRGGIKEEHVIIQAE
FYLNPDQSGEFMFDFDGDEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIAV
DKANLEIMTKRSNYTPITN'~
as 1- aa95: HLA-DR4 (31 domain aa96- aa97: linker aa98- aa181: HLA-DR4 al domain For the production of recombinant proteins, the bacteria (pLysS) were grown in LB (containing ampicillin (50 ~g / ml) and chloramphenicol (5 ~,g J
ml)) at 37°C until OD 600 = 0.5. IPTG was added at the final concentration of 0.5 mM final and the bacteria were further incubated for 3 hours at 37°C with shaking.
The bacteria were I O centrifuged at 4°C, 4000xg for 20 min and the pellet was frozen at -80°C. The following day, the pellet was resuspended in 40 ml of lysis buffer (50 mM Tris-HCl pH 8, 50, mM
NaCI, 2 mM EDTA, 1 protease inhibitor cocktail tablet, 1% Triton X100 and 1%
deoxycholate), and incubated for 1 hour at 4°C under continuous agitation with a magnetic stirrer. The sample was then homogenized using a French Press with a 16,000 15 psi setting, and centrifuged at 4°C, 9000g for 20 min. The pellet was then resuspended in 30 ml of lysis buffer without Triton and deoxycholate and centrifuged at 4°C, 9000 g for 20 min. The new pellet was resuspended in 10 ml of 20 mM ethanolamine/6 M urea pH
10, and eventually frozen at -80°C. The recombinant protein was then purified by FPLC
ion-exchange chromatography using Source 30Q anion-exchange media in an 20 column using a step gradient going from 1 mM to 1 M NaCI in 20 mlVl ethanolamine/6M
urea pH 10. Fractions were analyzed by SDS/PAGE and those corresponding to the proteins of interest are pooled and dialyzed against PBS 1X.
Example 2 ~ Production of additional single chain constructs 25 Additional constructs with different composition and length of the 2na linker (between (31 and al) were engineered by using standard techniques using as the template. Specifically, PCR primers were designed to replace the old sequence in 00567 with the new sequence. For example, to make 00581, the primers were designed with the following sequences (note these primers were phosphorylated at 5').
30 Primer 1:
5'pCACCAGGAGGAGAGCCGCCCACGCCGGTCTCGCTGG
Primer 2:
5'pGACCACCTGGATCTGGGGACACCCGACCACGTTTC
PCR reaction (100 ~,1) was made of the following components: 2 p,1 C0567 (80 ng) as template, 2 ~,1 each of primer 1 and primer 2 (10 p,M), 2 ~,l of dNTP
mix (20 mM each), 10 ~.l of l OX pfu buffer, and 80 ~.1 of sterile water.
After all the components were mixed, 2 ~.1 of Turbo pfu (5U total ) was added, mixed and put on PCR
machine. The PCR cycles has a pre-denaturation at 95°C for 30 sec, then 10 cycles of 95°C for 30°C, 60°C for 1 min, and 72°C for 7 min.
Then another 22 cycles of 95°C for 30°C, 65°C for 1 min and 72°C for 7 min, followed by a final 10 min at 72°C.
The PCR mixture was digested with 2 ~,l of DpnI (10U) for 2h at 37°C.
Then the PCR product at ~6 kb was purified from agarose gel after electrophoresis. The purified PCR product was ligated by T4 DNA ligase for 1 h at room temperature then used to transform into NovaBlue (Novagen)competent cells by standard protocol.
Cells were plated on LB (+Carb) and grow overnight at 37°C.
Next day, about a dozen single colony from the transformation were randomly picked for overnight culture in 5 ml LB (+Carb) at 37°C.
Plasmids from these culture were purified with Wizard Miniprep kit, and analyzed by Xho I
digestion. A few plasmids that passed the Xho I digestion were further confirmed by DNA
sequencing.
To express the recombinant proteins, a clone with confirmed DNA
sequence was used to transform BL21 (DE3)CodonPlus-RIL (Stratagene) by standaxd transformation protocol and plated on LB (Curb+Cam) plates overnight at 37°C. Next morning,.a single colony was picked to inoculate 100 ml LB (+Carb +Cam) and the culture was grown till OD reach between 0.8-1.0, and stored overnight at 4°C. Next day, the culture was pellet down and used to inoculate into 2xYT (+Caxb+Cam) at ratio of 25 ml culture per liter rlew media. These large cultures were grown at 37°C till OD=0.5-0.6, and IPTG was added to induce recombinant protein at 37°C for 3 h. The induced cultures were pellet and stored at -80°C till purification.
Table 1 provides a listing of various constructs made according to the invention.
TABLE I
Construct peptide upstream linker downstream linker 00523 yes GGGG GG .
00543 none none GG
00563 yes ASGGGSGGG GG
00567 yes ASGGGSGGG TSGGGGSGGGGSSS
00580 ves ASGGGSGGG GSPGGGGSGGGPG-S
0058 ~ yes ASGGGSGGG GSPPGGPPGS
00582 yes ' ASGGGSGGG GSPGGGGPGS
00583 yes ASGGGSGGG TSGGGGS
00584 yes ASGGGSGGG SGGSGGS
00585 yes ASGGGSGGG P17APSPLP
00586 none none TSGGGGSGGGGSSS
00587 none none GSPGGGGSGGGPGS
005 8 8 none none GSPPGGPPGS
00589 none none GSPGGGGPGS
00590 none zone TSGGGGS
00591 none none SGGSGGS
00592 none none FDAPSPLP
00593 yes ASGGGSGGG VYPEVTV
00594 none none VYPEVTV
00595 yes ASGGGSGGG GGGG
00595 yes ASGGGSGGG GGGGS
00597 yes ASGGGSGGG GGGSGG
Example 3' Four classes of novel linkers for MHC class II single chain molecules Inspection of circular dichroism spectra of purified, refolded single chain constructs indicated that novel linkers could be used for the constructs. The atomic structures of the various marine and human MHC class II molecules, as determined by X-S ray crystallography, indicated that these molecules have a high degree of structural similarity. The circular dichroism results were consistent with two folded molecules of clearly different secondary structure. Careful inspection of the structures reveals that the human MHC has a longer distance between chains than the equivalent marine molecule.
This results led to proposing longer linkers between the chains which would contain flexible residues (e.g. alanine or glycine) and polar residues (e.g. serine and threonine).
These constructs make up the first class of linkers. To inhibit the continuation of secondary structure across the linker, prolines were added to bracket the linkers. These prolines are known to inhibit the formation of alpha helices and beta sheets.
These linkers make up the second class of linkers disclosed here.
1 S Next, flexible regions present in the human MHC and in the marine MHC
could be used to make a linker by extending the region of interest and ligating the ends together. These are the third class of linkers. Finally, a combination of these types of linkers could also be used. These are the fourth class of linkers.
Example 4' Human MHC class II single chain molecule with marine linkers Another linker has been suggested based on a combination of marine and human MHC class II single chain molecules. This fusion would incorporate linker residues from the functional marine single chain MHC class II molecule and the alpha and beta chains of the human molecule. The protein sequence of the single chain 2S molecule is provided below (the linker residues from the mouse construct are in bold):
MGDTGRSFTLASSETGVGASGGGGSGGGGDTRPRFLEQVKHECHFFNGTERVRF
LDRYFYHQEEYVRFDSDVGEYR.AVTELGRPDAEYWNSQKDLLEQKR.AAVDTYC
RHNYGVGESFTVLRRLGGEDDEADHHVIIQAEFYLNPDQSGEFMFDFDGDEIFH
VDMAKKETVWRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPITN*
Further MHC class II hybrid single chain molecules may be designed by fusing other portions of the alpha chain and the beta chain together using linkers as described elsewhere. A properly folded molecule may be obtained by putting appropriate linkers between portions of the human MHC class II which are proximal to each other as determined by visual inspection of the atomic coordinates of residues of the native MHC
available in the publicly accessible protein structure database. These structures would predict possible fusion proteins which covalently attach any part of the beta chain between residues 82 to 123 or between residues I48 to I64 to portions of the alpha chain such as the N-terminal residues, residues 79 to 84, or 92 to 106. The numbering system of residues in this example corresponds to those found in the coordinates of the structure described in: DESSEN, et al. Immunity 7:473 (1997). Other, homologous residues could be used to create equivalent constructs for genotypic and allelic variants of these molecules e.g. equivalent residues in DR2 or such. DNAs for such hybrids would be prepared and expressed in a recombinant expression system by someone skilled in the art and could be assayed for structure and function in appropriate assays.
Example 5 ~ Use of CD4 bindin_,g site(sl of MHC class II molecules as linkers for the I S production of bioactive recombinant MHC class Il:peptide complexes HLA class II molecules present antigenic peptides to the T cell receptor of the CD4+ T lymphocytes and interact with CD4 during the antigen recognition process.
Native MHC class II-peptide complexes have been shown to bind to MHC class II
restricted and antigen specific TCRs on a particular T cell and induce T cell nonresponsiveness. It is proposed that the CD4 binding site is important in the docking of MHC class II-peptide complex with the TCR and induce nonresponsiveness. Since the binding of CD4 to MHC class II-peptide is important in antigen. presentation andlor induction of T cell nonresponsiveness, it is proposed that recombinant MHC
class II-peptide molecules (truncated or whole) containing CD4 binding site will be biologically active. Furthermore, a polypeptide fragment from MHC class II which binds the CD4, when used as a linker in preparation of MHC class II-peptide truncated molecules, provides resulting recombinant molecules that will be biologically active.
The following describes the concept of different linkers. Peptide is attached to a linker 1 (L1) which is attached to N-terminus of (31 domain that is linked to L2. L2 is linked to L3, which in turn is linked to N-terminus of al chain of MHC class II. Here L2 represents the human CD4 binding sequences. It should be noted that L2 could also be directly linked to N-terminus of al domain by completely deleting L3.
S$
Specific examples of L1 and L3 are given in a examples. The sequences of L2 are given below. These sequences are applicable to most of the DR-Peptide molecules.
RNGQEEKAGVVSTGLI, RNGQETKAGVVSTGLI, YNQQEEKAGGVSTGLI, FRNGQEEKAGWSTGLI, FRNGQETKAGWSTGLI, FYNQQEEKAGGVSTGLI, and LNGQEEKAGMVSTGLI.
Example 6' I-As MBP X31 (32a1a2 Cx construct and activity The "full anergix" single chain molecule, mouse I-As MBP.(31(32a1a2.Cx, was generated by overlap PCR using standard methodology. The molecules was expressed in 293T cells and baculoviral cells according to standard methodology, and purified according to standard methodology using affinity chromatography using goat-anti mouse antibodies. The structure ofI-As MBP.(31~32a1a2.CK is shown in Figure 1.
The amino acid sequence of the I-As MBP.~31(32a1a2.Cx shown in Figure 1 is as follows:
METDTLLLWVLLLWVPGSTGDFKNIVTPRTPPPASGGGGSGGGGDSERHFVFQF
KGECYFTNGTQRIRSVDRYIYNREEYLRFDSDVGEYRAVTELGRPDPEYYNKQY
LEQTRAELDTVCRHNYEGVETHTSLRRLEQPNVVISLSRTEALNHHNTLVCSVTD
FYPAKIKVRWFRNGQEETVGVSSTQLIRNGDWTFQVLVMLEMTPRRGEVYTCH
VEHPSLKSPITVEWTSGGGGSGGGGSGGGGSGGGGSSSEDDIEADHVGVYGTTV
YQSPGDIGQYTHEFDGDEWFYVDLDKKETIWMLPEFGQLTSFDPQGGLQNIATG
KYTLGILTKRSNSTPATNEAPQATVFPKSPVLLGQPNTLICFVDNIFPPVIhIITWLR
NSKSVTDGVYETSFLVNRDHSFHKLSYLTFIPSDDDIYDCKVEHWGLEEPVLKHW
ASGGGGSGGGGADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDG
SERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVK
SFNRNEC
The in vitro activity of recombinant I-As MBP.(31[32a1a2.Cx was tested using MBP90-I01 specific IAs restricted mouse T cell clone HS 1. This clone was prepared by the immunization of SJL mice with the MBP90-101 peptide, followed by cloning out CD4+ T cells by limited dilution techniques. These cells were maintained by stimulation every 10 days with irradiated SJF splenocytes and PBP90-101 peptide. The T
cells are activated by a combination of soluble recombinant I-As MBP.(31~i2ala2.CK and plate bound anti-CD28 antibody. T cell activation was assayed by 3H-thymidine incorporation according to standard methodology. Figure 2 shows the results of this assay.
MS is a T cell dependent autoimmune disease caused by localized demyelination in the central nervous system. Experimental autoimmune encephalomyelitis is a accepted animal model of MS. The following results demonstrate that administration of I-As MBP.(31(32a1a2.Cx reduces the incidence and severity of EAE. EAE was induced according to standard methodology according to the myelin model. Ten p,g of recombinant I-As MBP. (3I (32a 1 a2.Cx was given intravenously in 100 p,1 of PBS at days l, 4, 7, and 11 after disease induction. 12 days after immunization, animals are observed daily for the onset of neurological dysfunction. Disease is graded by trained technicians according to standard methods (see Figure 3). Mice are followed for up to 60-70 days. The data shown in Figure 4 demonstrate that administration of the recombinant I-As MBP.j31/32a1a2.Cx significantly reduced the incidence of myelin-induced EAE in SJL mice. In one experiment, 11 out of 20 mice developed EAE in the untreated group (55%), whereas only 2 out of 21 animal showed sign of the disease in the treated group (16.6%). Similarly, in another experiment, 12 out of 16 mice developed EAE in the untreated group (75%), while only 2 out of 16 developed EAE in the treated group (12.5%).
Histological examination from SJL mice in the EAE model studies: spinal cords were removed, f xed in formalin solution and embedded in paraffin.
Sections were cut, stained with hematoxylin, eosin and graded for inflammatory lesions. A.
Section of spinal cord from untreated mouse, score = 2.5; B. Section of spinal cord from mouse treated with the recombinant I-AS.MBP.Ck, score = 0; C. Section of spinal cord from mouse treated with the recombinant I-AS.~ilal without antigenic peptide fusion, score =
2.0; D. Section of spinal cord from mouse treated with the recombinant I-AS.MBP.[31a1, score = 0.5. The histology score for each section is marked.
Example 7' Functional human anergix molecules optimized for E. coli expression with E.
coli codons Two human single chain MHC class II molecules (C0528-AC and C0608-AC) have been optimized for E. coli expression using "artificial codons," e.g., preferred E. coli codons encoding the mammalian protein. 00528-AC and 00608-AC
were made according to standard PCR overlap technology.
Example 7: Recombinant MHC class II IAs.MBP.I~ multimeric complexes Recombinant MHC class II (IAs)-peptide Ig fusion complexes were constructed by fusing the mIgG leader, MBP 90-101, or MBP1-14 (as a control) to IAs single chain (blb2ala2), and mIgG.Ck, mIgG.CHI.H, mIgG.CHl.H.CH2, or mIgG.CHI.H.CH2.CH3 with flexible linkers, according to standard methodology.
The recombinant IAs fusion proteins were expressed in both mammalian and insect cells and detected by western analysis and ELISA. The overexpressed and secreted recombinant IAs fusion proteins from both human 293 cell cultures or from insect culture medium were purified by affinity chromatography. The purified dimeric and tetrameric recombinant IAs proteins have in vitro biological activity as assayed using an antigen-specific mouse T cell clone. The ih vivo activity of the recombinant IAs fusion proteins were studied with the experimental autoimmune encephalomyelitis (EAE) model using susceptible SJL mice. In these EAE studies, recombinant IAs fusion protein was delivered on days l, 4, 7, and 11 by LV. injections after induction of the disease with myelin. The animals were then examined for neurological dysfunction. The results indicate that treatment with the recombinant IAs fusion proteins prevents mortality and ~ significantly reduces paralysis induced by myelin homogenate in CFA. In conclusion, these studies suggest that the recombinant MHC class II fusion protein has therapeutic benefit as antigen-specific drugs for the treatment of autoimmune diseases.
Example 8: Synthesis of mouse model equivalent of 00608 Four forms of the marine MHC Class II IAs (31a1 with MBP peptide linkers analogous to 00608 human were made. These constructs can be used, e.g., as marine clinical control for human 608. m00608 (mouse 00608, lacking the first five amino acids, GDSER, as compared to native beta 1 domain), MC0608-A (same as m608 except lacking four amino acids, GSER, after the methionine as compared to m608), B.
megaterium-mC0608-A (expressed in Bacillus megaterium), and mC0608-B (same as m608 except lacking first four amino acids, GSER, after the methionine as compared to m608; also lacking second amino acid, D, as compared to native beta 1 domain).
To make mC0608, the upstream linker of mouse C0521 (GGGS) was replaced with the human C0608 linker (ASGGGGSGGG) and the downstream linker of mouse C0521 (GG) was replaced with the downstream linker of C0608 (TSGGGGS), using PCR according to standard methodology. mC0608-A and m6O8-B were made from mC0608 using PCR according to standard methodology.
All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
SEQUENCE LISTING
<210> C0602 $ <211> 558 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacetcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgctgcgccgactcggaggtgaagat300 gacgaggcag atcaccatgtgatcatccaggccgagttctatctgaatcctgaccaatca360 1S ggcgagttta tgtttgactttgatggtgatgagattttccatgtggatatggcaaagaag420 gagacggtct ggcggcttgaagaatttggacgatttgccagctttgaggctcaaggtgca480 ttggccaaca tagctgtggacaaagccaacctggaaatcatgacaaagcgctccaactat540 actccgatca ccaattaa 558 <210> C0601 <211> 558 <212> DNA
<213> Homo Sapiens 2S atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgaggaggtggaagcggc300 30 ggaatcaaag aagaacatgtgatcatccaggccgagttctatctgaatcctgaccaatca360 ggcgagttta tgtttgactttgatggtgatgagattttccatgtggatatggcaaagaag420 gagacggtct ggcggcttgaagaatttggacgatttgccagctttgaggctcaaggtgca480 ttggccaaca tagctgtggacaaagccaacctggaaatcatgacaaagcgctccaactat540 actccgatca ccaattaa 558 <210> C0600 <211> 555 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60 gggacggagc gggtgcggtt cctggacaga tacttctatc accaagagga gtacgtgcgc 120 ttcgacagcg acgtggggga gtaccgggcg gtgacggagc tggggcggcc tgatgccgag 180 tactggaaca gccagaagga cctcctggag cagaagcggg ccgcggtgga cacctactgc 240 agacacaact acggggttgg tgagagcttc acagtgcagc ggcgaggagg tggaggcagc 300 atcaaagaag aacatgtgat catccaggcc gagttctatc tgaatcctga ccaatcaggc 360 gagtttatgt ttgactttga tggtgatgag attttccatg tggatatggc aaagaaggag 420 acggtctggc ggcttgaaga atttggacga tttgccagct ttgaggctca aggtgcattg 480 gccaacatag ctgtggacaa agccaacctg gaaatcatga caaagcgctc caactatact 540 ccgatcacca attaa 555 <210> C0599 <211> 552 <212> DNA
<213> Homo sapiens atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60 gggacggagc gggtgcggtt cctggacaga tacttctatc accaagagga gtacgtgcgc 120 ttcgacagcg acgtggggga gtaccgggcg gtgacggagc tggggcggcc tgatgccgag 180 tactggaaca gccagaagga cctcctggag cagaagcggg ccgcggtgga cacctactgc 240 agacacaact acggggttgg tgagagcttc acagtgcagc ggcgaggagg tggaggcatc 300 S aaagaagaac atgtgatcat ccaggccgag ttctatctga atcctgacca atcaggcgag 360 tttatgtttg actttgatgg tgatgagatt ttccatgtgg atatggcaaa gaaggagacg 420 gtctggcggc ttgaagaatt tggacgattt gccagctttg aggctcaagg tgcattggcc 480 aacatagctg tggacaaagc caacctggaa atcatgacaa agcgctccaa ctatactccg 540 atcaccaatt as 552 <210> C0594 <211> 561 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacg.tttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgagtctaccctgaggta300 actgtcatca aagaagaacatgtgatcatccaggccgagttctatctgaatcctgaccaa360 tcaggcgagt ttatgtttgactttgatggtgatgagattttccatgtggatatggcaaag420 aaggagacgg tctggcggcttgaagaatttggacgatttgccagctttgaggctcaaggt480 gcattggcca acatagctgtggacaaagccaacctggaaatcatgacaaagcgctccaac540 tatactccga tcaccaattaa 561 <210> C0592 <211> 564 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgattcgacgcacctagc300 ccactcccaa tcaaagaagaacatgtgatcatccaggccgagttctatctgaatcctgac360 caatcaggcg agtttatgtttgactttgatggtgatgagattttccatgtggatatggca420 aagaaggaga cggtctggcggcttgaagaatttggacgatttgccagctttgaggctcaa480 ggtgcattgg ccaacatagctgtggacaaagccaacctggaaatcatgacaaagcgctcc540 aactatactc cgatcaccaattaa 564 <210> C0591 <211> 561 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 S0 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgaagtggcggtagtggc300 ggtagtatca aagaagaacatgtgatcatccaggccgagttctatctgaatcctgaccaa360 tcaggcgagt ttatgtttgactttgatggtgatgagattttccatgtggatatggcaaag420 S$ aaggagacgg tctggcggcttgaagaatttggacgatttgccagctttgaggctcaaggt480 gcattggcca acatagctgtggacaaagccaacctggaaatcatgacaaagcgctccaac540 tatactccga tcaccaattaa 561 <210> C0590 <211> 561 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgaactagtggtggcggt300 ggcagcatca aagaagaacatgtgatcatccaggccgagttctatctgaatoctgaccaa360 tcaggcgagt ttatgtttgactttgatggtgatgagattttccatgtggatatggcaaag420 aaggagacgg tctggcggcttgaagaatttggacgatttgccagctttgaggctcaaggt480 gcattggcca acatagctgtggacaaagccaacctggaaatcatgacaaagcgctccaac540 tatactccga tcaccaattaa 561 <210> C0589 <211> 570 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 2$ agacacaact acggggttggtgagagcttcacagtgcagcggcgaggctctcctggaggt300 ggaggtcctg gatctatcaaagaagaacatgtgatcatccaggccgagttctatctgaat360 cctgaccaat caggcgagtttatgtttgactttgatggtgatgagattttccatgtggat420 atggcaaaga aggagacggtctggcggcttgaagaatttggacgatttgccagctttgag480 gctcaaggtg cattggccaacatagctgtggacaaagccaacctggaaatcatgacaaag540 cgctccaact atactccgatcaccaattaa 570 <210> C0588 <211> 570 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgaggctctcctcctggt300 ggaccacctg gatctatcaaagaagaacatgtgatcatccaggccgagttctatctgaat360 cctgaccaat caggcgagtttatgtttgactttgatggtgatgagattttccatgtggat420 atggcaaaga aggagacggtctggcggcttgaagaatttggacgatttgccagctttgag480 gctcaaggtg cattggccaacatagctgtggacaaagccaacctggaaatcatgacaaag540 cgctccaact atactccgatcaccaattaa 570 <210> C0587 <211> 582 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgagggagtccaggcggt300 ggcgggagcg gcggtggtcctgggagtatcaaagaagaacatgtgatcatccaggccgag360 ttctatctga atcctgaccaatcaggcgagtttatgtttgactttgatggtgatgagatt420 ttccatgtgg atatggcaaa gaaggagacg gtctggcggc ttgaagaatt tggacgattt 480 gccagctttg aggctcaagg tgcattggcc aacatagctg tggacaaagc caacctggaa 540 atcatgacaa agcgctccaa ctatactccg atcaccaatt as 582 $ <210> C0586 <211> 582 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60 gggacggagc gggtgcggtt cctggacaga tacttctatc accaagagga gtacgtgcgc 120 ttcgacagcg acgtggggga gtaccgggcg gtgacggagc tggggcggcc tgatgccgag 180 tactggaaca gccagaagga cctcctggag cagaagcggg ccgcggtgga cacctactgc 240 agacacaact acggggttgg tgagagcttc acagtgcagc ggcgaactag tggtggcggt 300 ggcagcggcg gtggtggttc ctcgagtatc aaagaagaac atgtgatcat ccaggccgag 360 ttctatctga atcctgacca atcaggcgag tttatgtttg actttgatgg tgatgagatt 420 ttccatgtgg atatggcaaa gaaggagacg gtctggcggc ttgaagaatt tggacgattt 480 gccagctttg aggctcaagg tgcattggcc aacatagctg tggacaaagc caacctggaa 540 atcatgacaa agcgctccaa ctatactccg atcaccaatt as 582 <210> C0602 <211> 186 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr 35 Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys~Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Leu Arg Arg Leu Gly Gly Glu Asp Asp Glu Ala Asp His His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> C0601 $ <211> 186 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe IS Tyr HisGlnGlu GluTyrVal ArgPheAsp SerAsp ValGlyGlu Tyr Arg AlaValThr GluLeuGly ArgProAsp AlaGlu TyrTrpAsn Ser Gln LysAspLeu LeuGluGln LysArgAla AlaVal AspThrTyr Cys Arg HisAsnTyr GlyValGly GluSerPhe ThrVal GlnArgArg Gly ~$ 85 90 95 Gly GlySerGly GlyIleLys GluGluHis ValTle IleGlnAla Glu Phe TyrLeuAsn ProAspGln SerGlyGlu PheMet PheAspPhe Asp Gly AspGluIle PheHisVal AspMetAla LysLys GluThrVal Trp Arg LeuGluGlu PheGlyArg PheAlaSer PheGlu AlaGlnGly Ala Leu AlaAsnIle AlaValAsp LysAlaAsn LeuGlu IleMetThr Lys Arg SerAsnTyr ThrProIle ThrAsn <210> C0600 <211> 185 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly 1~ Gly Gly Gly Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp G1u Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu 145 150 ~ 155 160 Ala Asn IIe AIa Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> C0599 <211> 184 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe 4~ Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu,Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly $~ 85 90 95 Gly Gly Gly Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr $5 Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp 115 ' 120 125 Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu 6$
Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala $ Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> C0594 <211> 187 <212> PRT
1$ <213> Homo Sapiens Met Gly ThrArg ProArg PheLeuGlu GlnValLys HisGluCys Asp His Phe AsnGly ThrGlu ArgValArg PheLeuAsp ArgTyrPhe Phe Tyr His GluGlu TyrVal ArgPheAsp SerAspVal GlyGluTyr Gln 2$
Arg Ala ThrGlu LeuGly ArgProAsp AlaGluTyr TrpAsnSer Val Gln Lys LeuLeu GluGln LysArgAla AlaValAsp ThrTyrCys Asp Arg His TyrGly ValGly GluSerPhe ThrValGln ArgArgVal Asn 3$ Tyr Pro ValThr ValIle LysGluGlu HisValIle IleGlnAla Glu Glu Phe'TyrLeuAsn ProAsp GlnSerGly GluPheMet PheAspPhe Asp Gly GluIle PheHis ValAspMet AlaLysLys GluThrVal Asp Trp Arg GluGlu PheGly ArgPheAla SerPheGlu AlaGlnGly Leu 4$ 145 150 155 160 Ala Leu AsnIle AlaVal AspLysIAlaAsnLeuGlu TleMetThr Ala $0 Lys Arg AsnTyr ThrPro IleThrAsn Ser <210> C0592 $$ <211> 188 <212> PRT
<213> Homo Sapiens Met Gly ThrArg ProArg PheLeuGlu GlnValLys HisGluCys Asp His Phe PheAsn GlyThrGlu ArgValArg PheLeuAsp ArgTyr Phe $
Tyr His GlnGlu GluTyrVal ArgPheAsp SerAspVal GIyGlu Tyr Arg Ala ValThr GluLeuGly ArgProAsp AlaGluTyr TrpAsn Ser Gln Lys AspLeu LeuGluGln LysArgAla AlaValAsp ThrTyr Cys 1$ Arg His AsnTyr GlyValGly GluSerPhe ThrValGln ArgArg Phe Asp Ala ProSer ProLeuPro IleLysGlu GluHisVal IleIle Gln Ala Glu PheTyr LeuAsnPro AspGlnSer GlyGluPhe MetPhe Asp Phe Asp GlyAsp GluIlePhe HisValAsp MetAlaLys LysGlu Thr 2$ 130 135 140 Val Trp ArgLeu GluGluPhe GlyArgPhe AlaSerPhe GluAla Gln Gly Ala LeuAla AsnIleAla ValAspLys AlaAsnLeu GluIle Met Thr Lys ArgSer AsnTyrThr ProIleThr Asn 3$
<210>
<211>
<212>
PRT
<213> sapiens Homo Met Gly AspThr ArgProArg PheLeuGlu GlnValLys HisGlu Cys 4$ His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr $0 Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys $$ 65 70 75 80 Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Ser Gly Gly SerGly GlySerIle LysGluGlu HisVal IleIleGln Ala Glu Phe TyrLeu AsnProAsp GlnSerGly GluPhe MetPheAsp Phe $ 115 120 125 . Gly AspGlu IlePheHis ValAspMet AlaLys LysGluThr Val Asp Trp Arg LeuGlu GluPheGly ArgPheAla SerPhe GluAlaGln Gly Ala Leu AlaAsn IleAlaVal AspLysAla AsnLeu GluIleMet Thr Lys Arg SerAsn TyrThrPro IleThrAsn <210> C0590 <211>
<212>
PRT
<213>
Homo Sapiens Met GlyAspThr ArgProArg PheLeu GluGlnVaI LysHisGlu Cys His PhePheAsn GlyThrGlu ArgVal ArgPheLeu AspArgTyr Phe Tyr HisGlnGlu GluTyrVal ArgPhe AspSerAsp ValGlyGlu Tyr Arg AlaValThr GluLeuGly ArgPro AspAlaGlu TyrTrpAsn Ser Gln LysAsp.Leu LeuGluGln LysArg AlaAlaVal AspThrTyr Cys .
Arg HisAsnTyr GlyValGly GluSer PheThrVal GlnArgArg Thr Ser GIyGlyGly GlySerIle LysGlu GluHisVal IleIleGln Ala Glu PheTyrLeu AsnProAsp GlnSer GlyGluPhe MetPheAsp Phe Asp GlyAspGlu IlePheHis ValAsp MetAlaLys LysGluThr Val Trp ArgLeuGlu GluPheGly ArgPhe AlaSerPhe GluAlaGln Gly 5$ Ala LeuAlaAsn IleAlaVal AspLys AlaAsnLeu GluIleMet Thr Lys ArgSerAsn TyrThrPro IleThr Asn <210>
<211>
$ <212>
PRT
<213>
Homo sapiens Met Gly AspThr ArgProArg PheLeuGlu GlnValLys HisGluCys His Phe PheAsn GlyThrGlu ArgValArg PheLeuAsp ArgTyrPhe Tyr His GlnGlu GluTyrVal ArgPheAsp SerAspVal GlyGluTyr 1$ 35 40 45 Arg Ala ValThr GluLeuGly ArgProAsp AlaGluTyr TrpAsnSer Gln Lys AspLeu LeuGluGln LysArgAla AlaValAsp ThrTyrCys Arg His AsnTyr GlyValGly GluSerPhe ThrValGln ArgArgGly Ser Pro GlyGly GlyGlyPro GlySerIle LysGluGlu HisValIle Ile Gln AlaGlu PheTyrLeu AsnProAsp GlnSerGly GluPheMet Phe Asp PheAsp GlyAspGlu IlePheHis ValAspMet AlaLysLys Glu Thr ValTrp ArgLeuGlu GluPheGly ArgPheAla SerPheGlu Ala Gln ~GlyAla LeuAlaAsn IleAlaVal AspLysAla AsnLeuGlu Ile Met ThrLys ArgSerAsn TyrThrPro IleThrAsn 4S <220> C0588 <211> 190 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe 5$
Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys AspLeuLeu GluGlnLys ArgAlaAla ValAspThr TyrCys Arg His AsnTyrGly ValGlyGlu SerPheThr ValGlnArg ArgGly Ser Pro ProGlyGly ProProGly SerIleLys GluGluHis ValIle Ile Gln AlaGluPhe TyrLeuAsn ProAspGln SerGlyGlu PheMet Phe Asp PheAspGly AspGluIle PheHisVal AspMetAla LysLys Glu Thr ValTrpArg LeuGluGlu PheGlyArg PheAlaSer PheGlu Ala Gln GlyAlaLeu AlaAsnIle AlaValAsp LysAlaAsn LeuGlu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn 1ao 1ss <210>
<211>
<212>
PRT
<2I3> Sapiens Homo Met GlyAsp ThrArg ProArgPhe LeuGluGln ValLysHis GluCys His PhePhe AsnGly ThrGluArg ValArgPhe LeuAspArg TyrPhe Tyr HisGln GluGlu TyrValArg PheAspSer AspValGly GluTyr Arg AlaVal ThrGlu LeuGlyArg ProAspAla GluTyrTrp AsnSer Gln LysAsp LeuLeu GluGlnLys ArgAlaAla ValAspThr TyrCys Arg HisAsn TyrGly ValGlyGlu SerPheThr ValGlnArg ArgGly Ser ProGly GlyGly GlySerGly GlyGlyPro GlySerIle LysGlu Glu HisVal IleIle GlnAlaGlu PheTyrLeu AsnProAsp GlnSer 5$ 115 120 125 Gly GluPhe MetPhe AspPheAsp GlyAspGlu TlePheHis ValAsp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys $ 165 170 175 Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr 10 Asn <210> C0586 IS <211> 194 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe 2$ Tyr His GlnGluGlu TyrVal ArgPheAsp SerAspVal GlyGluTyr Arg Ala ValThrGlu LeuGly ArgProAsp AlaGluTyr TrpAsnSer 50 55 ~ 60 Gln Lys AspLeuLeu GluGln LysArgAla AlaValAsp ThrTyrCys 65 70 ' 75 80 Arg His AsnTyrGly ValGly GluSerPhe ThrValGln ArgArgThr Ser Gly GlyGlyGly SerGly GlyGlyGly SerSerSer IleLysGlu 40 Glu His ValIleIle GlnAla GluPheTyr LeuAsnPro AspGlnSer Gly Glu PheMetPhe AspPhe AspGlyAsp GluIlePhe HisValAsp Met Ala LysLysGlu ThrVal TrpArgLeu GluGluPhe GlyArgPhe Ala Ser PheGluAla GlnGly AlaLeuAla AsnIleAla ValAspLys $0 165 170 175 Ala Asn LeuGluIle MetThr LysArgSer AsnTyrThr ProIIeThr 5$ Asn <210> C0598 <211> 639 <212> DNA
<213> Homo Sapiens S atgggggaca ccggtcgcagcttcaccctggcctccagcgagaccggcgtgggcgctagc60 ggagggggcg gaagcggcggagggggggacacccgaccacgtttcttggagcaggttaaa120 catgagtgtc atttcttcaacgggacggagcgggtgcggttcctggacagatacttctat180 caccaagagg agtacgtgcgcttcgacagcgacgtgggggagtaccgggcggtgacggag240 ctggggcggc ctgatgccgagtactggaacagccagaaggacctcctggagcagaagcgg300 gccgcggtgg acacctactgcagacacaactacggggttggtgagagcttcacagtgctg360 cgccgactcg gaggtgaagatgacgaggcagatcaccatgtgatcatccaggccgagttc420 tatctgaatc ctgaccaatcaggcgagtttatgtttgactttgatggtgatgagattttc480 catgtggata tggcaaagaaggagacggtctggcggcttgaagaatttggacgatttgcc540 agctttgagg ctcaaggtgcattggccaacatagctgtggacaaagccaacctggaaatc600 atgacaaagc gctccaactatactccgatcaccaattaa 639 <210> C0597 <211> 639 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcagcttcaccctggcctccagcgagaccggcgtgggcgctagc60 ggagggggcg gaagcggcggagggggggacacccgaccacgtttcttggagcaggttaaa120 catgagtgtc atttcttcaacgggacggagcgggtgcggttcctggacagatacttctat180 caccaagagg agtacgtgcgcttcgacagcgacgtgggggagtaccgggcggtgacggag240 ctggggcggc ctgatgccgagtactggaacagccagaaggacctcctggagcagaagcgg300 gccgcggtgg acacctactgcagacacaactacggggttggtgagagcttcacagtgcag360 cggcgaggag gtggaagcggcggaatcaaagaagaacatgtgatcatccaggccgagttc420 tatctgaatc ctgaccaatcaggcgagtttatgtttgactttgatggtgatgagattttc480 catgtggata tggcaaagaaggagacggtctggcggcttgaagaatttggacgatttgcc540 agctttgagg ctcaaggtgcattggccaacatagctgtggacaaagccaacctggaaatc600 atgacaaagc gctccaactatactccgatcaccaattaa 639 <210> C0596 <211> 636 <212 > DNA
<213> Homo Sapiens atgggggaca ccggtcgcagcttcaccctggcctccagcgagaccggcgtgggcgctagc60 ggagggggcg gaagcggcggagggggggacacccgaccacgtttcttggagcaggttaaa120 catgagtgtc atttcttcaacgggacggagcgggtgcggttcctggacagatacttctat180 caccaagagg agtacgtgcgcttcgacagcgacgtgggggagtaccgggcggtgacggag240 ctggggcggc ctgatgccgagtactggaacagccagaaggacctcctggagcagaagcgg300 gccgcggtgg acacctactgcagacacaactacggggttggtgagagcttcacagtgcag360 cggcgaggag gtggaggcagcatcaaagaagaacatgtgatcatccaggccgagttctat420 ctgaatcctg accaatcaggcgagtttatgtttgactttgatggtgatgagattttccat480 gtggatatgg caaagaaggagacggtctggcggcttgaagaatttggacgatttgccagc540 tttgaggctc aaggtgcattggccaacatagctgtggacaaagccaacctggaaatcatg600 acaaagcgct ccaactatactccgatcaccaattaa 636 <210> C0595 <211> 633 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgaggag gtggaggcat caaagaagaa catgtgatca tccaggccga gttctatctg 420 aatcctgacc aatcaggcga gtttatgttt gactttgatg gtgatgagat tttccatgtg 480 S gatatggcaa agaaggagac ggtctggcgg cttgaagaat ttggacgatt tgccagcttt 540 gaggctcaag gtgcattggc caacatagct gtggacaaag ccaacctgga aatcatgaca 600 aagcgctcca actatactcc gatcaccaat taa 633 <2l0> C0593 <211> 642 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgagtct accctgaggt aactgtcatc aaagaagaac atgtgatcat ccaggccgag 420 ttctatctga atcctgacca atcaggcgag tttatgtttg actttgatgg tgatgagatt 480 ttccatgtgg atatggcaaa gaaggagacg gtctggcggc ttgaagaatt tggacgattt 540 gccagctttg aggctcaagg tgcattggcc aacatagctg tggacaaagc caacctggaa 600 atcatgacaa agcgctccaa ctatactccg atcaccaatt as 642 <210> C0585 <211> 645 <212> DNA
<213> Homo sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgattcg acgcacctag cccactccca atcaaagaag aacatgtgat catccaggcc 420 gagttctatc tgaatcctga ccaatcaggc gagtttatgt ttgactttga tggtgatgag 480 attttccatg tggatatggc aaagaaggag acggtctggc ggcttgaaga atttggacga 540 tttgccagct ttgaggctca aggtgcattg gccaacatag ctgtggacaa agccaacctg 600 gaaatcatga caaagcgctc caactatact ccgatcacca attaa 645 <210> C0584 <211> 642 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 'catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgaagtg gcggtagtgg cggtagtatc aaagaagaac atgtgatcat ccaggccgag 420 ttctatctga atcctgacca atcaggcgag tttatgtttg actttgatgg tgatgagatt 480 ttccatgtgg atatggcaaa gaaggagacg gtctggcggc ttgaagaatt tggacgattt 540 gccagctttg aggctcaagg tgcattggcc aacatagctg tggacaaagc caacctggaa 600 atcatgacaa agcgctccaa ctatactccg atcaccaatt as 642 <210> C0583 <211> 642 <212> DNA
$ <213> HomoSapiens atgggggacaccggtcgcagcttcaccctggcctccagcgagaccggcgtgggcgctagc60 ggagggggcggaagcggcggagggggggacacccgaccacgtttcttggagcaggttaaa120 catgagtgtcatttcttcaacgggacggagcgggtgcggttcctggacagatacttctat180 caccaagaggagtacgtgcgcttcgacagcgacgtgggggagtaccgggcggtgacggag240 ctggggcggcctgatgccgagtactggaacagccagaaggacctcctggagcagaagcgg300 gccgcggtggacacctactgcagacacaactacggggttggtgagagcttcacagtgcag360 cggcgaactagtggtggcggtggcagcatcaaagaagaacatgtgatcatccaggccgag420 ttctatctgaatcctgaccaatcaggcgagtttatgtttgactttgatggtgatgagatt480 ttccatgtggatatggcaaagaaggagacggtctggcggcttgaagaatttggacgattt540 gccagctttgaggctcaaggtgcattggccaacatagctgtggacaaagccaacctggaa600 atcatgacaaagcgctccaactatactccgatcaccaattas 642 <210> C0582 <211> 651 <212> DNA
<213> HomoSapiens atgggggacaccggtcgcagcttcaccctggcctccagcgagaccggcgtgggcgctagc60 2S ggagggggcggaagcggcggagggggggacacccgaccacgtttcttggagcaggttaaa120 catgagtgtcatttcttcaacgggacggagcgggtgcggttcctggacagatacttctat180 caccaagaggagtacgtgcgcttcgacagcgacgtgggggagtaccgggcggtgacggag240 ctggggcggcctgatgccgagtactggaacagccagaaggacctcctggagcagaagcgg300 gccgcggtggacacctactgcagacacaactacggggttggtgagagcttcacagtgcag360 3~ cggcgaggctctcctggaggtggaggtcctggatctatcaaagaagaacatgtgatcatc420 caggccgagttctatctgaatcctgaccaatcaggcgagtttatgtttgactttgatggt480 gatgagattttccatgtggatatggcaaagaaggagacggtctggcggcttgaagaattt540 ggacgatttgccagctttgaggctcaaggtgcattggccaacatagctgtggacaaagcc600 aacctggaaatcatgacaaagcgctccaactatactccgatcaccaattaa 651 <210> C0581 <211> 651 <212> DNA
40 <213> HomoSapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 45 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgaggct ctcctcctgg tggaccacct ggatctatca aagaagaaca tgtgatcatc 420 caggccgagt tctatctgaa tcctgaccaa tcaggcgagt ttatgtttga ctttgatggt 480 5~ gatgagattt tccatgtgga tatggcaaag aaggagacgg tctggcggct tgaagaattt 540 ggacgatttg ccagctttga ggctcaaggt gcattggcca acatagctgt ggacaaagcc 600 aacctggaaa tcatgacaaa gcgctccaac tatactccga tcaccaatta a 651 55 <210> C0580 <211> 663 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 $ ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgaggga gtccaggcgg tggcgggagc ggcggtggtc ctgggagtat caaagaagaa 420 catgtgatca tccaggccga gttctatctg aatcctgacc~aatcaggcga gtttatgttt 480 gactttgatg gtgatgagat tttccatgtg gatatggcaa agaaggagac ggtctggcgg 540 cttgaagaat ttggacgatt tgccagcttt gaggctcaag gtgcattggc caacatagct 600 gtggacaaag ccaacctgga aatcatgaca aagcgctcca actatactcc gatcaccaat 660 taa 663 1$ <210> C0567 <211> 663 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 2,$ gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgaacta gtggtggcgg tggcagcggc ggtggtggtt cctcgagtat caaagaagaa 420 catgtgatca tccaggccga gttctatctg aatcctgacc aatcaggcga gtttatgttt 480 gactttgatg gtgatgagat tttccatgtg gatatggcaa agaaggagac ggtctggcgg 540 cttgaagaat ttggacgatt tgccagcttt gaggctcaag gtgcattggc caacatagct 600 gtggacaaag ccaacctgga aatcatgaca aagcgctcca actatactcc gatcaccaat 660 taa 663 <210> C0598 3$ <211> 213 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg 4$ Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly $0 Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu $$ 85 90 95 Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His,Asn Tyr Gly ~$
Val Gly Glu Ser Phe Thr Val Leu Arg Arg Leu Gly Gly Glu Asp Asp Glu Ala Asp His His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro $ 130 135 140 Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe 1$
Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr I95 200 ' 205 Pro Ile Thr Asn <210> C0597 <211> 213 2$ <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly 3$ 35 40 45 Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu 4$
Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly Gly Gly Ser Gly Gly $0 115 120 125 Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro $$ Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg.Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210>
<211>
<212>
PRT
IS <213>
Homo sapiens Met Gly AspThrGly ArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSerGly GlyGly GlySerGly GlyGlyGly AspThrArg Pro Arg PheLeuGlu GlnVal LysHisGlu CysHisPhe PheAsnGly Thr Glu ArgValArg PheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPheAsp SerAsp ValGlyGlu TyrArgAla ValThrGlu Leu Gly ArgProAsp AlaGlu TyrTrpAsn SerGlnLys AspLeuLeu 3$ Glu Gln LysArgAla AlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSerPhe ThrVal GlnArgArg GlyGlyGly GlySerIle Lys Glu GluHisVal IleIle GlnAlaGlu PheTyrLeu AsnProAsp 13 13 14'0 Gln Ser GlyGluPhe MetPhe AspPheAsp GlyAspGlu IlePheHis Val Asp MetAlaLys LysGlu ThrValTrp ArgLeuGlu GluPheGly $0 Arg Phe AlaSerPhe GluAla GlnGlyAla LeuAlaAsn IleAlaVal Asp ,LysAlaAsnLeu GluIle MetThrLys ArgSerAsn TyrThrPro Ile Thr Asn <210>
<211>
<212>
PRT
<213>
Homo Sapiens Met Gly AspThrGly ArgSer PheThrLeuAla SerSer GluThrGly Val Gly AlaSerGly GlyGly GlySerGlyGly GlyGly AspThrArg Pro Arg PheLeuGlu GlnVal LysHisGluCys HisPhe PheAsnGly 35 40 ~ 45 Thr Glu ArgValArg PheLeu AspArgTyrPhe TyrHis GlnGluGlu Tyr ~ValArgPheAsp SerAsp ValGlyGluTyr ArgAla ValThrGlu Leu Gly ArgProAsp AlaGlu TyrTrpAsnSer GlnLys AspLeuLeu Glu Gln LysArgAla AlaVal AspThrTyrCys ArgHis AsnTyrGly Val Gly GluSerPhe ThrVal GlnArgArgGly GlyGly GlyIleLys 3~ Glu Glu HisValIle IleGln AlaGluPheTyr LeuAsn ProAspGln Ser Gly GluPheMet PheAsp PheAspGlyAsp GluIle PheHisVal Asp Met AlaLysLys GluThr ValTrpArgLeu GluGlu PheGlyArg Phe Ala SerPheGlu AlaGln GlyAlaLeuAla AsnIle AlaValAsp Lys Ala AsnLeuGlu IleMet ThrLysArgSer AsnTyr ThrProIle 195 200 '205 45 Thr Asn <210> C0593 50 <211> 214 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly 5$ 5 10 15 Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Val Tyr Pro Glu Val Thr Val Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> C0585 <211> 215 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly $0 35 40 45 Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu 70 ' 75 80 Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln LysArg AlaAlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSer PheThrVal GlnArgArg PheAspAla ProSerPro Leu Pro IleLys GluGluHis ValIleIle GlnAlaGlu PheTyrLeu Asn Pro AspGln SerGlyGlu PheMetPhe AspPheAsp GlyAspGlu Ile Phe HisVal AspMetAla LysLysGlu ThrValTrp ArgLeuGlu 1$ 165 170 175 Glu Phe GlyArg PheAlaSer PheGluAla GlnGlyAla LeuAlaAsn Ile Ala ValAsp LysAlaAsn LeuGluIle MetThrLys ArgSerAsn Tyr Thr ProIle ThrAsn ~$
<210>
<211>
<212>
PRT
<213> Sapiens Homo Met Gly AspThr GlyArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSer GlyGlyGly GlySerGly GlyGlyGly AspThrArg Pro Arg ~PheLeu GluGlnVal LysHisGlu CysHisPhe PheAsnGly Thr Glu ArgVal ArgPheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPhe AspSerAsp ValGlyGlu TyrArgAla ValThrGlu Leu Gly ArgPro AspAlaGlu TyrTrpAsn SerGlnLys AspLeuLeu Glu Gln LysArg AlaAlaVal AspThrT,yrCysArgHis AsnTyrGly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Ser Gly Gly Ser Gly Gly Ser Ile Lys G1u Glu His Val Tle Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn 1$
<210>
<211>
<212>
PRT
<213> Sapiens Homo Met Gly AspThr GlyArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSer GlyGlyGly GlySerGly GlyGlyGly AspThrArg 2$ 20 25 30 Pro Arg PheLeu GluGlnVal LysHisGlu CysHisPhe PheAsnGly 30 Thr Glu ArgVal ArgPheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPhe AspSerAsp ValGlyGlu TyrArgAla ValThrGlu 65 ~ 70 75 80 3$
Leu Gly ArgPro AspAlaGlu TyrTrpAsn SerGlnLys AspLeuLeu Glu Gln LysArg AlaAlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSer PheThrVal GlnArgArg ThrSerGly GlyGlyGly 4$ Ser Ile LysGlu GluHisVal IleIleGln AlaGluPhe TyrLeuAsn _ 130 ' 135 140 Pro Asp GlnSer GlyGluPhe MetPheAsp PheAspGly AspGluIle $0 Phe His ValAsp MetAlaLys LysGluThr ValTrpArg LeuGluGlu Phe Gly ArgPhe AlaSerPhe GluAlaGln GlyAlaLeu AlaAsnIle $$ 180 185 190 Ala Val AspLys AlaAsnLeu GluIleMet ThrLysArg SerAsnTyr Thr Pro Ile Thr Asn $ <210>
<211>
<212>
PRT
<213> sapiens Homo Met Gly AspThrGly ArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSerGly GlyGly GlySerGly GlyGlyGly AspThrArg 1$
Pro Arg PheLeuGlu GlnVal LysHisGlu CysHisPhe PheAsnGly Thr Glu ArgValArg PheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPheAsp SerAsp ValGlyGlu TyrArgAla ValThrGlu Leu Gly ArgProAsp AlaGlu TyrTrpAsn SerGlnLys AspLeuLeu Glu Gln LysArgAla AlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSerPhe ThrVal GlnArgArg GlySerPro GlyGlyGly Gly Pro GlySerTle LysGlu GluHisVal IleIleGln AlaGluPhe 3$ 130 135 140 Tyr Leu AsnProAsp GlnSer GlyGluPhe MetPheAsp PheAspGly Asp Glu IlePheHis ValAsp MetAlaLys LysGluThr ValTrpArg Leu Glu GluPheGly ArgPhe AlaSerPhe GluAlaGln GlyAlaLeu 4$
Ala Asn IleAlaVal AspLys AlaAsnLeu GluIleMet ThrLysArg l95 200 205 Ser Asn TyrThrPro IleThr Asn $0 210 215 <210>
<211>
$$ <212>
PRT
<213> Sapiens Homo Met Gly AspThrGly ArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSerGly GlyGly GlySerGly GlyGlyGly AspThrArg $ Pro Arg PheLeuGlu GlnVal LysHisGlu CysHisPhe PheAsnGly Thr Glu ArgValArg PheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPheAsp SerAsp ValGlyGlu TyrArgAla ValThrGlu Leu Gly ArgProAsp AlaGlu TyrTrpAsn SerGlnLys AspLeuLeu 1$ 85 90 95 Glu Gln LysArgAla AlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSerPhe ThrVal GlnArgArg GlySerPro ProGlyGly Pro Pro GlySerIle LysGlu GluHisVal IleIleGln AlaGluPhe 2$
Tyr Leu AsnProAsp GlnSer GlyGluPhe MetPheAsp PheAspGly Asp Glu IlePheHis ValAsp MetAlaLys LysGluThr ValTrpArg Leu Glu GluPheGly ArgPhe AlaSerPhe GluAlaGln GlyAlaLeu 3$ Ala Asn IleAlaVal AspLys AlaAsnLeu GluIleMet ThrLysArg Ser Asn'Tyr Thr Pro Ile Thr Asn <210> C0580 <211> 221 <212> PRT
4$ <213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly $0 Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly $$
Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln LysArgAla AlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSerPhe ThrVal GlnArgArg GlySerPro GlyGlyGly Gly Ser GlyGlyGly ProGly SerIleLys GluGluHis ValIleIle IS Gln AIa GluPheTyr LeuAsn ProAspGln SerGlyGlu PheMetPhe Asp Phe AspGlyAsp GluIle PheHisVal AspMetAla LysLysGlu Thr Val TrpArgLeu GluGlu PheGlyArg PheAlaSer PheGluAla Gln Gly AlaLeuAla AsnIle AlaValAsp LysAlaAsn LeuGluIle Met Thr LysArgSer AsnTyr ThrProIle ThrAsn <210>
<211>
<212>
PRT
<213>
Homo sapiens Met Gly AspThrGly ArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSerGly GlyGly GlySerGly GlyGlyGly AspThrArg Pro Arg PheLeuGlu GlnVal LysHisGlu CysHisPhe PheAsnGly Thr Glu ArgValArg PheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPheAsp SerAsp ValGlyGlu TyrArgAla ValThrGlu Leu Gly ArgProAsp AlaGlu TyrTrpAsn SerGlnLys AspLeuLeu Glu Gln LysArgAla AlaVal AspThrTyr CysArgHis AsnTyrGly 5$ 100 105 110 Val Gly GluSerPhe ThrVal GlnArgArg ThrSerGly GlyGlyGly Ser Gly Gly Gly Gly Ser Ser Ser Ile Lys Glu Glu His Val Ile IIe Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe $ 145 150 155 160 Asp Phe Asp Gly Asp Glu Ile Phe His VaI Asp Met AIa Lys Lys Glu 165 170. 175 1~ Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala ' 180 185 190 Gln Gly Ala Leu Ala Asn Ile AIa Val Asp Lys A7.a Asn Leu Glu Ile 1$
Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn I-As MBP. (31(32a1a~ . Cx nucleotide sequence ao gcggccgccaccatggagacagacacactcctgctatgggtactgctgctctgggttcca60 ggttccactggtgacttcaagaacattgtgacacctcgaacaccacctccagctagcgga120 gggggcggaagcggcggagggggagactccgaaaggcatttcgtgttccagttcaagggc180 gagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatctacaac240 2$ cgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgaccgagctg300 gggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggccgagctg360 gacacggtgtgcagacacaactacgagggggtggagacccacacctccctgcggcggctt420 gaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccacaacact480 ctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttccggaat540 3~ ggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggactggacc600 ttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacctgccac660 gtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggcggtggc720 agcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagtgaagac780 gacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcctggagac840 3$ attggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttggataag900 aaggagactatctggatgcttcctgagtttggccaattgacaagctttgacccccaaggt960 ggactgcaaaacatagctacaggaaaatacaccttgggaatcttgactaagaggtcaaat1020 tccaccccagctaccaatgaggctcctcaagcgactgtgttccccaagtcccctgtgctg1080 ctgggtcagcccaacaccctcatctgctttgtggacaacatcttccctcctgtgatcaac1140 4~ atcacatggctcagaaatagtaagtcagtcacagacggcgtttatgagaccagcttcctt1200 gtcaaccgtgaccattccttccacaagctgtcttatctcaccttcatcccttctgacgat1260 gatatttatgactgcaaggtggagcactggggcctggaggagccggttctgaaacactgg1320 gctagcggagggggcggaagcggcggagggggagctgatgctgcaccaactgtatccatc1380 ttcccaccatccagtgagcagttaacatctggaggtgcctcagtcgtgtgcttcttgaac1440 4$ aacttctaccccaaagacatcaatgtcaagtggaagattgatggcagtgaacgacaaaat1500 ggcgtcctgaacagttggactgatcaggacagcaaagacagcacctacagcatgagcagc1560 accctcacgttgaccaaggacgagtatgaacgacataacagctatacctgtgaggccact1620 cacaagacatcaacttcacccattgtcaagagcttcaacaggaatgagtgttagggtacc1680 $0 I-As MBP . (31(32a1a2 . Cx amino acid sequence Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro $$ Gly Ser Thr Gly Asp Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro 8$
Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg $ His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg~Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr 1$ 100 105 lI0 Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val Ile Ser 2$
Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile Arg Asn Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr Pro Arg 3$ Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu Lys Ser Pro Ile~Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln 4$ 260 265 270 Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu $0 Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn $$
Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys S
Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro.Ser Asp Asp 1$ Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu GIu Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys <210> C0528-AC
<211> 600 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggtggtggc 60 ggttcgcgtc cacgtttctt ggaacaggtt aaacatgagt gtcatttttt caatgggacg 120 gaacgcgtgc gttttctgga tcgttacttt tatcaccaag aggaatacgt acgcttcgac 180 agcgatgtgg gcgaatatcg tgcggtcacg gaactgggtc gtcctgatgc cgaatactgg 240 aacagtcaga aggacttact ggagcagaaa cgtgcagcgg tggataccta ttgccgccac 300 aattacggcg ttggtgaaag cttcacagtc cagcgtcgcg gtggcatcaa agaagagcat 360 gtgattatcc aggcggaatt ctatctgaat ccggatcaat cgggcgaatt catgtttgac 420 ttcgatggtg atgagatttt ccatgttgat atggcaaaga aagaaacggt ctggcgctta 480 gaggaatttg gccgctttgc ctcgttcgaa gctcaaggcg cattggccaa cattgctgtg 540 gataaagcga acctggaaat catgacaaaa cgctccaact atactccgat taccaattaa 600 <210> C0608-AC
<211> 642 <212> DNA
S <213> Homo sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggtgcttct 60 ggcgggggcg gttcgggcgg tgggggtgac acccgtccac gtttcttgga acaggttaaa 120 catgagtgtc attttttcaa tgggacggaa cgcgtgcgtt ttctggatcg ttacttttat 180 1O caccaagagg aatacgtacg cttcgacagc gatgtgggcg aatatcgtgc ggtcacggaa 240 ctgggtcgtc ctgatgccga atactggaac agtcagaagg acttactgga gcagaaacgt 300 gcagcggtgg atacctattg ccgccacaat tacggcgttg gtgaaagctt cacagtccag 360 cgtcgcacta gtggtggcgg tggctctatc aaagaagagc atgtgattat ccaggcggaa 420 ttctatctga atccggatca atcgggcgaa ttcatgtttg acttcgatgg tgatgagatt 480 1S ttccatgttg atatggcaaa gaaagaaacg gtctggcgct tagaggaatt tggccgcttt 540 gcctcgttcg aagctcaagg cgcattggcc aacattgctg tggataaagc gaacctggaa 600 atcatgacaa aacgctccaa ctatactccg attaccaatt as 642 2O <210> 00528 <211> 600 <212> DNA
<213> Homo sapiens 2S atgggggaca ccggaagatc gttcacactc gcatcatcag agacaggagt aggaggagga 60 ggatcgcgac cacgtttctt ggagcaggtt aaacatgagt gtcatttctt caacgggacg 120 gagcgggtgc ggttcctgga cagatacttc tatcaccaag aggagtacgt gcgcttcgac 180 agcgacgtgg gggagtaccg ggcggtgacg gagctggggc ggcctgatgc cgagtactgg 240 aacagccaga gggacctcct ggagcagaag cgggccgcgg tggacaccta ctgcagacac 300 30 aactacgggg ttggtgagag cttcacagtg cagcggcgag gaggtatcaa agaagaacat 360 gtgatcatcc aggccgagtt ctatctgaat cctgaccaat caggcgagtt tatgtttgac 420 tttgatggtg atgagatttt ccatgtggat atggcaaaga aggagacggt ctggcggctt 480 gaagaatttg gacgatttgc cagctttgag gctcaaggtg cattggccaa catagctgtg 540 gacaaagcca acctggaaat catgacaaag cgctccaact atactccgat caccaattaa 600 <210> 00608 <211> 630 <212> DNA
4O <213> Homo Sapiens ATGGGGGACACCCGCAGCTTCACCCTGGCCTCCAGCGAGACCGGCGTGGGCGCTAGCGGAGGGGGCGGAAGC
GGCGGAGGGGGGCCACGTTTCTTGGAGCAGGTTAAACATGAGTGTCATTTCTTCAACGGGACGGAGCGGGTG
CGGTTCCTGGACAGATACTTCTATCACCAAGAGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTACCGG
GCCGCGGTGGACACCTACTGCAGACACAACTACGGGGTTGGTGAGAGCTTCACAGTGCAGCGGCGAACTAGT
GGTGGCGGTGGCAGCATCAAAGAAGAACATGTGATCATCCAGGCCGAGTTCTATCTGAATCCTGACCAATCA
GGCGAGTTTATGTTTGACTTTGATGGTGATGAGATTTTCCATGTGGATATGGCAAAGAAGGAGACGGTCTGG
CGGCTTGAAGAATTTGGACGATTTGCCAGCTTTGAGGCTCAAGGTGCATTGGCCAACATAGCTGTGGACAAA
SO GCCAACCTGGAAATCATGACAAAGCGCTCCAACTATACTCCGATCACCAATTAA
<210> CO 608 variation <211> 642 SS <212> DNA--00608 <213> Homo Sapiens ATGGGGGACACCGGTCGCAGCTTCACCCTGGCCTCCAGCGAGACCGGCGTGGGCGCTAGCGGAGGGGGCGGA
AGCGGCGGAGGGGGGGACACCCGACCACGTTTCTTGGAGCAGGTTAAACATGAGTGTCATTTCTTCAACGGG
ACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATCACCAAGAGGAGTACGTGCGCTTCGACAGCGACGTG
GGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCCTGATGCCGAGTACTGGAACAGCCAGAAGGACCTCCTG
GAGCAGAAGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACGGGGTTGGTGAGAGCTTCACAGTGCAG
CGGCGAACTAGTGGTGGCGGTGGCAGCATCAAAGAAGAACATGTGATCATCCAGGCCGAGTTCTATCTGAAT
S CCTGACCAATCAGGCGAGTTTATGTTTGACTTTGATGGTGATGAGATTTTCCATGTGGATATGGCAAAGAAG
GAGACGGTCTGGCGGCTTGAAGAATTTGGACGATTTGCCAGCTTTGAGGCTCAAGGTGCATTGGCCAACATA
GCTGTGGACAAAGCCAACCTGGAAATCATGACAAAGCGCTCCAACTATACTCCGATCACCAATTAA
<210> C0528-AC
<211> 200 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Gly Gly Gly Ser Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly Gly Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe.Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn $5 <210> C0608-AC
<211> 214 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg $ 20 25 30 Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly IO Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu IS
Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Thr Ser Gly Gly Gly Gly 2$ Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys AIa Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> C0608 4S <211> 209 <212> PRT
<213> Homo sapiens MGDTRSFTLASSETGVGASGGGGSGGGGPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFDSDVGEYR
SO AVTELGRPDAEYWNSQKDLLEQKR.AAVDTYCRHNYGVGESFTVQRRTSGGGGSIKEEHVIIQAEFYLNPDQS
GEFMFDFDGDEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPITN
<210> C0608-variation 55 <211> 211 <212> PRT
<213> Homo Sapiens MGDTGRSFTLASSETGVGASGGGGSGGGGDTRPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFDSDV
GEYRAVTELGRPDAEYWNSQKDLLEQKRAAVDTYCRHNYGVGESFTVQRRTSGGGGSIKEEHVIIQAEFYLN
PDQSGEFMFDFDGDEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIADKANLEIMTKRSNYTPIT
<210> C0528 <211> 200 <212> PRT
<213> Homo sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Gly Gly Gly Ser Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg 20 Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Arg Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly Gly Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile~Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> IAS MBPl-l4 CHl.CH2.CH3 <211> 2346 <212> DNA
<213> murine gcggccgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60 ggttccactg gtgacatggc gtcacagaag agaccctccc agaggcacgg atccaaggct 120 agcggagggg gcggaagcgg cggaggggga gactccgaaa ggcatttcgt gttccagttc 180 aagggcgagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatc240 tacaaccgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgacc300 gagctggggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggcc360 gagctggacacggtgtgcagacacaactacgagggggtggagacccacacctccctgcgg420 cggcttgaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccac480 aacactctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttc540 cggaatggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggac600 tggaccttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacc660 tgccacgtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggc720 ggtggcagcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagt780 gaagacgacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcct840 ggagacattggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttg900 gataagaaggagactatctggatgcttcctgagtttggccaattgacaagctttgacccc960 caaggtggactgcaaaacatagctacaggaaaatacaccttgggaatcttgactaagagg1020 tcaaattccaccccagctaccaatgaggctcctcaagcgactgtgttccccaagtcccct1080 gtgctgctgggtcagcccaacaccctcatctgctttgtggacaacatcttccctcctgtg1140 atcaacatcacatggctcagaaatagtaagtcagtcacagacggcgtttatgagaccagc1200 ttccttgtcaaccgtgaccattccttccacaagctgtcttatctcaccttcatcccttct1260 gacgatgatatttatgactgcaaggtggagcactggggcctggaggagccggttctgaaa1320 cactgggctagcggagggggcggaagcggcggagggggagccaaaacgacacccccatct1380 gtctatccactggcccctggatctgctgcccaaactaactccatggtgaccctgggatgc1440 ctggtcaagggctatttccctgagccagtgacagtgacctggaactctggatccctgtcc1500 agcggtgtgcacaccttcccagctgtcctgcagtctgacctctacactctgagcagctca1560 gtgactgtcccctccagcacctggcccagcgagaccgtcacctgcaacgttgcccacccg1620 gccagcagcaccaaggtggacaagaaaattgtgcccagggattgtggttgtaagccttgc1680 atatgtacagtcccagaagtatcatctgtcttcatcttccccccaaagcccaaggatgtg1740 ctcaccattactctgactcctaaggtcacgtgtgttgtggtagacatcagcaaggatgat1800 cccgaggtccagttcagctggtttgtagatgatgtggaggtgcacacagctcagacgcaa1860 ccccgggaggagcagttcaacagcactttccgctcagtcagtgaacttcccatcatgcac1920 caggactggctcaatggcaaggagttcaaatgcagggtcaacagtgcagctttccctgcc1980 cccatcgagaaaaccatctccaaaaccaaaggcagaccgaaggctccacaggtgtacacc2040 attccacctcccaaggagcagatggccaaggataaagtcagtctgacctgcatgataaca2100 gacttcttccctgaagacattactgtggagtggcagtggaatgggcagccagcggagaac2160 tacaagaacactcagcccatcatggacacagatggctcttacttcgtctacagcaagctc2220 aatgtgcagaagagcaactgggaggcaggaaatactttcacctgctctgtgttacatgag2280 ggcctgcacaaccaccatactgagaagagcctctcccactctcctggtaaatgatctggt2340 acctgc 2346 <210> IAS
CH1.H
<211> 1701 <212> DNA
<213> murine gcggccgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60 ggttccactg gtgacatggc gtcacagaag agaccctccc agaggcacgg atccaaggct 120 agcggagggg gcggaagcgg cggaggggga gactccgaaa ggcatttcgt gttccagttc 180 aagggcgagt gctacttcac caacgggacg cagcgcatac gatctgtgga cagatacatc 240 tacaaccggg aggagtacct gcgcttcgac agcgacgtgg gcgagtaccg cgcggtgacc 300 gagctggggc ggccagaccc cgagtactac aataagcagt acctggagca aacgcgggcc 360 gagctggaca cggtgtgcag acacaactac gagggggtgg agacccacac ctccctgcgg 420 cggcttgaac agcccaatgt cgtcatctcc ctgtccagga cagaggccct caaccaccac 480 aacactctgg tctgctcagt gacagatttc tacccagcca agatcaaagt gcgctggttc 540 cggaatggcc aggaggagac ggtgggggtc tcatccacac agcttattag gaatggggac 600 SS tggaccttcc aggtcctggt catgctggag atgacccctc ggcggggaga ggtctacacc 660 tgccacgtgg agcatccgag cctgaagagc cccatcactg tggagtggac tagtggtggc 720 ggtggcagcg gcggtggtgg ttc.cggtggc ggcggttctg gcggtggcgg ttcctcgagt 780 gaagacgaca ttgaggccga ccacgtaggc gtctatggta caactgtata tcagtctcct 840 ggagacattg gccagtacac acatgaattt gatggtgatg agtggttcta tgtggacttg 900 gataagaagg agactatctg gatgcttcct gagtttggcc aattgacaag ctttgacccc 960 caaggtggac tgcaaaacat agctacagga aaatacacct tgggaatctt gactaagagg 1020 tcaaattcca ccccagctac caatgaggct cctcaagcga ctgtgttccc caagtcccct 1080 gtgctgctgg gtcagcccaa caccctcatc tgctttgtgg acaacatctt ccctcctgtg 1140 S atcaacatca catggctcag aaatagtaag tcagtcacag acggcgttta tgagaccagc 1200 ttccttgtca accgtgacca ttccttccac aagctgtctt atctcacctt catcccttct 1260 gacgatgata tttatgactg caaggtggag cactggggcc tggaggagcc ggttctgaaa 1320 cactgggcta gcggaggggg cggaagcggc ggagggggag ccaaaacgac acccccatct 1380 gtctatccac tggcccctgg atctgctgcc.caaactaact ccatggtgac cctgggatgc 1440 ctggtcaagg gctatttccc tgagccagtg acagtgacct ggaactctgg atccctgtcc 1500 agcggtgtgc acaccttccc agctgtcctg cagtctgacc tctacactct gagcagctca 1560 gtgactgtcc cctccagcac ctggcccagc gagaccgtca cctgcaacgt tgcccacccg 1620 gccagcagca ccaaggtgga caagaaaatt gtgcccaggg attgtggttg taagccttgc 1680 atatgtacag tctaaggtac c 1701 <210> IAS MBP 90-101 CH1.H.CH2 <211> 2053 <212> DNA
<213> murine gcggccgccaccatggagacagacacactcctgctatgggtactgctgctctgggttcca60 ggttccactggtgacttcaagaacattgtgacacctcgaacaccacctccagctagcgga120 gggggcggaagcggcggagggggagactccgaaaggcatttcgtgttccagttcaagggc180 gagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatctacaac240 cgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgaccgagctg300 gggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggccgagctg360 gacacggtgtgcagacacaactacgagggggtggagacccacacctccctgcggcggctt420 gaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccacaacact480 ctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttccggaat'540 ggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggactggacc600 ttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacctgccac660 gtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggcggtggc720 agcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagtgaagac780 gacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcctggagac840 attggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttggataag900 aaggagactatctggatgcttcctgagtttggccaattgacaagctttgacccccaaggt960 ggactgcaaaacatagctacaggaaaatacaccttgggaatcttgactaagaggtcaaat1020 tccaccccagctaccaatgaggctcctcaagcgactgtgttccccaagtcccctgtgctg1080 ctgggtcagcccaacaccctcatctgctttgtggacaaca,tcttccctcctgtgatcaac1140 atcacatggctcagaaatagtaagtcagtcacagacggcgtttatgagaccagcttcctt1200 gtcaaccgtgaccattccttccacaagctgtcttatctcaccttcatcccttctgacgat1260 gatatttatgactgcaaggtggagcactggggcctggaggagccggttctgaaacactgg1320 gctagcggagggggcggaagcggcggagggggagccaaaacaacacccccatcagtctat1380 ccactggcccctgggtgtggagatacaactggttcctccgtgactctgggatgcctggtc1440 aagggctacttccctgagtcagtgactgtgacttggaactctggctccctgtccagcagt1500 gtgcacaccttcccagctctcctgcagtctggactctacactatgagcagctcagtgact1560 gtcccctccagcacctggccaagtcagaccgtcacctgcagcgttgctcacccagccagc1620 agcaccacggtggacaaaaaacttgagcccagcgggcccatttcaacaatcaacccctgt1680 SO cctccatgcaaggagtgtcacaaatgcccagctcctaacctggagggtggaccatccgtc1740 ttcatcttccctccaaatatcaaggatgtactcatgatctccctgacacccaaggtcacg1800 tgtgtggtggtggatgtgagcgaggatgacccagacgtccagatcagctggtttgtgaac1860 aacgtggaagtacacacagctcagacacaaacccatagagaggattacaacagtactatc1920 cgggtggtcagcaccctccccatccagcaccaggactggatgagtggcaaggagttcaaa1980 tgcaaggtcaacaacaaagacctcccatcacccatcgagagaaccatctcaaaaattaaa2040 tagggtaccccga 2053 <210> IAS MBP 90-101 CH1.H
<211> 1707 <212> DNA
<213> murine gcggccgccaccatggagacagacacactcctgctatgggtactgctgctctgggttcca60 ggttccactggtgacttcaagaacattgtgacacctcgaacaccacctccagctagcgct120 agcggagggggcggaagcggcggagggggagactccgaaaggcatttcgtgttccagttc180 aagggcgagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatc240 tacaaccgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgacc300 gagctggggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggcc360 gagctggacacggtgtgcagacacaactacgagggggtggagacccacacctccctgcgg420 cggcttgaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccac480 aacactctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttc540 cggaatggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggac600 1S tggaccttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacc660 tgccacgtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggc720 ggtggcagcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagt780 gaagacgacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcct840 ggagacattggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttg900 gataagaaggagactatctggatgcttcctgagtttggccaattgacaagcttaagcttt960 gacccccaaggtggactgcaaaacatagctacaggaaaatacaccttgggaatcttgact1020 aagaggtcaaattccaccccagctaccaatgaggctcctcaagcgactgtgttccccaag1080 tcccctgtgctgctgggtcagcccaacaccctcatctgctttgtggacaacatcttccct1140 cctgtgatcaacatcacatggctcagaaatagtaagtcagtcacagacggcgtttatgag1200 2S accagcttccttgtcaaccgtgaccattccttccacaagctgtcttatctcaccttcatc1260 ccttctgacgatgatatttatgactgcaaggtggagcactggggcctggaggagccggtt1320 ctgaaacactgggctagcggagggggcggaagcggcggagggggagccaaaacgacaccc1380 ccatctgtctatccactggcccctggatctgctgcccaaactaactccatggtgaccctg1440 ggatgcctggtcaagggctatttccctgagccagtgacagtgacctggaactctggatcc1500 ctgtccagcggtgtgcacaccttcccagctgtcctgcagtctgacctctacactctgagc1560 agctcagtgactgtcccctccagcacctggcccagcgagaccgtcacctgcaacgttgcc1620 cacccggccagcagcaccaaggtggacaagaaaattgtgcccagggattgtggttgtaag1680 ccttgcatatgtacagtctaaggtacc 1707 <210> MBP 1-14 CK
<211> 1686 <212> DNA
<213> murine gcggccgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60 ggttccactg gtgacatggc gtcacagaag agaccctccc agaggcacgg atccaaggct 120 agcggagggg gcggaagcgg cggaggggga gactccgaaa ggcatttcgt gttccagttc 180 aagggcgagt gctacttcac caacgggacg cagcgcatac gatctgtgga cagatacatc 240 tacaaccggg aggagtacct gcgcttcgac agcgacgtgg gcgagtaccg cgcggtgacc 300 gagctggggc ggccagaccc cgagtactac aataagcagt acctggagca aacgcgggcc 360 gagctggaca cggtgtgcag acacaactac gagggggtgg agacccacac ctccctgcgg 420 cggcttgaac agcccaatgt cgtcatctcc ctgtccagga cagaggccct caaccaccac 480 aacactctgg tctgctcagt gacagatttc tacccagcca agatcaaagt gcgctggttc 540 SO cggaatggcc aggaggagac ggtgggggtc tcatccacac agcttattag gaatggggac 600 tggaccttcc aggtcctggt catgctggag atgacccctc ggcggggaga ggtctacacc 660 tgccacgtgg agcatccgag cctgaagagc cccatcactg tggagtggac tagtggtggc 720 ggtggcagcg gcggtggtgg ttccggtggc ggcggttctg gcggtggcgg ttcctcgagt 780 gaagacgaca ttgaggccga ccacgtaggc gtctatggta caactgtata tcagtctcct 840 ggagacattg gccagtacac acatgaattt gatggtgatg agtggttcta tgtggacttg 900 gataagaagg agactatctg gatgcttcct gagtttggcc aattgacaag ctttgacccc 960 caaggtggac tgcaaaacat agctacagga aaatacacct tgggaatctt gactaagagg 1020 tcaaattcca ccccagctac caatgaggct cctcaagcga ctgtgttccc caagtcccct 1080 gtgctgctgg gtcagcccaa caccctcatc tgctttgtgg acaacatctt ccctcctgtg 1140 atcaacatca catggctcag aaatagtaag tcagtcacag acggcgttta tgagaccagc 1200 ttccttgtca accgtgacca ttccttccac aagctgtctt atctcacctt catcccttct 1260 gacgatgata tttatgactg caaggtggag cactggggcc tggaggagcc ggttctgaaa 1320 cactgggcta gcggaggggg cggaagcggc ggagggggag ctgatgctgc accaactgta 1380 S tccatcttcc caccatccag tgagcagtta acatctggag gtgcctcagt cgtgtgcttc 1440 ttgaacaact tctaccccaa agacatcaat gtcaagtgga agattgatgg cagtgaacga 1500 caaaatggcg'tcctgaacag ttggactgat caggacagca aagacagcac ctacagcatg 1560 agcagcaccc tcacgttgac caaggacgag tatgaacgac ataacagcta tacctgtgag 1620 gccactcaca agacatcaac ttcacccatt gtcaagagct'tcaacaggaa tgagtgttag 1680 ggtacc 1686 <210> MBP 1-14 CH1.H.CH2 <211> 2059 1$ <212> DNA
<213> murine gcggccgccaccatggagacagacacactcctgctatgggtactgctgctctgggttcca60 ggttccactggtgacatggcgtcacagaagagaccctcccagaggcacggatccaaggct120 agcggagggggcggaagcggcggagggggagactccgaaaggcatttcgtgttccagttc180 aagggcgagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatc240 tacaaccgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgacc300 gagctggggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggcc360 gagctggacacggtgtgcagacacaactacgagggggtggagacccacacctccctgcgg420 2S cggcttgaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccac480 aacactctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttc540 cggaatggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggac600 tggaccttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacc660 tgccacgtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggc720 ggtggcagcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagt780 gaagacgacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcct840 ggagacattggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttg900 gataagaaggagactatctggatgcttcctgagtttggccaattgacaagctttgacccc960 caaggtggactgcaaaacatagctacaggaaaatacaccttgggaatcttgactaagagg1020 3S tcaaattccaccccagctaccaatgaggctcctcaagcgactgtgttccccaagtcccct1080 gtgctgctgggtcagcccaacaccctcatctgctttgtggacaacatcttccctcctgtg1140 atcaacatcacatggctcagaaatagtaagtcagtcacagacggcgtttatgagaccagc1200 ttccttgtcaaccgtgaccattccttccacaagctgtcttatctcaccttcatcccttct1260 gacgatgatatttatgactgcaaggtggagcactggggcctggaggagccggttctgaaa1320 cactgggctagcggagggggcggaagcggcggagggggagccaaaacaacacccccatca1380 gtctatccactggcccctgggtgtggagatacaactggttcctccgtgactctgggatgc1440 ctggtcaagggctacttccctgagtcagtgactgtgacttggaactctggctccctgtcc1500 agcagtgtgcacaccttcccagctctcctgcagtctggactctacactatgagcagctcaX560 gtgactgtcccctccagcacctggccaagtcagaccgtcacctgcagcgttgctcaccca1620 gccagcagcaccacggtggacaaaaaacttgagcccagcgggcccatttcaacaatcaac1680 ccctgtcctccatgcaaggagtgtcacaaatgcccagctcctaacctggagggtggacca1740 tccgtcttcatcttccctccaaatatcaaggatgtactcatgatctccctgacacccaag1800 gtcacgtgtgtggtggtggatgtgagcgaggatgacccagacgtccagatcagctggttt1860 gtgaacaacgtggaagtacacacagctcagacacaaacccatagagaggattacaacagt1920 actatccgggtggtcagcaccctccccatccagcaccaggactggatgagtggcaaggag1980 ttcaaatgcaaggtcaacaacaaagacctcccatcacccatcgagagaaccatctcaaaa2040 attaaatagggtaccccga 2059 <210> MBP 90-101 CHl.H.CH2.CH3 <211> 23'43 <212> DNA--<213> murine gcggccgccaccatggagacagacacactcctgctatgggtactgctgctctgggttcca60 ggttccactggtgacttcaagaacattgtgacacctcgaacaccacctccagctagcgga120 gggggcggaagcggcggagggggagactccgaaaggcatttcgtgttccagttcaagggc180 gagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatctacaac240 S cgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgaccgagctg300 gggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggccgagctg360 gacacgacgtgcagacacaactacgagggggtggagacccacacctccctgcggcggctt420 gaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccacaacact480 ctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttccggaat540 10 ggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggactggacc600 ttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacctgccac660 gtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggcggtggc720 agcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagtgaagac780 gacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcctggagac840 15 attggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttggataag900 aaggagactatctggatgcttcctgagtttggccaattgacaagctttgacccccaaggt960 ggactgcaaaacatagctacaggaaaatacaccttgggaatcttgactaagaggtcaaat1020 tccaccccagctaccaatgaggctcctcaagcgactgtgttccccaagtcccctgtgctg1080 ctgggtcagcccaacaccctcatctgctttgtggacaacatcttccctcctgtgatcaac1140 20 atcacatggctcagaaatagtaagtcagtcacagacggcgtttatgagaccagcttcctt1200 gtcaaccgtgaccattecttccacaagctgtcttatctcaccttcatcccttctgacgat1260 gatatttatgactgcaaggtggagcactggggcctggaggagccggttctgaaacactgg1320 gctagcggagggggcggaagcggcggaggaagcttagccaaaacgacacccccatctgtc1380 tatccactggcccctggatctgctgcccaaactaactccatggtgaccctgggatgcctg1440 25 gtcaagggctatttccctgagccagtgacagtgacctggaactctggatccctgtccagc1500 ggtgtgcacaccttcccagctgtcctgcagtctgacctctacactctgagcagctcagtg1560 actgtcccctccagcacctggcccagcgagaccgtcacctgcaacgttgcccacccggcc1620 agcagcaccaaggtggacaagaaaattgtgcccagggattgtggttgtaagccttgcata1680 tgtacagtcccagaagtatcatctgtcttcatcttccccccaaagcccaaggatgtgctc1740 30 accattactctgactcctaaggtcacgtgtgttgtggtagacatcagcaaggatgatccc1800 gaggtccagttcagctggtttgtagatgatgtggaggtgcacacagctcagacgcaaccc1860 cgggaggagcagttcaacagcactttccgctcagtcagtgaacttcccatcatgcaccag1920 gactggctcaatggcaaggagttcaaatgcagggtcaacagtgcagctttccctgccccc1980 atcgagaaaaccatctccaaaaccaaaggcagaccgaaggctccacaggtgtacaccatt2040 35 ccacctcccaaggagcagatggccaaggataaagtcagtctgacctgcatgataacagac2100 ttcttccctgaagacattactgtggagtggcagtggaatgggcagccagcggagaactac2160 aagaacactcagcccatcatggacacagatggctcttacttcgtctacagcaagctcaat2220 gtgcagaagagcaactgggaggcaggaaatactttcacctgctctgtgttacatgagggc2280 ctgcacaaccaccatactgagaagagcctctcccactctcctggtaaatgatctggtacc2340 40 tgc 2343 <210> IASMBP 1-14 CH1.CH2.CH3 <211> 679 45 <212> PRT--<213> murine Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Met Ala Ser Gln Lys Arg Pro Ser Gln Arg His Gly Ser Lys Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val 1$
Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile 2$ Arg Asn Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr Pro Arg Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser 3$ 245 250 255 Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met 290 295 ~ 300 Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg $0 325 330 335 Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe 5$ Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser LysSerVal ThrAspGly ValTyrGlu ThrSer PheLeuVal Asn $ Arg AspHisSer PheHisLys LeuSerTyr LeuThr PheIlePro Ser Asp AspAspIle TyrAspCys LysValGlu HisTrp GlyLeuGlu Glu Pro ValLeuLys HisTrpAla SerGlyGly GlyGly SerGlyGly Gly Gly AlaLysThr ThrProPro SerValTyr ProLeu AlaProGly.Cys Gly AspThrThr GlySerSer ValThrLeu GlyCys LeuValLys Gly Tyr PheProGlu SerValThr ValThrTrp AsnSer GlySerLeu Ser Ser SerValHis ThrPhePro AlaLeuLeu GlnSer GlyLeuTyr Thr Met SerSerSer ValThrVal ProSerSer ThrTrp ProSerGln Thr Val ThrCysSer ValAlaHis ProAlaSer SerThr ThrValAsp Lys Lys LeuGluPro SerGlyPro IleSerThr IleAsn ProCysPro Pro .
Cys LysGluCys HisLysCys ProAlaPro AsnLeu GluGlyGly Pro Ser Val~PheIle PheProPro AsnIleLys AspVal LeuMetIle Ser Leu ThrProLys ValThrCys ValValVal AspVal SerGluAsp Asp Pro AspValGln IleSerTrp PheValAsn AsnVal GluValHis Thr Ala GlnThrGln ThrHisArg GluAspTyr AsnSer ThrIleArg Val Val SerThrLeu ProIleGln HisGlnAsp TrpMet SerGlyLys Glu Phe LysCysLys ValAsnAsn LysAspLeu ProSer ProIleGlu Arg Thr IleSerLys IleLys 9~
<210> IAS MBP 1-14 CH1.H
<211>- 677 <212> PRT--<213> murine Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr 2$ 100 105 110 Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn 165 l70 175 Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile Arg Asn 4.0 180 185 190 Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr Pro Arg 4S Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp 245 250 255.
Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln $S 260 265 270 Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Ala Ser Gly GIy GIy Gly Ser Gly Gly Gly Gly Ala Lys Thr Thr Pro Pro Ser Va1 Tyr Pro Leu Ala Pro Gly Cys Gly Asp Thr Thr Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe 3$ 465 470 475 480 Pro Glu Ser Val Thr Val Thr Trp Asn Ser GIy Ser Leu Ser Ser Ser Val His Thr Phe Pro Ala Leu Leu Gln Ser Gly Leu Tyr Thr Met Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Gln Thr Val Thr Cys Ser Val Ala His Pro Ala Ser Ser Thr Thr Val Asp Lys Lys Leu Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Cys Pro Pro Cys Lys GIu Cys His Lys Cys Pro Ala Pro Asn Leu Glu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Asn Ile Lys Asp Val Leu Met Ile Ser Leu Thr Pro Lys Val Thr Cys Val Val Val Asp Val Ser GIu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr Ala Gln $ Thr Gln ThrHisArg GluAspTyr Ser ThrIle ValValSer Asn Arg Thr Leu ProIleGln HisGlnAsp Met SerGly GluPheLys Trp Lys Cys Lys ValAsnAsn LysAspLeu Ser ProIle ArgThrIle Pro Glu Ser Lys IleLys <210> CHl.H.CH2 IAS
MBP
<211>
ZO <212>
PRT--<213>
murine Met GluThrAsp ThrLeuLeu LeuTrpVal LeuLeuLeu TrpVal Pro Gly SerThrGly AspPheLys AsnIleVal ThrProArg ThrPro Pro Pro AlaSerAla SerGlyGly GlyGlySer GlyGlyGly GlyAsp Ser Glu ArgHisPhe ValPheGln PheLysGly GluCysTyr PheThr Asn Gly ThrGlnArg IleArgSer ValAspArg TyrIleTyr AsnArg Glu Glu Tyr~LeuArg PheAspSer AspValGly GluTyrArg AlaVal Thr Glu LeuGlyArg ProAspPro GluTyrTyr AsnLysGln TyrLeu Glu Gln ThrArgAla GluLeuAsp ThrValCys ArgHisAsn TyrGlu Gly Val GluThrHis ThrSerLeu ArgArgLeu GluGlnPro AsnVal Val SO Ile SerLeuSer ArgThrGlu AlaLeuAsn HisHisAsn ThrLeu Val Cys SerValThr AspPheTyr ProAlaLys IleLysVal ArgTrp Phe Arg AsnGlyGln GluGluThr ValGlyVal SerSerThr GlnLeu Ile Arg AsnGlyAsp TrpThrPhe GlnValLeu ValMetLeu GluMet Thr Pro Arg ArgGly GluValTyr ThrCysHis ValGluHis ProSer Leu Lys Ser ProIle ThrValGlu TrpThrSer GlyGlyGly GlySer Gly Gly Gly GlySer GlyGlyGly GlySerGly GlyGlyGly SerSer Ser ~
1~ 245 250 255 Glu Asp AspIle GluAlaAsp HisValGly ValTyrGly ThrThr Val Tyr Gln SerPro GlyAspIle GlyGlnTyr ThrHisGlu PheAsp Gly Asp Glu TrpPhe TyrValAsp LeuAspLys LysGluThr IleTrp Met Leu Pro GluPhe GlyGlnLeu ThrSerLeu SerPheAsp ProGln Gly Gly Leu GlnAsn IleAlaThr GlyLysTyr ThrLeuGly IleLeu Thr Lys Arg SerAsn SerThrPro AlaThrAsn GluAlaPro GlnAla Thr 3~ Val Phe ProLys SerProVal LeuLeuGly GlnProAsn ThrLeu Ile Cys Phe ValAsp AsnIlePhe ProProVal IleAsnIle ThrTrp Leu Arg Asn SerLys SerValThr AspGlyVal TyrGluThr SerPhe Leu Val Asn ArgAsp HisSerPhe HisLysLeu SerTyrLeu ThrPhe Ile Pro Ser AspAsp AspIleTyr AspCysLys ValGluHis TrpGly Leu Glu Glu ProVal LeuLysHis TrpAlaSer GlyGlyGly GlySer Gly Gly Gly GlyAla LysThrThr ProProSer ValTyrPro LeuAla Pro Gly Ser AlaAla GlnThrAsn SerMetVal ThrLeuGly CysLeu Val Lys Gly TyrPhe ProGluPro ValThrVal ThrTrpAsn SerGly Ser $$ 485 490 495 Leu Ser SerGly ValHisThr PheProAla ValLeuGln SerAsp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val <210> IAS MBP 90-101 CH1.H
<211> 556 <212> PRT
<213> murine Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu.Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Met Ala Ser Gln Lys Arg Pro Ser Gln Arg His Gly Ser Lys Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr ArgAla GluLeuAsp ThrValCys ArgHis AsnTyrGlu Gly Val Glu ThrHis ThrSerLeu ArgArgLeu GluGln ~ProAsnVal Val Ile Ser LeuSer ArgThrGlu AlaLeuAsn HisHis AsnThrLeu Val Cys Ser ValThr AspPheTyr ProAlaLys IleLys ValArgTrp Phe $0 165 170 175 Arg Asn GlyGln GluGluThr ValGlyVal SerSer ThrGlnLeu Ile $$ Arg Asn GlyAsp TrpThrPhe GInValLeu ValMet LeuGluMet Thr Pro Arg ArgGly GluValTyr ThrCysHis ValGlu HisProSer Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly $ Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met 1$ 290 295 300 Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe 2$
Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn 370 375 38.0 Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn 3$ Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp'Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu 4$ 450 455 460 Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe $0 Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser $$
Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys GIu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys <210>
IAS
MBP
CK
<211>
<212>
PRT
<213>
murine Thr Met GluThrAsp ThrLeu LeuLeuTrpVal LeuLeu LeuTrpVal 1$ Pro Gly SerThrGly AspMet AlaSerGlnLys ArgPro SerGlnArg His Gly SerLysAla SerGly GlyGlyGlySer GlyGly GlyGlyAsp Ser Glu ArgHisPhe ValPhe GlnPheLysGly GluCys TyrPheThr 50 ' S5 60 Asn Gly ThrGlnArg IleArg SerValAspArg TyrIle TyrAsnArg 2$ 65 70 75 80 Glu Glu TyrLeuArg PheAsp SerAspValGly GluTyr ArgAlaVal g5 90 95 Thr Glu LeuGlyArg ProAsp ProGlu.TyrTyr AsnLys GlnTyrLeu Glu Gln ThrArgAla GluLeu AspThrValCys ArgHis AsnTyrGlu Gly Val GluThrHis ThrSer LeuArgArgLeu GluGln ProAsnVal Val Ile SerLeuSer ArgThr GluAlaLeuAsn HisHis AsnThrLeu Val Cys SerValThr AspPhe TyrProAlaLys IleLys ValArgTrp Phe Arg AsnGlyGln GluGlu ThrValGlyVal SerSer ThrGlnLeu Ile Arg AsnGlyAsp TrpThr PheGlnValLeu ValMet LeuGluMet Thr Pro ArgArgGly GluVal TyrThrCysHis ValGlu HisProSer 210 215 ~ 220 Leu Lys SerProIle ThrVal GluTrpThrSer GlyGly GlyGlySer 5$ 225 230 235 240 Gly Gly GlyGlySer GlyGly GlyGlySerGly GlyGly GlySerSer Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp $ 275 280 285 Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile ,Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg 2$ Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe~His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Gly Ser Gly Gly 3$ 435 440 445 Gly Gly Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu $0 515 520 525 Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Val Leu ThrIleThr LeuThr ProLysVal ThrCysVal ValValAsp $ Ile Ser LysAspAsp ProGlu ValGlnPhe SerTrpPhe ValAspAsp Val Glu ValHisThr AlaGln ThrGlnPro ArgGluGlu GlnPheAsn Ser Thr PheArgSer ValSer GluLeuPro IleMetHis GlnAspTrp Leu Asn GlyLysGlu PheLys CysArgVal AsnSerAla AlaPhePro 1$ 645 650 655 Ala Pro IleGluLys ThrIle SerLys.ThrLysGlyArg ProLysAla Pro Gln ValTyrThr IlePro ProProLys GluGlnMet AlaLysAsp Lys Val SerLeuThr CysMet IleThrAsp PhePhePro GluAspIle 2$
Thr Val GluTrpGln TrpAsn GlyGlnPro AlaGluAsn TyrLysAsn Thr Gln ProIleMet AspThr AspGlySer TyrPheVal TyrSerLys Leu Asn ValGlnLys SerAsn TrpGluAla GlyAsnThr PheThrCys 3$ Ser Val LeuHisGlu GlyLeu HisAsnHis HisThrGlu LysSerLeu Ser His~Ser Pro Gly Lys <210> IAS MBP 1-14 CH1.H.CH2 <211> 561 <212> PRT
4$' <213> murine Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro $0 Gly Ser Thr Gly Asp Met Ala Ser Gln Lys Arg Pro Ser Gln Arg His Gly Ser Lys Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser $$
Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr g5 90 95 Glu Leu GlyArgPro AspProGlu TyrTyrAsn LysGln TyrLeuGlu Gln Thr ArgAlaGlu LeuAspThr ValCysArg HisAsn TyrGluGly Val Glu ThrHisThr SerLeuArg ArgLeuGlu GlnPro AsnValVal 1$ Ile Ser LeuSerArg ThrGluAla LeuAsnHis HisAsn ThrLeuVal Cys Ser ValThrAsp PheTyrPro AlaLysIle LysVal ArgTrpPhe Arg Asn GlyGlnGlu GluThrVal GlyValSer SerThr GlnLeuIle Arg Asn GlyAspTrp ThrPheGln ValLeuVal MetLeu GluMetThr 2$ 195 200 205 Pro Arg ArgGlyGlu ValTyrThr CysHisVal GluHis ProSerLeu Lys Ser ProIleThr ValGluTrp ThrSerGly GlyGly GlySerGly Gly Gly GlySerGly GlyGlyGly SerGlyGly GlyGly SerSerSer Glu Asp AspIleGlu AlaAspHis ValGlyVal TyrGly ThrThrVal Tyr Gln SerProGly AspIleGly GlnTyrThr HisGlu PheAspGly Asp Glu TrpPheTyr ValAspLeu AspLysLys GluThr IleTrpMet Leu Pro GluPheGly GlnLeuThr SerPheAsp ProGln GlyGlyLeu Gln Asn IleAlaThr GlyLysTyr ThrLeuGly IleLeu ThrLysArg Ser Asn SerThrPro AlaThrAsn GluAlaPro GlnAla ThrValPhe Pro Lys SerProVal LeuLeuGly GlnProAsn ThrLeu IleCysPhe Val Asp AsnIlePhe ProProVal IleAsnIle ThrTrp LeuArgAsn 10~
Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val.Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val <210> IAS MBP 90-101 CH1.H.CH2.CH3 <211> 773 <212> PRT
<213> murine Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg 35 40 . 45 His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Thr Cys Arg His Asn Tyr Glu Gly Val Glu $ Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile Arg Asn 1$ 180 185 190 Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr Pro Arg Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu Lys Ser 2$
Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu 3$ Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe~Gly G1n Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys 4$ 340 345 350 Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp $0 Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp $$
His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys HisTrpAla SerGly GlyGlyGly SerGlyGly GlySerLeu Ala Lys ThrThrPro ProSer ValTyrPro LeuAlaPro GlySerAla Ala Gln ThrAsnSer MetVal ThrLeuGly CysLeuVal LysGlyTyr Phe Pro GluProVal ThrVal ThrTrpAsn SerGlySer LeuSerSer 1$ Gly Val HisThrPhe ProAla ValLeuGln SerAspLeu TyrThrLeu Ser Ser SerValThr ValPro SerSerThr TrpProSer GluThrVal Thr Cys AsnValAla HisPro AlaSerSer ThrLysVal AspLysLys Ile Val ProArgAsp CysGly CysLysPro CysIleCys ThrValPro Glu Val SerSerVal PheIle PheProPro LysProLys AspValLeu 565 570 ~ 575 Thr Ile ThrLeuThr ProLys ValThrCys ValValVal AspIleSer Lys Asp AspProGlu ValGln PheSerTrp PheValAsp AspValGlu Val His ThrAlaGln ThrGln ProArgGlu GluGlnPhe AsnSerThr Phe Arg SerValSer GluLeu ProIleMet HisGlnAsp TrpLeuAsn Gly Lys GluPheLys CysArg ValAsnSer AlaAlaPhe ProAlaPro Ile Glu LysThrIle SerLys ThrLysGly ArgProLys AlaProGln Val Tyr ThrIlePro ProPro LysGluGln MetAlaLys AspLysVal Ser Leu ThrCysMet IleThr AspPhePhe ProGluAsp IleThrVal Glu Trp GlnTrpAsn GlyGln ProAlaGlu AsnTyrLys AsnThrGln $5 705 710 715 720 Pro Ile MetAspThr AspGly SerTyrPhe ValTyrSer LysLeuAsn Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys <210> pCRC203 <211> 609 <212> DNA
<213> Murine 1$ <400> 1 catatgttca agaacattgt gacacctcga acaccacctc caggaggagg atccggagac 60 tcggaaaggc atttcgtgtt ccagttcaag ggcgagtgct acttcaccaa cgggacgcag 120 cgcatacgat ctgtggacag atacatctac aaccgggagg agtacctgcg cttcgacagc 180 gacgtgggcg agtaccgcgc ggtgaccgag ctggggcggc cagaccccga gtactacaat 240 aagcagtacc tggagcaaac gcgggccgag ctggacacgg tgtgcagaca caactacgag 300 ggggtggaga cccacacctc cctgcggcgg cttggaggtg aagacgacat tgaggccgac 360 cacgtaggcg tctatggtac aactgtatat cagtctcctg gagacattgg ccagtacaca 420 catgaatttg atggtgatga gtggttctat gtggacttgg ataagaagga gactatctgg 480 atgcttcctg agtttggcca attgacaagc tttgaccccc aaggtggact gcaaaacata 540 gctacaggaa aatacacctt gggaatcttg actaagaggt caaattccac cccagctacc 600 aatctcgag 609 <210> pCRC201 <211> 614 <212> DNA
<213> Murine <400> 2 catatgttca agaacattgt gacacctcga acaccacctc caggaggagg atccggagac 60 tcggaaaggc atttcgtgtt ccagttcaag ggcgagtgct acttcaccaa cgggacgcag 120 cgcatacgat ctgtggacag atacatctac aaccgggagg agtacctgcg cttcgacagc 180 gacgtgggcg agtaccgcgc ggtgaccgag ctggggcggc cagaccccga gtactacaat 240 aagcagtacc tggagcaaac gcgggccgag ctggacacgg tgtgcagaca caactacgag 300 ggggtggaga cccacacctc cctgcggcgg cttggaggtg aagacgacat tgaggccgac 360 cacgtaggcg tctatggtac aactgtatat cagtctcctg gagacattgg ccagtacaca 420 catgaatttg atggtgatga gtggttctat gtggacttgg ataagaagga gactatctgg 480 atgcttcctg agtttggcca attgacaagc tttgaccccc aaggtggact gcaaaacata 540 gctacaggaa aatacacctt gggaatcttg actaagaggt caaattccac cccagctacc 600 aattaagcgg ccgc 614 <210> pCRCl99 <211> 642 <212> DNA
<213> Murine <400> 3 catatgttca agaacattgt gacacctcga acaccacctc cagctagcgg agggggcgga 60 agcggcggag ggggagactc cgaaaggcat ttcgtgttcc agtttaaagg cgagtgctac 120 ttcaccaacg ggacgcagcg catacgatct gtggacagat acatctacaa ccgggaggag 180 tacctgcgct tcgacagcga cgtgggcgag taccgcgcgg tgaccgagct ggggcggcca 240 gaccccgagt actacaataa gcagtacctg gagcaaacgc gggccgagct ggacacggtg 300 tgcagacaca actacgaggg ggtggagacc cacacctccc tgcggcggct tactagtggt 360 ggcggtggca gcgaagacga cattgaggcc gaccacgtag gcgtctatgg tacaactgta 420 tatcagtctc ctggagacat tggccagtac acacatgaat ttgatggtga tgagtggttc 480 tatgtggact tggataagaa ggagactatc tggatgcttc ctgagtttgg ccaattgaca 540 agctttgacc cccaaggtgg actgcaaaac atagctacag gaaaatacac cttgggaatc 600 ttgactaaga ggtcaaattc caccccagct accaatctcg ag 642 $ <210> pCRC197 <211> 647 <212> DNA
<213> Murine <400> 4 catatgttca agaacattgt gacacctcga acaccacctc cagctagcgg agggggcgga 60 agcggcggag ggggagactc cgaaaggcat ttcgtgttcc agtttaaagg cgagtgctac 120 ttcaccaacg ggacgcagcg catacgatct gtggacagat acatctacaa ccgggaggag 180 tacctgcgct tcgacagcga cgtgggcgag taccgcgcgg tgaccgagct ggggcggcca 240 1S gaccccgagt actacaataa gcagtacctg gagcaaacgc gggccgagct ggacacggtg 300 tgcagacaca actacgaggg ggtggagacc cacacctccc tgcggcggct tactagtggt 360 ggcggtggca gcgaagacga cattgaggcc gaccacgtag gcgtctatgg tacaactgta 420 tatcagtctc ctggagacat tggccagtac acacatgaat ttgatggtga tgagtggttc 480 tatgtggact tggataagaa ggagactatc tggatgcttc ctgagtttgg ccaattgaca 540 agctttgacc cccaaggtgg actgcaaaac atagctacag gaaaatacac cttgggaatc 600 ttgactaaga ggtcaaattc caccccagct accaattaag cggccgc 647 <210> pCRC188 <211> 1698 2S <212> DNA
<213> Murine <400> 5 gcggccgccaccatggctctgcagatccccagcctcctcctctcggctgctgtggtggtg60 ctgatggtgctgagcagcccagggactgagggcttcaagaacattgtgacacctcgaaca120 ccacctccagctagcggagggggcggaagcggcggagggggagactccgaaaggcatttc180 gtgttccagttcaagggcgagtgctacttcaccaacgggacgcagcgcatacgatctgtg240 gacagatacatctacaaccgggaggagtacctgcgcttcgacagcgacgtgggcgagtac300 cgcgcggtgaccgagctggggcggccagaccccgagtactacaataagcagtacctggag360 3S caaacgcgggccgagctggacacggtgtgcagacacaactacgagggggtggagacccac420 acctccctgcggcggcttgaacagcccaatgtcgtcatctccctgtccaggacagaggcc480 ctcaaccaccacaacactctggtctgctcagtgacagatttctacccagccaagatcaaa540 gtgcgctggttccggaatggccaggaggagacggtgggggtctcatccacacagcttatt600 aggaatggggactggaccttccaggtcctggtcatgctggagatgacccctcggcgggga660 gaggtctacacctgccacgtggagcatccgagcctgaagagccccatcactgtggagtgg720 actagtggtggcggtggcagcggcggtggtggttccggtggcggcggttctggcggtggc780 ggttcctcgagtgaagacgacattgaggccgaccacgtaggcgtctatggtacaactgta840 tatcagtctcctggagacattggccagtacacacatgaatttgatggtgatgagtggttc900 tatgtggacttggataagaaggagactatctggatgcttcctgagtttggccaattgaca960 agctttgacccccaaggtggactgcaaaacatagctacaggaaaatacaccttgggaatc1020 ttgactaagaggtcaaattccaccccagctaccaatgaggctcctcaagcgactgtgttc1080 cccaagtcccctgtgctgctgggtcagcccaacaccctcatctgctttgtggacaacatc1140 ttccctcctgtgatcaacatcacatggctcagaaatagtaagtcagtcacagacggcgtt1200 tatgagaccagcttccttgtcaaccgtgaccattccttccacaagctgtcttatctcacc1260 ttcatcccttctgacgatgatatttatgactgcaaggtggagcactggggcctggaggag1320 ccggttctgaaacactgggctagcggagggggcggaagcggcggagggggagctgatgct1380 gcaccaactgtatccatcttcccaccatccagtgagcagttaacatctggaggtgcctca1440 gtcgtgtgcttcttgaacaacttctaccccaaagacatcaatgtcaagtggaagattgat1500 ggcagtgaacgacaaaatggcgtcctgaacagttggactgatcaggacagcaaagacagc1560 S$ acctacagcatgagcagcaccctca.cgttgaccaaggacgagtatgaacgacataacagc1620 tatacctgtgaggccactcacaagacatcaacttcacccattgtcaagagcttcaacagg1680 aatgagtgttagggtacc 1698 <210> pCRC187 <211> 1662 <212> DNA
<213> Murine <400> 6 gcggccgccaccatggctctgcagatccccagcctcctcctctcggctgctgtggtggtg60 ctgatggtgctgagcagcccagggactgagggcgctagcggagggggcggaagcggcgga120 gggggagactccgaaaggcatttcgtgttccagttcaagggcgagtgctacttcaccaac180 gggacgcagcgcatacgatctgtggacagatacatctacaaccgggaggagtacctgcgc240 ttcgacagcgacgtgggcgagtaccgcgcggtgaccgagctggggcggccagaccccgag300 tactacaataagcagtacctggagcaaacgcgggccgagctggacacggtgtgcagacac360 aactacgagggggtggagacccacacctccctgcggcggcttgaacagcccaatgtcgtc420 atctccctgtccaggacagaggccctcaaccaccacaacactctggtctgctcagtgaca480 gatttctacccagccaagatcaaagtgcgctggttccggaatggccaggaggagacggtg540 1S ggggtctcatccacacagcttattaggaatggggactggaccttccaggtcctggtcatg600 ctggagatgacccctcggcggggagaggtctacacctgccacgtggagcatccgagcctg660 aagagccccatcactgtggagtggactagtggtggcggtggcagcggcggtggtggttcc720 ggtggcggcggttctggcggtggcggttcctcgagtgaagacgacattgaggccgaccac780 gtaggcgtctatggtacaactgtatatcagtctcctggagacattggccagtacacacat840 gaatttgatggtgatgagtggttctatgtggacttggataagaaggagactatctggatg900 cttcctgagtttggccaattgacaagctttgacccccaaggtggactgcaaaacatagct960 acaggaaaatacaccttgggaatcttgactaagaggtcaaattccaccccagctaccaat1020 gaggctcctcaagcgactgtgttccccaagtcccctgtgctgctgggtcagcccaacacc1080 ctcatctgctttgtggacaacatcttccctcctgtgatcaacatcacatggctcagaaat1140 agtaagtcagtcacagacggcgtttatgagaccagcttccttgtcaaccgtgaccattcc1200 ttccacaagctgtcttatctcaccttcatcccttctgacgatgatatttatgactgcaag1260 gtggagcactggggcctggaggagccggttctgaaacactgggctagcggagggggcgga1320 agcggcggagggggagctgatgctgcaccaactgtatccatcttcccaccatccagtgag1380 cagttaacatctggaggtgcctcagtcgtgtgcttcttgaacaacttctaccccaaagac1440 atcaatgtcaagtggaagattgatggcagtgaacgacaaaatggcgtcctgaacagttgg1500 actgatcaggacagcaaagacagcacctacagcatgagcagcaccctcacgttgaccaag1560 gacgagtatgaacgacataacagctatacctgtgaggccactcacaagacatcaacttca1620 cccattgtcaagagcttcaacaggaatgagtgttagggtacc 1662 <210> pCB229 <211> 1085 <212> DNA
<213> Murine <400> 7 gaattcggtaccaccatggctctgcagatccccagcctcctcctctcggctgctgtggtg60 gtgctgatggtgctgagcagcccagggactgagggcttcaagaacattgtgacacctcga120 acaccacctccagctagcggagggggcggaagcggcggagggggagactccgaaaggcat180 ttcgtgttccagttcaagggcgagtgctacttcaccaacgggacgcagcgcatacgatct240 gtggacagatacatctacaaccgggaggagtacctgcgcttcgacagcgacgtgggcgag300 taccgcgcggtgaccgagctggggcggccagaccccgagtactacaataagcagtacctg360 gagcaaacgcgggccgagctggacacggtgtgcagacacaactacgagggggtggagacc420 cacacctccctgcggcggcttgaacagcccaatgtcgtcatctccctgtccaggacagag480 gccctcaaccaccacaacactctggtctgctcagtgacagatttctacccagccaagatc540 aaagtgcgctggttccggaatggccaggaggagacggtgggggtctcatccacacagctt600 attaggaatggggactggaccttccaggtcctggtcatgctggagatgacccctcggcgg660 ggagaggtctacacctgccacgtggagcatccgagcctgaagagccccatcactgtggag720 tggagggcacagtctgagtctgcccggagcggatccgctgatgctgcaccaactgtatcc780 atcttcccaccatccagtgagcagttaacatctggaggtgcctcagtcgtgtgcttcttg840 aacaacttctaccccaaagacatcaatgtcaagtggaagattgatggcagtgaacgacaa900 aatggcgtcctgaacagttggactgatcaggacagcaaagacagcacctacagcatgagc960 agcaccctcacgttgaccaaggacgagtatgaacgacataacagctatacctgtgaggcc1020 actcacaagacatcaacttcacccattgtcaagagcttcaacaggaatgagtgttaggcg1080 gccgc 1085 <210> pCB223 <211> 1676 <212> DNA
$ <213> Murine <400> 8 gaattcggtaccatggctctgcagatccccagcctcctcctctcggctgctgtggtggtg60 ctgatggtgctgagcagcccagggactgagggcgaagacgacattgaggccgaccacgta120 ggcgtctatggtacaactgtatatcagtctcctggagacattggccagtacacacatgaa180 tttgatggtgatgagtggttctatgtggacttggataagaaggagactatctggatgctt240 cctgagtttggccaattgacaagctttgacccccaaggtggactgcaaaacatagctaca300 ggaaaatacaccttgggaatcttgactaagaggtcaaattccaccccagctaccaatgag360 gctcctcaagcgactgtgttccccaagtcccctgtgctgctgggtcagcccaacaccctc420 atctgctttgtggacaacatcttccctcctgtgatcaacatcacatggctcagaaatagt480 aagtcagtcacagacggcgtttatgagaccagcttccttgtcaaccgtgaccattccttc540 cacaagctgtcttatctcaccttcatcccttctgacgatgatatttatgactgcaaggtg600 gagcactggggcctggaggagccggttctgaaacactgggaacctgagattccagccccc660 atgtcagaaggatctgccaaaacaacagccccatcggtctatccactggcccctgtgtgt720 ggagatacaactggctcctcggtgactctaggatgcctggtcaagggttatttccctgag780 ccagtgaccttgacctggaactctggatccctgtccagtggtgtgcacaccttcccagct840 gtcctgcagtctgacctctacaccctcagcagctcagtgactgtaacctcgagcacctgg900 cccagccagtccatcacctgcaatgtggcccacccggcaagcagcaccaaggtggacaag960 aaaattgagcccagagggcccacaatcaagccctgtcctccatgcaaatgcccagcacct1020 aacctcttgggtggaccatccgtcttcatcttccctccaaagatcaaggatgtactcatg1080 atctccctgagccccatagtcacatgtgtggtggtggatgtgagcgaggatgacccagat1140 gtccagatcagctggtttgtgaacaacgtggaagtacacacagctcagacacaaacccat1200 agagaggattacaacagtactctccgggtggtcagtgccctccccatccagcaccaggac1260 tggatgagtggcaaggagttcaaatgcaaggtcaacaacaaagacctcccagcgcccatc1320 gagagaaccatctcaaaacccaaagggtcagtaagagctccacaggtatatgtcttgcct1380 ccaccagaagaagagatgactaagaaacaggtcactctgacctgcatggtcacagacttc1440 atgcctgaagacatttacgtggagtggaccaacaacgggaaaacagagctaaactacaag1500 aacactgaaccagtcctggactctgatggttcttacttcatgtacagcaagctgagagtg1560 gaaaagaagaactgggtggaaagaaatagctactcctgttcagtggtccacgagggtctg1620 cacaatcaccacacgactaagagcttctcccggactccgggtaaatgagcggccgc 1676 <210> pCB212 <211> 773 <212> DNA
<213> Murine <400> 9 ccatgggtaa gaaacagacc gctgttgcat tcgctctggc gctcctggct ctttctatga 60 ccccggcgta cgctttcaag aacattgtga cacctcgaac accacctcca gctagcggag 120 ggggcggaag cggcggaggg ggagactccg aaaggcattt cgtgttccag tttaaaggcg 180 agtgctactt caccaacggg acgcagcgca tacgatctgt ggacagatac atctacaacc 240 gggaggagta cctgcgcttc gacagcgacg tgggcgagta ccgcgcggtg accgagctgg 300 ggcggccaga ccccgagtac tacaataagc agtacctgga gcaaacgcgg gccgagctgg 360 acacggtgtg cagacacaac tacgaggggg tggagaccca cacctccctg cggcggcttg 420 gtggcggtgg cagcggcggt ggtggttccg gtggcggcgg ttctggcggt ggcggttccg 480 gtggcggtgg cagcgaagac gacattgagg ccgaccacgt aggcgtctat ggtacaactg 540 tatatcagtc tcctggagac attggccagt acacacatga atttgatggt gatgagtggt 600 tctatgtgga cttggataag aaggagacta tctggatgct tcctgagttt ggccaattga 660 caagctttga cccccaaggt ggactgcaaa acatagctac aggaaaatac accttgggaa 720 SS tcttgactaa gaggtcaaat tccaccccag ctaccaatta aggtaccgga tcc 773 <210> pCB214 <211> 702 <212> DNA
<213> Murine <400> 10 atgttcaaga acattgtgac acctcgaaca ccacctccag ctagcggagg gggcggaagc 60 ggcggagggg gagactccga aaggcatttc gtgttccagt ttaaaggcga gtgctacttc 120 accaacggga cgcagcgcat acgatctgtg gacagataca tctacaaccg ggaggagtac 180 ctgcgcttcg acagcgacgt gggcgagtac cgcgcggtga ccgagctggg gcggccagac 240 cccgagtact acaataagca gtacctggag caaacgcggg ccgagctgga cacggtgtgc 300 agacacaact acgagggggt ggagacccac acctccctgc ggcggcttgg tggcggtggc 360 agcggcggtg gtggttccgg tggcggcggt tctggcggtg gcggttccgg tggcggtggc 420 agcgaagacg acattgaggc cgaccacgta ggcgtctatg gtacaactgt atatcagtct 480 cctggagaca ttggccagta cacacatgaa tttgatggtg atgagtggtt ctatgtggac 540 ttggataaga aggagactat ctggatgctt cctgagtttg gccaattgac aagctttgac 600 ccccaaggtg gactgcaaaa catagctaca ggaaaataca ccttgggaat cttgactaag 660 1S aggtcaaatt ccaccccagc taccaattaa ggtaccggat cc 702 <210> pCB220 <211> 1013 <212> DNA
<213> Murine <400> 11 gaattcggtaccatggctctgcagatccccagcctcctcctctcggctgctgtggtggtg60 ctgatggtgctgagcagcccagggactgagggcgaagacgacattgaggccgaccacgta120 ggcgtctatggtacaactgtatatcagtctcctggagacattggccagtacacacatgaa180 tttgatggtgatgagtggttctatgtggacttggataagaaggagactatctggatgctt240 cctgagtttggccaattgacaagctttgacccccaaggtggactgcaaaacatagctaca300 ggaaaatacaccttgggaatcttgactaagaggtcaaattccaccccagctaccaatgag360 gctcctcaagcgactgtgttccccaagtcccctgtgctgctgggtcagcccaacaccctc420 atctgctttgtggacaacatcttccctcctgtgatcaacatcacatggctcagaaatagt480 aagtcagtcacagacggcgtttatgagaccagcttccttgtcaaccgtgaccattccttc540 cacaagctgtcttatctcaccttcatcccttctgacgatgatatttatgactgcaaggtg600 gagcactggggcctggaggagccggttctgaaacactgggaacctgagattccagccccc660 atgtcagaaggatccgccaaaacaacagccccatcggtctatccactggcccctgtgtgt720 ggagatacaactggctcctcggtgactctaggatgcctggtcaagggttatttccctgag780 ccagtgaccttgacctggaactctggatctctgtccagtggtgtgcacaccttcccagct840 gtcctgcagtctgacctctacaccctcagcagctcagtgactgtaacctcgagcacctgg900 cccagccagtccatcacctgcaatgtggcccacccggcaagcagcaccaaggtggacaag960 aaaattgagcccagagggcccacaatcaagccctgtgctgcataggcggccgc 1013 <210> pCRC203 <211> 207 <212> PRT
<213> Murine <400> 12 Met Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Gly Gly Gly SO Ser Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr 21e Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His $
Asn Tyr GluGlyVal GluThrHis ThrSerLeu ArgArg LeuGlyGly Glu Asp AspIleGlu AlaAspHis ValGlyVal TyrGly ThrThrVal Tyr Gln SerProGly AspIleGly GlnTyrThr HisGlu PheAspGly 1$ Asp Glu TrpPheTyr ValAspLeu AspLysLys GluThr IleTrpMet Leu Pro GluPheGly GlnLeuThr SerPheAsp ProGln GlyGlyLeu Gln Asn IleAlaThr GlyLysTyr ThrLeuGly IleLeu ThrLysArg Ser Asn SerThrPro AlaThrAsn HisHisHis HisHis His 2$ 195 200 205 <210> pCRC201 <211> 201 <212> PRT
<213> Murine <400>
Met Phe LysAsnIle ValThr ProArgThr ProProPro GlyGlyGly 3$ 5 10 15 Ser Gly AspSerGlu ArgHis PheValPhe GlnPheLys GlyGluCys Tyr Phe ThrAsnGly ThrGln ArgIleArg SerValAsp ArgTyrIle Tyr Asn ArgGluGlu TyrLeu ArgPheAsp SerAspVal GlyGluTyr 4$
Arg Ala ValThrGlu LeuGly ArgProAsp ProGluTyr TyrAsriLys Gln Tyr LeuGluGln ThrArg AlaGluLeu AspThrVal CysArgHis $0 85 90 95 Asn Tyr GluGlyVal GluThr HisThrSer LeuArgArg LeuGlyGly $$ Glu Asp AspIleGlu AlaAsp HisValGly ValTyrGly ThrThrVal Tyr Gln SerProGly AspIle GlyGlnTyr ThrHisGlu PheAspGly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met $ Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg 1~
5er Asn Ser Thr Pro Ala Thr Asn 1$ <210> pCRC199 <211> 218 <212> PRT
<213> Murine <400> 14 Met Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile'Arg 30 Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp 3$
Pro Glu TyrTyrAsn LysGln TyrLeuGlu GlnThrArg AlaGlu Leu Asp Thr ValCysArg HisAsn TyrGluGly ValGluThr HisThr Ser Leu Arg ArgLeuThr SerGly GlyGlyGly SerGluAsp AspIle Glu 4$ Ala Asp HisValGly ValTyr GlyThrThr ValTyrGln SerPro Gly Asp Ile GlyGlnTyr ThrHis GluPheAsp GlyAspGlu TrpPhe Tyr $~
Val Asp LeuAspLys LysGlu ThrIleTrp MetLeuPro GluPhe Gly Gln Leu ThrSerPhe AspPro GlnGlyGly LeuGlnAsn IleAla Thr $$ 180 185 190 Gly Lys TyrThrLeu GlyIle LeuThrLys ArgSerAsn SerThr Pro 11~
Ala Thr Asn His His His His His His $ <210> pCRC197 <211> 212 <212> PRT
<213> Murine <400> 15 Met Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe 1$ 20 25 30 Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp ValGly GluTyrArg AlaValThr GluLeuGly ArgProAsp 2$
Pro Glu TyrTyr AsnLysGln TyrLeuGlu GlnThrArg AlaGluLeu Asp Thr ValCys ArgHisAsn TyrGluGly ValGluThr HisThrSer Leu Arg ArgLeu ThrSerGly GlyGlyGly SerGluAsp AspIleGlu 3$ Ala Asp HisVal GlyValTyr GlyThrThr ValTyrGln SerProGly Asp Ile ~GlyGln TyrThrHis GluPheAsp GlyAspGlu TrpPheTyr Val Asp LeuAsp LysLysGlu ThrIleTrp MetLeuPro GluPheGly Gln Leu ThrSer PheAspPro GlnGlyGly LeuGlnAsn IleAlaThr 4$ 180 185 190 Gly Lys TyrThr LeuGlyIle LeuThrLys ArgSerAsn SerThrPro .
$0 Ala Thr Asn <210> pCRC188 $$ <211> 548 <212> PRT
<213> Murine <400> 16 Met Ala L2u Gln Ile Pro Ser Leu Leu Leu Ser Ala Ala Val Val Val Leu Met Val Leu Ser Ser Pro Gly Thr Glu Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln.Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile Arg Asn Gly Asp Trp Thr Phe Gln ' 180 185 190 Val Leu Val Met Leu Glu Met Thr Pro Arg Arg Gly GIu Val Tyr Thr '195 200 205 Cys His Val Glu His Pro Ser Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu SS Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu GlyIleLeu ThrLys ArgSerAsn SerThrPro AlaThrAsn Glu Ala ProGlnAla ThrVal PheProLys SerProVal LeuLeuGly Gln Pro AsnThrLeu IleCys PheValAsp AsnIlePhe ProProVal Ile Asn IleThrTrp LeuArg AsnSerLys SerValThr AspGlyVal Tyr Glu ThrSerPhe LeuVal AsnArgAsp HisSerPhe HisLysLeu 1$ 385 390 395 400 Ser Tyr LeuThrPhe IlePro SerAspAsp AspIleTyr AspCysLys Val Glu HisTrpGly LeuGlu GluProVal LeuLysHis TrpAlaSer Gly Gly GlyGlySer GlyGly GlyGlyAla AspAlaAla ProThrVal Ser Ile PheProPro SerSer GluGlnLeu ThrSerGly GlyAlaSer Val Val CysPheLeu AsnAsn PheTyrPro LysAspIle AsnValLys Trp Lys IleAspGly SerGlu ArgGlnAsn GlyValLeu AsnSerTrp Thr Asp GlnAspSer LysAsp SerThrTyr SerMetSer SerThrLeu Thr Leu-ThrLysAsp GluTyr GluArgHis AsnSerTyr ThrCysGlu Ala Thr HisLysThr SerThr SerProIle ValLysSer PheAsnArg Asn Glu Cys <210>
pCRC187 <211>
<212>
PRT
<213>
Murine <400>
Met Gly LysLysGln ThrAla ValAlaPhe AlaLeuAla LeuLeuAla 5$ 5 10 15 Leu Ser Met Thr Pro Ala Tyr Ala Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr $ 50 ~ 55 . 60 Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His' Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro 3$ 210 215 220 Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn <210> pCB229 <211> 354 <212> PRT
<213> Murine <400> 18 $0 Met Ala Leu Gln Ile Pro Ser Leu Leu Leu Ser Ala Ala Val Val Val Leu Met Val Leu Ser Ser Pro Gly Thr Glu Gly Phe Lys Asn Ile Val $$
Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn ArgGlu GluTyrLeu ArgPheAsp SerAspVal GlyGluTyr Arg Ala ValThr GluLeuGly ArgProAsp ProGluTyr TyrAsnLys Gln Tyr LeuGlu GlnThrArg AlaGluLeu AspThrVal CysArgHis 1$ Asn Tyr GluGly ValGluThr HisThrSer LeuArgArg LeuGluGln 130 135 . 140 Pro Asn ValVal IleSerLeu SerArgThr GluAlaLeu AsriHisHis Asn Thr LeuVal CysSerVal ThrAspPhe TyrProAla LysIleLys Val Arg TrpPhe ArgAsnGly GlnGluGlu ThrValGly ValSerSer Thr Gln LeuIle ArgAsnGly AspTrpThr PheGlriVal LeuValMet Leu Glu MetThr ProArgArg GlyGluVal TyrThrCys HisValGlu His Pro SerLeu LysSerPro IleThrVal GluTrpArg AlaGlnSer Glu Ser AlaArg SerGlySer AlaAspAla AlaProThr ValSerIle Phe Pro ProSer SerGluGln LeuThrSer GlyGlyAla SerValVal Cys Phe Leu,AsnAsnPheTyr ProLysAsp IleAsnVal LysTrpLys Ile Asp GlySer GluArgGln AsnGlyVal LeuAsnSer TrpThrAsp Gln Asp SerLys AspSerThr TyrSerMet SerSexThr LeuThrLeu Thr Lys AspGlu TyrGluArg HisAsnSer TyrThrCys GluAlaThr 325 330 335, His Lys ThrSer ThrSerPro IleValLys SerPheAsn ArgAsnGlu $$ 340 345 350 Cys <210>
p/cb223 <211> 2 <212>
PRT
<213>
Murine <400>
Met Ala LeuGlnIle ProSer LeuLeuLeu SerAlaAla ValVal Val Leu Met ValLeuSer SerPro GlyThrGlu GlyGluAsp AspIle Glu Ala Asp HisValGly ValTyr GlyThrThr ValTyrGln SerPro Gly Asp Ile GlyGlnTyr ThrHis GluPheAsp GlyAspGlitTrpPhe Tyr Val Asp LeuAspLys LysGlu ThrIleTrp MetLeuPro GluPhe Gly Gln Leu ThrSerPhe AspPro GlnGlyGly LeuGlnAsn IleAla Thr Gly Lys TyrThrLeu GlyIle LeuThrLys ArgSerAsn SerThr Pro Ala Thr AsnGluAla ProGln AlaThrVal PheProLys SerPro Val Leu Leu GlyGlnPro AsnThr LeuIleCys PheValAsp AsnIle Phe Pro Pro ValIleAsn IleThr TrpLeuArg AsnSerLys SerVal Thr Asp Gly-ValTyrGlu ThrSer PheLeuVal AsnArgAsp HisSer Phe His Lys LeuSerTyr LeuThr PheIlePro SerAspAsp AspIle Tyr Asp Cys LysValGlu HisTrp GlyLeuGlu GluProVal LeuLys His Trp Glu ProGluIle ProAla ProMetSer GluGlySer AlaLys Thr Thr Ala ProSerVal TyrPro LeuAlaPro ValCysGly AspThr Thr Gly Ser SerValThr LeuGly CysLeuVal LysGlyTyr PhePro Glu 245 250. 255 $5 Pro Val ThrLeuThr TrpAsn SerGlySer LeuSerSer GlyVal His Thr Phe ProAlaVal LeuGln SerAspLeu TyrThrLeu SerSer Ser Val Thr ValThrSer SerThrTrp ProSerGln SexIle ThrCysAsn Val Ala HisProAla SerSerThr LysValAsp LysLys IleGluPro 305 310 315 , 320 Arg Gly ProThrIle LysProCys ProProCys LysCys ProAlaPro 325 330. 335 Asn Leu LeuGlyGly ProSerVal PheIlePhe ProPro LysIleLys 1$ Asp Val LeuMetIle SerLeuSer ProIleVal ThrCys ValValVal Asp Val SerGluAsp AspProAsp ValGlnIle SerTrp PheValAsn Asn Val GluValHis ThrAlaGln ThrGln~'hrHisArg GluAspTyr Asn Ser ThrLeuArg ValValSer AlaLeuPro IleGln HisGlnAsp 2$ 405 410 ' 415 Trp Met SerGlyLys GluPheLys CysLysVal AsnAsn LysAspLeu Pro Ala ProIleGlu ArgThrIle SerLysPro LysGly SerValArg Ala Pro GlnValTyr ValLeuPro ProProGlu GluGlu MetThrLys Lys Gln ValThrLeu ThrCysMet ValThrAsp PheMet ProGluAsp Ile Tyr ValGluTrp ThrAsnAsn GlyLysThr GluLeu AsnTyr~Lys Asn Thr GluProVal LeuAspSer AspGlySer TyrPhe MetTyrSer 4S Lys Leu ArgValGlu LysLysAsn TrpValGlu ArgAsn SerTyrSer Cys Ser ValValHis GluGlyLeu HisAsnHis HisThr ThrLysSer Phe Ser ArgThrPro GlyLys $5 <210> pCB212 <211> 331 <212> PRT
<213> Murine <400> 20 Met Ala Leu Gln Ile Pro Ser Leu Leu Leu Ser Ala Ala Val Val Val Leu Met Val Leu Ser Ser Pro Gly Thr Glu Gly Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe 3$ His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys~Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Glu Pro Glu Ile Pro Ala Pro Met Ser Glu Gly Ser Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val Cys Gly Asp Thr Thr Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu $0 Pro Val Thr Leu Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser $$
Val Thr Val Thr Ser Ser Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Glu Pro '305 310 315 320 Arg Gly Pro Thr Ile Lys Pro Cys Ala Ala <210> pCB214 <211> 234 <212> PRT
<213> Murine <400> 21 Met Phe Lys IleVal Thr ArgThr Pro Pro AlaSer Asn Pro Pro Gly 1$
Gly Gly Gly GlyGly Gly AspSer Glu Arg PheVal Ser Gly His Phe Gln Phe Lys GluCys Tyr ThrAsn Gly Thr ArgIle Gly Phe Gln Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp 2$ Ser Asp ValGly GluTyrArg AlaValThr GluLeuGly ArgPro Asp Pro Glu TyrTyr AsnLysGln TyrLeuGlu GlnThrArg AlaGlu Leu Asp Thr ValCys ArgHisAsn TyrGluGly ValGluThr HisThr Ser Leu Arg ArgLeu GlyGlyGly GlySerGly GlyGlyGly SerGly Gly 3$ 115 120 125 Gly Gly SerGly GlyGlyGly SerGlyGly GlyGlySer GluAsp Asp Ile Glu AlaAsp HisValGly ValTyrGly ThrThrVal TyrGln Ser Pro Gly AspIle GlyGlnTyr ThrHisGlu PheAspGly AspGlu Trp 4$
Phe Tyr ValAsp LeuAspLys LysGluThr IleTrpMet LeuPro Glu Phe Gly GlnLeu ThrSerPhe AspProGln GlyGlyLeu GlnAsn Ile $0 195 200 205 Ala Thr GlyLys TyrThrLeu GlyIleLeu ThrLysArg SerAsn Ser $$ Thr Pro AlaThr AsnGlyThr GlySer <210> pCB220 <211>
<212>
PRT
<213>
Murine <400>
Met Ala LeuGlnIle ProSer LeuLeuLeu SerAla AlaValVal Val Leu Met ValLeuSer SerPro GlyThrGlu GlyPhe LysAsnIle Val Thr Pro ArgThrPro ProPro AlaSerGly GlyGly GlySerGly Gly I5 GIy Gly AspSerGlu ArgHis PheValPhe GlnPhe LysGlyGlu Cys Tyr Phe ThrAsnGly ThrGln ArgIleArg SerVal AspArgTyr Ile Tyr Asn ArgGluGlu TyrLeu ArgPheAsp SerAsp ValGlyGlu Tyr Arg Ala ValThrGlu LeuGly ArgProAsp ProGlu TyrTyrAsn Lys Gln Tyr LeuGluGln ThrArg AlaGluLeu AspThr ValCysArg His 30 Asn Tyr GluGlyVal .GluThr HisThrSer LeuArg ArgLeuGlu Gln Pro Asn ValValIle SerLeu SerArgThr GluAla LeuAsnHis His Asn Thr LeuValCys SerVal ThrAspPhe TyrPro AlaLysIle Lys Val Arg TrpPheArg AsnGly GlnGluGlu ThrVal GlyValSer Ser Thr Gln LeuIleArg AsnGly AspTrpThr PheGln ValLeuVal Met 45 Leu Glu MetThrPro ArgArg GlyGluVal TyrThr CysHisVal Glu His Pro Ser Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser 2~ 385 390 395 400 Phe Leu Val Asn Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr 2S Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Sex Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp 4~ Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys
Adjuvant disease in rats is produced as described by Pearson supra, i.e., by a single injection of Freund's adjuvant (killed tubercle bacilli or chemical fractions of it, mineral oil, and an emulsifying agent) given into several depot sites, preferably intracutaneously or into a paw or the base of the tail. The adjuvant is given in the absence of other antigens.
The effect of the invention treatment on manifestations of the disease can be monitored by any method known to those of skill in the art. These manifestations are histopathological, and include an acute and subacute synovitis with proliferation of synovial lining cells, predominantly a mononuclear infiltration of the articulax and particular tissues, the invasion of bone and articular cartilage by connective tissue pannus, and periosteal new bone formation, especially adjacent to affected joints. In severe or chronic cases, destructive changes occur, as do fibrous or bony ankylosis.
These histopathological symptoms are expected to appear in control animals at about 12 days after sensitization to the Freund's adjuvant.
Insulin Dependent Diabetes Mellitus (IDDM) IDDM is observed as a consequence of the selective destruction of insulin-secreting cells within the Islets of Langerhans of the pancreas. Involvement of the immune system in this disease is suggested by morphologic evidence of early infiltration of the Islets by mononuclear cells, by the detection of anti-islet cell antibodies, by the high frequency of HLA-DR3 and -DR4 alleles in IDDM populations, and by clinical associations between IDDM and various autoimmune diseases. An animal model for spontaneous IDDM and thyroiditis has been developed in the BB rat. As in humans, the rat disease is controlled in part by the genes encoding the MHC antigens, is characterized by islet infiltration, and is associated with the presence of anti-islet antibodies. The I-E
equivalent class II MHC antigens appear to be involved in manifestation of the autoimmune diseases in the BB rat. Biotard et al., Proc. Natl. Acad. Sci. USA
82:6627 (1985).
In morphologic evaluation, insulitis is characterized by the presence of mononuclear inflammatory cells~within the islets. Thyroiditis is characterized by focal interstitial lymphocytic infiltrate within the thyroid gland, as a minimum criterion. Most severe cases show diffuse extensive lymphocytic infiltrates, disruption of acini, fibrosis, and focal Hurthle call change. See Biotard et al. supra.
Treatment of the BB rats with the invention is expected to ameliorate or prevent the manifestation of the clinical and morphological symptoms associated with IDDM and thyroiditis.
In another model, the NOD mouse strain (H-2Kd Db) is a marine model for autoimmune IDDM. The disease in these animals is characterized by anti-islet cell antibodies, severe insulitis, and evidence for autoimmune destruction of the beta-cells (Kanazawa, et al., Diabetolooia 27:113 (1984)). The disease can be passively transferred with lymphocytes and prevented by treatment with cyclosporin-A (Ikehara et al., Proc.
Natl. Acad. Sci. USA 82:7743 (1985)); Mori et al., Diabetolooia 29:244 (1986).
Untreated animals develop profound glucose intolerance and ketosis and succumb within weeks of the onset of the disease. Seventy to ninety percent of female and 20-30% of male animals develop diabetes within the first six months of life. Breeding studies have defined at least two genetic loci responsible for disease susceptibility, one of which maps to the MHC. Characterization of NOD Class II antigens at both the serologic and molecular level suggest that the susceptibility to autoimmune disease is linked to I-AB
(Acha-Orbea and McDevitt, Proc. Natl. Acad. Sci. USA 84:235 (1907)).
Treatment of Female NOD mice with complex is expected to lengthen the time before the onset of diabetes and/or to ameliorate or prevent the disease.
Experimental Allergic Encephalom elf itis fEAEI
Experimental allergic encephalomyelitis (EAE) is an induced autoimmune disease of the central nervous system which is a model for multiple sclerosis (MS). The disease can be induced in many species, including mice and rats.
The disease is characterized by the acute onset of paralysis. Perivascular infiltration by mononuclear cells in the CNS is observed in both mice and rats. Methods of inducing the disease, as well as symptomology, are reviewed in Aranson, The Autoimmune Diseases (Rose and Mackay, eds., 1985), and in Acha-Orbea et al., Ann.
Rev. Imm. 7:377-405 (1989).
One of the genes mediating susceptibility is localized in the MHC class II
region (Moore et al., J. Immunol. 124:1815-1820 (1980)). The best analyzed encephalitogenic protein is myelin basic protein (MBP), but other encephalitogenic antigens are found in the brain. The immunogenic epitopes have been mapped (see, Acha-Orbea et al., supra.). In the PL mouse strains (H-2°) two encephalitogenic peptides in MBP have been characterized: MBP peptide p35-47 (MBP 35-47), and acetylated NSF
p1-9 (MBP 1-9).
The effect of the invention on ameliorating disease symptoms in individuals in which EAE has been induced can be measured by survival rates, and by the progress of the development of symptoms.
Methods of making the complexes of the invention Expression systems suitable for production of appropriate recombinant single chain MHC class II molecule:peptide complexes are available and known in the art. Various prokaryotic, fungal, and eukaryotic host cells are suitable for expression of recombinatn, single chain MHC class II molecule:peptide complexes, as well as for individual recombinant alpha and beta MHC class II chains.
Prokaryotes that are useful as host cells, according to the present invention, most frequently are represented by various strains of Escherichia coli.
However, other microbial strains can also be used, such as bacilli, for example Bacillus subtilis, various species of Pseudomonas, or other bacterial strains.
According to the invention, the single chain MHC class II
molecule:peptide complexes are expressed from recombinantly engineered nucleotide sequences that encode the single chain MHC class II molecule:peptide polypeptides by operably linking the engineered nucleic acid coding sequence to signals that direct gene expression in prokaryotes. A nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if it effects the transcription of the sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in 10 reading frame.
The genes encoding the single chain MHC class II molecule:peptide complexes may be inserted into an "expression vector," "cloning vector," or "vector,"
terms which are used interchangeably herein and usually refer to plasmids or other nucleic acid molecules that are able to replicate in a chosen host cell.
Expression vectors 15 may replicate autonomously, or they can replicate by being inserted into the genome of the host cell, by methods well known in the art. Vectors that replicate autonomously will have an origin of replication or autonomous replicating sequence (ARS) that is functional in the chosen host cell(s).
Plasmid vectors that contain replication sites and control sequences 20 derived from a species compatible with the chosen host are used. For example, E. coli is typically transformed using derivatives of pBR322, a plasmid derived from E.
coli species by Bolivar et al., Gene 2:95-113, 1977. Often, it is desirable for a vector to be usable in more than one host cell, e.g., in E. coli for cloning and construction, and in a Bacillus cell for expression.
25 The expression vectors typically contain a transcription unit or expression cassette that contains all the elements required for the expression of the DNA
encoding the MHC molecule in the host cells. A typical expression cassette contains a promoter operably linked to the DNA sequence encoding a single chain MHC class II
molecule:peptide complex and a ribosome binding site. The promoter is preferably positioned about the same distance from the heterologous transcription start site as it is from the transcription start site in its natural setting. As is known in the art, however, some variation in this distance can be accommodated without loss of promoter function.
In addition to a promoter sequence, the expression cassette can also contain a transcription termination region downstream of the structural gene to provide for efficient termination. The termination region may be obtained from the same gene as the promoter sequence or may be obtained from a different gene.
Commonly used prokaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the beta-lactamase (penicillinase) and lactose (lac) promoter systems (Change et al., Nature 198:1056, 1977) and the tryptophan (trp) promoter system (Goeddel et al., Nucleic Acids Res. 8:4057-74, 1980) and the lambda-derived PL promoter and N-gene ribosome binding site (Shimatake et al., Nature 292:128-32, 1981). Any available promoter system that functions in prokaryotes can be used.
Either constitutive or regulated promoters can be used in the present invention. Regulated promoters can be advantageous because the host cells can be grown to high densities before expression of the single chain MHC class II
molecule:peptide complexes is induced. High level expression of heterologous proteins slows cell growth in some situations. Regulated promoters especially suitable for use in E. coli include the bacteriophage lambda PL promoter, the hybrid trp-lac promoter (Amann et al., Gene 25:167-78 1983; and the bacteriophage T7 promoter.
For expression of single chain MHC class II molecule:peptide complexes in prokaryotic cells other than E. coli, a promoter that functions in the particular prokaryotic species is required. Such promoters can be obtained from genes that have been cloned from the species, or heterologous promoters can be used. For example, the hybrid trp-lac promoter functions in Bacillus in addition to E. coli.
A ribosome binding site (RBS) is also necessary for expression of single chain MHC class II molecule:peptide complexes in prokaryotes. An RBS in E.
coli, for example, consists of a nucleotide sequence 3-9 nucleotides in length located 3-nucleotides upstream of the initiation codon (Shine and Dalgarno, Nature, 254:34-40, 1975; Steitz, In Biological regulation and development.' Gene expression (ed., Goldberger), vol. 1, p. 349, 1979).
Translational coupling may be used to enhance expression. The strategy uses a short upstream open reading frame derived from a highly expressed gene native to the translational system, which is placed downstream of the promoter, and a ribosome binding site followed after a few amino acid codons by a termination codon.
Just prior to the termination codon is a second ribosome binding site, and following the termination codon is a start codon for the initiation of translation. The system dissolves secondary structure in the RNA, allowing for the efficient initiation of translation.
See Squires, et.
al., J. Biol. Chem. 263:16297-16302, 1988.
The single chain MHC class II molecule:peptide complexes can be expressed intracellularly, or can be secreted from the cell. Intracellular expression often results in high yields. However, some of the protein may be in the form of insoluble inclusion bodies. Although some of the intracellularly produced MHC
polypeptides of the present invention may be active upon being harvested following cell lysis, the amount.
of soluble, active MHC polypeptide may be increased by performing refolding procedures using methods known to those of skill in the art (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual Second Edition, Cold Spring Harbor, NY, 1989.;
Marston et al., BiolTechnology 2:800-804, 1985; Schoner et al., BiolTechnology 3:151-54, 1985).
In one embodiment, for purification and refolding the cell pellet is lysed and refolded in urea-borate-DTT buffer followed by urea-borate buffer and reverse phase HPLC
purification using either silica gel based Vydac (Hewlett Packard, Wilmington, DE) or polymer based Poros-R2 (PerSeptive Biosystems) resins, with bead size varying based on the scale of the culture and is described in further detail below. In one embodiment, e.g., for large scale refolding, the sample can be ultrafiltered into a urea-borate buffer to which is then added 0.2 ~.M to 1 mM copper sulfate, preferably 0.2 to 20 ~,M, after which folding occurs immediately.
More than one MHC:peptide complex may be expressed in a single prokaryotic cell by placing multiple transcriptional cassettes in a single expression vector, or by utilizing different selectable markers for each of the expression vectors which are employed in the cloning strategy.
A second approach for expressing the MHC:peptide complexes of the invention is to cause the polypeptides to be secreted from the cell, either into the periplasm or into the extracellular medium. The DNA sequence encoding the MHC
polypeptide is linked to a cleavable signal peptide sequence. The signal sequence directs translocation of the MHC:peptide complex through the cell membrane. An example of a suitable vector for use in E. coli that contains a promoter-signal sequence unit is pTA1529, which has the E. coli phoA promoter and signal sequence see, e.g., Sambrook et al., supra; Oka et al., Proc. Natl. Acad. Sci. USA 82:7212-16, 1985;
Talinadge et al., Proc. Natl. Acad. Sci. USA 77:39892, 1980; Takahara et al., J. Biol. Chem.
260: 2670-74, 1985). Once again, multiple polypeptides can be expressed in a single cell for periplasmic association. Eukaryotic signal sequences are also well known to those of skill in the art, and cause the MHC:peptide complexes of the invention to be secreted into the extracellular medium.
The MHC:peptide complexes of the invention can also be produced as fusion proteins. This approach often results in high yields, because normal prokaryotic control sequences direct transcription and translation. In E. coli, lacZ
fusions are often used to express heterologous proteins. Suitable vectors are readily available, such as the pUR, pEX, and pMR100 series (see, e.g., Sambrook et al., supra). For certain applications, it may be desirable to cleave the non-MHC amino acids from the fusion protein after purification. This can be accomplished by any of several methods known in the art, including cleavage by cyanogen bromide, a protease, or by Factor X, (see, e.g., Sambrook et al., supra.; Goeddel et al., Proc. Natl. Acad. Sci. USA 76:106-10, 1979;
Nagai et al., Nature 309:810-12, 1984; Sung et al., Proc. Natl. Acad. Sci. USA
83:561-65, 1986). Cleavage sites can be engineered into the gene for the fusion protein at the desired point of cleavage.
Foreign genes, such as single chain MHC class II molecule:peptide complexes, can be expressed in E. coli as fusions with binding partners, such as glutathione-S-transferase (GST), maltose binding protein, or thioredoxin.
These binding partners are highly translated and can be used to overcome inefficient initiation of translation of eukaryotic messages in E. coli. Fusion to such binding partner can result in high-level expression, and the binding partner is easily purified and then excised from the protein of interest. Such expression systems are available from numerous sources, such as Invitrogen Inc. (San Diego, CA) and Pharmacia LKB Biotechnology Inc.
(Piscataway, NJ).
A method for obtaining recombinant proteins from E. coli which maintains the integrity of their N-termini has been described by Miller et al.
Biotechnology 7:698-704 (1989). In this system, the gene of interest is produced as a C-terminal fusion to the first 76 residues of the yeast ubiquitin gene containing a peptidase cleavage site.
Cleavage at the junction of the two moieties results in production of a protein having an intact authentic N-terminal reside.
The vectors containing the nucleic acids that code for the single chain MHC class II molecule:peptide complexes are transformed into prokaryotic host cells for expression. "Transformation" refers to the introduction of vectors containing the nucleic acids of interest directly into host cells by well known methods. The particular procedure used to introduce the genetic material into the host cell for expression of the single chain MHC class II molecule:peptide complex is not particularly critical. Any of the well known procedures for introducing foreign nucleotide sequences into host cells may be used. It is only necessary that the, particular host cell utilized be capable of expressing the gene.
Transformation methods, which vary depending on the type of the prokaryotic host cell, include electroporation; transfection employing calcium chloride, rubidium chloride calcium phosphate, or other substances; microprojectile bombardment;
infection (where the vector is an infectious agent) ; and other methods. See, generally, Sambrook et al, supra, and Ausubel et al., (eds.) Current Protocols in Molecular Biology, John Wiley and Sons, Inc., NY, 1987. Reference to cells into which the nucleic acids described above have been introduced is meant to also include the progeny of such cells.
Transformed prokaryotic cells that contain expression vectors for single chain MIiC class II molecule:peptide complexes are also included in the invention.
After standard transfection or transformation methods are used to produce prokaryotic cell lines that express large quantities of the single chain MHC
class II
molecule:peptide complex polypeptide, the polypeptide is then purified using standard techniques. See, e.g., Colley et al., J. Chem. 64:17619-22, 1989; and Methods in Enzymology, "Guide to Protein Purification", Deutscher, ed., Vol. 182 (1990).
The recombinant cells are grown and the single chain MHC class II molecule:peptide complex is expressed. The purification protocol will depend upon whether single chain MHC class II molecule:peptide complex is expressed intracellularly, into the periplasm, or secreted from the cell. For intracellular expression, the cells are harvested, lysed, and the polypeptide is recovered from the cell lysate (Sambrook et al., supra).
Periplasmic MHC
polypeptide is released from the periplasm by standard techniques (Sambrook et al., supYa). If the MHC polypeptide is secreted from the cells, the culture medium is harvested for purification of the secreted protein. The medium is typically clarified by centrifugation or filtration to remove cells and cell debris.
The MHC polypeptides can be concentrated by adsorption to any suitable 5 resin (such as, for example, CDP-Sepharose, Asialoprothrombin-Sepharose 4B, or Q
Sepharose), or by use of ammonium sulfate fractionation, polyethylene glycol precipitation, or by ultrafiltration. Other means known in the art may be equally suitable.
Further purification of the MHC polypeptides can be accomplished by standard techniques, for example, affinity chromatography, ion exchange 10 chromatography, sizing chromatography, reverse phase HPLC, or other protein purification techniques used to obtain homogeneity. The purified proteins are then used to produce pharmaceutical compositions.
For secretion of a polypeptide or protein of interest, recombinant nucleic acid constructs of the invention may include sequences that encode signal sequences or 15 other sequences that direct secretion. Secretory signal sequences, also called leader sequences, prepro sequences and/or pre sequences, are amino acid sequences that play a role in secretion of mature polypeptides or proteins from a cell. Such sequences are characterized by a core of hydrophobic amino acids and are typically (but not exclusively) found at the amino termini of newly synthesized proteins. The secretory 20 signal sequence may be that of the protein of interest, or may be derived from another secreted protein (e.g., t-PA, a preferred mammalian secretory leader) or synthesized de novo. The secretory signal sequence is joined to the DNA sequence encoding a protein of the present invention in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the polypeptide of interest, 25 although certain signal sequences may be positioned elsewhere in the DNA
sequence of interest (see, e.g., Welch et al., U.S. Patent No. 5,037,743; Holland et al., U.S. Patent No.
5,143,30). Very often the secretory peptide is cleaved from the mature protein during secretion. Such secretory peptides contain processing sites that allow cleavage of the secretory peptide from the mature protein as it passes through the secretory pathway. An 30 example of such a processing site is a dibasic cleavage site, such as that recognized by the Saccharomyces cerevisiae KEX2 gene or a Lys-Arg processing site. Processing sites may be encoded within the secretory peptide or may be added to the peptide by, for example, in vitro mutagenesis.
Secretory signals include the a factor signal sequence (prepro sequence:
Kurjan & Herskowitz, Cell 3:933-943, 1982; Kurjan et al., U.S. Patent No.
4,546,082;
Brake, EP 116, 201), the PHOS signal sequence (Beck et al., WO 86/00637) , the BART
secretory signal sequence (MacKay et al., U.S. Patent No. 4,613,572; MacKay, WO
87/002670), the SUC2 signal sequence (Carlsen et al., Molecular and Cellular Biology 3:
439-447 , 1983) , the a-1-antitrypsin signal sequence (Kurachi et al., Proc.
Natl. Acad. Sci.
USA 78: 6826-6830, 1981) , the a-2 plasmin inhibitor signal sequence (Tone et al., J.
Biochem. (Tokyo) 102: 1033-1042, 1987) and the tissue plasminogen activator signal sequence (Pennica et al., Nature 301: 214-221, 1983). Alternately, a secretory signal sequence may be synthesized according to the rules established, for example, by von Heinje (European Journal of Biochemistry 133: 17-21, 1983; Journal of Molecular Biology 184: 99-105, 1985; Nucleic Acids Research 14: 4683-4690; 1986).
Another signal sequence is the synthetic signal LaC212 spx (1-47). ERLE described in WO
90/10075.
Secretory signal sequences may be used singly or may be combined. For example, a first secretory signal sequence may be used in combination with a sequence encoding the third domain of burner (described in U.S. Patent No. 5,037,243, which is incorporated by reference herein in its entirety). The third domain of barrier may be positioned in proper reading frame 3' of the DNA segment of interest or 5' to the DNA
segment and in proper reading frame with both the secretory signal sequence and a DNA
segment of interest.
The choice of suitable promoters, terminators and secretory signals for all expression systems, is well within the level of ordinary skill in the art.
Methods for expressing cloned genes in Saccharomyces cerevisiae are generally known in the art (see, "Gene Expression Technology," Methods in Enzymology, Vol. 185, Goeddel (ed.), Academic Press, San Diego, CA, 1990 and "Guide to Yeast Genetics and Molecular Biology, "Methods in Enzymology, Guthrie and Fink (eds.), Academic Press, San Diego, CA, 1991; which are incorporated herein by reference). Proteins of the present invention can also be expressed in filamentous fungi, for example, strains of the fungi Aspergillus (McKnight et al., U.S. Patent No. 4,935,349, which is incorporated herein by reference).
Expression of cloned genes in cultured mammalian cells and in E. coli, for example, is discussed in detail in Sambrook et al. (Molecular Cloning: A Laboratory Manual.
Second Edition, Cold Spring Harbor, NY, 1989; which is incorporated herein by reference). As would be evident to one skilled in the art, one could express the proteins of the instant invention in other host cells such as avian, insect and plant cells using regulatory sequences, vectors and methods well established in the literature.
In yeast, suitable yeast vectors for use in the present invention include YRp7 (Struhl et al., Proc. Natl. Acad. Sci. USA 76:1035-1039, 1978), YEpl3 (Broach et al., Gene 8: 121-133, 1979), POT vectors (Kawasaki et al., U.S. Patent No.
4,931,373, which is incorporated by reference herein), pJDB249 and pJDB219 (Beggs, Nature 275:104-108, 1978) and derivatives thereof. Preferred promoters for use in yeast include promoters from yeast glycolytic genes (Hitzeman et al., J. Biol. Chem. 255:
12073-12080, 1980; Alber and Kawasaki, J. Mol. Appl. Genet. 1: 419-434, 1982; Kawasaki, U.S. Patent No. 4,599,311) or alcohol dehydrogenase genes (Young et al., in Genetic Engineering of Microorganisms for Chemicals, Hollaender et al., (eds.), p. 355, 1982;
Ammerer, Meth.
Enzymol. 101: 192-201, 1983). Other promoters are the TPIl promoter (Kawasaki, U.S.
Patent No. 4,599,311, 1986) and the ADH2-4° promoter (Russell et al., Nature 304: 652-654, 1983; Irani and Kilgore, U.S. Patent Application Serial No. 07/784,653, CA
1,304,020 and EP 284 044, which are incorporated herein by reference). The expression units may also include a transcriptional terminator such as the TPI1 terminator (Alber and Kawasaki, ibid.).
Yeast cells, particularly cells of the genus Pichia or Saccharomyces, are a preferred host for use in producing compound of the current invention. Methods for transforming yeast cells with exogenous DNA and producing recombinant proteins therefrom are disclosed by, for example, Kawasaki, U.S. Patent No. 4,599,311;
Kawasaki et al., U.S. Patent No. 4,931,373; Brake, U.S. Patent No. 4,870,008; Welch et al., U.S.
Patent No. 5,037,743; and Murray et al., U.S. Patent No. 4,845,075, which are incorporated herein by reference. Transformed cells are selected by phenotype determined by a selectable marker, commonly drug resistance or the ability to grow in the absence of a particular nutrient (e.g., leucine) . A preferred vector system for use in yeast is the POT1 vector system disclosed by Kawasaki et al. (IJ.S. Patent No.
4,931,373), which allows transformed cells to be selected by growth in glucose-containing media. A
preferred secretory signal sequence for use in yeast is that of the S.
cerevisiae MFal gene (Brake, ibid.; Kurjan et al., U.S. Patent No. 4,546,082) . Suitable promoters and terminators for use in yeast include those from glycolytic enzyme genes (see, e.g., Kawasaki, U.S. Patent No. 4,599,311; Kingsman et al., U.S. Patent No.
4,615,974; and Bitter, U.S. Patent No. 4,977,092, which are incorporated herein by reference) and alcohol dehydrogenase genes. See also U.S. Patent Nos. 4,990,446; 5,063,154;
5,139,936 and 4,661,454, which are incorporated herein by reference. Transformation systems for other yeasts, including Hahsenula polymorpha, Schizosaccharomyces pombe, Kluyveromyces lactis, Kluyveromyces fragilis, Ustilago maydis, Pichia pastoris, Pichia methanolica, Pichia guillermohdii and. Candida maltosa are known in the art.
See, for example, Gleeson et al., J. Geh. Microbiol. 132:3459-65, 1986; Cregg, U.S.
Patent No.
4,882,279; and Stroman et al., U.S. Patent No. 4,879,231.
Other fungal cells are also suitable as host cells. For example, Aspergillus cells may be utilized according to the methods of McKnight et al., U.S. Patent No.
4,935,349, which is incorporated herein by reference. Methods for transforming Acremonium chrysogenum are disclosed by Sumino et al., U.S. Patent No.
5,162,228, which is incorporated herein by reference. Methods for transforming Neurospora are disclosed by Lambowitz, U.S. Patent No. 4,486,533, which is incorporated herein by reference.
Host cells containing DNA constructs of the present invention are then cultured to produce the heterologous proteins. The cells are cultured according to standard methods in a culture medium containing nutrients required for growth of the particular host cells. A variety of suitable media are known in the art and generally include a carbon source, a nitrogen source, essential amino acids, vitamins, minerals and growth factors. The growth medium will generally select for cells containing the DNA
construct by, for example, drug selection or deficiency in an essential nutrient which is complemented by a selectable marker on the DNA construct or co-transfected with the DNA construct.
Yeast cells, for example, are preferably cultured in a chemically defined medium, comprising a non-amino acid nitrogen source, inorganic salts, vitamins and essential amino acid supplements. The pH of the medium is preferably maintained at a pH greater than 2 and less than 8, preferably at pH 6.5. Methods for maintaining a stable pH include buffering and constant pH control, preferably through the addition of sodium hydroxide. Preferred buffering agents include succinic acid and Bis-Tris (Sigma Chemical Co., St. Louis, MO). Yeast cells having a defect in a gene required for asparagine-linked glycosylation are preferably grown in a medium containing an osmotic stabilizer. A preferred osmotic stabilizer is sorbitol supplemented into the medium at a concentration between 0.1 M and 1.5 M, preferably at 0.5 M or 1.0 M. Cultured mammalian cells are generally cultured in commercially available serum-containing or serum-free media. Selection of a medium appropriate for the particular host cell used is within the level of ordinary skill in the art.
Methods for introducing exogenous DNA into mammalian host cells include calcium phosphate-mediated transfection (Wigler et al., Cell 14:725, 1978;
Corsaro and Pearson, Somatic Cell Genetics 7:603, 1981; Graham and Van der Eb, Virology 52:456, 1973) , electroporation (Neumann et al., EMBO J. 1:841-45, 1982) and DEAF-dextran mediated 'transfection (Ausubel et al., (eds), Current Protocols in Molecular Biology, John Wiley and Sons, Inc., NY, 1987), which are incorporated herein by reference. Cationic Iipid transfection using commercially available reagents, including the Boehringer Mannheim TRANSFECTION-REAGENT (N-[1- (2,3-dioleoyloxy)propyl] -N,N,N-trimethyl ammoniummethylsulfate; Boehringer Mannheim, Indianapolis, III or LIPOFECTIN reagent (N-[l-(2,3-dioleoyloxy)propyl~-N,N,N-trimethylammonium chloride and dioleoyl phosphatidylethanolamine; GIBCO-BRL, Gaithersburg, MD) using the manufacturer-supplied directions, may also be used. A
preferred mammalian expression plasmid is Zem229R (deposited under the terms of the Budapest Treaty with American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD on September 28, 1993 as an E. coli HB 101 transformant and assigned Accession Number 69447) . The production of recombinant proteins in cultured mammalian cells is disclosed, for example, by Levinson et al., U.S. Patent No.
4,713,339;
Hagen et al., U.S. Patent No. 4,784,950; Palmiter et al., U.S. Patent No.
4,579,821; and Ringold, U.S. Patent No. 4,656,134, which are incorporated herein by reference.
Preferred cultured mammalian cells include the COS-1 (ATCC No. CRL 1650), COS-(ATCC No. CRL 1651), BHK (ATCC No. CRL 1632), BHK 570 (ATCC No. CRL
10314), DG44, and 293 (ATCC No. CRL 1573; Graham et al., J. Gen. Virol. 36:59-72, 1977) cell lines. Additional suitable cell lines are known in the art and available from public depositories such as the American Type Culture Collection, Rockville, Maryland.
In general, strong transcription promoters are preferred, such as promoters from SV-40 or cytomegalovirus. See, e.g., U.S. Patent No. 4,956,288. Other suitable promoters include those from metallothionein genes (U.S. Patents Nos. 4,579,821 and 4,601,978, which are 5 incorporated herein by reference) and the adenovirus major late promoter.
Drug selection is generally used to select for cultured mammalian cells into which foreign DNA has been inserted. Such cells are commonly referred to as "transfectants." Cells that have been cultured in the presence of the selective agent and are able to pass the gene of interest to their progeny are refeiTed to as "stable 10~ transfectants." A preferred selectable marker is a gene encoding resistance to the antibiotic neomycin. Selection is carried out in the presence of a neomycin-type drug, such as G-418 or the like. Selection systems may also be used to increase the expression level of the gene of interest, a process referred to as "amplification."
Amplification is carried out by culturing transfectants in the presence of a low level of the selective agent 15 and then increasing the amount of selective agent to select for cells that produce high levels of the products of the introduced genes. A preferred amplifiable selectable marker is dihydrofolate reductase, which confers resistance to methotrexate. Other drug resistance genes (e.g. hygromycin resistance, mufti-drug resistance, puromycin acetyltransferase) can also be used.
20 The soluble, fused MHC:peptide complexes of the present invention can be purified by first isolating the polypeptides from the cells followed by conventional purification methods, such as by ion-exchange and partition chromatography as described by, for example, Coy et al. (Peptides Structure and Function, Pierce Chemical Company, Rockford, IL, pp 369-72, 1983) or by reverse-phase.chromatography as described, for 25 example, by Andreu and Mernfield (Eur. J. Biochem. 164: 585-90, 1987), or by HPLC as described, for example, by Kofod et al. (Int. J. Peptide and Protein Res. 32.:
436-40, 1988). Additional purification can be achieved by additional conventional purification means, such as liquid chromatography, gradient centrifugation, and gel electrophoresis, among others. Methods of protein purification are known in the art (see generally, 30 Scopes, R., Protein Purification, Springer-Verlag, NY, 1982, which is incorporated by reference herein) and can be applied to the purification of the recombinant polypeptides described herein. Single chain MHC class II molecule:peptide complexes of at least about 50% purity are preferred, at least about 70-~0% purity more preferred, and about 95-99% or more purity most preferred, particularly for pharmaceutical uses.
Once purified, either partially or to homogeneity, as desired, the single chain MHC
class II
molecule:peptide complexes may then be used diagnostically or therapeutically, as further described below.
Methods of using single chain MHC class II molecule:peptide complexes The single chain MHC class II molecule:peptide complexes of the present invention may be used within methods for down-regulating parts of the immune system that are reactive in autoimmune diseases. The single chain MHC class II
molecule:peptide complexes of the present invention are contemplated to be advantageous for use as immunotherapeutics to induce immunological tolerance or nonresponsiveness (anergy) in patients predisposed to mount or already mounting an immune response those particular autoantigens. A patient having or predisposed to a particular autoimmune disease is identified and MHC type is determined by methods known in the art. The patient's T cells can be examined in vitro to determine autoantigenic peptides) recognized by the patient's autoreactive T cells using complexes and methods described herein. The patient can then be treated with complexes of the invention. Such methods will generally include administering single chain MHC
class II
molecule:peptide complex in an amount sufficient to lengthen the time period before onset of the autoimmune disease and/or to ameliorate or prevent that disease.
Single chain MHC class II molecule:peptide complexes of the present invention axe therefore contemplated to be advantageous for use in both therapeutic and diagnostic applications related to auto immune diseases.
Kits can also be supplied for therapeutic or diagnostic uses. Thus, the subject composition of the present invention may be provided, usually in a lyophilized form, in a container. The single chain MHC class II molecule:peptide complex is included in the kits with instructions for use, and optionally with buffers, stabilizers, biocides, and inert proteins. Generally, these optional materials will be present at less than about 5% by weight, based on the amount of single chain MHC class II
molecule:peptide complex, and will usually be present in a total amount of at least about 0.001 % by weight, based on the single chain MHC class II molecule:peptide complex concentration. It may be desirable to include an inert extender or excipient to dilute the active ingredients, where the excipient may be present in from about 1 to 99%
weight of the total composition.
Within one aspect of the present invention, single chain MHC class II
molecule:peptide complexes are utilized to prepare antibodies for diagnostic or therapeutic uses. As used herein, the term "antibodies" includes polyclonal antibodies, monoclonal antibodies, antigen-binding fragments thereof such as F(ab')2 and Fab fragments, as well as recombinantly produced binding partners. These binding partners incorporate the variable or CDR regions from a gene which encodes a specifically binding antibody. The affinity of a monoclonal antibody or binding partner may be readily determined by one of ordinary skill in the art (see, Scatchard, Ann.
lVYAcad. Sci.
51: 660-72, 1949) Methods for preparing polyclonal and monoclonal antibodies have been well described in the literature (see, for example, Sambrook et al., Molecular Cloning: A
Laboratory Manual, Second Edition, Cold Spring Harbor, NY, 1989; and Hurrell, J. G.
R., Ed., Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC
Press, Ind., Boca Raton, FL, 1982, which is incorporated herein by reference) . As would be evident to one of ordinary skill in the art, polyclonal antibodies may be generated from a variety of warm-blooded animals, such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice, or rats, for example. The immunogenicity of the single chain MHC class II
molecule:peptide complexes may be increased through the use of an adjuvant, such as Freund's complete or incomplete adjuvant. A variety of assays known to those skilled in the art may be utilized to detect antibodies which specifically bind to a single chain MHC
class II molecule:peptide complex. Exemplary assays are described in detail in Antibodies: A Laboratory Manual, Harlow and Lane (Eds.), Cold Spring Harbor Laboratory Press, 1988. Representative examples of such assays include:
concurrent immunoelectrophoresis, radio-immunoassays, radio-immunoprecipitations, enzyme-linked immuno-sorbent assays, dot blot assays, inhibition or competition assays, and sandwich assays.
Additional techniques for the preparation of monoclonal antibodies may be utilized to construct and express recombinant monoclonal antibodies. Briefly, mRNA is isolated from a B cell population and used to create heavy and light chain immunoglobulin cDNA expression libraries in a suitable vector such as the 7~,IMMUNOZAP(H) and 7~.IMMUNOZAP(L) vectors, which may be obtained from Stratagene Cloning Systems (La Jolla, CA). These vectors are then screened individually or are co-expressed to form Fab fragments or antibodies (Ruse et al., Science 81, 1989; Sastry et al., Proc. Natl. Acad. Sci. USA 86: 5728-32, 1989).
Positive plaques are subsequently converted to a non-lytic plasmid which allows high level expression of monoclonal antibody fragments in E. coli.
Antibodies of the present invention may be produced by immunizing an animal selected from a wide variety of warm-blooded animals, such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice, and rats, with a recombinant single chain MHC class II molecule:peptide complex. Serum from such animals are a source of polyclonal antibodies. Alternatively antibody producing cells obtained from the immunized animals are immortalized and screened. As the generation of human monoclonal antibodies to a human antigen, such as a single chain MHC class II
molecule:peptide complex, may be difficult with conventional immortalization techniques, it may be desirable to first make non-human antibodies. Using recombinant DNA techniques, the antigen binding regions of the non-human antibody is transferred to the corresponding site of a human antibody coding region to produce a substantially human antibody molecules. Such methods are generally known in the art and are described in, for example, U.S. Patent No. 4,816,397, and EP publications 173,494 and 239,400, which are incorporated herein by reference.
In another aspect of the invention, the single chain MHC class II
molecule:peptide complexes can be used to clone T cells which have specific receptors for the single chain MHC class II molecule:peptide complex. Once the single chain MHC
class II molecule:peptide complex-specific T cells are isolated and cloned using techniques generally available to the skilled artisan, the T cells or membrane preparations thereof can be used to immunize animals to produce antibodies to the single chain MHC
class II molecule:peptide complex receptors on T cells. The antibodies can be polyclonal or monoclonal. If polyclonal, the antibodies can be marine, lagomorph, equine, ovine, or from a variety of other mammals. Monoclonal antibodies will typically be marine in origin, produced according to known techniques, or human, as described above, or combinations thereof, as in chimeric or humanized antibodies. The anti- single chain MHC class II molecule:peptide complex receptor antibodies thus obtained can then be administered to patients to reduce or eliminate T cell subpopulations that display such receptor. This T-cell population recognizes and participates in the immunological destruction of cells bearing the autoantigenic peptide in an individual predisposed to or already suffering from a disease, such as an autoimmune disease related to the autoantigenic peptide.
The coupling of antibodies to solid supports and their use in purification of proteins is well known in the literature (see, for example, Methods in Molecular Biology.
Yol. 1, Walker (Ed.), Humana Press, New Jersey, 1984, which is incorporated by reference herein in its entirety). Antibodies of the present invention may be used as a marker reagent to detect the presence of MHC heterodimer:peptide complexes on cells or in solution. Such antibodies are also useful for Western analysis or irnmunoblotting, particularly of purified cell-secreted material. Polyclonal, affinity purified polyclonal, monoclonal and single chain antibodies are suitable for use in this regard. In addition, proteolytic and recombinant fragments and epitope binding domains can be used herein.
Chimeric, humanized, veneered, CDR-replaced, reshaped or other recombinant whole or partial antibodies are also suitable.
Pharmaceutical compositions Pharmaceutically acceptable carriers are determined in part by the particular composition being administered (e.g., nucleic acid, protein) as by the particular method used to administer the composition. Accordingly, there are a wide variety of suitable formulations of pharmaceutical compositions of the present invention (see, e.g., Remington's Pharmaceutical Sciences (17th ed., 1989). Administration can be in any convenient manner, e.g., by injection, oral administration, inhalation, or transdermal application.
Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the packaged nucleic acid or polypeptide suspended in diluents, such as water, saline or PEG 400; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin; (c) suspensions in an appropriate liquid; and (d) suitable emulsions.
Tablet forms can include one or more of lactose, sucrose, mannitol, sorbitol, calcium phosphates, corn starch, potato starch, microcrystalline cellulose, gelatin, colloidal silicon dioxide, talc, magnesium stearate, stearic acid, and other excipients, colorants, fillers, binders, diluents, buffering agents, moistening agents, preservatives, flavoring agents, dyes, disintegrating agents, and pharmaceutically compatible caxriers. Lozenge forms can 5 comprise the active ingredient in a flavor, e.g., sucrose, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, Garners known in the art.
The compound of choice, alone or in combination with other suitable 10 components, can be made into aerosol formulations (i.e., they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
Formulations suitable for parenteral administration, such as, for example by intraarticular (in the joints), intravenous, intramuscular, intradermal, intraperitoneal, 15 and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. In the practice of this invention, compositions can 20 be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or iritrathecally. Parenteral administration and intravenous administration are the preferred methods of administration. The formulations of commends can be presented in unit-dose or mufti-dose sealed containers, such as ampules and vials.
Injection solutions and suspensions can be prepared from sterile powders, 25 granules, and tablets of the kind previously described. Cells transduced by nucleic acids for ex vivo therapy can also be administered intravenously or parenterally as described above.
The polypeptides of the invention are administered prophylactically or to an individual already suffering from the disease. The compositions are administered to a 30 patient in an amount sufficient to elicit an effective immune response. An amount adequate to accomplish this is defined as "therapeutically effective dose" or "immunogenically effective dose." Amounts effective for this use will depend on, e.g., the peptide composition, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician, but generally range for the initial immunization dose (that is for therapeutic or prophylactic administration) from about 0.01 mg to about 50 mg per 70 kilogram patient, more commonly from about 0.5-1 mg to about 10-15 mg per 70 kg of body weight. Boosting dosages are typically from about 0.01 mg to about 50 mg of peptide, more commonly about 0.5-1 mg to about 10-15 mg, using a boosting regimen over weeks to months depending upon the patient's response and condition. A
suitable protocol would include injection at time 0, 2, 6, 8, 10 and 14 weeks, followed by booster injections at 24 and 28 weeks. Booster injections can be from one, two, three, four, five or more. Initial and booster injection amounts and timing are determined based on the judgment of the physician and the antigen being administered. In one embodiment, the initial and booster dose is 1.3 mg, 4 mg, or 13 mg, administered via intramuscular injection, with at least one and up to 3 booster injections at 8 week intervals, or at least one and up to 4 booster injections at 6 week intervals.
The therapeutic methods of the present invention may involve oral tolerance (Weiner et al., Nature 376: 177-80, 1995), or intravenous tolerance, for example. Tolerance can be induced in mammals, although conditions for inducing such tolerance will vary according to a variety of factors. To induce immunological tolerance in an adult susceptible to or already suffering from an autoantigen-related disease such as IDDM, the precise amounts and frequency of administration will also vary. For instance for adults about 20-80 pg/kg can be administered by a variety of routes, such as parenterally, orally, by aerosols, intradermal injection, and the like. For neonates, tolerance can be induced by parenteral injection or more conveniently by oral administration in an appropriate formulation. The precise amount administrated, and the mode and frequency of dosages, will vary.
The single chain MHC class II molecule:peptide complexes will typically be more tolerogenic when administered in a soluble form, rather than in an aggregated or particulate form. Persistence of a single chain MHC class II molecule:peptide complex of the invention is generally needed to maintain tolerance in an adult, and thus may require more frequent administration of the complex, or its administration in a form which extends the half life of the complex. See for example, Sun et al., Proc. Natl.
Acad. Sci.
USA 91: 10795-99, 1994.
Within another aspect of the invention, a pharmaceutical composition is provided which comprises a single chain MHC class II molecule:peptide complex of the present invention contained in a pharmaceutically acceptable carrier or vehicle for parenteral, topical, oral, or local administration, such as by aerosol or transdermally, for prophylactic and/or therapeutic treatment, according to conventional methods.
The composition may typically be in a form suited for systemic injection or infusion and may, as such, be formulated with sterile water or an isotonic saline or glucose solution.
Formulations may further include one or more diluents, fillers, emulsifiers, preservatives, buffers, excipients, and the like, and~may be provided in such forms as liquids, powders, emulsions, suppositories, liposomes, transdermal patches and tablets, for example.
Pharmaceutical compositions of the present invention are administered at daily to weekly intervals. An "effective amount" of such a pharmaceutical composition is an amount that provides a clinically significant decrease in a deleterious T
cell-mediated immune response to an autoantigen, for example, those associated with IDDM, or provides other pharmacologically beneficial effects. Such amounts will depend, in part, on the particular condition to be treated, age, weight, and general health of the patient, and other factors evident to those skilled in the art. Preferably the amount of the single chain MHC class II molecule:peptide complex administered will be within the range of 20-80 pg/kg. Compounds having significantly enhanced half lives may be administered at lower doses or less frequently.
Ad~uvants An immunostimulant refers to essentially any substance that enhances or potentiates an immune response (antibody andlor cell-mediated) to an exogenous antigen.
One preferred type of immunostimulant comprises an adjuvant. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Certain adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway; NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc;
an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres;
monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.
The compositions may also include a Mycobacterium species CWS
adjuvant, as described above. The effectiveness of an adjuvant may be determined by measuring the amount of antibodies directed against the immunogenic peptide.
Certain adjuvants for eliciting a predominantly Thl-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A, together with an aluminum salt. MPL~' adjuvants are available from Corixa Corporation (Seattle, WA; see, for example, US Patent Nos.
4,436,727;
4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Thl response.
Such oligonucleotides are well known and are described, for example, in WO
96/02555, WO
99/33488 and U.S. Patent Nos. 6,008,200 and 5,856,462. Immunostimulatory DNA
sequences are also described, for example, by Sato et al., Science 273:352, 1996.
Another preferred adjuvant comprises a saponin, such as Quil A, or derivatives thereof, including QS2I and QS7 (Aquila Biopharmaceuticals Inc., Framingham, MA);
Escin;
Digitonin; or Gypsophila or Chenopodium quinoa saponins . Other preferred formulations include~more than one saponin in the adjuvant combinations of the present invention, for example combinations of at least two of the following group comprising QS21, QS7, Quil A, ~i-escin, or digitonin.
Alternatively the saponin formulations may be combined with vaccine vehicles composed of chitosan or other polycationic polymers, polylactide and polylactide-co-glycolide particles, poly-N-acetyl glucosamine-based polymer matrix, particles composed of polysaccharides or chemically modified polysaccharides, liposomes and lipid-based particles, particles composed of glycerol monoesters, etc. The saponins may also be formulated in the presence of cholesterol to form particulate structures such as liposomes or ISCOMs. Furthermore, the saponins may be formulated together with a polyoxyethylene ether or ester, in either a non-particulate solution or suspension, or in a particulate structure such as a paucilamelar liposorne or ISCOM. The saponins may also be formulated with excipients such as CarbopolR to increase viscosity, or may be formulated in a dry powder form with a powder excipient such as lactose.
In one embodiment, the adjuvant system includes the combination of a monophosphoryl lipid A and a saponin derivative, such as the combination of QS21 and 3D-MPL~ adjuvant, as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739.
Other formulations comprise an oil-in-water emulsion and tocopherol. Another adjuvant formulation employs QS21, 3D-MPL~ adjuvant and tocopherol in an oil-in-water emulsion is described in WO 95/17210.
Another enhanced adjuvant system involves the combination of a CpG-containing oligonucleotide and a saponin derivative particularly the combination of CpG
and QS21 as disclosed in WO 00/09159. Preferably the formulation additionally comprises an oil in water emulsion and tocopherol.
Additional illustrative adjuvants for use in the pharmaceutical compositions of the invention include Montanide ISA 720 (Seppic, France), SAF
(Chiron, California, United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (e.g., SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Enhanzyn~) (Corixa, Hamilton, MT), RC-529 (Corixa, Hamilton, MT) and other aminoalkyl glucosaminide 4-phosphates (AGPs), such as those described in pending U.S. Patent Application Serial Nos. 08/853,826 and 091074,720, the disclosures of which axe incorporated herein by reference in their entireties, and polyoxyethylene ether adjuvants such as those described in WO 99/52549A1.
Other preferred adjuvants include adjuvant molecules of the general formula (I): HO(CH2CHa0)n-A-R, wherein, n is 1-50, A is a bond or -C(O)-, R is Ci-so alkyl or Phenyl Ci-so amyl.
One embodiment of the present invention consists of a vaccine formulation comprising a polyoxyethylene ether of general formula (I), wherein h is between I and 50, preferably 4-24, most preferably 9; the R component is C1_so, preferably C4-C2o alkyl and most preferably C12 alkyl, and A is a bond. The concentration of the polyoxyethylene ethers should be in the range 0.1-20%, preferably from 0.1-10%, and most preferably in the range 0.1-1%. Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether, polyoxyethylene-9-steoryl ether, polyoxyethylene 8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether. Polyoxyethylene ethers such as polyoxyethylene lauryl ether are described in the Merck index (12th edition: entry 7717). These adjuvant 5 molecules are described in WO 99/52549.
The polyoxyethylene ether according to the general formula (I) above may, if desired, be combined with another adjuvant. For example, a preferred adjuvant combination is preferably with CpG as described in the pending UK patent application GB 9820956.2.
Liposome- Nanocapsule- and Microparticle-Mediated Delivery In certain embodiments, the inventors contemplate the use of liposomes, nanocapsules, microparticles, microspheres, lipid particles, vesicles, and the like, for the introduction of the compositions of the present invention into the subjects.
In particular, the compositions of the present invention may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle or the like.
Such formulations may be preferred for the introduction of pharmaceutically-acceptable formulations of the compositions disclosed herein.
The formation and use of liposomes is generally known to those of skill in the art (see, for example,.Couvreur et al., 1977; Couvreur, 1988; Lasic, 1998; which describes the use of liposomes and nanocapsules in the targeted antibiotic therapy for intracellular bacterial infections and diseases). Recently, liposomes were developed with improved serum stability and circulation half times (Gabizon & Papahadjopoulos, 1988; Allen and Choun, 1987; U. S. Patent 5,741,516, specifically incorporated herein by reference in its entirety).
Further, various methods of liposome and liposome-like preparations as potential drug carriers have been reviewed (Takakura, 1998; Chandran et al., 1997; Margalit, 1995; U.
S. Patent 5,567,434; U. S. Patent 5,552,157; U. S. Patent 5,565,213; U. S.
Patent 5,738,868 and U. S. Patent 5,795,587, each specifically incorporated herein by reference in its entirety).
Liposomes have been used effectively to introduce genes, drugs (Heath &
Martin, 1986; Heath et al., 1986; Balazsovits et al., 1989; Fresta & Puglisi, 1996), radiotherapeutic agents (Pikul et al., 1987), enzymes (Imaizumi et al., 1990a;
Imaizumi et al., 1990b), viruses (Falter & Baltimore, 1984), transcription factors and allosteric effectors (Nicolau & Gersonde, 1979) into a variety of cultured cell lines and animals. In addition, several successful clinical trials examining the effectiveness of liposome-mediated drug delivery have been completed (Lopez-Berestein et al., 1985a;
1985b;
Coupe, 1988; Sculier et al., 1988). Furthermore, several studies suggest that the use of liposomes is not associated with autoimmune responses, toxicity or gonadal localization after systemic delivery (Mori & Fukatsu, 1992).
Liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs). MLVs generally have diameters of from 25 run to 4 ~,m.
Sonication of MLVs results in the formation of small unilamellar vesicles (SUVs) with diameters in the range of 200 to 500 A, containing an aqueous solution in the core.
Liposomes bear resemblance to cellular membranes and are contemplated for use in connection with the present invention as earners for the compositions. They are widely suitable as both water- and lipid-soluble substances can be entrapped, i.e., in the aqueous spaces and within the bilayer itself, respectively. It is possible that the drug-bearing liposomes may even be employed for site-specific delivery of active agents by selectively modifying the liposomal formulation.
In addition to the teachings of Couvreur et al. (1977, 1988), the following information may be utilized in generating liposomal formulations.
Phospholipids can form a variety of structures other than liposomes when dispersed in water, depending on the molar ratio of lipid to water. At low ratios the liposome is the preferred structure.
The physical characteristics of liposomes depend on pH, ionic strength and the presence of divalent cations. Liposomes can show low permeability to ionic and polar substances, but at elevated temperatures undergo a phase transition which markedly alters their permeability. The phase transition involves a change from a closely packed, ordered structure, known as the gel state, to a loosely packed, less-ordered structure, known as the fluid state. This occurs at a characteristic phase-transition temperature and results in an increase in permeability to ions, sugars and drugs.
In addition to temperature, exposure to proteins can alter the permeability of liposomes. Certain soluble proteins, such as cytochrome c, bind, deform and penetrate the bilayer, thereby causing changes in permeability. Cholesterol inhibits this penetration of proteins, apparently by packing the phospholipids more tightly. It is contemplated that the most useful liposome formations for antibiotic and inhibitor delivery will contain cholesterol.
The ability to trap solutes varies between different types of liposomes. For example, MLVs are moderately efficient at trapping solutes, but SUVs are extremely inefficient. SLTVs offer the advantage of homogeneity and reproducibility in size distribution. However, a compromise between size and trapping efficiency is offered by large unilamellar vesicles (LWs). These are prepared by ether evaporation and are three to four times more efficient at solute entrapment than MLVs.
In addition to liposome characteristics, an important determinant in entrapping compounds is the physicochemical properties of the compound itself.
Polar compounds are trapped in the aqueous spaces and nonpolar compounds bind to the lipid bilayer of the vesicle. Polar compounds are released through permeation or when the bilayer is broken, but nonpolar compounds remain affiliated with the bilayer unless it is disrupted by temperature or exposure to lipoproteins. Both types show maximum efflux rates at the phase transition temperature.
Liposomes interact with cells via four different mechanisms: endocytosis by phagocytic cells of the reticuloendothelial system such as macrophages and neutrophils; adsorption to the cell surface, either by nonspecific weak hydrophobic or electrostatic forces, or by specific interactions with cell-surface components; fusion with the plasma cell membrane by insertion of the lipid bilayer of the liposome into the plasma membrane, with simultaneous release of liposomal contents into the cytoplasm;
and by transfer of liposomal lipids to cellular or subcellular membranes, or vice versa, without any association of the liposome contents. It often is difficult to determine which mechanism is operative and more than one may operate at the same time.
The fate and disposition of intravenously injected liposomes depend on their physical properties, such as size, fluidity, and surface charge. They may persist in tissues for hours or days, depending on their composition, and half lives in the blood range from minutes to several hours. Larger liposomes, such as MLVs and LUVs, are taken up rapidly by phagocytic cells of the reticuloendothelial system, but physiology of the circulatory system restrains the exit of such large species at most sites.
They can exit only in places where large openings or pores exist in the capillary endothelium, such as the sinusoids of the liver or spleen. Thus, these organs are the predominant site of uptake.
On the other hand, SUVs show a broader tissue distribution but still are sequestered highly in the liver and spleen. In general, this in vivo behavior limits the potential targeting of liposomes to only those organs and tissues accessible to their large size.
These include the blood, liver, spleen, bone marrow, and lymphoid organs.
Targeting is generally not a limitation in terms of the present invention.
However, should specific targeting be desired, methods are available for this to be accomplished. Antibodies may be used to bind to the liposome surface and to direct the antibody and its drug contents to specific receptors located on a particular cell-type surface. Carbohydrate determinants (glycoprotein or glycolipid cell-surface components that play a role in cell-cell recognition, interaction and adhesion) may also be used as recognition sites as they have potential in directing liposomes to particular cell types.
Mostly, it is contemplated that intravenous injection of liposomal preparations would be used, but other routes of administration are also conceivable.
Alternatively, the invention provides for pharmaceutically-acceptable nanocapsule formulations of the compositions of the present invention.
Nanocapsules can generally entrap compounds in a stable and reproducible way (Henry-Michelland et al., 1987; Quintanar-Guerrero et al., 1998; Douglas et al., 1987). To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 p,m) should be designed using polymers able to be degraded in vivo. Biodegradable polyallcyl-cyanoacrylate nanoparticles that meet these requirements are contemplated for use in the present invention. Such particles may be axe easily made, as described (Couvreur et al., 1980; 1988; zur Muhlen et al., 1998; Zambaux et al. 1998; Pinto-Alphandry et al., 1995 and U. S. Patent 5,145,684, specifically incorporated herein by reference in its entirety).
All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
The following example is provided by way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of noncritical parameters that could be changed or modified to yield essentially similar results.
EXAMPLES
Example 1' Construction of DNA sequences encoding~human single chain MHC class II
_peptide complexes, HLA-DR4 molecules(C0563 and 005641.
DNA constructs encoding gp39 ~31/al human molecules were prepared from a cDNA encoding the gp39 peptide fused to the (31/a1 domains of HLA-DR4 according to standard techniques. For the production of "empty" (31/a1 DR4 molecules, a cDNA encoding the fused [31/a1 domains of HLA-DR4 was prepared using cloned a and (3 chains from DR4.
Amino acid sequence of the gp39-(31/al HLA-DR4 human single chain molecule (linkers are shown in bold) MGDTGRSFTLASSETGVGASGGGGSGGGGDTRPRFLEQVKHECH
FFNGTERVRFLDRYFYHQEEYVRFDSDVGEYRAVTELGRPDAEYWNSQKDLLEQ
KRAAVDTYCRHNYGVGESFTVQRRGGIKEEHVIIQAEFYLNPDQSGEFMFDFDG
DEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPIT
N*
aal - aa4: leader sequence aa5 - aal8: gp39 peptide aal9 - aa28: linker aa29 - aa122: HLA-DR4 (31 domain aa123 - aa124: linker aa125 - as 208: HLA-DR4 al domain Amino acid sequence of the "empty" (31/a1 HLA-DR4 human single chain molecule (linkers in bold):
MGDTRPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFDSDVGEYRAVTEL
GRPDAEYWNSQRDLLEQKR.AAVDTYCRHNYGVGESFTVQRRGGIKEEHVIIQAE
FYLNPDQSGEFMFDFDGDEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIAV
DKANLEIMTKRSNYTPITN'~
as 1- aa95: HLA-DR4 (31 domain aa96- aa97: linker aa98- aa181: HLA-DR4 al domain For the production of recombinant proteins, the bacteria (pLysS) were grown in LB (containing ampicillin (50 ~g / ml) and chloramphenicol (5 ~,g J
ml)) at 37°C until OD 600 = 0.5. IPTG was added at the final concentration of 0.5 mM final and the bacteria were further incubated for 3 hours at 37°C with shaking.
The bacteria were I O centrifuged at 4°C, 4000xg for 20 min and the pellet was frozen at -80°C. The following day, the pellet was resuspended in 40 ml of lysis buffer (50 mM Tris-HCl pH 8, 50, mM
NaCI, 2 mM EDTA, 1 protease inhibitor cocktail tablet, 1% Triton X100 and 1%
deoxycholate), and incubated for 1 hour at 4°C under continuous agitation with a magnetic stirrer. The sample was then homogenized using a French Press with a 16,000 15 psi setting, and centrifuged at 4°C, 9000g for 20 min. The pellet was then resuspended in 30 ml of lysis buffer without Triton and deoxycholate and centrifuged at 4°C, 9000 g for 20 min. The new pellet was resuspended in 10 ml of 20 mM ethanolamine/6 M urea pH
10, and eventually frozen at -80°C. The recombinant protein was then purified by FPLC
ion-exchange chromatography using Source 30Q anion-exchange media in an 20 column using a step gradient going from 1 mM to 1 M NaCI in 20 mlVl ethanolamine/6M
urea pH 10. Fractions were analyzed by SDS/PAGE and those corresponding to the proteins of interest are pooled and dialyzed against PBS 1X.
Example 2 ~ Production of additional single chain constructs 25 Additional constructs with different composition and length of the 2na linker (between (31 and al) were engineered by using standard techniques using as the template. Specifically, PCR primers were designed to replace the old sequence in 00567 with the new sequence. For example, to make 00581, the primers were designed with the following sequences (note these primers were phosphorylated at 5').
30 Primer 1:
5'pCACCAGGAGGAGAGCCGCCCACGCCGGTCTCGCTGG
Primer 2:
5'pGACCACCTGGATCTGGGGACACCCGACCACGTTTC
PCR reaction (100 ~,1) was made of the following components: 2 p,1 C0567 (80 ng) as template, 2 ~,1 each of primer 1 and primer 2 (10 p,M), 2 ~,l of dNTP
mix (20 mM each), 10 ~.l of l OX pfu buffer, and 80 ~.1 of sterile water.
After all the components were mixed, 2 ~.1 of Turbo pfu (5U total ) was added, mixed and put on PCR
machine. The PCR cycles has a pre-denaturation at 95°C for 30 sec, then 10 cycles of 95°C for 30°C, 60°C for 1 min, and 72°C for 7 min.
Then another 22 cycles of 95°C for 30°C, 65°C for 1 min and 72°C for 7 min, followed by a final 10 min at 72°C.
The PCR mixture was digested with 2 ~,l of DpnI (10U) for 2h at 37°C.
Then the PCR product at ~6 kb was purified from agarose gel after electrophoresis. The purified PCR product was ligated by T4 DNA ligase for 1 h at room temperature then used to transform into NovaBlue (Novagen)competent cells by standard protocol.
Cells were plated on LB (+Carb) and grow overnight at 37°C.
Next day, about a dozen single colony from the transformation were randomly picked for overnight culture in 5 ml LB (+Carb) at 37°C.
Plasmids from these culture were purified with Wizard Miniprep kit, and analyzed by Xho I
digestion. A few plasmids that passed the Xho I digestion were further confirmed by DNA
sequencing.
To express the recombinant proteins, a clone with confirmed DNA
sequence was used to transform BL21 (DE3)CodonPlus-RIL (Stratagene) by standaxd transformation protocol and plated on LB (Curb+Cam) plates overnight at 37°C. Next morning,.a single colony was picked to inoculate 100 ml LB (+Carb +Cam) and the culture was grown till OD reach between 0.8-1.0, and stored overnight at 4°C. Next day, the culture was pellet down and used to inoculate into 2xYT (+Caxb+Cam) at ratio of 25 ml culture per liter rlew media. These large cultures were grown at 37°C till OD=0.5-0.6, and IPTG was added to induce recombinant protein at 37°C for 3 h. The induced cultures were pellet and stored at -80°C till purification.
Table 1 provides a listing of various constructs made according to the invention.
TABLE I
Construct peptide upstream linker downstream linker 00523 yes GGGG GG .
00543 none none GG
00563 yes ASGGGSGGG GG
00567 yes ASGGGSGGG TSGGGGSGGGGSSS
00580 ves ASGGGSGGG GSPGGGGSGGGPG-S
0058 ~ yes ASGGGSGGG GSPPGGPPGS
00582 yes ' ASGGGSGGG GSPGGGGPGS
00583 yes ASGGGSGGG TSGGGGS
00584 yes ASGGGSGGG SGGSGGS
00585 yes ASGGGSGGG P17APSPLP
00586 none none TSGGGGSGGGGSSS
00587 none none GSPGGGGSGGGPGS
005 8 8 none none GSPPGGPPGS
00589 none none GSPGGGGPGS
00590 none zone TSGGGGS
00591 none none SGGSGGS
00592 none none FDAPSPLP
00593 yes ASGGGSGGG VYPEVTV
00594 none none VYPEVTV
00595 yes ASGGGSGGG GGGG
00595 yes ASGGGSGGG GGGGS
00597 yes ASGGGSGGG GGGSGG
Example 3' Four classes of novel linkers for MHC class II single chain molecules Inspection of circular dichroism spectra of purified, refolded single chain constructs indicated that novel linkers could be used for the constructs. The atomic structures of the various marine and human MHC class II molecules, as determined by X-S ray crystallography, indicated that these molecules have a high degree of structural similarity. The circular dichroism results were consistent with two folded molecules of clearly different secondary structure. Careful inspection of the structures reveals that the human MHC has a longer distance between chains than the equivalent marine molecule.
This results led to proposing longer linkers between the chains which would contain flexible residues (e.g. alanine or glycine) and polar residues (e.g. serine and threonine).
These constructs make up the first class of linkers. To inhibit the continuation of secondary structure across the linker, prolines were added to bracket the linkers. These prolines are known to inhibit the formation of alpha helices and beta sheets.
These linkers make up the second class of linkers disclosed here.
1 S Next, flexible regions present in the human MHC and in the marine MHC
could be used to make a linker by extending the region of interest and ligating the ends together. These are the third class of linkers. Finally, a combination of these types of linkers could also be used. These are the fourth class of linkers.
Example 4' Human MHC class II single chain molecule with marine linkers Another linker has been suggested based on a combination of marine and human MHC class II single chain molecules. This fusion would incorporate linker residues from the functional marine single chain MHC class II molecule and the alpha and beta chains of the human molecule. The protein sequence of the single chain 2S molecule is provided below (the linker residues from the mouse construct are in bold):
MGDTGRSFTLASSETGVGASGGGGSGGGGDTRPRFLEQVKHECHFFNGTERVRF
LDRYFYHQEEYVRFDSDVGEYR.AVTELGRPDAEYWNSQKDLLEQKR.AAVDTYC
RHNYGVGESFTVLRRLGGEDDEADHHVIIQAEFYLNPDQSGEFMFDFDGDEIFH
VDMAKKETVWRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPITN*
Further MHC class II hybrid single chain molecules may be designed by fusing other portions of the alpha chain and the beta chain together using linkers as described elsewhere. A properly folded molecule may be obtained by putting appropriate linkers between portions of the human MHC class II which are proximal to each other as determined by visual inspection of the atomic coordinates of residues of the native MHC
available in the publicly accessible protein structure database. These structures would predict possible fusion proteins which covalently attach any part of the beta chain between residues 82 to 123 or between residues I48 to I64 to portions of the alpha chain such as the N-terminal residues, residues 79 to 84, or 92 to 106. The numbering system of residues in this example corresponds to those found in the coordinates of the structure described in: DESSEN, et al. Immunity 7:473 (1997). Other, homologous residues could be used to create equivalent constructs for genotypic and allelic variants of these molecules e.g. equivalent residues in DR2 or such. DNAs for such hybrids would be prepared and expressed in a recombinant expression system by someone skilled in the art and could be assayed for structure and function in appropriate assays.
Example 5 ~ Use of CD4 bindin_,g site(sl of MHC class II molecules as linkers for the I S production of bioactive recombinant MHC class Il:peptide complexes HLA class II molecules present antigenic peptides to the T cell receptor of the CD4+ T lymphocytes and interact with CD4 during the antigen recognition process.
Native MHC class II-peptide complexes have been shown to bind to MHC class II
restricted and antigen specific TCRs on a particular T cell and induce T cell nonresponsiveness. It is proposed that the CD4 binding site is important in the docking of MHC class II-peptide complex with the TCR and induce nonresponsiveness. Since the binding of CD4 to MHC class II-peptide is important in antigen. presentation andlor induction of T cell nonresponsiveness, it is proposed that recombinant MHC
class II-peptide molecules (truncated or whole) containing CD4 binding site will be biologically active. Furthermore, a polypeptide fragment from MHC class II which binds the CD4, when used as a linker in preparation of MHC class II-peptide truncated molecules, provides resulting recombinant molecules that will be biologically active.
The following describes the concept of different linkers. Peptide is attached to a linker 1 (L1) which is attached to N-terminus of (31 domain that is linked to L2. L2 is linked to L3, which in turn is linked to N-terminus of al chain of MHC class II. Here L2 represents the human CD4 binding sequences. It should be noted that L2 could also be directly linked to N-terminus of al domain by completely deleting L3.
S$
Specific examples of L1 and L3 are given in a examples. The sequences of L2 are given below. These sequences are applicable to most of the DR-Peptide molecules.
RNGQEEKAGVVSTGLI, RNGQETKAGVVSTGLI, YNQQEEKAGGVSTGLI, FRNGQEEKAGWSTGLI, FRNGQETKAGWSTGLI, FYNQQEEKAGGVSTGLI, and LNGQEEKAGMVSTGLI.
Example 6' I-As MBP X31 (32a1a2 Cx construct and activity The "full anergix" single chain molecule, mouse I-As MBP.(31(32a1a2.Cx, was generated by overlap PCR using standard methodology. The molecules was expressed in 293T cells and baculoviral cells according to standard methodology, and purified according to standard methodology using affinity chromatography using goat-anti mouse antibodies. The structure ofI-As MBP.(31~32a1a2.CK is shown in Figure 1.
The amino acid sequence of the I-As MBP.~31(32a1a2.Cx shown in Figure 1 is as follows:
METDTLLLWVLLLWVPGSTGDFKNIVTPRTPPPASGGGGSGGGGDSERHFVFQF
KGECYFTNGTQRIRSVDRYIYNREEYLRFDSDVGEYRAVTELGRPDPEYYNKQY
LEQTRAELDTVCRHNYEGVETHTSLRRLEQPNVVISLSRTEALNHHNTLVCSVTD
FYPAKIKVRWFRNGQEETVGVSSTQLIRNGDWTFQVLVMLEMTPRRGEVYTCH
VEHPSLKSPITVEWTSGGGGSGGGGSGGGGSGGGGSSSEDDIEADHVGVYGTTV
YQSPGDIGQYTHEFDGDEWFYVDLDKKETIWMLPEFGQLTSFDPQGGLQNIATG
KYTLGILTKRSNSTPATNEAPQATVFPKSPVLLGQPNTLICFVDNIFPPVIhIITWLR
NSKSVTDGVYETSFLVNRDHSFHKLSYLTFIPSDDDIYDCKVEHWGLEEPVLKHW
ASGGGGSGGGGADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDG
SERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVK
SFNRNEC
The in vitro activity of recombinant I-As MBP.(31[32a1a2.Cx was tested using MBP90-I01 specific IAs restricted mouse T cell clone HS 1. This clone was prepared by the immunization of SJL mice with the MBP90-101 peptide, followed by cloning out CD4+ T cells by limited dilution techniques. These cells were maintained by stimulation every 10 days with irradiated SJF splenocytes and PBP90-101 peptide. The T
cells are activated by a combination of soluble recombinant I-As MBP.(31~i2ala2.CK and plate bound anti-CD28 antibody. T cell activation was assayed by 3H-thymidine incorporation according to standard methodology. Figure 2 shows the results of this assay.
MS is a T cell dependent autoimmune disease caused by localized demyelination in the central nervous system. Experimental autoimmune encephalomyelitis is a accepted animal model of MS. The following results demonstrate that administration of I-As MBP.(31(32a1a2.Cx reduces the incidence and severity of EAE. EAE was induced according to standard methodology according to the myelin model. Ten p,g of recombinant I-As MBP. (3I (32a 1 a2.Cx was given intravenously in 100 p,1 of PBS at days l, 4, 7, and 11 after disease induction. 12 days after immunization, animals are observed daily for the onset of neurological dysfunction. Disease is graded by trained technicians according to standard methods (see Figure 3). Mice are followed for up to 60-70 days. The data shown in Figure 4 demonstrate that administration of the recombinant I-As MBP.j31/32a1a2.Cx significantly reduced the incidence of myelin-induced EAE in SJL mice. In one experiment, 11 out of 20 mice developed EAE in the untreated group (55%), whereas only 2 out of 21 animal showed sign of the disease in the treated group (16.6%). Similarly, in another experiment, 12 out of 16 mice developed EAE in the untreated group (75%), while only 2 out of 16 developed EAE in the treated group (12.5%).
Histological examination from SJL mice in the EAE model studies: spinal cords were removed, f xed in formalin solution and embedded in paraffin.
Sections were cut, stained with hematoxylin, eosin and graded for inflammatory lesions. A.
Section of spinal cord from untreated mouse, score = 2.5; B. Section of spinal cord from mouse treated with the recombinant I-AS.MBP.Ck, score = 0; C. Section of spinal cord from mouse treated with the recombinant I-AS.~ilal without antigenic peptide fusion, score =
2.0; D. Section of spinal cord from mouse treated with the recombinant I-AS.MBP.[31a1, score = 0.5. The histology score for each section is marked.
Example 7' Functional human anergix molecules optimized for E. coli expression with E.
coli codons Two human single chain MHC class II molecules (C0528-AC and C0608-AC) have been optimized for E. coli expression using "artificial codons," e.g., preferred E. coli codons encoding the mammalian protein. 00528-AC and 00608-AC
were made according to standard PCR overlap technology.
Example 7: Recombinant MHC class II IAs.MBP.I~ multimeric complexes Recombinant MHC class II (IAs)-peptide Ig fusion complexes were constructed by fusing the mIgG leader, MBP 90-101, or MBP1-14 (as a control) to IAs single chain (blb2ala2), and mIgG.Ck, mIgG.CHI.H, mIgG.CHl.H.CH2, or mIgG.CHI.H.CH2.CH3 with flexible linkers, according to standard methodology.
The recombinant IAs fusion proteins were expressed in both mammalian and insect cells and detected by western analysis and ELISA. The overexpressed and secreted recombinant IAs fusion proteins from both human 293 cell cultures or from insect culture medium were purified by affinity chromatography. The purified dimeric and tetrameric recombinant IAs proteins have in vitro biological activity as assayed using an antigen-specific mouse T cell clone. The ih vivo activity of the recombinant IAs fusion proteins were studied with the experimental autoimmune encephalomyelitis (EAE) model using susceptible SJL mice. In these EAE studies, recombinant IAs fusion protein was delivered on days l, 4, 7, and 11 by LV. injections after induction of the disease with myelin. The animals were then examined for neurological dysfunction. The results indicate that treatment with the recombinant IAs fusion proteins prevents mortality and ~ significantly reduces paralysis induced by myelin homogenate in CFA. In conclusion, these studies suggest that the recombinant MHC class II fusion protein has therapeutic benefit as antigen-specific drugs for the treatment of autoimmune diseases.
Example 8: Synthesis of mouse model equivalent of 00608 Four forms of the marine MHC Class II IAs (31a1 with MBP peptide linkers analogous to 00608 human were made. These constructs can be used, e.g., as marine clinical control for human 608. m00608 (mouse 00608, lacking the first five amino acids, GDSER, as compared to native beta 1 domain), MC0608-A (same as m608 except lacking four amino acids, GSER, after the methionine as compared to m608), B.
megaterium-mC0608-A (expressed in Bacillus megaterium), and mC0608-B (same as m608 except lacking first four amino acids, GSER, after the methionine as compared to m608; also lacking second amino acid, D, as compared to native beta 1 domain).
To make mC0608, the upstream linker of mouse C0521 (GGGS) was replaced with the human C0608 linker (ASGGGGSGGG) and the downstream linker of mouse C0521 (GG) was replaced with the downstream linker of C0608 (TSGGGGS), using PCR according to standard methodology. mC0608-A and m6O8-B were made from mC0608 using PCR according to standard methodology.
All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
SEQUENCE LISTING
<210> C0602 $ <211> 558 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacetcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgctgcgccgactcggaggtgaagat300 gacgaggcag atcaccatgtgatcatccaggccgagttctatctgaatcctgaccaatca360 1S ggcgagttta tgtttgactttgatggtgatgagattttccatgtggatatggcaaagaag420 gagacggtct ggcggcttgaagaatttggacgatttgccagctttgaggctcaaggtgca480 ttggccaaca tagctgtggacaaagccaacctggaaatcatgacaaagcgctccaactat540 actccgatca ccaattaa 558 <210> C0601 <211> 558 <212> DNA
<213> Homo Sapiens 2S atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgaggaggtggaagcggc300 30 ggaatcaaag aagaacatgtgatcatccaggccgagttctatctgaatcctgaccaatca360 ggcgagttta tgtttgactttgatggtgatgagattttccatgtggatatggcaaagaag420 gagacggtct ggcggcttgaagaatttggacgatttgccagctttgaggctcaaggtgca480 ttggccaaca tagctgtggacaaagccaacctggaaatcatgacaaagcgctccaactat540 actccgatca ccaattaa 558 <210> C0600 <211> 555 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60 gggacggagc gggtgcggtt cctggacaga tacttctatc accaagagga gtacgtgcgc 120 ttcgacagcg acgtggggga gtaccgggcg gtgacggagc tggggcggcc tgatgccgag 180 tactggaaca gccagaagga cctcctggag cagaagcggg ccgcggtgga cacctactgc 240 agacacaact acggggttgg tgagagcttc acagtgcagc ggcgaggagg tggaggcagc 300 atcaaagaag aacatgtgat catccaggcc gagttctatc tgaatcctga ccaatcaggc 360 gagtttatgt ttgactttga tggtgatgag attttccatg tggatatggc aaagaaggag 420 acggtctggc ggcttgaaga atttggacga tttgccagct ttgaggctca aggtgcattg 480 gccaacatag ctgtggacaa agccaacctg gaaatcatga caaagcgctc caactatact 540 ccgatcacca attaa 555 <210> C0599 <211> 552 <212> DNA
<213> Homo sapiens atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60 gggacggagc gggtgcggtt cctggacaga tacttctatc accaagagga gtacgtgcgc 120 ttcgacagcg acgtggggga gtaccgggcg gtgacggagc tggggcggcc tgatgccgag 180 tactggaaca gccagaagga cctcctggag cagaagcggg ccgcggtgga cacctactgc 240 agacacaact acggggttgg tgagagcttc acagtgcagc ggcgaggagg tggaggcatc 300 S aaagaagaac atgtgatcat ccaggccgag ttctatctga atcctgacca atcaggcgag 360 tttatgtttg actttgatgg tgatgagatt ttccatgtgg atatggcaaa gaaggagacg 420 gtctggcggc ttgaagaatt tggacgattt gccagctttg aggctcaagg tgcattggcc 480 aacatagctg tggacaaagc caacctggaa atcatgacaa agcgctccaa ctatactccg 540 atcaccaatt as 552 <210> C0594 <211> 561 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacg.tttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgagtctaccctgaggta300 actgtcatca aagaagaacatgtgatcatccaggccgagttctatctgaatcctgaccaa360 tcaggcgagt ttatgtttgactttgatggtgatgagattttccatgtggatatggcaaag420 aaggagacgg tctggcggcttgaagaatttggacgatttgccagctttgaggctcaaggt480 gcattggcca acatagctgtggacaaagccaacctggaaatcatgacaaagcgctccaac540 tatactccga tcaccaattaa 561 <210> C0592 <211> 564 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgattcgacgcacctagc300 ccactcccaa tcaaagaagaacatgtgatcatccaggccgagttctatctgaatcctgac360 caatcaggcg agtttatgtttgactttgatggtgatgagattttccatgtggatatggca420 aagaaggaga cggtctggcggcttgaagaatttggacgatttgccagctttgaggctcaa480 ggtgcattgg ccaacatagctgtggacaaagccaacctggaaatcatgacaaagcgctcc540 aactatactc cgatcaccaattaa 564 <210> C0591 <211> 561 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 S0 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgaagtggcggtagtggc300 ggtagtatca aagaagaacatgtgatcatccaggccgagttctatctgaatcctgaccaa360 tcaggcgagt ttatgtttgactttgatggtgatgagattttccatgtggatatggcaaag420 S$ aaggagacgg tctggcggcttgaagaatttggacgatttgccagctttgaggctcaaggt480 gcattggcca acatagctgtggacaaagccaacctggaaatcatgacaaagcgctccaac540 tatactccga tcaccaattaa 561 <210> C0590 <211> 561 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgaactagtggtggcggt300 ggcagcatca aagaagaacatgtgatcatccaggccgagttctatctgaatoctgaccaa360 tcaggcgagt ttatgtttgactttgatggtgatgagattttccatgtggatatggcaaag420 aaggagacgg tctggcggcttgaagaatttggacgatttgccagctttgaggctcaaggt480 gcattggcca acatagctgtggacaaagccaacctggaaatcatgacaaagcgctccaac540 tatactccga tcaccaattaa 561 <210> C0589 <211> 570 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 2$ agacacaact acggggttggtgagagcttcacagtgcagcggcgaggctctcctggaggt300 ggaggtcctg gatctatcaaagaagaacatgtgatcatccaggccgagttctatctgaat360 cctgaccaat caggcgagtttatgtttgactttgatggtgatgagattttccatgtggat420 atggcaaaga aggagacggtctggcggcttgaagaatttggacgatttgccagctttgag480 gctcaaggtg cattggccaacatagctgtggacaaagccaacctggaaatcatgacaaag540 cgctccaact atactccgatcaccaattaa 570 <210> C0588 <211> 570 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgaggctctcctcctggt300 ggaccacctg gatctatcaaagaagaacatgtgatcatccaggccgagttctatctgaat360 cctgaccaat caggcgagtttatgtttgactttgatggtgatgagattttccatgtggat420 atggcaaaga aggagacggtctggcggcttgaagaatttggacgatttgccagctttgag480 gctcaaggtg cattggccaacatagctgtggacaaagccaacctggaaatcatgacaaag540 cgctccaact atactccgatcaccaattaa 570 <210> C0587 <211> 582 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacgtttcttggagcaggttaaacatgagtgtcatttcttcaac60 gggacggagc gggtgcggttcctggacagatacttctatcaccaagaggagtacgtgcgc120 ttcgacagcg acgtgggggagtaccgggcggtgacggagctggggcggcctgatgccgag180 tactggaaca gccagaaggacctcctggagcagaagcgggccgcggtggacacctactgc240 agacacaact acggggttggtgagagcttcacagtgcagcggcgagggagtccaggcggt300 ggcgggagcg gcggtggtcctgggagtatcaaagaagaacatgtgatcatccaggccgag360 ttctatctga atcctgaccaatcaggcgagtttatgtttgactttgatggtgatgagatt420 ttccatgtgg atatggcaaa gaaggagacg gtctggcggc ttgaagaatt tggacgattt 480 gccagctttg aggctcaagg tgcattggcc aacatagctg tggacaaagc caacctggaa 540 atcatgacaa agcgctccaa ctatactccg atcaccaatt as 582 $ <210> C0586 <211> 582 <212> DNA
<213> Homo Sapiens atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60 gggacggagc gggtgcggtt cctggacaga tacttctatc accaagagga gtacgtgcgc 120 ttcgacagcg acgtggggga gtaccgggcg gtgacggagc tggggcggcc tgatgccgag 180 tactggaaca gccagaagga cctcctggag cagaagcggg ccgcggtgga cacctactgc 240 agacacaact acggggttgg tgagagcttc acagtgcagc ggcgaactag tggtggcggt 300 ggcagcggcg gtggtggttc ctcgagtatc aaagaagaac atgtgatcat ccaggccgag 360 ttctatctga atcctgacca atcaggcgag tttatgtttg actttgatgg tgatgagatt 420 ttccatgtgg atatggcaaa gaaggagacg gtctggcggc ttgaagaatt tggacgattt 480 gccagctttg aggctcaagg tgcattggcc aacatagctg tggacaaagc caacctggaa 540 atcatgacaa agcgctccaa ctatactccg atcaccaatt as 582 <210> C0602 <211> 186 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr 35 Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys~Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Leu Arg Arg Leu Gly Gly Glu Asp Asp Glu Ala Asp His His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> C0601 $ <211> 186 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe IS Tyr HisGlnGlu GluTyrVal ArgPheAsp SerAsp ValGlyGlu Tyr Arg AlaValThr GluLeuGly ArgProAsp AlaGlu TyrTrpAsn Ser Gln LysAspLeu LeuGluGln LysArgAla AlaVal AspThrTyr Cys Arg HisAsnTyr GlyValGly GluSerPhe ThrVal GlnArgArg Gly ~$ 85 90 95 Gly GlySerGly GlyIleLys GluGluHis ValTle IleGlnAla Glu Phe TyrLeuAsn ProAspGln SerGlyGlu PheMet PheAspPhe Asp Gly AspGluIle PheHisVal AspMetAla LysLys GluThrVal Trp Arg LeuGluGlu PheGlyArg PheAlaSer PheGlu AlaGlnGly Ala Leu AlaAsnIle AlaValAsp LysAlaAsn LeuGlu IleMetThr Lys Arg SerAsnTyr ThrProIle ThrAsn <210> C0600 <211> 185 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly 1~ Gly Gly Gly Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp G1u Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu 145 150 ~ 155 160 Ala Asn IIe AIa Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> C0599 <211> 184 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe 4~ Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu,Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly $~ 85 90 95 Gly Gly Gly Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr $5 Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp 115 ' 120 125 Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu 6$
Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala $ Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> C0594 <211> 187 <212> PRT
1$ <213> Homo Sapiens Met Gly ThrArg ProArg PheLeuGlu GlnValLys HisGluCys Asp His Phe AsnGly ThrGlu ArgValArg PheLeuAsp ArgTyrPhe Phe Tyr His GluGlu TyrVal ArgPheAsp SerAspVal GlyGluTyr Gln 2$
Arg Ala ThrGlu LeuGly ArgProAsp AlaGluTyr TrpAsnSer Val Gln Lys LeuLeu GluGln LysArgAla AlaValAsp ThrTyrCys Asp Arg His TyrGly ValGly GluSerPhe ThrValGln ArgArgVal Asn 3$ Tyr Pro ValThr ValIle LysGluGlu HisValIle IleGlnAla Glu Glu Phe'TyrLeuAsn ProAsp GlnSerGly GluPheMet PheAspPhe Asp Gly GluIle PheHis ValAspMet AlaLysLys GluThrVal Asp Trp Arg GluGlu PheGly ArgPheAla SerPheGlu AlaGlnGly Leu 4$ 145 150 155 160 Ala Leu AsnIle AlaVal AspLysIAlaAsnLeuGlu TleMetThr Ala $0 Lys Arg AsnTyr ThrPro IleThrAsn Ser <210> C0592 $$ <211> 188 <212> PRT
<213> Homo Sapiens Met Gly ThrArg ProArg PheLeuGlu GlnValLys HisGluCys Asp His Phe PheAsn GlyThrGlu ArgValArg PheLeuAsp ArgTyr Phe $
Tyr His GlnGlu GluTyrVal ArgPheAsp SerAspVal GIyGlu Tyr Arg Ala ValThr GluLeuGly ArgProAsp AlaGluTyr TrpAsn Ser Gln Lys AspLeu LeuGluGln LysArgAla AlaValAsp ThrTyr Cys 1$ Arg His AsnTyr GlyValGly GluSerPhe ThrValGln ArgArg Phe Asp Ala ProSer ProLeuPro IleLysGlu GluHisVal IleIle Gln Ala Glu PheTyr LeuAsnPro AspGlnSer GlyGluPhe MetPhe Asp Phe Asp GlyAsp GluIlePhe HisValAsp MetAlaLys LysGlu Thr 2$ 130 135 140 Val Trp ArgLeu GluGluPhe GlyArgPhe AlaSerPhe GluAla Gln Gly Ala LeuAla AsnIleAla ValAspLys AlaAsnLeu GluIle Met Thr Lys ArgSer AsnTyrThr ProIleThr Asn 3$
<210>
<211>
<212>
PRT
<213> sapiens Homo Met Gly AspThr ArgProArg PheLeuGlu GlnValLys HisGlu Cys 4$ His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr $0 Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys $$ 65 70 75 80 Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Ser Gly Gly SerGly GlySerIle LysGluGlu HisVal IleIleGln Ala Glu Phe TyrLeu AsnProAsp GlnSerGly GluPhe MetPheAsp Phe $ 115 120 125 . Gly AspGlu IlePheHis ValAspMet AlaLys LysGluThr Val Asp Trp Arg LeuGlu GluPheGly ArgPheAla SerPhe GluAlaGln Gly Ala Leu AlaAsn IleAlaVal AspLysAla AsnLeu GluIleMet Thr Lys Arg SerAsn TyrThrPro IleThrAsn <210> C0590 <211>
<212>
PRT
<213>
Homo Sapiens Met GlyAspThr ArgProArg PheLeu GluGlnVaI LysHisGlu Cys His PhePheAsn GlyThrGlu ArgVal ArgPheLeu AspArgTyr Phe Tyr HisGlnGlu GluTyrVal ArgPhe AspSerAsp ValGlyGlu Tyr Arg AlaValThr GluLeuGly ArgPro AspAlaGlu TyrTrpAsn Ser Gln LysAsp.Leu LeuGluGln LysArg AlaAlaVal AspThrTyr Cys .
Arg HisAsnTyr GlyValGly GluSer PheThrVal GlnArgArg Thr Ser GIyGlyGly GlySerIle LysGlu GluHisVal IleIleGln Ala Glu PheTyrLeu AsnProAsp GlnSer GlyGluPhe MetPheAsp Phe Asp GlyAspGlu IlePheHis ValAsp MetAlaLys LysGluThr Val Trp ArgLeuGlu GluPheGly ArgPhe AlaSerPhe GluAlaGln Gly 5$ Ala LeuAlaAsn IleAlaVal AspLys AlaAsnLeu GluIleMet Thr Lys ArgSerAsn TyrThrPro IleThr Asn <210>
<211>
$ <212>
PRT
<213>
Homo sapiens Met Gly AspThr ArgProArg PheLeuGlu GlnValLys HisGluCys His Phe PheAsn GlyThrGlu ArgValArg PheLeuAsp ArgTyrPhe Tyr His GlnGlu GluTyrVal ArgPheAsp SerAspVal GlyGluTyr 1$ 35 40 45 Arg Ala ValThr GluLeuGly ArgProAsp AlaGluTyr TrpAsnSer Gln Lys AspLeu LeuGluGln LysArgAla AlaValAsp ThrTyrCys Arg His AsnTyr GlyValGly GluSerPhe ThrValGln ArgArgGly Ser Pro GlyGly GlyGlyPro GlySerIle LysGluGlu HisValIle Ile Gln AlaGlu PheTyrLeu AsnProAsp GlnSerGly GluPheMet Phe Asp PheAsp GlyAspGlu IlePheHis ValAspMet AlaLysLys Glu Thr ValTrp ArgLeuGlu GluPheGly ArgPheAla SerPheGlu Ala Gln ~GlyAla LeuAlaAsn IleAlaVal AspLysAla AsnLeuGlu Ile Met ThrLys ArgSerAsn TyrThrPro IleThrAsn 4S <220> C0588 <211> 190 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe 5$
Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys AspLeuLeu GluGlnLys ArgAlaAla ValAspThr TyrCys Arg His AsnTyrGly ValGlyGlu SerPheThr ValGlnArg ArgGly Ser Pro ProGlyGly ProProGly SerIleLys GluGluHis ValIle Ile Gln AlaGluPhe TyrLeuAsn ProAspGln SerGlyGlu PheMet Phe Asp PheAspGly AspGluIle PheHisVal AspMetAla LysLys Glu Thr ValTrpArg LeuGluGlu PheGlyArg PheAlaSer PheGlu Ala Gln GlyAlaLeu AlaAsnIle AlaValAsp LysAlaAsn LeuGlu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn 1ao 1ss <210>
<211>
<212>
PRT
<2I3> Sapiens Homo Met GlyAsp ThrArg ProArgPhe LeuGluGln ValLysHis GluCys His PhePhe AsnGly ThrGluArg ValArgPhe LeuAspArg TyrPhe Tyr HisGln GluGlu TyrValArg PheAspSer AspValGly GluTyr Arg AlaVal ThrGlu LeuGlyArg ProAspAla GluTyrTrp AsnSer Gln LysAsp LeuLeu GluGlnLys ArgAlaAla ValAspThr TyrCys Arg HisAsn TyrGly ValGlyGlu SerPheThr ValGlnArg ArgGly Ser ProGly GlyGly GlySerGly GlyGlyPro GlySerIle LysGlu Glu HisVal IleIle GlnAlaGlu PheTyrLeu AsnProAsp GlnSer 5$ 115 120 125 Gly GluPhe MetPhe AspPheAsp GlyAspGlu TlePheHis ValAsp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys $ 165 170 175 Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr 10 Asn <210> C0586 IS <211> 194 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe 2$ Tyr His GlnGluGlu TyrVal ArgPheAsp SerAspVal GlyGluTyr Arg Ala ValThrGlu LeuGly ArgProAsp AlaGluTyr TrpAsnSer 50 55 ~ 60 Gln Lys AspLeuLeu GluGln LysArgAla AlaValAsp ThrTyrCys 65 70 ' 75 80 Arg His AsnTyrGly ValGly GluSerPhe ThrValGln ArgArgThr Ser Gly GlyGlyGly SerGly GlyGlyGly SerSerSer IleLysGlu 40 Glu His ValIleIle GlnAla GluPheTyr LeuAsnPro AspGlnSer Gly Glu PheMetPhe AspPhe AspGlyAsp GluIlePhe HisValAsp Met Ala LysLysGlu ThrVal TrpArgLeu GluGluPhe GlyArgPhe Ala Ser PheGluAla GlnGly AlaLeuAla AsnIleAla ValAspLys $0 165 170 175 Ala Asn LeuGluIle MetThr LysArgSer AsnTyrThr ProIIeThr 5$ Asn <210> C0598 <211> 639 <212> DNA
<213> Homo Sapiens S atgggggaca ccggtcgcagcttcaccctggcctccagcgagaccggcgtgggcgctagc60 ggagggggcg gaagcggcggagggggggacacccgaccacgtttcttggagcaggttaaa120 catgagtgtc atttcttcaacgggacggagcgggtgcggttcctggacagatacttctat180 caccaagagg agtacgtgcgcttcgacagcgacgtgggggagtaccgggcggtgacggag240 ctggggcggc ctgatgccgagtactggaacagccagaaggacctcctggagcagaagcgg300 gccgcggtgg acacctactgcagacacaactacggggttggtgagagcttcacagtgctg360 cgccgactcg gaggtgaagatgacgaggcagatcaccatgtgatcatccaggccgagttc420 tatctgaatc ctgaccaatcaggcgagtttatgtttgactttgatggtgatgagattttc480 catgtggata tggcaaagaaggagacggtctggcggcttgaagaatttggacgatttgcc540 agctttgagg ctcaaggtgcattggccaacatagctgtggacaaagccaacctggaaatc600 atgacaaagc gctccaactatactccgatcaccaattaa 639 <210> C0597 <211> 639 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcagcttcaccctggcctccagcgagaccggcgtgggcgctagc60 ggagggggcg gaagcggcggagggggggacacccgaccacgtttcttggagcaggttaaa120 catgagtgtc atttcttcaacgggacggagcgggtgcggttcctggacagatacttctat180 caccaagagg agtacgtgcgcttcgacagcgacgtgggggagtaccgggcggtgacggag240 ctggggcggc ctgatgccgagtactggaacagccagaaggacctcctggagcagaagcgg300 gccgcggtgg acacctactgcagacacaactacggggttggtgagagcttcacagtgcag360 cggcgaggag gtggaagcggcggaatcaaagaagaacatgtgatcatccaggccgagttc420 tatctgaatc ctgaccaatcaggcgagtttatgtttgactttgatggtgatgagattttc480 catgtggata tggcaaagaaggagacggtctggcggcttgaagaatttggacgatttgcc540 agctttgagg ctcaaggtgcattggccaacatagctgtggacaaagccaacctggaaatc600 atgacaaagc gctccaactatactccgatcaccaattaa 639 <210> C0596 <211> 636 <212 > DNA
<213> Homo Sapiens atgggggaca ccggtcgcagcttcaccctggcctccagcgagaccggcgtgggcgctagc60 ggagggggcg gaagcggcggagggggggacacccgaccacgtttcttggagcaggttaaa120 catgagtgtc atttcttcaacgggacggagcgggtgcggttcctggacagatacttctat180 caccaagagg agtacgtgcgcttcgacagcgacgtgggggagtaccgggcggtgacggag240 ctggggcggc ctgatgccgagtactggaacagccagaaggacctcctggagcagaagcgg300 gccgcggtgg acacctactgcagacacaactacggggttggtgagagcttcacagtgcag360 cggcgaggag gtggaggcagcatcaaagaagaacatgtgatcatccaggccgagttctat420 ctgaatcctg accaatcaggcgagtttatgtttgactttgatggtgatgagattttccat480 gtggatatgg caaagaaggagacggtctggcggcttgaagaatttggacgatttgccagc540 tttgaggctc aaggtgcattggccaacatagctgtggacaaagccaacctggaaatcatg600 acaaagcgct ccaactatactccgatcaccaattaa 636 <210> C0595 <211> 633 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgaggag gtggaggcat caaagaagaa catgtgatca tccaggccga gttctatctg 420 aatcctgacc aatcaggcga gtttatgttt gactttgatg gtgatgagat tttccatgtg 480 S gatatggcaa agaaggagac ggtctggcgg cttgaagaat ttggacgatt tgccagcttt 540 gaggctcaag gtgcattggc caacatagct gtggacaaag ccaacctgga aatcatgaca 600 aagcgctcca actatactcc gatcaccaat taa 633 <2l0> C0593 <211> 642 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgagtct accctgaggt aactgtcatc aaagaagaac atgtgatcat ccaggccgag 420 ttctatctga atcctgacca atcaggcgag tttatgtttg actttgatgg tgatgagatt 480 ttccatgtgg atatggcaaa gaaggagacg gtctggcggc ttgaagaatt tggacgattt 540 gccagctttg aggctcaagg tgcattggcc aacatagctg tggacaaagc caacctggaa 600 atcatgacaa agcgctccaa ctatactccg atcaccaatt as 642 <210> C0585 <211> 645 <212> DNA
<213> Homo sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgattcg acgcacctag cccactccca atcaaagaag aacatgtgat catccaggcc 420 gagttctatc tgaatcctga ccaatcaggc gagtttatgt ttgactttga tggtgatgag 480 attttccatg tggatatggc aaagaaggag acggtctggc ggcttgaaga atttggacga 540 tttgccagct ttgaggctca aggtgcattg gccaacatag ctgtggacaa agccaacctg 600 gaaatcatga caaagcgctc caactatact ccgatcacca attaa 645 <210> C0584 <211> 642 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 'catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgaagtg gcggtagtgg cggtagtatc aaagaagaac atgtgatcat ccaggccgag 420 ttctatctga atcctgacca atcaggcgag tttatgtttg actttgatgg tgatgagatt 480 ttccatgtgg atatggcaaa gaaggagacg gtctggcggc ttgaagaatt tggacgattt 540 gccagctttg aggctcaagg tgcattggcc aacatagctg tggacaaagc caacctggaa 600 atcatgacaa agcgctccaa ctatactccg atcaccaatt as 642 <210> C0583 <211> 642 <212> DNA
$ <213> HomoSapiens atgggggacaccggtcgcagcttcaccctggcctccagcgagaccggcgtgggcgctagc60 ggagggggcggaagcggcggagggggggacacccgaccacgtttcttggagcaggttaaa120 catgagtgtcatttcttcaacgggacggagcgggtgcggttcctggacagatacttctat180 caccaagaggagtacgtgcgcttcgacagcgacgtgggggagtaccgggcggtgacggag240 ctggggcggcctgatgccgagtactggaacagccagaaggacctcctggagcagaagcgg300 gccgcggtggacacctactgcagacacaactacggggttggtgagagcttcacagtgcag360 cggcgaactagtggtggcggtggcagcatcaaagaagaacatgtgatcatccaggccgag420 ttctatctgaatcctgaccaatcaggcgagtttatgtttgactttgatggtgatgagatt480 ttccatgtggatatggcaaagaaggagacggtctggcggcttgaagaatttggacgattt540 gccagctttgaggctcaaggtgcattggccaacatagctgtggacaaagccaacctggaa600 atcatgacaaagcgctccaactatactccgatcaccaattas 642 <210> C0582 <211> 651 <212> DNA
<213> HomoSapiens atgggggacaccggtcgcagcttcaccctggcctccagcgagaccggcgtgggcgctagc60 2S ggagggggcggaagcggcggagggggggacacccgaccacgtttcttggagcaggttaaa120 catgagtgtcatttcttcaacgggacggagcgggtgcggttcctggacagatacttctat180 caccaagaggagtacgtgcgcttcgacagcgacgtgggggagtaccgggcggtgacggag240 ctggggcggcctgatgccgagtactggaacagccagaaggacctcctggagcagaagcgg300 gccgcggtggacacctactgcagacacaactacggggttggtgagagcttcacagtgcag360 3~ cggcgaggctctcctggaggtggaggtcctggatctatcaaagaagaacatgtgatcatc420 caggccgagttctatctgaatcctgaccaatcaggcgagtttatgtttgactttgatggt480 gatgagattttccatgtggatatggcaaagaaggagacggtctggcggcttgaagaattt540 ggacgatttgccagctttgaggctcaaggtgcattggccaacatagctgtggacaaagcc600 aacctggaaatcatgacaaagcgctccaactatactccgatcaccaattaa 651 <210> C0581 <211> 651 <212> DNA
40 <213> HomoSapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 45 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgaggct ctcctcctgg tggaccacct ggatctatca aagaagaaca tgtgatcatc 420 caggccgagt tctatctgaa tcctgaccaa tcaggcgagt ttatgtttga ctttgatggt 480 5~ gatgagattt tccatgtgga tatggcaaag aaggagacgg tctggcggct tgaagaattt 540 ggacgatttg ccagctttga ggctcaaggt gcattggcca acatagctgt ggacaaagcc 600 aacctggaaa tcatgacaaa gcgctccaac tatactccga tcaccaatta a 651 55 <210> C0580 <211> 663 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 $ ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgaggga gtccaggcgg tggcgggagc ggcggtggtc ctgggagtat caaagaagaa 420 catgtgatca tccaggccga gttctatctg aatcctgacc~aatcaggcga gtttatgttt 480 gactttgatg gtgatgagat tttccatgtg gatatggcaa agaaggagac ggtctggcgg 540 cttgaagaat ttggacgatt tgccagcttt gaggctcaag gtgcattggc caacatagct 600 gtggacaaag ccaacctgga aatcatgaca aagcgctcca actatactcc gatcaccaat 660 taa 663 1$ <210> C0567 <211> 663 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggcgctagc 60 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttgga gcaggttaaa 120 catgagtgtc atttcttcaa cgggacggag cgggtgcggt tcctggacag atacttctat 180 caccaagagg agtacgtgcg cttcgacagc gacgtggggg agtaccgggc ggtgacggag 240 ctggggcggc ctgatgccga gtactggaac agccagaagg acctcctgga gcagaagcgg 300 2,$ gccgcggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360 cggcgaacta gtggtggcgg tggcagcggc ggtggtggtt cctcgagtat caaagaagaa 420 catgtgatca tccaggccga gttctatctg aatcctgacc aatcaggcga gtttatgttt 480 gactttgatg gtgatgagat tttccatgtg gatatggcaa agaaggagac ggtctggcgg 540 cttgaagaat ttggacgatt tgccagcttt gaggctcaag gtgcattggc caacatagct 600 gtggacaaag ccaacctgga aatcatgaca aagcgctcca actatactcc gatcaccaat 660 taa 663 <210> C0598 3$ <211> 213 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg 4$ Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly $0 Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu $$ 85 90 95 Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His,Asn Tyr Gly ~$
Val Gly Glu Ser Phe Thr Val Leu Arg Arg Leu Gly Gly Glu Asp Asp Glu Ala Asp His His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro $ 130 135 140 Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe 1$
Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr I95 200 ' 205 Pro Ile Thr Asn <210> C0597 <211> 213 2$ <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly 3$ 35 40 45 Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu 4$
Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly Gly Gly Ser Gly Gly $0 115 120 125 Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro $$ Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg.Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210>
<211>
<212>
PRT
IS <213>
Homo sapiens Met Gly AspThrGly ArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSerGly GlyGly GlySerGly GlyGlyGly AspThrArg Pro Arg PheLeuGlu GlnVal LysHisGlu CysHisPhe PheAsnGly Thr Glu ArgValArg PheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPheAsp SerAsp ValGlyGlu TyrArgAla ValThrGlu Leu Gly ArgProAsp AlaGlu TyrTrpAsn SerGlnLys AspLeuLeu 3$ Glu Gln LysArgAla AlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSerPhe ThrVal GlnArgArg GlyGlyGly GlySerIle Lys Glu GluHisVal IleIle GlnAlaGlu PheTyrLeu AsnProAsp 13 13 14'0 Gln Ser GlyGluPhe MetPhe AspPheAsp GlyAspGlu IlePheHis Val Asp MetAlaLys LysGlu ThrValTrp ArgLeuGlu GluPheGly $0 Arg Phe AlaSerPhe GluAla GlnGlyAla LeuAlaAsn IleAlaVal Asp ,LysAlaAsnLeu GluIle MetThrLys ArgSerAsn TyrThrPro Ile Thr Asn <210>
<211>
<212>
PRT
<213>
Homo Sapiens Met Gly AspThrGly ArgSer PheThrLeuAla SerSer GluThrGly Val Gly AlaSerGly GlyGly GlySerGlyGly GlyGly AspThrArg Pro Arg PheLeuGlu GlnVal LysHisGluCys HisPhe PheAsnGly 35 40 ~ 45 Thr Glu ArgValArg PheLeu AspArgTyrPhe TyrHis GlnGluGlu Tyr ~ValArgPheAsp SerAsp ValGlyGluTyr ArgAla ValThrGlu Leu Gly ArgProAsp AlaGlu TyrTrpAsnSer GlnLys AspLeuLeu Glu Gln LysArgAla AlaVal AspThrTyrCys ArgHis AsnTyrGly Val Gly GluSerPhe ThrVal GlnArgArgGly GlyGly GlyIleLys 3~ Glu Glu HisValIle IleGln AlaGluPheTyr LeuAsn ProAspGln Ser Gly GluPheMet PheAsp PheAspGlyAsp GluIle PheHisVal Asp Met AlaLysLys GluThr ValTrpArgLeu GluGlu PheGlyArg Phe Ala SerPheGlu AlaGln GlyAlaLeuAla AsnIle AlaValAsp Lys Ala AsnLeuGlu IleMet ThrLysArgSer AsnTyr ThrProIle 195 200 '205 45 Thr Asn <210> C0593 50 <211> 214 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly 5$ 5 10 15 Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Val Tyr Pro Glu Val Thr Val Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> C0585 <211> 215 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly $0 35 40 45 Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu 70 ' 75 80 Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln LysArg AlaAlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSer PheThrVal GlnArgArg PheAspAla ProSerPro Leu Pro IleLys GluGluHis ValIleIle GlnAlaGlu PheTyrLeu Asn Pro AspGln SerGlyGlu PheMetPhe AspPheAsp GlyAspGlu Ile Phe HisVal AspMetAla LysLysGlu ThrValTrp ArgLeuGlu 1$ 165 170 175 Glu Phe GlyArg PheAlaSer PheGluAla GlnGlyAla LeuAlaAsn Ile Ala ValAsp LysAlaAsn LeuGluIle MetThrLys ArgSerAsn Tyr Thr ProIle ThrAsn ~$
<210>
<211>
<212>
PRT
<213> Sapiens Homo Met Gly AspThr GlyArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSer GlyGlyGly GlySerGly GlyGlyGly AspThrArg Pro Arg ~PheLeu GluGlnVal LysHisGlu CysHisPhe PheAsnGly Thr Glu ArgVal ArgPheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPhe AspSerAsp ValGlyGlu TyrArgAla ValThrGlu Leu Gly ArgPro AspAlaGlu TyrTrpAsn SerGlnLys AspLeuLeu Glu Gln LysArg AlaAlaVal AspThrT,yrCysArgHis AsnTyrGly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Ser Gly Gly Ser Gly Gly Ser Ile Lys G1u Glu His Val Tle Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn 1$
<210>
<211>
<212>
PRT
<213> Sapiens Homo Met Gly AspThr GlyArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSer GlyGlyGly GlySerGly GlyGlyGly AspThrArg 2$ 20 25 30 Pro Arg PheLeu GluGlnVal LysHisGlu CysHisPhe PheAsnGly 30 Thr Glu ArgVal ArgPheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPhe AspSerAsp ValGlyGlu TyrArgAla ValThrGlu 65 ~ 70 75 80 3$
Leu Gly ArgPro AspAlaGlu TyrTrpAsn SerGlnLys AspLeuLeu Glu Gln LysArg AlaAlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSer PheThrVal GlnArgArg ThrSerGly GlyGlyGly 4$ Ser Ile LysGlu GluHisVal IleIleGln AlaGluPhe TyrLeuAsn _ 130 ' 135 140 Pro Asp GlnSer GlyGluPhe MetPheAsp PheAspGly AspGluIle $0 Phe His ValAsp MetAlaLys LysGluThr ValTrpArg LeuGluGlu Phe Gly ArgPhe AlaSerPhe GluAlaGln GlyAlaLeu AlaAsnIle $$ 180 185 190 Ala Val AspLys AlaAsnLeu GluIleMet ThrLysArg SerAsnTyr Thr Pro Ile Thr Asn $ <210>
<211>
<212>
PRT
<213> sapiens Homo Met Gly AspThrGly ArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSerGly GlyGly GlySerGly GlyGlyGly AspThrArg 1$
Pro Arg PheLeuGlu GlnVal LysHisGlu CysHisPhe PheAsnGly Thr Glu ArgValArg PheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPheAsp SerAsp ValGlyGlu TyrArgAla ValThrGlu Leu Gly ArgProAsp AlaGlu TyrTrpAsn SerGlnLys AspLeuLeu Glu Gln LysArgAla AlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSerPhe ThrVal GlnArgArg GlySerPro GlyGlyGly Gly Pro GlySerTle LysGlu GluHisVal IleIleGln AlaGluPhe 3$ 130 135 140 Tyr Leu AsnProAsp GlnSer GlyGluPhe MetPheAsp PheAspGly Asp Glu IlePheHis ValAsp MetAlaLys LysGluThr ValTrpArg Leu Glu GluPheGly ArgPhe AlaSerPhe GluAlaGln GlyAlaLeu 4$
Ala Asn IleAlaVal AspLys AlaAsnLeu GluIleMet ThrLysArg l95 200 205 Ser Asn TyrThrPro IleThr Asn $0 210 215 <210>
<211>
$$ <212>
PRT
<213> Sapiens Homo Met Gly AspThrGly ArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSerGly GlyGly GlySerGly GlyGlyGly AspThrArg $ Pro Arg PheLeuGlu GlnVal LysHisGlu CysHisPhe PheAsnGly Thr Glu ArgValArg PheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPheAsp SerAsp ValGlyGlu TyrArgAla ValThrGlu Leu Gly ArgProAsp AlaGlu TyrTrpAsn SerGlnLys AspLeuLeu 1$ 85 90 95 Glu Gln LysArgAla AlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSerPhe ThrVal GlnArgArg GlySerPro ProGlyGly Pro Pro GlySerIle LysGlu GluHisVal IleIleGln AlaGluPhe 2$
Tyr Leu AsnProAsp GlnSer GlyGluPhe MetPheAsp PheAspGly Asp Glu IlePheHis ValAsp MetAlaLys LysGluThr ValTrpArg Leu Glu GluPheGly ArgPhe AlaSerPhe GluAlaGln GlyAlaLeu 3$ Ala Asn IleAlaVal AspLys AlaAsnLeu GluIleMet ThrLysArg Ser Asn'Tyr Thr Pro Ile Thr Asn <210> C0580 <211> 221 <212> PRT
4$ <213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly $0 Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly $$
Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln LysArgAla AlaVal AspThrTyr CysArgHis AsnTyrGly Val Gly GluSerPhe ThrVal GlnArgArg GlySerPro GlyGlyGly Gly Ser GlyGlyGly ProGly SerIleLys GluGluHis ValIleIle IS Gln AIa GluPheTyr LeuAsn ProAspGln SerGlyGlu PheMetPhe Asp Phe AspGlyAsp GluIle PheHisVal AspMetAla LysLysGlu Thr Val TrpArgLeu GluGlu PheGlyArg PheAlaSer PheGluAla Gln Gly AlaLeuAla AsnIle AlaValAsp LysAlaAsn LeuGluIle Met Thr LysArgSer AsnTyr ThrProIle ThrAsn <210>
<211>
<212>
PRT
<213>
Homo sapiens Met Gly AspThrGly ArgSer PheThrLeu AlaSerSer GluThrGly Val Gly AlaSerGly GlyGly GlySerGly GlyGlyGly AspThrArg Pro Arg PheLeuGlu GlnVal LysHisGlu CysHisPhe PheAsnGly Thr Glu ArgValArg PheLeu AspArgTyr PheTyrHis GlnGluGlu Tyr Val ArgPheAsp SerAsp ValGlyGlu TyrArgAla ValThrGlu Leu Gly ArgProAsp AlaGlu TyrTrpAsn SerGlnLys AspLeuLeu Glu Gln LysArgAla AlaVal AspThrTyr CysArgHis AsnTyrGly 5$ 100 105 110 Val Gly GluSerPhe ThrVal GlnArgArg ThrSerGly GlyGlyGly Ser Gly Gly Gly Gly Ser Ser Ser Ile Lys Glu Glu His Val Ile IIe Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe $ 145 150 155 160 Asp Phe Asp Gly Asp Glu Ile Phe His VaI Asp Met AIa Lys Lys Glu 165 170. 175 1~ Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala ' 180 185 190 Gln Gly Ala Leu Ala Asn Ile AIa Val Asp Lys A7.a Asn Leu Glu Ile 1$
Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn I-As MBP. (31(32a1a~ . Cx nucleotide sequence ao gcggccgccaccatggagacagacacactcctgctatgggtactgctgctctgggttcca60 ggttccactggtgacttcaagaacattgtgacacctcgaacaccacctccagctagcgga120 gggggcggaagcggcggagggggagactccgaaaggcatttcgtgttccagttcaagggc180 gagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatctacaac240 2$ cgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgaccgagctg300 gggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggccgagctg360 gacacggtgtgcagacacaactacgagggggtggagacccacacctccctgcggcggctt420 gaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccacaacact480 ctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttccggaat540 3~ ggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggactggacc600 ttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacctgccac660 gtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggcggtggc720 agcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagtgaagac780 gacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcctggagac840 3$ attggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttggataag900 aaggagactatctggatgcttcctgagtttggccaattgacaagctttgacccccaaggt960 ggactgcaaaacatagctacaggaaaatacaccttgggaatcttgactaagaggtcaaat1020 tccaccccagctaccaatgaggctcctcaagcgactgtgttccccaagtcccctgtgctg1080 ctgggtcagcccaacaccctcatctgctttgtggacaacatcttccctcctgtgatcaac1140 4~ atcacatggctcagaaatagtaagtcagtcacagacggcgtttatgagaccagcttcctt1200 gtcaaccgtgaccattccttccacaagctgtcttatctcaccttcatcccttctgacgat1260 gatatttatgactgcaaggtggagcactggggcctggaggagccggttctgaaacactgg1320 gctagcggagggggcggaagcggcggagggggagctgatgctgcaccaactgtatccatc1380 ttcccaccatccagtgagcagttaacatctggaggtgcctcagtcgtgtgcttcttgaac1440 4$ aacttctaccccaaagacatcaatgtcaagtggaagattgatggcagtgaacgacaaaat1500 ggcgtcctgaacagttggactgatcaggacagcaaagacagcacctacagcatgagcagc1560 accctcacgttgaccaaggacgagtatgaacgacataacagctatacctgtgaggccact1620 cacaagacatcaacttcacccattgtcaagagcttcaacaggaatgagtgttagggtacc1680 $0 I-As MBP . (31(32a1a2 . Cx amino acid sequence Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro $$ Gly Ser Thr Gly Asp Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro 8$
Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg $ His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg~Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr 1$ 100 105 lI0 Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val Ile Ser 2$
Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile Arg Asn Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr Pro Arg 3$ Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu Lys Ser Pro Ile~Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln 4$ 260 265 270 Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu $0 Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn $$
Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys S
Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro.Ser Asp Asp 1$ Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu GIu Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys <210> C0528-AC
<211> 600 <212> DNA
<213> Homo Sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggtggtggc 60 ggttcgcgtc cacgtttctt ggaacaggtt aaacatgagt gtcatttttt caatgggacg 120 gaacgcgtgc gttttctgga tcgttacttt tatcaccaag aggaatacgt acgcttcgac 180 agcgatgtgg gcgaatatcg tgcggtcacg gaactgggtc gtcctgatgc cgaatactgg 240 aacagtcaga aggacttact ggagcagaaa cgtgcagcgg tggataccta ttgccgccac 300 aattacggcg ttggtgaaag cttcacagtc cagcgtcgcg gtggcatcaa agaagagcat 360 gtgattatcc aggcggaatt ctatctgaat ccggatcaat cgggcgaatt catgtttgac 420 ttcgatggtg atgagatttt ccatgttgat atggcaaaga aagaaacggt ctggcgctta 480 gaggaatttg gccgctttgc ctcgttcgaa gctcaaggcg cattggccaa cattgctgtg 540 gataaagcga acctggaaat catgacaaaa cgctccaact atactccgat taccaattaa 600 <210> C0608-AC
<211> 642 <212> DNA
S <213> Homo sapiens atgggggaca ccggtcgcag cttcaccctg gcctccagcg agaccggcgt gggtgcttct 60 ggcgggggcg gttcgggcgg tgggggtgac acccgtccac gtttcttgga acaggttaaa 120 catgagtgtc attttttcaa tgggacggaa cgcgtgcgtt ttctggatcg ttacttttat 180 1O caccaagagg aatacgtacg cttcgacagc gatgtgggcg aatatcgtgc ggtcacggaa 240 ctgggtcgtc ctgatgccga atactggaac agtcagaagg acttactgga gcagaaacgt 300 gcagcggtgg atacctattg ccgccacaat tacggcgttg gtgaaagctt cacagtccag 360 cgtcgcacta gtggtggcgg tggctctatc aaagaagagc atgtgattat ccaggcggaa 420 ttctatctga atccggatca atcgggcgaa ttcatgtttg acttcgatgg tgatgagatt 480 1S ttccatgttg atatggcaaa gaaagaaacg gtctggcgct tagaggaatt tggccgcttt 540 gcctcgttcg aagctcaagg cgcattggcc aacattgctg tggataaagc gaacctggaa 600 atcatgacaa aacgctccaa ctatactccg attaccaatt as 642 2O <210> 00528 <211> 600 <212> DNA
<213> Homo sapiens 2S atgggggaca ccggaagatc gttcacactc gcatcatcag agacaggagt aggaggagga 60 ggatcgcgac cacgtttctt ggagcaggtt aaacatgagt gtcatttctt caacgggacg 120 gagcgggtgc ggttcctgga cagatacttc tatcaccaag aggagtacgt gcgcttcgac 180 agcgacgtgg gggagtaccg ggcggtgacg gagctggggc ggcctgatgc cgagtactgg 240 aacagccaga gggacctcct ggagcagaag cgggccgcgg tggacaccta ctgcagacac 300 30 aactacgggg ttggtgagag cttcacagtg cagcggcgag gaggtatcaa agaagaacat 360 gtgatcatcc aggccgagtt ctatctgaat cctgaccaat caggcgagtt tatgtttgac 420 tttgatggtg atgagatttt ccatgtggat atggcaaaga aggagacggt ctggcggctt 480 gaagaatttg gacgatttgc cagctttgag gctcaaggtg cattggccaa catagctgtg 540 gacaaagcca acctggaaat catgacaaag cgctccaact atactccgat caccaattaa 600 <210> 00608 <211> 630 <212> DNA
4O <213> Homo Sapiens ATGGGGGACACCCGCAGCTTCACCCTGGCCTCCAGCGAGACCGGCGTGGGCGCTAGCGGAGGGGGCGGAAGC
GGCGGAGGGGGGCCACGTTTCTTGGAGCAGGTTAAACATGAGTGTCATTTCTTCAACGGGACGGAGCGGGTG
CGGTTCCTGGACAGATACTTCTATCACCAAGAGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTACCGG
GCCGCGGTGGACACCTACTGCAGACACAACTACGGGGTTGGTGAGAGCTTCACAGTGCAGCGGCGAACTAGT
GGTGGCGGTGGCAGCATCAAAGAAGAACATGTGATCATCCAGGCCGAGTTCTATCTGAATCCTGACCAATCA
GGCGAGTTTATGTTTGACTTTGATGGTGATGAGATTTTCCATGTGGATATGGCAAAGAAGGAGACGGTCTGG
CGGCTTGAAGAATTTGGACGATTTGCCAGCTTTGAGGCTCAAGGTGCATTGGCCAACATAGCTGTGGACAAA
SO GCCAACCTGGAAATCATGACAAAGCGCTCCAACTATACTCCGATCACCAATTAA
<210> CO 608 variation <211> 642 SS <212> DNA--00608 <213> Homo Sapiens ATGGGGGACACCGGTCGCAGCTTCACCCTGGCCTCCAGCGAGACCGGCGTGGGCGCTAGCGGAGGGGGCGGA
AGCGGCGGAGGGGGGGACACCCGACCACGTTTCTTGGAGCAGGTTAAACATGAGTGTCATTTCTTCAACGGG
ACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATCACCAAGAGGAGTACGTGCGCTTCGACAGCGACGTG
GGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCCTGATGCCGAGTACTGGAACAGCCAGAAGGACCTCCTG
GAGCAGAAGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACGGGGTTGGTGAGAGCTTCACAGTGCAG
CGGCGAACTAGTGGTGGCGGTGGCAGCATCAAAGAAGAACATGTGATCATCCAGGCCGAGTTCTATCTGAAT
S CCTGACCAATCAGGCGAGTTTATGTTTGACTTTGATGGTGATGAGATTTTCCATGTGGATATGGCAAAGAAG
GAGACGGTCTGGCGGCTTGAAGAATTTGGACGATTTGCCAGCTTTGAGGCTCAAGGTGCATTGGCCAACATA
GCTGTGGACAAAGCCAACCTGGAAATCATGACAAAGCGCTCCAACTATACTCCGATCACCAATTAA
<210> C0528-AC
<211> 200 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Gly Gly Gly Ser Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly Gly Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe.Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn $5 <210> C0608-AC
<211> 214 <212> PRT
<213> Homo Sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Thr Arg $ 20 25 30 Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly IO Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu IS
Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Thr Ser Gly Gly Gly Gly 2$ Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys AIa Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> C0608 4S <211> 209 <212> PRT
<213> Homo sapiens MGDTRSFTLASSETGVGASGGGGSGGGGPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFDSDVGEYR
SO AVTELGRPDAEYWNSQKDLLEQKR.AAVDTYCRHNYGVGESFTVQRRTSGGGGSIKEEHVIIQAEFYLNPDQS
GEFMFDFDGDEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPITN
<210> C0608-variation 55 <211> 211 <212> PRT
<213> Homo Sapiens MGDTGRSFTLASSETGVGASGGGGSGGGGDTRPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFDSDV
GEYRAVTELGRPDAEYWNSQKDLLEQKRAAVDTYCRHNYGVGESFTVQRRTSGGGGSIKEEHVIIQAEFYLN
PDQSGEFMFDFDGDEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIADKANLEIMTKRSNYTPIT
<210> C0528 <211> 200 <212> PRT
<213> Homo sapiens Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly Val Gly Gly Gly Gly Ser Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg 20 Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Arg Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly Gly Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile~Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn <210> IAS MBPl-l4 CHl.CH2.CH3 <211> 2346 <212> DNA
<213> murine gcggccgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60 ggttccactg gtgacatggc gtcacagaag agaccctccc agaggcacgg atccaaggct 120 agcggagggg gcggaagcgg cggaggggga gactccgaaa ggcatttcgt gttccagttc 180 aagggcgagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatc240 tacaaccgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgacc300 gagctggggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggcc360 gagctggacacggtgtgcagacacaactacgagggggtggagacccacacctccctgcgg420 cggcttgaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccac480 aacactctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttc540 cggaatggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggac600 tggaccttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacc660 tgccacgtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggc720 ggtggcagcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagt780 gaagacgacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcct840 ggagacattggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttg900 gataagaaggagactatctggatgcttcctgagtttggccaattgacaagctttgacccc960 caaggtggactgcaaaacatagctacaggaaaatacaccttgggaatcttgactaagagg1020 tcaaattccaccccagctaccaatgaggctcctcaagcgactgtgttccccaagtcccct1080 gtgctgctgggtcagcccaacaccctcatctgctttgtggacaacatcttccctcctgtg1140 atcaacatcacatggctcagaaatagtaagtcagtcacagacggcgtttatgagaccagc1200 ttccttgtcaaccgtgaccattccttccacaagctgtcttatctcaccttcatcccttct1260 gacgatgatatttatgactgcaaggtggagcactggggcctggaggagccggttctgaaa1320 cactgggctagcggagggggcggaagcggcggagggggagccaaaacgacacccccatct1380 gtctatccactggcccctggatctgctgcccaaactaactccatggtgaccctgggatgc1440 ctggtcaagggctatttccctgagccagtgacagtgacctggaactctggatccctgtcc1500 agcggtgtgcacaccttcccagctgtcctgcagtctgacctctacactctgagcagctca1560 gtgactgtcccctccagcacctggcccagcgagaccgtcacctgcaacgttgcccacccg1620 gccagcagcaccaaggtggacaagaaaattgtgcccagggattgtggttgtaagccttgc1680 atatgtacagtcccagaagtatcatctgtcttcatcttccccccaaagcccaaggatgtg1740 ctcaccattactctgactcctaaggtcacgtgtgttgtggtagacatcagcaaggatgat1800 cccgaggtccagttcagctggtttgtagatgatgtggaggtgcacacagctcagacgcaa1860 ccccgggaggagcagttcaacagcactttccgctcagtcagtgaacttcccatcatgcac1920 caggactggctcaatggcaaggagttcaaatgcagggtcaacagtgcagctttccctgcc1980 cccatcgagaaaaccatctccaaaaccaaaggcagaccgaaggctccacaggtgtacacc2040 attccacctcccaaggagcagatggccaaggataaagtcagtctgacctgcatgataaca2100 gacttcttccctgaagacattactgtggagtggcagtggaatgggcagccagcggagaac2160 tacaagaacactcagcccatcatggacacagatggctcttacttcgtctacagcaagctc2220 aatgtgcagaagagcaactgggaggcaggaaatactttcacctgctctgtgttacatgag2280 ggcctgcacaaccaccatactgagaagagcctctcccactctcctggtaaatgatctggt2340 acctgc 2346 <210> IAS
CH1.H
<211> 1701 <212> DNA
<213> murine gcggccgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60 ggttccactg gtgacatggc gtcacagaag agaccctccc agaggcacgg atccaaggct 120 agcggagggg gcggaagcgg cggaggggga gactccgaaa ggcatttcgt gttccagttc 180 aagggcgagt gctacttcac caacgggacg cagcgcatac gatctgtgga cagatacatc 240 tacaaccggg aggagtacct gcgcttcgac agcgacgtgg gcgagtaccg cgcggtgacc 300 gagctggggc ggccagaccc cgagtactac aataagcagt acctggagca aacgcgggcc 360 gagctggaca cggtgtgcag acacaactac gagggggtgg agacccacac ctccctgcgg 420 cggcttgaac agcccaatgt cgtcatctcc ctgtccagga cagaggccct caaccaccac 480 aacactctgg tctgctcagt gacagatttc tacccagcca agatcaaagt gcgctggttc 540 cggaatggcc aggaggagac ggtgggggtc tcatccacac agcttattag gaatggggac 600 SS tggaccttcc aggtcctggt catgctggag atgacccctc ggcggggaga ggtctacacc 660 tgccacgtgg agcatccgag cctgaagagc cccatcactg tggagtggac tagtggtggc 720 ggtggcagcg gcggtggtgg ttc.cggtggc ggcggttctg gcggtggcgg ttcctcgagt 780 gaagacgaca ttgaggccga ccacgtaggc gtctatggta caactgtata tcagtctcct 840 ggagacattg gccagtacac acatgaattt gatggtgatg agtggttcta tgtggacttg 900 gataagaagg agactatctg gatgcttcct gagtttggcc aattgacaag ctttgacccc 960 caaggtggac tgcaaaacat agctacagga aaatacacct tgggaatctt gactaagagg 1020 tcaaattcca ccccagctac caatgaggct cctcaagcga ctgtgttccc caagtcccct 1080 gtgctgctgg gtcagcccaa caccctcatc tgctttgtgg acaacatctt ccctcctgtg 1140 S atcaacatca catggctcag aaatagtaag tcagtcacag acggcgttta tgagaccagc 1200 ttccttgtca accgtgacca ttccttccac aagctgtctt atctcacctt catcccttct 1260 gacgatgata tttatgactg caaggtggag cactggggcc tggaggagcc ggttctgaaa 1320 cactgggcta gcggaggggg cggaagcggc ggagggggag ccaaaacgac acccccatct 1380 gtctatccac tggcccctgg atctgctgcc.caaactaact ccatggtgac cctgggatgc 1440 ctggtcaagg gctatttccc tgagccagtg acagtgacct ggaactctgg atccctgtcc 1500 agcggtgtgc acaccttccc agctgtcctg cagtctgacc tctacactct gagcagctca 1560 gtgactgtcc cctccagcac ctggcccagc gagaccgtca cctgcaacgt tgcccacccg 1620 gccagcagca ccaaggtgga caagaaaatt gtgcccaggg attgtggttg taagccttgc 1680 atatgtacag tctaaggtac c 1701 <210> IAS MBP 90-101 CH1.H.CH2 <211> 2053 <212> DNA
<213> murine gcggccgccaccatggagacagacacactcctgctatgggtactgctgctctgggttcca60 ggttccactggtgacttcaagaacattgtgacacctcgaacaccacctccagctagcgga120 gggggcggaagcggcggagggggagactccgaaaggcatttcgtgttccagttcaagggc180 gagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatctacaac240 cgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgaccgagctg300 gggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggccgagctg360 gacacggtgtgcagacacaactacgagggggtggagacccacacctccctgcggcggctt420 gaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccacaacact480 ctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttccggaat'540 ggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggactggacc600 ttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacctgccac660 gtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggcggtggc720 agcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagtgaagac780 gacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcctggagac840 attggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttggataag900 aaggagactatctggatgcttcctgagtttggccaattgacaagctttgacccccaaggt960 ggactgcaaaacatagctacaggaaaatacaccttgggaatcttgactaagaggtcaaat1020 tccaccccagctaccaatgaggctcctcaagcgactgtgttccccaagtcccctgtgctg1080 ctgggtcagcccaacaccctcatctgctttgtggacaaca,tcttccctcctgtgatcaac1140 atcacatggctcagaaatagtaagtcagtcacagacggcgtttatgagaccagcttcctt1200 gtcaaccgtgaccattccttccacaagctgtcttatctcaccttcatcccttctgacgat1260 gatatttatgactgcaaggtggagcactggggcctggaggagccggttctgaaacactgg1320 gctagcggagggggcggaagcggcggagggggagccaaaacaacacccccatcagtctat1380 ccactggcccctgggtgtggagatacaactggttcctccgtgactctgggatgcctggtc1440 aagggctacttccctgagtcagtgactgtgacttggaactctggctccctgtccagcagt1500 gtgcacaccttcccagctctcctgcagtctggactctacactatgagcagctcagtgact1560 gtcccctccagcacctggccaagtcagaccgtcacctgcagcgttgctcacccagccagc1620 agcaccacggtggacaaaaaacttgagcccagcgggcccatttcaacaatcaacccctgt1680 SO cctccatgcaaggagtgtcacaaatgcccagctcctaacctggagggtggaccatccgtc1740 ttcatcttccctccaaatatcaaggatgtactcatgatctccctgacacccaaggtcacg1800 tgtgtggtggtggatgtgagcgaggatgacccagacgtccagatcagctggtttgtgaac1860 aacgtggaagtacacacagctcagacacaaacccatagagaggattacaacagtactatc1920 cgggtggtcagcaccctccccatccagcaccaggactggatgagtggcaaggagttcaaa1980 tgcaaggtcaacaacaaagacctcccatcacccatcgagagaaccatctcaaaaattaaa2040 tagggtaccccga 2053 <210> IAS MBP 90-101 CH1.H
<211> 1707 <212> DNA
<213> murine gcggccgccaccatggagacagacacactcctgctatgggtactgctgctctgggttcca60 ggttccactggtgacttcaagaacattgtgacacctcgaacaccacctccagctagcgct120 agcggagggggcggaagcggcggagggggagactccgaaaggcatttcgtgttccagttc180 aagggcgagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatc240 tacaaccgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgacc300 gagctggggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggcc360 gagctggacacggtgtgcagacacaactacgagggggtggagacccacacctccctgcgg420 cggcttgaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccac480 aacactctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttc540 cggaatggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggac600 1S tggaccttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacc660 tgccacgtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggc720 ggtggcagcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagt780 gaagacgacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcct840 ggagacattggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttg900 gataagaaggagactatctggatgcttcctgagtttggccaattgacaagcttaagcttt960 gacccccaaggtggactgcaaaacatagctacaggaaaatacaccttgggaatcttgact1020 aagaggtcaaattccaccccagctaccaatgaggctcctcaagcgactgtgttccccaag1080 tcccctgtgctgctgggtcagcccaacaccctcatctgctttgtggacaacatcttccct1140 cctgtgatcaacatcacatggctcagaaatagtaagtcagtcacagacggcgtttatgag1200 2S accagcttccttgtcaaccgtgaccattccttccacaagctgtcttatctcaccttcatc1260 ccttctgacgatgatatttatgactgcaaggtggagcactggggcctggaggagccggtt1320 ctgaaacactgggctagcggagggggcggaagcggcggagggggagccaaaacgacaccc1380 ccatctgtctatccactggcccctggatctgctgcccaaactaactccatggtgaccctg1440 ggatgcctggtcaagggctatttccctgagccagtgacagtgacctggaactctggatcc1500 ctgtccagcggtgtgcacaccttcccagctgtcctgcagtctgacctctacactctgagc1560 agctcagtgactgtcccctccagcacctggcccagcgagaccgtcacctgcaacgttgcc1620 cacccggccagcagcaccaaggtggacaagaaaattgtgcccagggattgtggttgtaag1680 ccttgcatatgtacagtctaaggtacc 1707 <210> MBP 1-14 CK
<211> 1686 <212> DNA
<213> murine gcggccgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60 ggttccactg gtgacatggc gtcacagaag agaccctccc agaggcacgg atccaaggct 120 agcggagggg gcggaagcgg cggaggggga gactccgaaa ggcatttcgt gttccagttc 180 aagggcgagt gctacttcac caacgggacg cagcgcatac gatctgtgga cagatacatc 240 tacaaccggg aggagtacct gcgcttcgac agcgacgtgg gcgagtaccg cgcggtgacc 300 gagctggggc ggccagaccc cgagtactac aataagcagt acctggagca aacgcgggcc 360 gagctggaca cggtgtgcag acacaactac gagggggtgg agacccacac ctccctgcgg 420 cggcttgaac agcccaatgt cgtcatctcc ctgtccagga cagaggccct caaccaccac 480 aacactctgg tctgctcagt gacagatttc tacccagcca agatcaaagt gcgctggttc 540 SO cggaatggcc aggaggagac ggtgggggtc tcatccacac agcttattag gaatggggac 600 tggaccttcc aggtcctggt catgctggag atgacccctc ggcggggaga ggtctacacc 660 tgccacgtgg agcatccgag cctgaagagc cccatcactg tggagtggac tagtggtggc 720 ggtggcagcg gcggtggtgg ttccggtggc ggcggttctg gcggtggcgg ttcctcgagt 780 gaagacgaca ttgaggccga ccacgtaggc gtctatggta caactgtata tcagtctcct 840 ggagacattg gccagtacac acatgaattt gatggtgatg agtggttcta tgtggacttg 900 gataagaagg agactatctg gatgcttcct gagtttggcc aattgacaag ctttgacccc 960 caaggtggac tgcaaaacat agctacagga aaatacacct tgggaatctt gactaagagg 1020 tcaaattcca ccccagctac caatgaggct cctcaagcga ctgtgttccc caagtcccct 1080 gtgctgctgg gtcagcccaa caccctcatc tgctttgtgg acaacatctt ccctcctgtg 1140 atcaacatca catggctcag aaatagtaag tcagtcacag acggcgttta tgagaccagc 1200 ttccttgtca accgtgacca ttccttccac aagctgtctt atctcacctt catcccttct 1260 gacgatgata tttatgactg caaggtggag cactggggcc tggaggagcc ggttctgaaa 1320 cactgggcta gcggaggggg cggaagcggc ggagggggag ctgatgctgc accaactgta 1380 S tccatcttcc caccatccag tgagcagtta acatctggag gtgcctcagt cgtgtgcttc 1440 ttgaacaact tctaccccaa agacatcaat gtcaagtgga agattgatgg cagtgaacga 1500 caaaatggcg'tcctgaacag ttggactgat caggacagca aagacagcac ctacagcatg 1560 agcagcaccc tcacgttgac caaggacgag tatgaacgac ataacagcta tacctgtgag 1620 gccactcaca agacatcaac ttcacccatt gtcaagagct'tcaacaggaa tgagtgttag 1680 ggtacc 1686 <210> MBP 1-14 CH1.H.CH2 <211> 2059 1$ <212> DNA
<213> murine gcggccgccaccatggagacagacacactcctgctatgggtactgctgctctgggttcca60 ggttccactggtgacatggcgtcacagaagagaccctcccagaggcacggatccaaggct120 agcggagggggcggaagcggcggagggggagactccgaaaggcatttcgtgttccagttc180 aagggcgagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatc240 tacaaccgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgacc300 gagctggggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggcc360 gagctggacacggtgtgcagacacaactacgagggggtggagacccacacctccctgcgg420 2S cggcttgaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccac480 aacactctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttc540 cggaatggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggac600 tggaccttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacc660 tgccacgtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggc720 ggtggcagcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagt780 gaagacgacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcct840 ggagacattggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttg900 gataagaaggagactatctggatgcttcctgagtttggccaattgacaagctttgacccc960 caaggtggactgcaaaacatagctacaggaaaatacaccttgggaatcttgactaagagg1020 3S tcaaattccaccccagctaccaatgaggctcctcaagcgactgtgttccccaagtcccct1080 gtgctgctgggtcagcccaacaccctcatctgctttgtggacaacatcttccctcctgtg1140 atcaacatcacatggctcagaaatagtaagtcagtcacagacggcgtttatgagaccagc1200 ttccttgtcaaccgtgaccattccttccacaagctgtcttatctcaccttcatcccttct1260 gacgatgatatttatgactgcaaggtggagcactggggcctggaggagccggttctgaaa1320 cactgggctagcggagggggcggaagcggcggagggggagccaaaacaacacccccatca1380 gtctatccactggcccctgggtgtggagatacaactggttcctccgtgactctgggatgc1440 ctggtcaagggctacttccctgagtcagtgactgtgacttggaactctggctccctgtcc1500 agcagtgtgcacaccttcccagctctcctgcagtctggactctacactatgagcagctcaX560 gtgactgtcccctccagcacctggccaagtcagaccgtcacctgcagcgttgctcaccca1620 gccagcagcaccacggtggacaaaaaacttgagcccagcgggcccatttcaacaatcaac1680 ccctgtcctccatgcaaggagtgtcacaaatgcccagctcctaacctggagggtggacca1740 tccgtcttcatcttccctccaaatatcaaggatgtactcatgatctccctgacacccaag1800 gtcacgtgtgtggtggtggatgtgagcgaggatgacccagacgtccagatcagctggttt1860 gtgaacaacgtggaagtacacacagctcagacacaaacccatagagaggattacaacagt1920 actatccgggtggtcagcaccctccccatccagcaccaggactggatgagtggcaaggag1980 ttcaaatgcaaggtcaacaacaaagacctcccatcacccatcgagagaaccatctcaaaa2040 attaaatagggtaccccga 2059 <210> MBP 90-101 CHl.H.CH2.CH3 <211> 23'43 <212> DNA--<213> murine gcggccgccaccatggagacagacacactcctgctatgggtactgctgctctgggttcca60 ggttccactggtgacttcaagaacattgtgacacctcgaacaccacctccagctagcgga120 gggggcggaagcggcggagggggagactccgaaaggcatttcgtgttccagttcaagggc180 gagtgctacttcaccaacgggacgcagcgcatacgatctgtggacagatacatctacaac240 S cgggaggagtacctgcgcttcgacagcgacgtgggcgagtaccgcgcggtgaccgagctg300 gggcggccagaccccgagtactacaataagcagtacctggagcaaacgcgggccgagctg360 gacacgacgtgcagacacaactacgagggggtggagacccacacctccctgcggcggctt420 gaacagcccaatgtcgtcatctccctgtccaggacagaggccctcaaccaccacaacact480 ctggtctgctcagtgacagatttctacccagccaagatcaaagtgcgctggttccggaat540 10 ggccaggaggagacggtgggggtctcatccacacagcttattaggaatggggactggacc600 ttccaggtcctggtcatgctggagatgacccctcggcggggagaggtctacacctgccac660 gtggagcatccgagcctgaagagccccatcactgtggagtggactagtggtggcggtggc720 agcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagtgaagac780 gacattgaggccgaccacgtaggcgtctatggtacaactgtatatcagtctcctggagac840 15 attggccagtacacacatgaatttgatggtgatgagtggttctatgtggacttggataag900 aaggagactatctggatgcttcctgagtttggccaattgacaagctttgacccccaaggt960 ggactgcaaaacatagctacaggaaaatacaccttgggaatcttgactaagaggtcaaat1020 tccaccccagctaccaatgaggctcctcaagcgactgtgttccccaagtcccctgtgctg1080 ctgggtcagcccaacaccctcatctgctttgtggacaacatcttccctcctgtgatcaac1140 20 atcacatggctcagaaatagtaagtcagtcacagacggcgtttatgagaccagcttcctt1200 gtcaaccgtgaccattecttccacaagctgtcttatctcaccttcatcccttctgacgat1260 gatatttatgactgcaaggtggagcactggggcctggaggagccggttctgaaacactgg1320 gctagcggagggggcggaagcggcggaggaagcttagccaaaacgacacccccatctgtc1380 tatccactggcccctggatctgctgcccaaactaactccatggtgaccctgggatgcctg1440 25 gtcaagggctatttccctgagccagtgacagtgacctggaactctggatccctgtccagc1500 ggtgtgcacaccttcccagctgtcctgcagtctgacctctacactctgagcagctcagtg1560 actgtcccctccagcacctggcccagcgagaccgtcacctgcaacgttgcccacccggcc1620 agcagcaccaaggtggacaagaaaattgtgcccagggattgtggttgtaagccttgcata1680 tgtacagtcccagaagtatcatctgtcttcatcttccccccaaagcccaaggatgtgctc1740 30 accattactctgactcctaaggtcacgtgtgttgtggtagacatcagcaaggatgatccc1800 gaggtccagttcagctggtttgtagatgatgtggaggtgcacacagctcagacgcaaccc1860 cgggaggagcagttcaacagcactttccgctcagtcagtgaacttcccatcatgcaccag1920 gactggctcaatggcaaggagttcaaatgcagggtcaacagtgcagctttccctgccccc1980 atcgagaaaaccatctccaaaaccaaaggcagaccgaaggctccacaggtgtacaccatt2040 35 ccacctcccaaggagcagatggccaaggataaagtcagtctgacctgcatgataacagac2100 ttcttccctgaagacattactgtggagtggcagtggaatgggcagccagcggagaactac2160 aagaacactcagcccatcatggacacagatggctcttacttcgtctacagcaagctcaat2220 gtgcagaagagcaactgggaggcaggaaatactttcacctgctctgtgttacatgagggc2280 ctgcacaaccaccatactgagaagagcctctcccactctcctggtaaatgatctggtacc2340 40 tgc 2343 <210> IASMBP 1-14 CH1.CH2.CH3 <211> 679 45 <212> PRT--<213> murine Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Met Ala Ser Gln Lys Arg Pro Ser Gln Arg His Gly Ser Lys Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val 1$
Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile 2$ Arg Asn Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr Pro Arg Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser 3$ 245 250 255 Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met 290 295 ~ 300 Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg $0 325 330 335 Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe 5$ Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser LysSerVal ThrAspGly ValTyrGlu ThrSer PheLeuVal Asn $ Arg AspHisSer PheHisLys LeuSerTyr LeuThr PheIlePro Ser Asp AspAspIle TyrAspCys LysValGlu HisTrp GlyLeuGlu Glu Pro ValLeuLys HisTrpAla SerGlyGly GlyGly SerGlyGly Gly Gly AlaLysThr ThrProPro SerValTyr ProLeu AlaProGly.Cys Gly AspThrThr GlySerSer ValThrLeu GlyCys LeuValLys Gly Tyr PheProGlu SerValThr ValThrTrp AsnSer GlySerLeu Ser Ser SerValHis ThrPhePro AlaLeuLeu GlnSer GlyLeuTyr Thr Met SerSerSer ValThrVal ProSerSer ThrTrp ProSerGln Thr Val ThrCysSer ValAlaHis ProAlaSer SerThr ThrValAsp Lys Lys LeuGluPro SerGlyPro IleSerThr IleAsn ProCysPro Pro .
Cys LysGluCys HisLysCys ProAlaPro AsnLeu GluGlyGly Pro Ser Val~PheIle PheProPro AsnIleLys AspVal LeuMetIle Ser Leu ThrProLys ValThrCys ValValVal AspVal SerGluAsp Asp Pro AspValGln IleSerTrp PheValAsn AsnVal GluValHis Thr Ala GlnThrGln ThrHisArg GluAspTyr AsnSer ThrIleArg Val Val SerThrLeu ProIleGln HisGlnAsp TrpMet SerGlyLys Glu Phe LysCysLys ValAsnAsn LysAspLeu ProSer ProIleGlu Arg Thr IleSerLys IleLys 9~
<210> IAS MBP 1-14 CH1.H
<211>- 677 <212> PRT--<213> murine Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr 2$ 100 105 110 Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn 165 l70 175 Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile Arg Asn 4.0 180 185 190 Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr Pro Arg 4S Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp 245 250 255.
Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln $S 260 265 270 Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Ala Ser Gly GIy GIy Gly Ser Gly Gly Gly Gly Ala Lys Thr Thr Pro Pro Ser Va1 Tyr Pro Leu Ala Pro Gly Cys Gly Asp Thr Thr Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe 3$ 465 470 475 480 Pro Glu Ser Val Thr Val Thr Trp Asn Ser GIy Ser Leu Ser Ser Ser Val His Thr Phe Pro Ala Leu Leu Gln Ser Gly Leu Tyr Thr Met Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Gln Thr Val Thr Cys Ser Val Ala His Pro Ala Ser Ser Thr Thr Val Asp Lys Lys Leu Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Cys Pro Pro Cys Lys GIu Cys His Lys Cys Pro Ala Pro Asn Leu Glu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Asn Ile Lys Asp Val Leu Met Ile Ser Leu Thr Pro Lys Val Thr Cys Val Val Val Asp Val Ser GIu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr Ala Gln $ Thr Gln ThrHisArg GluAspTyr Ser ThrIle ValValSer Asn Arg Thr Leu ProIleGln HisGlnAsp Met SerGly GluPheLys Trp Lys Cys Lys ValAsnAsn LysAspLeu Ser ProIle ArgThrIle Pro Glu Ser Lys IleLys <210> CHl.H.CH2 IAS
MBP
<211>
ZO <212>
PRT--<213>
murine Met GluThrAsp ThrLeuLeu LeuTrpVal LeuLeuLeu TrpVal Pro Gly SerThrGly AspPheLys AsnIleVal ThrProArg ThrPro Pro Pro AlaSerAla SerGlyGly GlyGlySer GlyGlyGly GlyAsp Ser Glu ArgHisPhe ValPheGln PheLysGly GluCysTyr PheThr Asn Gly ThrGlnArg IleArgSer ValAspArg TyrIleTyr AsnArg Glu Glu Tyr~LeuArg PheAspSer AspValGly GluTyrArg AlaVal Thr Glu LeuGlyArg ProAspPro GluTyrTyr AsnLysGln TyrLeu Glu Gln ThrArgAla GluLeuAsp ThrValCys ArgHisAsn TyrGlu Gly Val GluThrHis ThrSerLeu ArgArgLeu GluGlnPro AsnVal Val SO Ile SerLeuSer ArgThrGlu AlaLeuAsn HisHisAsn ThrLeu Val Cys SerValThr AspPheTyr ProAlaLys IleLysVal ArgTrp Phe Arg AsnGlyGln GluGluThr ValGlyVal SerSerThr GlnLeu Ile Arg AsnGlyAsp TrpThrPhe GlnValLeu ValMetLeu GluMet Thr Pro Arg ArgGly GluValTyr ThrCysHis ValGluHis ProSer Leu Lys Ser ProIle ThrValGlu TrpThrSer GlyGlyGly GlySer Gly Gly Gly GlySer GlyGlyGly GlySerGly GlyGlyGly SerSer Ser ~
1~ 245 250 255 Glu Asp AspIle GluAlaAsp HisValGly ValTyrGly ThrThr Val Tyr Gln SerPro GlyAspIle GlyGlnTyr ThrHisGlu PheAsp Gly Asp Glu TrpPhe TyrValAsp LeuAspLys LysGluThr IleTrp Met Leu Pro GluPhe GlyGlnLeu ThrSerLeu SerPheAsp ProGln Gly Gly Leu GlnAsn IleAlaThr GlyLysTyr ThrLeuGly IleLeu Thr Lys Arg SerAsn SerThrPro AlaThrAsn GluAlaPro GlnAla Thr 3~ Val Phe ProLys SerProVal LeuLeuGly GlnProAsn ThrLeu Ile Cys Phe ValAsp AsnIlePhe ProProVal IleAsnIle ThrTrp Leu Arg Asn SerLys SerValThr AspGlyVal TyrGluThr SerPhe Leu Val Asn ArgAsp HisSerPhe HisLysLeu SerTyrLeu ThrPhe Ile Pro Ser AspAsp AspIleTyr AspCysLys ValGluHis TrpGly Leu Glu Glu ProVal LeuLysHis TrpAlaSer GlyGlyGly GlySer Gly Gly Gly GlyAla LysThrThr ProProSer ValTyrPro LeuAla Pro Gly Ser AlaAla GlnThrAsn SerMetVal ThrLeuGly CysLeu Val Lys Gly TyrPhe ProGluPro ValThrVal ThrTrpAsn SerGly Ser $$ 485 490 495 Leu Ser SerGly ValHisThr PheProAla ValLeuGln SerAsp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val <210> IAS MBP 90-101 CH1.H
<211> 556 <212> PRT
<213> murine Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu.Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Met Ala Ser Gln Lys Arg Pro Ser Gln Arg His Gly Ser Lys Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr ArgAla GluLeuAsp ThrValCys ArgHis AsnTyrGlu Gly Val Glu ThrHis ThrSerLeu ArgArgLeu GluGln ~ProAsnVal Val Ile Ser LeuSer ArgThrGlu AlaLeuAsn HisHis AsnThrLeu Val Cys Ser ValThr AspPheTyr ProAlaLys IleLys ValArgTrp Phe $0 165 170 175 Arg Asn GlyGln GluGluThr ValGlyVal SerSer ThrGlnLeu Ile $$ Arg Asn GlyAsp TrpThrPhe GInValLeu ValMet LeuGluMet Thr Pro Arg ArgGly GluValTyr ThrCysHis ValGlu HisProSer Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly $ Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met 1$ 290 295 300 Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe 2$
Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn 370 375 38.0 Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn 3$ Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp'Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu 4$ 450 455 460 Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe $0 Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser $$
Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys GIu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys <210>
IAS
MBP
CK
<211>
<212>
PRT
<213>
murine Thr Met GluThrAsp ThrLeu LeuLeuTrpVal LeuLeu LeuTrpVal 1$ Pro Gly SerThrGly AspMet AlaSerGlnLys ArgPro SerGlnArg His Gly SerLysAla SerGly GlyGlyGlySer GlyGly GlyGlyAsp Ser Glu ArgHisPhe ValPhe GlnPheLysGly GluCys TyrPheThr 50 ' S5 60 Asn Gly ThrGlnArg IleArg SerValAspArg TyrIle TyrAsnArg 2$ 65 70 75 80 Glu Glu TyrLeuArg PheAsp SerAspValGly GluTyr ArgAlaVal g5 90 95 Thr Glu LeuGlyArg ProAsp ProGlu.TyrTyr AsnLys GlnTyrLeu Glu Gln ThrArgAla GluLeu AspThrValCys ArgHis AsnTyrGlu Gly Val GluThrHis ThrSer LeuArgArgLeu GluGln ProAsnVal Val Ile SerLeuSer ArgThr GluAlaLeuAsn HisHis AsnThrLeu Val Cys SerValThr AspPhe TyrProAlaLys IleLys ValArgTrp Phe Arg AsnGlyGln GluGlu ThrValGlyVal SerSer ThrGlnLeu Ile Arg AsnGlyAsp TrpThr PheGlnValLeu ValMet LeuGluMet Thr Pro ArgArgGly GluVal TyrThrCysHis ValGlu HisProSer 210 215 ~ 220 Leu Lys SerProIle ThrVal GluTrpThrSer GlyGly GlyGlySer 5$ 225 230 235 240 Gly Gly GlyGlySer GlyGly GlyGlySerGly GlyGly GlySerSer Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp $ 275 280 285 Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile ,Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg 2$ Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe~His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Gly Ser Gly Gly 3$ 435 440 445 Gly Gly Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu $0 515 520 525 Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Val Leu ThrIleThr LeuThr ProLysVal ThrCysVal ValValAsp $ Ile Ser LysAspAsp ProGlu ValGlnPhe SerTrpPhe ValAspAsp Val Glu ValHisThr AlaGln ThrGlnPro ArgGluGlu GlnPheAsn Ser Thr PheArgSer ValSer GluLeuPro IleMetHis GlnAspTrp Leu Asn GlyLysGlu PheLys CysArgVal AsnSerAla AlaPhePro 1$ 645 650 655 Ala Pro IleGluLys ThrIle SerLys.ThrLysGlyArg ProLysAla Pro Gln ValTyrThr IlePro ProProLys GluGlnMet AlaLysAsp Lys Val SerLeuThr CysMet IleThrAsp PhePhePro GluAspIle 2$
Thr Val GluTrpGln TrpAsn GlyGlnPro AlaGluAsn TyrLysAsn Thr Gln ProIleMet AspThr AspGlySer TyrPheVal TyrSerLys Leu Asn ValGlnLys SerAsn TrpGluAla GlyAsnThr PheThrCys 3$ Ser Val LeuHisGlu GlyLeu HisAsnHis HisThrGlu LysSerLeu Ser His~Ser Pro Gly Lys <210> IAS MBP 1-14 CH1.H.CH2 <211> 561 <212> PRT
4$' <213> murine Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro $0 Gly Ser Thr Gly Asp Met Ala Ser Gln Lys Arg Pro Ser Gln Arg His Gly Ser Lys Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser $$
Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr g5 90 95 Glu Leu GlyArgPro AspProGlu TyrTyrAsn LysGln TyrLeuGlu Gln Thr ArgAlaGlu LeuAspThr ValCysArg HisAsn TyrGluGly Val Glu ThrHisThr SerLeuArg ArgLeuGlu GlnPro AsnValVal 1$ Ile Ser LeuSerArg ThrGluAla LeuAsnHis HisAsn ThrLeuVal Cys Ser ValThrAsp PheTyrPro AlaLysIle LysVal ArgTrpPhe Arg Asn GlyGlnGlu GluThrVal GlyValSer SerThr GlnLeuIle Arg Asn GlyAspTrp ThrPheGln ValLeuVal MetLeu GluMetThr 2$ 195 200 205 Pro Arg ArgGlyGlu ValTyrThr CysHisVal GluHis ProSerLeu Lys Ser ProIleThr ValGluTrp ThrSerGly GlyGly GlySerGly Gly Gly GlySerGly GlyGlyGly SerGlyGly GlyGly SerSerSer Glu Asp AspIleGlu AlaAspHis ValGlyVal TyrGly ThrThrVal Tyr Gln SerProGly AspIleGly GlnTyrThr HisGlu PheAspGly Asp Glu TrpPheTyr ValAspLeu AspLysLys GluThr IleTrpMet Leu Pro GluPheGly GlnLeuThr SerPheAsp ProGln GlyGlyLeu Gln Asn IleAlaThr GlyLysTyr ThrLeuGly IleLeu ThrLysArg Ser Asn SerThrPro AlaThrAsn GluAlaPro GlnAla ThrValPhe Pro Lys SerProVal LeuLeuGly GlnProAsn ThrLeu IleCysPhe Val Asp AsnIlePhe ProProVal IleAsnIle ThrTrp LeuArgAsn 10~
Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val.Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val <210> IAS MBP 90-101 CH1.H.CH2.CH3 <211> 773 <212> PRT
<213> murine Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg 35 40 . 45 His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Thr Cys Arg His Asn Tyr Glu Gly Val Glu $ Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile Arg Asn 1$ 180 185 190 Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr Pro Arg Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu Lys Ser 2$
Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu 3$ Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe~Gly G1n Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys 4$ 340 345 350 Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp $0 Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp $$
His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys HisTrpAla SerGly GlyGlyGly SerGlyGly GlySerLeu Ala Lys ThrThrPro ProSer ValTyrPro LeuAlaPro GlySerAla Ala Gln ThrAsnSer MetVal ThrLeuGly CysLeuVal LysGlyTyr Phe Pro GluProVal ThrVal ThrTrpAsn SerGlySer LeuSerSer 1$ Gly Val HisThrPhe ProAla ValLeuGln SerAspLeu TyrThrLeu Ser Ser SerValThr ValPro SerSerThr TrpProSer GluThrVal Thr Cys AsnValAla HisPro AlaSerSer ThrLysVal AspLysLys Ile Val ProArgAsp CysGly CysLysPro CysIleCys ThrValPro Glu Val SerSerVal PheIle PheProPro LysProLys AspValLeu 565 570 ~ 575 Thr Ile ThrLeuThr ProLys ValThrCys ValValVal AspIleSer Lys Asp AspProGlu ValGln PheSerTrp PheValAsp AspValGlu Val His ThrAlaGln ThrGln ProArgGlu GluGlnPhe AsnSerThr Phe Arg SerValSer GluLeu ProIleMet HisGlnAsp TrpLeuAsn Gly Lys GluPheLys CysArg ValAsnSer AlaAlaPhe ProAlaPro Ile Glu LysThrIle SerLys ThrLysGly ArgProLys AlaProGln Val Tyr ThrIlePro ProPro LysGluGln MetAlaLys AspLysVal Ser Leu ThrCysMet IleThr AspPhePhe ProGluAsp IleThrVal Glu Trp GlnTrpAsn GlyGln ProAlaGlu AsnTyrLys AsnThrGln $5 705 710 715 720 Pro Ile MetAspThr AspGly SerTyrPhe ValTyrSer LysLeuAsn Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys <210> pCRC203 <211> 609 <212> DNA
<213> Murine 1$ <400> 1 catatgttca agaacattgt gacacctcga acaccacctc caggaggagg atccggagac 60 tcggaaaggc atttcgtgtt ccagttcaag ggcgagtgct acttcaccaa cgggacgcag 120 cgcatacgat ctgtggacag atacatctac aaccgggagg agtacctgcg cttcgacagc 180 gacgtgggcg agtaccgcgc ggtgaccgag ctggggcggc cagaccccga gtactacaat 240 aagcagtacc tggagcaaac gcgggccgag ctggacacgg tgtgcagaca caactacgag 300 ggggtggaga cccacacctc cctgcggcgg cttggaggtg aagacgacat tgaggccgac 360 cacgtaggcg tctatggtac aactgtatat cagtctcctg gagacattgg ccagtacaca 420 catgaatttg atggtgatga gtggttctat gtggacttgg ataagaagga gactatctgg 480 atgcttcctg agtttggcca attgacaagc tttgaccccc aaggtggact gcaaaacata 540 gctacaggaa aatacacctt gggaatcttg actaagaggt caaattccac cccagctacc 600 aatctcgag 609 <210> pCRC201 <211> 614 <212> DNA
<213> Murine <400> 2 catatgttca agaacattgt gacacctcga acaccacctc caggaggagg atccggagac 60 tcggaaaggc atttcgtgtt ccagttcaag ggcgagtgct acttcaccaa cgggacgcag 120 cgcatacgat ctgtggacag atacatctac aaccgggagg agtacctgcg cttcgacagc 180 gacgtgggcg agtaccgcgc ggtgaccgag ctggggcggc cagaccccga gtactacaat 240 aagcagtacc tggagcaaac gcgggccgag ctggacacgg tgtgcagaca caactacgag 300 ggggtggaga cccacacctc cctgcggcgg cttggaggtg aagacgacat tgaggccgac 360 cacgtaggcg tctatggtac aactgtatat cagtctcctg gagacattgg ccagtacaca 420 catgaatttg atggtgatga gtggttctat gtggacttgg ataagaagga gactatctgg 480 atgcttcctg agtttggcca attgacaagc tttgaccccc aaggtggact gcaaaacata 540 gctacaggaa aatacacctt gggaatcttg actaagaggt caaattccac cccagctacc 600 aattaagcgg ccgc 614 <210> pCRCl99 <211> 642 <212> DNA
<213> Murine <400> 3 catatgttca agaacattgt gacacctcga acaccacctc cagctagcgg agggggcgga 60 agcggcggag ggggagactc cgaaaggcat ttcgtgttcc agtttaaagg cgagtgctac 120 ttcaccaacg ggacgcagcg catacgatct gtggacagat acatctacaa ccgggaggag 180 tacctgcgct tcgacagcga cgtgggcgag taccgcgcgg tgaccgagct ggggcggcca 240 gaccccgagt actacaataa gcagtacctg gagcaaacgc gggccgagct ggacacggtg 300 tgcagacaca actacgaggg ggtggagacc cacacctccc tgcggcggct tactagtggt 360 ggcggtggca gcgaagacga cattgaggcc gaccacgtag gcgtctatgg tacaactgta 420 tatcagtctc ctggagacat tggccagtac acacatgaat ttgatggtga tgagtggttc 480 tatgtggact tggataagaa ggagactatc tggatgcttc ctgagtttgg ccaattgaca 540 agctttgacc cccaaggtgg actgcaaaac atagctacag gaaaatacac cttgggaatc 600 ttgactaaga ggtcaaattc caccccagct accaatctcg ag 642 $ <210> pCRC197 <211> 647 <212> DNA
<213> Murine <400> 4 catatgttca agaacattgt gacacctcga acaccacctc cagctagcgg agggggcgga 60 agcggcggag ggggagactc cgaaaggcat ttcgtgttcc agtttaaagg cgagtgctac 120 ttcaccaacg ggacgcagcg catacgatct gtggacagat acatctacaa ccgggaggag 180 tacctgcgct tcgacagcga cgtgggcgag taccgcgcgg tgaccgagct ggggcggcca 240 1S gaccccgagt actacaataa gcagtacctg gagcaaacgc gggccgagct ggacacggtg 300 tgcagacaca actacgaggg ggtggagacc cacacctccc tgcggcggct tactagtggt 360 ggcggtggca gcgaagacga cattgaggcc gaccacgtag gcgtctatgg tacaactgta 420 tatcagtctc ctggagacat tggccagtac acacatgaat ttgatggtga tgagtggttc 480 tatgtggact tggataagaa ggagactatc tggatgcttc ctgagtttgg ccaattgaca 540 agctttgacc cccaaggtgg actgcaaaac atagctacag gaaaatacac cttgggaatc 600 ttgactaaga ggtcaaattc caccccagct accaattaag cggccgc 647 <210> pCRC188 <211> 1698 2S <212> DNA
<213> Murine <400> 5 gcggccgccaccatggctctgcagatccccagcctcctcctctcggctgctgtggtggtg60 ctgatggtgctgagcagcccagggactgagggcttcaagaacattgtgacacctcgaaca120 ccacctccagctagcggagggggcggaagcggcggagggggagactccgaaaggcatttc180 gtgttccagttcaagggcgagtgctacttcaccaacgggacgcagcgcatacgatctgtg240 gacagatacatctacaaccgggaggagtacctgcgcttcgacagcgacgtgggcgagtac300 cgcgcggtgaccgagctggggcggccagaccccgagtactacaataagcagtacctggag360 3S caaacgcgggccgagctggacacggtgtgcagacacaactacgagggggtggagacccac420 acctccctgcggcggcttgaacagcccaatgtcgtcatctccctgtccaggacagaggcc480 ctcaaccaccacaacactctggtctgctcagtgacagatttctacccagccaagatcaaa540 gtgcgctggttccggaatggccaggaggagacggtgggggtctcatccacacagcttatt600 aggaatggggactggaccttccaggtcctggtcatgctggagatgacccctcggcgggga660 gaggtctacacctgccacgtggagcatccgagcctgaagagccccatcactgtggagtgg720 actagtggtggcggtggcagcggcggtggtggttccggtggcggcggttctggcggtggc780 ggttcctcgagtgaagacgacattgaggccgaccacgtaggcgtctatggtacaactgta840 tatcagtctcctggagacattggccagtacacacatgaatttgatggtgatgagtggttc900 tatgtggacttggataagaaggagactatctggatgcttcctgagtttggccaattgaca960 agctttgacccccaaggtggactgcaaaacatagctacaggaaaatacaccttgggaatc1020 ttgactaagaggtcaaattccaccccagctaccaatgaggctcctcaagcgactgtgttc1080 cccaagtcccctgtgctgctgggtcagcccaacaccctcatctgctttgtggacaacatc1140 ttccctcctgtgatcaacatcacatggctcagaaatagtaagtcagtcacagacggcgtt1200 tatgagaccagcttccttgtcaaccgtgaccattccttccacaagctgtcttatctcacc1260 ttcatcccttctgacgatgatatttatgactgcaaggtggagcactggggcctggaggag1320 ccggttctgaaacactgggctagcggagggggcggaagcggcggagggggagctgatgct1380 gcaccaactgtatccatcttcccaccatccagtgagcagttaacatctggaggtgcctca1440 gtcgtgtgcttcttgaacaacttctaccccaaagacatcaatgtcaagtggaagattgat1500 ggcagtgaacgacaaaatggcgtcctgaacagttggactgatcaggacagcaaagacagc1560 S$ acctacagcatgagcagcaccctca.cgttgaccaaggacgagtatgaacgacataacagc1620 tatacctgtgaggccactcacaagacatcaacttcacccattgtcaagagcttcaacagg1680 aatgagtgttagggtacc 1698 <210> pCRC187 <211> 1662 <212> DNA
<213> Murine <400> 6 gcggccgccaccatggctctgcagatccccagcctcctcctctcggctgctgtggtggtg60 ctgatggtgctgagcagcccagggactgagggcgctagcggagggggcggaagcggcgga120 gggggagactccgaaaggcatttcgtgttccagttcaagggcgagtgctacttcaccaac180 gggacgcagcgcatacgatctgtggacagatacatctacaaccgggaggagtacctgcgc240 ttcgacagcgacgtgggcgagtaccgcgcggtgaccgagctggggcggccagaccccgag300 tactacaataagcagtacctggagcaaacgcgggccgagctggacacggtgtgcagacac360 aactacgagggggtggagacccacacctccctgcggcggcttgaacagcccaatgtcgtc420 atctccctgtccaggacagaggccctcaaccaccacaacactctggtctgctcagtgaca480 gatttctacccagccaagatcaaagtgcgctggttccggaatggccaggaggagacggtg540 1S ggggtctcatccacacagcttattaggaatggggactggaccttccaggtcctggtcatg600 ctggagatgacccctcggcggggagaggtctacacctgccacgtggagcatccgagcctg660 aagagccccatcactgtggagtggactagtggtggcggtggcagcggcggtggtggttcc720 ggtggcggcggttctggcggtggcggttcctcgagtgaagacgacattgaggccgaccac780 gtaggcgtctatggtacaactgtatatcagtctcctggagacattggccagtacacacat840 gaatttgatggtgatgagtggttctatgtggacttggataagaaggagactatctggatg900 cttcctgagtttggccaattgacaagctttgacccccaaggtggactgcaaaacatagct960 acaggaaaatacaccttgggaatcttgactaagaggtcaaattccaccccagctaccaat1020 gaggctcctcaagcgactgtgttccccaagtcccctgtgctgctgggtcagcccaacacc1080 ctcatctgctttgtggacaacatcttccctcctgtgatcaacatcacatggctcagaaat1140 agtaagtcagtcacagacggcgtttatgagaccagcttccttgtcaaccgtgaccattcc1200 ttccacaagctgtcttatctcaccttcatcccttctgacgatgatatttatgactgcaag1260 gtggagcactggggcctggaggagccggttctgaaacactgggctagcggagggggcgga1320 agcggcggagggggagctgatgctgcaccaactgtatccatcttcccaccatccagtgag1380 cagttaacatctggaggtgcctcagtcgtgtgcttcttgaacaacttctaccccaaagac1440 atcaatgtcaagtggaagattgatggcagtgaacgacaaaatggcgtcctgaacagttgg1500 actgatcaggacagcaaagacagcacctacagcatgagcagcaccctcacgttgaccaag1560 gacgagtatgaacgacataacagctatacctgtgaggccactcacaagacatcaacttca1620 cccattgtcaagagcttcaacaggaatgagtgttagggtacc 1662 <210> pCB229 <211> 1085 <212> DNA
<213> Murine <400> 7 gaattcggtaccaccatggctctgcagatccccagcctcctcctctcggctgctgtggtg60 gtgctgatggtgctgagcagcccagggactgagggcttcaagaacattgtgacacctcga120 acaccacctccagctagcggagggggcggaagcggcggagggggagactccgaaaggcat180 ttcgtgttccagttcaagggcgagtgctacttcaccaacgggacgcagcgcatacgatct240 gtggacagatacatctacaaccgggaggagtacctgcgcttcgacagcgacgtgggcgag300 taccgcgcggtgaccgagctggggcggccagaccccgagtactacaataagcagtacctg360 gagcaaacgcgggccgagctggacacggtgtgcagacacaactacgagggggtggagacc420 cacacctccctgcggcggcttgaacagcccaatgtcgtcatctccctgtccaggacagag480 gccctcaaccaccacaacactctggtctgctcagtgacagatttctacccagccaagatc540 aaagtgcgctggttccggaatggccaggaggagacggtgggggtctcatccacacagctt600 attaggaatggggactggaccttccaggtcctggtcatgctggagatgacccctcggcgg660 ggagaggtctacacctgccacgtggagcatccgagcctgaagagccccatcactgtggag720 tggagggcacagtctgagtctgcccggagcggatccgctgatgctgcaccaactgtatcc780 atcttcccaccatccagtgagcagttaacatctggaggtgcctcagtcgtgtgcttcttg840 aacaacttctaccccaaagacatcaatgtcaagtggaagattgatggcagtgaacgacaa900 aatggcgtcctgaacagttggactgatcaggacagcaaagacagcacctacagcatgagc960 agcaccctcacgttgaccaaggacgagtatgaacgacataacagctatacctgtgaggcc1020 actcacaagacatcaacttcacccattgtcaagagcttcaacaggaatgagtgttaggcg1080 gccgc 1085 <210> pCB223 <211> 1676 <212> DNA
$ <213> Murine <400> 8 gaattcggtaccatggctctgcagatccccagcctcctcctctcggctgctgtggtggtg60 ctgatggtgctgagcagcccagggactgagggcgaagacgacattgaggccgaccacgta120 ggcgtctatggtacaactgtatatcagtctcctggagacattggccagtacacacatgaa180 tttgatggtgatgagtggttctatgtggacttggataagaaggagactatctggatgctt240 cctgagtttggccaattgacaagctttgacccccaaggtggactgcaaaacatagctaca300 ggaaaatacaccttgggaatcttgactaagaggtcaaattccaccccagctaccaatgag360 gctcctcaagcgactgtgttccccaagtcccctgtgctgctgggtcagcccaacaccctc420 atctgctttgtggacaacatcttccctcctgtgatcaacatcacatggctcagaaatagt480 aagtcagtcacagacggcgtttatgagaccagcttccttgtcaaccgtgaccattccttc540 cacaagctgtcttatctcaccttcatcccttctgacgatgatatttatgactgcaaggtg600 gagcactggggcctggaggagccggttctgaaacactgggaacctgagattccagccccc660 atgtcagaaggatctgccaaaacaacagccccatcggtctatccactggcccctgtgtgt720 ggagatacaactggctcctcggtgactctaggatgcctggtcaagggttatttccctgag780 ccagtgaccttgacctggaactctggatccctgtccagtggtgtgcacaccttcccagct840 gtcctgcagtctgacctctacaccctcagcagctcagtgactgtaacctcgagcacctgg900 cccagccagtccatcacctgcaatgtggcccacccggcaagcagcaccaaggtggacaag960 aaaattgagcccagagggcccacaatcaagccctgtcctccatgcaaatgcccagcacct1020 aacctcttgggtggaccatccgtcttcatcttccctccaaagatcaaggatgtactcatg1080 atctccctgagccccatagtcacatgtgtggtggtggatgtgagcgaggatgacccagat1140 gtccagatcagctggtttgtgaacaacgtggaagtacacacagctcagacacaaacccat1200 agagaggattacaacagtactctccgggtggtcagtgccctccccatccagcaccaggac1260 tggatgagtggcaaggagttcaaatgcaaggtcaacaacaaagacctcccagcgcccatc1320 gagagaaccatctcaaaacccaaagggtcagtaagagctccacaggtatatgtcttgcct1380 ccaccagaagaagagatgactaagaaacaggtcactctgacctgcatggtcacagacttc1440 atgcctgaagacatttacgtggagtggaccaacaacgggaaaacagagctaaactacaag1500 aacactgaaccagtcctggactctgatggttcttacttcatgtacagcaagctgagagtg1560 gaaaagaagaactgggtggaaagaaatagctactcctgttcagtggtccacgagggtctg1620 cacaatcaccacacgactaagagcttctcccggactccgggtaaatgagcggccgc 1676 <210> pCB212 <211> 773 <212> DNA
<213> Murine <400> 9 ccatgggtaa gaaacagacc gctgttgcat tcgctctggc gctcctggct ctttctatga 60 ccccggcgta cgctttcaag aacattgtga cacctcgaac accacctcca gctagcggag 120 ggggcggaag cggcggaggg ggagactccg aaaggcattt cgtgttccag tttaaaggcg 180 agtgctactt caccaacggg acgcagcgca tacgatctgt ggacagatac atctacaacc 240 gggaggagta cctgcgcttc gacagcgacg tgggcgagta ccgcgcggtg accgagctgg 300 ggcggccaga ccccgagtac tacaataagc agtacctgga gcaaacgcgg gccgagctgg 360 acacggtgtg cagacacaac tacgaggggg tggagaccca cacctccctg cggcggcttg 420 gtggcggtgg cagcggcggt ggtggttccg gtggcggcgg ttctggcggt ggcggttccg 480 gtggcggtgg cagcgaagac gacattgagg ccgaccacgt aggcgtctat ggtacaactg 540 tatatcagtc tcctggagac attggccagt acacacatga atttgatggt gatgagtggt 600 tctatgtgga cttggataag aaggagacta tctggatgct tcctgagttt ggccaattga 660 caagctttga cccccaaggt ggactgcaaa acatagctac aggaaaatac accttgggaa 720 SS tcttgactaa gaggtcaaat tccaccccag ctaccaatta aggtaccgga tcc 773 <210> pCB214 <211> 702 <212> DNA
<213> Murine <400> 10 atgttcaaga acattgtgac acctcgaaca ccacctccag ctagcggagg gggcggaagc 60 ggcggagggg gagactccga aaggcatttc gtgttccagt ttaaaggcga gtgctacttc 120 accaacggga cgcagcgcat acgatctgtg gacagataca tctacaaccg ggaggagtac 180 ctgcgcttcg acagcgacgt gggcgagtac cgcgcggtga ccgagctggg gcggccagac 240 cccgagtact acaataagca gtacctggag caaacgcggg ccgagctgga cacggtgtgc 300 agacacaact acgagggggt ggagacccac acctccctgc ggcggcttgg tggcggtggc 360 agcggcggtg gtggttccgg tggcggcggt tctggcggtg gcggttccgg tggcggtggc 420 agcgaagacg acattgaggc cgaccacgta ggcgtctatg gtacaactgt atatcagtct 480 cctggagaca ttggccagta cacacatgaa tttgatggtg atgagtggtt ctatgtggac 540 ttggataaga aggagactat ctggatgctt cctgagtttg gccaattgac aagctttgac 600 ccccaaggtg gactgcaaaa catagctaca ggaaaataca ccttgggaat cttgactaag 660 1S aggtcaaatt ccaccccagc taccaattaa ggtaccggat cc 702 <210> pCB220 <211> 1013 <212> DNA
<213> Murine <400> 11 gaattcggtaccatggctctgcagatccccagcctcctcctctcggctgctgtggtggtg60 ctgatggtgctgagcagcccagggactgagggcgaagacgacattgaggccgaccacgta120 ggcgtctatggtacaactgtatatcagtctcctggagacattggccagtacacacatgaa180 tttgatggtgatgagtggttctatgtggacttggataagaaggagactatctggatgctt240 cctgagtttggccaattgacaagctttgacccccaaggtggactgcaaaacatagctaca300 ggaaaatacaccttgggaatcttgactaagaggtcaaattccaccccagctaccaatgag360 gctcctcaagcgactgtgttccccaagtcccctgtgctgctgggtcagcccaacaccctc420 atctgctttgtggacaacatcttccctcctgtgatcaacatcacatggctcagaaatagt480 aagtcagtcacagacggcgtttatgagaccagcttccttgtcaaccgtgaccattccttc540 cacaagctgtcttatctcaccttcatcccttctgacgatgatatttatgactgcaaggtg600 gagcactggggcctggaggagccggttctgaaacactgggaacctgagattccagccccc660 atgtcagaaggatccgccaaaacaacagccccatcggtctatccactggcccctgtgtgt720 ggagatacaactggctcctcggtgactctaggatgcctggtcaagggttatttccctgag780 ccagtgaccttgacctggaactctggatctctgtccagtggtgtgcacaccttcccagct840 gtcctgcagtctgacctctacaccctcagcagctcagtgactgtaacctcgagcacctgg900 cccagccagtccatcacctgcaatgtggcccacccggcaagcagcaccaaggtggacaag960 aaaattgagcccagagggcccacaatcaagccctgtgctgcataggcggccgc 1013 <210> pCRC203 <211> 207 <212> PRT
<213> Murine <400> 12 Met Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Gly Gly Gly SO Ser Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr 21e Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His $
Asn Tyr GluGlyVal GluThrHis ThrSerLeu ArgArg LeuGlyGly Glu Asp AspIleGlu AlaAspHis ValGlyVal TyrGly ThrThrVal Tyr Gln SerProGly AspIleGly GlnTyrThr HisGlu PheAspGly 1$ Asp Glu TrpPheTyr ValAspLeu AspLysLys GluThr IleTrpMet Leu Pro GluPheGly GlnLeuThr SerPheAsp ProGln GlyGlyLeu Gln Asn IleAlaThr GlyLysTyr ThrLeuGly IleLeu ThrLysArg Ser Asn SerThrPro AlaThrAsn HisHisHis HisHis His 2$ 195 200 205 <210> pCRC201 <211> 201 <212> PRT
<213> Murine <400>
Met Phe LysAsnIle ValThr ProArgThr ProProPro GlyGlyGly 3$ 5 10 15 Ser Gly AspSerGlu ArgHis PheValPhe GlnPheLys GlyGluCys Tyr Phe ThrAsnGly ThrGln ArgIleArg SerValAsp ArgTyrIle Tyr Asn ArgGluGlu TyrLeu ArgPheAsp SerAspVal GlyGluTyr 4$
Arg Ala ValThrGlu LeuGly ArgProAsp ProGluTyr TyrAsriLys Gln Tyr LeuGluGln ThrArg AlaGluLeu AspThrVal CysArgHis $0 85 90 95 Asn Tyr GluGlyVal GluThr HisThrSer LeuArgArg LeuGlyGly $$ Glu Asp AspIleGlu AlaAsp HisValGly ValTyrGly ThrThrVal Tyr Gln SerProGly AspIle GlyGlnTyr ThrHisGlu PheAspGly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met $ Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg 1~
5er Asn Ser Thr Pro Ala Thr Asn 1$ <210> pCRC199 <211> 218 <212> PRT
<213> Murine <400> 14 Met Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile'Arg 30 Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp 3$
Pro Glu TyrTyrAsn LysGln TyrLeuGlu GlnThrArg AlaGlu Leu Asp Thr ValCysArg HisAsn TyrGluGly ValGluThr HisThr Ser Leu Arg ArgLeuThr SerGly GlyGlyGly SerGluAsp AspIle Glu 4$ Ala Asp HisValGly ValTyr GlyThrThr ValTyrGln SerPro Gly Asp Ile GlyGlnTyr ThrHis GluPheAsp GlyAspGlu TrpPhe Tyr $~
Val Asp LeuAspLys LysGlu ThrIleTrp MetLeuPro GluPhe Gly Gln Leu ThrSerPhe AspPro GlnGlyGly LeuGlnAsn IleAla Thr $$ 180 185 190 Gly Lys TyrThrLeu GlyIle LeuThrLys ArgSerAsn SerThr Pro 11~
Ala Thr Asn His His His His His His $ <210> pCRC197 <211> 212 <212> PRT
<213> Murine <400> 15 Met Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe 1$ 20 25 30 Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp ValGly GluTyrArg AlaValThr GluLeuGly ArgProAsp 2$
Pro Glu TyrTyr AsnLysGln TyrLeuGlu GlnThrArg AlaGluLeu Asp Thr ValCys ArgHisAsn TyrGluGly ValGluThr HisThrSer Leu Arg ArgLeu ThrSerGly GlyGlyGly SerGluAsp AspIleGlu 3$ Ala Asp HisVal GlyValTyr GlyThrThr ValTyrGln SerProGly Asp Ile ~GlyGln TyrThrHis GluPheAsp GlyAspGlu TrpPheTyr Val Asp LeuAsp LysLysGlu ThrIleTrp MetLeuPro GluPheGly Gln Leu ThrSer PheAspPro GlnGlyGly LeuGlnAsn IleAlaThr 4$ 180 185 190 Gly Lys TyrThr LeuGlyIle LeuThrLys ArgSerAsn SerThrPro .
$0 Ala Thr Asn <210> pCRC188 $$ <211> 548 <212> PRT
<213> Murine <400> 16 Met Ala L2u Gln Ile Pro Ser Leu Leu Leu Ser Ala Ala Val Val Val Leu Met Val Leu Ser Ser Pro Gly Thr Glu Gly Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln.Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile Arg Asn Gly Asp Trp Thr Phe Gln ' 180 185 190 Val Leu Val Met Leu Glu Met Thr Pro Arg Arg Gly GIu Val Tyr Thr '195 200 205 Cys His Val Glu His Pro Ser Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu SS Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu GlyIleLeu ThrLys ArgSerAsn SerThrPro AlaThrAsn Glu Ala ProGlnAla ThrVal PheProLys SerProVal LeuLeuGly Gln Pro AsnThrLeu IleCys PheValAsp AsnIlePhe ProProVal Ile Asn IleThrTrp LeuArg AsnSerLys SerValThr AspGlyVal Tyr Glu ThrSerPhe LeuVal AsnArgAsp HisSerPhe HisLysLeu 1$ 385 390 395 400 Ser Tyr LeuThrPhe IlePro SerAspAsp AspIleTyr AspCysLys Val Glu HisTrpGly LeuGlu GluProVal LeuLysHis TrpAlaSer Gly Gly GlyGlySer GlyGly GlyGlyAla AspAlaAla ProThrVal Ser Ile PheProPro SerSer GluGlnLeu ThrSerGly GlyAlaSer Val Val CysPheLeu AsnAsn PheTyrPro LysAspIle AsnValLys Trp Lys IleAspGly SerGlu ArgGlnAsn GlyValLeu AsnSerTrp Thr Asp GlnAspSer LysAsp SerThrTyr SerMetSer SerThrLeu Thr Leu-ThrLysAsp GluTyr GluArgHis AsnSerTyr ThrCysGlu Ala Thr HisLysThr SerThr SerProIle ValLysSer PheAsnArg Asn Glu Cys <210>
pCRC187 <211>
<212>
PRT
<213>
Murine <400>
Met Gly LysLysGln ThrAla ValAlaPhe AlaLeuAla LeuLeuAla 5$ 5 10 15 Leu Ser Met Thr Pro Ala Tyr Ala Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr $ 50 ~ 55 . 60 Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His' Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro 3$ 210 215 220 Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn <210> pCB229 <211> 354 <212> PRT
<213> Murine <400> 18 $0 Met Ala Leu Gln Ile Pro Ser Leu Leu Leu Ser Ala Ala Val Val Val Leu Met Val Leu Ser Ser Pro Gly Thr Glu Gly Phe Lys Asn Ile Val $$
Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn ArgGlu GluTyrLeu ArgPheAsp SerAspVal GlyGluTyr Arg Ala ValThr GluLeuGly ArgProAsp ProGluTyr TyrAsnLys Gln Tyr LeuGlu GlnThrArg AlaGluLeu AspThrVal CysArgHis 1$ Asn Tyr GluGly ValGluThr HisThrSer LeuArgArg LeuGluGln 130 135 . 140 Pro Asn ValVal IleSerLeu SerArgThr GluAlaLeu AsriHisHis Asn Thr LeuVal CysSerVal ThrAspPhe TyrProAla LysIleLys Val Arg TrpPhe ArgAsnGly GlnGluGlu ThrValGly ValSerSer Thr Gln LeuIle ArgAsnGly AspTrpThr PheGlriVal LeuValMet Leu Glu MetThr ProArgArg GlyGluVal TyrThrCys HisValGlu His Pro SerLeu LysSerPro IleThrVal GluTrpArg AlaGlnSer Glu Ser AlaArg SerGlySer AlaAspAla AlaProThr ValSerIle Phe Pro ProSer SerGluGln LeuThrSer GlyGlyAla SerValVal Cys Phe Leu,AsnAsnPheTyr ProLysAsp IleAsnVal LysTrpLys Ile Asp GlySer GluArgGln AsnGlyVal LeuAsnSer TrpThrAsp Gln Asp SerLys AspSerThr TyrSerMet SerSexThr LeuThrLeu Thr Lys AspGlu TyrGluArg HisAsnSer TyrThrCys GluAlaThr 325 330 335, His Lys ThrSer ThrSerPro IleValLys SerPheAsn ArgAsnGlu $$ 340 345 350 Cys <210>
p/cb223 <211> 2 <212>
PRT
<213>
Murine <400>
Met Ala LeuGlnIle ProSer LeuLeuLeu SerAlaAla ValVal Val Leu Met ValLeuSer SerPro GlyThrGlu GlyGluAsp AspIle Glu Ala Asp HisValGly ValTyr GlyThrThr ValTyrGln SerPro Gly Asp Ile GlyGlnTyr ThrHis GluPheAsp GlyAspGlitTrpPhe Tyr Val Asp LeuAspLys LysGlu ThrIleTrp MetLeuPro GluPhe Gly Gln Leu ThrSerPhe AspPro GlnGlyGly LeuGlnAsn IleAla Thr Gly Lys TyrThrLeu GlyIle LeuThrLys ArgSerAsn SerThr Pro Ala Thr AsnGluAla ProGln AlaThrVal PheProLys SerPro Val Leu Leu GlyGlnPro AsnThr LeuIleCys PheValAsp AsnIle Phe Pro Pro ValIleAsn IleThr TrpLeuArg AsnSerLys SerVal Thr Asp Gly-ValTyrGlu ThrSer PheLeuVal AsnArgAsp HisSer Phe His Lys LeuSerTyr LeuThr PheIlePro SerAspAsp AspIle Tyr Asp Cys LysValGlu HisTrp GlyLeuGlu GluProVal LeuLys His Trp Glu ProGluIle ProAla ProMetSer GluGlySer AlaLys Thr Thr Ala ProSerVal TyrPro LeuAlaPro ValCysGly AspThr Thr Gly Ser SerValThr LeuGly CysLeuVal LysGlyTyr PhePro Glu 245 250. 255 $5 Pro Val ThrLeuThr TrpAsn SerGlySer LeuSerSer GlyVal His Thr Phe ProAlaVal LeuGln SerAspLeu TyrThrLeu SerSer Ser Val Thr ValThrSer SerThrTrp ProSerGln SexIle ThrCysAsn Val Ala HisProAla SerSerThr LysValAsp LysLys IleGluPro 305 310 315 , 320 Arg Gly ProThrIle LysProCys ProProCys LysCys ProAlaPro 325 330. 335 Asn Leu LeuGlyGly ProSerVal PheIlePhe ProPro LysIleLys 1$ Asp Val LeuMetIle SerLeuSer ProIleVal ThrCys ValValVal Asp Val SerGluAsp AspProAsp ValGlnIle SerTrp PheValAsn Asn Val GluValHis ThrAlaGln ThrGln~'hrHisArg GluAspTyr Asn Ser ThrLeuArg ValValSer AlaLeuPro IleGln HisGlnAsp 2$ 405 410 ' 415 Trp Met SerGlyLys GluPheLys CysLysVal AsnAsn LysAspLeu Pro Ala ProIleGlu ArgThrIle SerLysPro LysGly SerValArg Ala Pro GlnValTyr ValLeuPro ProProGlu GluGlu MetThrLys Lys Gln ValThrLeu ThrCysMet ValThrAsp PheMet ProGluAsp Ile Tyr ValGluTrp ThrAsnAsn GlyLysThr GluLeu AsnTyr~Lys Asn Thr GluProVal LeuAspSer AspGlySer TyrPhe MetTyrSer 4S Lys Leu ArgValGlu LysLysAsn TrpValGlu ArgAsn SerTyrSer Cys Ser ValValHis GluGlyLeu HisAsnHis HisThr ThrLysSer Phe Ser ArgThrPro GlyLys $5 <210> pCB212 <211> 331 <212> PRT
<213> Murine <400> 20 Met Ala Leu Gln Ile Pro Ser Leu Leu Leu Ser Ala Ala Val Val Val Leu Met Val Leu Ser Ser Pro Gly Thr Glu Gly Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe 3$ His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys~Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Glu Pro Glu Ile Pro Ala Pro Met Ser Glu Gly Ser Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val Cys Gly Asp Thr Thr Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu $0 Pro Val Thr Leu Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser $$
Val Thr Val Thr Ser Ser Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Glu Pro '305 310 315 320 Arg Gly Pro Thr Ile Lys Pro Cys Ala Ala <210> pCB214 <211> 234 <212> PRT
<213> Murine <400> 21 Met Phe Lys IleVal Thr ArgThr Pro Pro AlaSer Asn Pro Pro Gly 1$
Gly Gly Gly GlyGly Gly AspSer Glu Arg PheVal Ser Gly His Phe Gln Phe Lys GluCys Tyr ThrAsn Gly Thr ArgIle Gly Phe Gln Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp 2$ Ser Asp ValGly GluTyrArg AlaValThr GluLeuGly ArgPro Asp Pro Glu TyrTyr AsnLysGln TyrLeuGlu GlnThrArg AlaGlu Leu Asp Thr ValCys ArgHisAsn TyrGluGly ValGluThr HisThr Ser Leu Arg ArgLeu GlyGlyGly GlySerGly GlyGlyGly SerGly Gly 3$ 115 120 125 Gly Gly SerGly GlyGlyGly SerGlyGly GlyGlySer GluAsp Asp Ile Glu AlaAsp HisValGly ValTyrGly ThrThrVal TyrGln Ser Pro Gly AspIle GlyGlnTyr ThrHisGlu PheAspGly AspGlu Trp 4$
Phe Tyr ValAsp LeuAspLys LysGluThr IleTrpMet LeuPro Glu Phe Gly GlnLeu ThrSerPhe AspProGln GlyGlyLeu GlnAsn Ile $0 195 200 205 Ala Thr GlyLys TyrThrLeu GlyIleLeu ThrLysArg SerAsn Ser $$ Thr Pro AlaThr AsnGlyThr GlySer <210> pCB220 <211>
<212>
PRT
<213>
Murine <400>
Met Ala LeuGlnIle ProSer LeuLeuLeu SerAla AlaValVal Val Leu Met ValLeuSer SerPro GlyThrGlu GlyPhe LysAsnIle Val Thr Pro ArgThrPro ProPro AlaSerGly GlyGly GlySerGly Gly I5 GIy Gly AspSerGlu ArgHis PheValPhe GlnPhe LysGlyGlu Cys Tyr Phe ThrAsnGly ThrGln ArgIleArg SerVal AspArgTyr Ile Tyr Asn ArgGluGlu TyrLeu ArgPheAsp SerAsp ValGlyGlu Tyr Arg Ala ValThrGlu LeuGly ArgProAsp ProGlu TyrTyrAsn Lys Gln Tyr LeuGluGln ThrArg AlaGluLeu AspThr ValCysArg His 30 Asn Tyr GluGlyVal .GluThr HisThrSer LeuArg ArgLeuGlu Gln Pro Asn ValValIle SerLeu SerArgThr GluAla LeuAsnHis His Asn Thr LeuValCys SerVal ThrAspPhe TyrPro AlaLysIle Lys Val Arg TrpPheArg AsnGly GlnGluGlu ThrVal GlyValSer Ser Thr Gln LeuIleArg AsnGly AspTrpThr PheGln ValLeuVal Met 45 Leu Glu MetThrPro ArgArg GlyGluVal TyrThr CysHisVal Glu His Pro Ser Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser 2~ 385 390 395 400 Phe Leu Val Asn Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr 2S Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Sex Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp 4~ Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys
Claims (42)
1. A multimeric complex comprising a first recombinant single chain MHC class II molecule and a second recombinant single chain MHC class II
molecule, wherein the first and the second single chain MHC class II molecule each comprise an .alpha.1 domain and a .beta.1 domain linked via an amino acid linker and a multimerization domain, and wherein the first and the second single chain MHC class II molecule are linked via the multimerization domain to form a multimeric complex.
molecule, wherein the first and the second single chain MHC class II molecule each comprise an .alpha.1 domain and a .beta.1 domain linked via an amino acid linker and a multimerization domain, and wherein the first and the second single chain MHC class II molecule are linked via the multimerization domain to form a multimeric complex.
2. The multimeric complex of claim 1, wherein the first and the second single chain MHC class II molecules are each linked to an antigenic peptide via an amino acid linker.
3. The multimeric complex of claim 2, wherein the peptides are the same.
4. The multimeric complex of claim 2, wherein the peptides are from the same antigen.
5. The multimeric complex of claim 2, wherein the peptides are from different antigens.
6. The multimeric complex of claim 2, wherein the peptides are selected from the group consisting of MBP83-102Y83, PLP 40-60, PLP 89-106, PLP
117, and PLP 185-206.
117, and PLP 185-206.
7. The multimeric complex of claim 1, wherein the first and the second MHC class II molecules are from the same MHC class II allele.
8. The multimeric complex of claim 1, wherein the first and the second MHC class II molecules are from different MHC class II alleles.
9. The multimeric complex of claim 7 or 8, wherein the alleles are selected from the group consisting of DRB1*1501 and DRBS*0101.
10. The multimeric complex of claim 7 or 8, wherein the first and the second single chain MHC class II molecules are each linked to an antigenic peptide via an amino acid linker.
11. The multimeric complex of claim 10, wherein the peptides are the same.
12. The multimeric complex of claim 10, wherein the peptides are from the same antigen.
13. The multimeric complex of claim 10, wherein the peptides axe from different antigens.
14. The multimeric complex of claim 10, wherein the peptides are selected from the group consisting of MBP83-102Y83, PLP 40-60, PLP 89-106, PLP
117, and PLP 185-206.
117, and PLP 185-206.
15. The multimeric complex of claim 1, wherein the first and second MHC class II molecules are from a human.
16. The multimeric complex of claim 1, wherein the multimerization domains are covalently linked.
17. The multimeric complex of claim 1, wherein the multimerization domains are non-covalently linked.
18. The multimeric complex of claim 1, wherein the multimerization domain is a leucine zipper domain.
19. The multimeric complex of claim 1, wherein the multimerization domain is an immunoglobulin domain.
20. The multimeric complex of claim 19, wherein the immunoglobulin domain is a light chain constant domain or a heavy chain constant domain.
21. The multimeric complex of claim 1, wherein the first or the second MHC class II molecule is selected from the group consisting of I-As MBP..beta.1.beta.2.alpha.1.alpha.2.C.kappa.
I-As MBP..beta.1.beta.2.alpha.1.alpha.2.CH1.H, I-As MBP..beta.1.beta.2.alpha.1.alpha.2.CH1.H.CH2, and I-As MBP..beta.1.beta.2.alpha.1.alpha.2. CH1.H.CH2.CH3.
I-As MBP..beta.1.beta.2.alpha.1.alpha.2.CH1.H, I-As MBP..beta.1.beta.2.alpha.1.alpha.2.CH1.H.CH2, and I-As MBP..beta.1.beta.2.alpha.1.alpha.2. CH1.H.CH2.CH3.
22. The multimeric complex of claim 1, further comprising a third and a fourth MHC class II molecule, wherein the third and the fourth MHC class II
molecule each comprise an .alpha.l domain and a .beta.1 domain linked via an amino acid linker and a multimerization domain, and wherein the first, second, third and fourth single chain MHC
class II molecules are linked via the multimerization domain to form a multimeric complex.
molecule each comprise an .alpha.l domain and a .beta.1 domain linked via an amino acid linker and a multimerization domain, and wherein the first, second, third and fourth single chain MHC
class II molecules are linked via the multimerization domain to form a multimeric complex.
23. The multimeric complex of claim 1, wherein the first and the second MHC class II molecules comprise .beta.1 .beta.2 domains and .alpha.1 .alpha.2 domains linked via an amino acid linker.
24. The multimeric complex of claim 1 or 2, wherein the linker is selected from the group consisting of GG, GGGG, GGGGS, GGGSG, ASGGGSGGG, TSGGGGSGGGGSSS, GSPGGGGSGGGPGS, GSPPGGPPGS, GSPGGGGPGS, TSGGGGS, SGGSGGS, FDAPSPLP, and VYPEVTV.
25. The multimeric complex of claim 1 or 2, wherein the linker is from a CD4 molecule.
26. The multimeric complex of claim 25, wherein the linker is selected from the group consisting of RNGQEEKAGVVSTGLI ,RNGQETKAGVVSTGLI, YNQQEEKAGGVSTGLI, FRNGQEEKAGVVSTGLI, FRNGQETKAGVVSTGLI, FYNQQEEKAGGVSTGLI, and LNGQEEKAGMVSTGLI.
27. The multimeric complex of claim 1, wherein the first or the second MHC class II molecule is selected from the group consisting of CO523, CO543, CO563, CO567, CO580, CO581, CO582, CO583, CO584, CO585, CO586, CO587, CO588, CO589, CO590, CO591, CO592, CO593, CO594, CO595, CO596, CO597, and CO608.
28. The multimeric complex of claim 1, wherein the first and the second MHC class II molecule are independently selected from the group consisting of CO523, CO543, CO563, CO567, CO580, CO581, CO582, CO583, CO584, CO585, CO586, CO587, CO588, CO589, CO590, CO591, CO592, CO593, CO594, CO595, CO596, CO597, and CO608.
29. The multimeric complex of claim 1, wherein the first MHC class II
or the second MHC class II molecule is encoded by a nucleic acid that codons optimized for prokaryotic expression.
or the second MHC class II molecule is encoded by a nucleic acid that codons optimized for prokaryotic expression.
30. The multimeric complex of claim 29, wherein the prokaryote is E.
coli.
coli.
31. The multimeric complex of claim 29, wherein the nucleic acid encoding the first or the second MHC class II molecule is selected from the group consisting of CO528-AC and CO608-AC.
32. A pharmaceutical composition comprising the multimeric complex of claim 2.
33. The pharmaceutical composition of claim 32, further comprising an adjuvant.
34. A method of treating autoimmune disease in a subject, the method comprising administering an immunogenically effective amount of a pharmaceutical composition comprising the multimeric complex of claim 2.
35. The method of claim 34, wherein the subject is a human.
36. A recombinant nucleic acid encoding a single chain MHC class II
molecule comprising an .alpha.1 domain and a .beta.1 domain linked via an amino acid linker, wherein the linker is selected from the group consisting of GG, GGGG, GGGGS, GGGSG, ASGGGSGGG, TSGGGGSGGGGSSS, GSPGGGGSGGGPGS, GSPPGGPPGS, GSPGGGGPGS, TSGGGGS, SGGSGGS, FDAPSPLP, and VYPEVTV.
molecule comprising an .alpha.1 domain and a .beta.1 domain linked via an amino acid linker, wherein the linker is selected from the group consisting of GG, GGGG, GGGGS, GGGSG, ASGGGSGGG, TSGGGGSGGGGSSS, GSPGGGGSGGGPGS, GSPPGGPPGS, GSPGGGGPGS, TSGGGGS, SGGSGGS, FDAPSPLP, and VYPEVTV.
37. The nucleic acid of claim 36, wherein the MHC class II molecule is selected from the group consisting of CO523, CO543, CO563, CO567, CO580, CO581, CO582, CO583, CO584, CO585, CO586, CO587, CO588, CO589, CO590, CO591, CO592, CO593, CO594, CO595, CO596, CO597, and CO608.
38. A recombinant nucleic acid encoding a single chain MHC class II
molecule comprising an .alpha.1 domain and a .beta.1 domain linked via an amino acid linker, wherein the linker is wherein the linker is from a CD4 molecule.
molecule comprising an .alpha.1 domain and a .beta.1 domain linked via an amino acid linker, wherein the linker is wherein the linker is from a CD4 molecule.
39. The nucleic acid of claim 38, wherein the linker is selected from the group consisting of RNGQEEKAGVVSTGLI ,RNGQETKAGVVSTGLI, YNQQEEKAGGVSTGLI, FRNGQEEKAGVVSTGLI, FRNGQETKAGVVSTGLI, FYNQQEEKAGGVSTGLI, and LNGQEEKAGMVSTGLI.
40. A recombinant nucleic acid encoding a single chain MHC class II
molecule selected from the group consisting of CO528-AC and CO608-AC.
molecule selected from the group consisting of CO528-AC and CO608-AC.
41. A recombinant nucleic acid encoding a single chain MHC class II
molecule selected from the group consisting I-As MBP..beta.1.beta.2.alpha.1.alpha.2.CK, I-As MBP. .beta.1.beta.2.alpha.1.alpha.2.CH1.H, I-As MBP..beta.1.beta.2.alpha.1 .alpha.2.CH1.H.CH2, and I-As MBP..beta.1.beta.2.alpha.1.alpha.2.CH1.H.CH2.CH3.
molecule selected from the group consisting I-As MBP..beta.1.beta.2.alpha.1.alpha.2.CK, I-As MBP. .beta.1.beta.2.alpha.1.alpha.2.CH1.H, I-As MBP..beta.1.beta.2.alpha.1 .alpha.2.CH1.H.CH2, and I-As MBP..beta.1.beta.2.alpha.1.alpha.2.CH1.H.CH2.CH3.
42. A recombinant nucleic acid encoding a single chain MHC class II
molecule selected from the group consisting CO523, CO543, CO563, CO567, CO580, CO581, CO582, CO583, CO584, CO585, CO586, CO587, CO588, CO589, CO590, CO591, CO592, CO593, CO594, CO595, CO596, CO597, and CO608.
molecule selected from the group consisting CO523, CO543, CO563, CO567, CO580, CO581, CO582, CO583, CO584, CO585, CO586, CO587, CO588, CO589, CO590, CO591, CO592, CO593, CO594, CO595, CO596, CO597, and CO608.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19127400P | 2000-03-22 | 2000-03-22 | |
US60/191,274 | 2000-03-22 | ||
US20424900P | 2000-05-15 | 2000-05-15 | |
US60/204,249 | 2000-05-15 | ||
US26400301P | 2001-01-23 | 2001-01-23 | |
US60/264,003 | 2001-01-23 | ||
PCT/US2001/009616 WO2001070245A1 (en) | 2000-03-22 | 2001-03-22 | Immune mediators and related methods |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2403432A1 true CA2403432A1 (en) | 2001-09-27 |
Family
ID=27392878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002403432A Abandoned CA2403432A1 (en) | 2000-03-22 | 2001-03-22 | Immune mediators and related methods |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1307211A4 (en) |
AU (1) | AU2001261005A1 (en) |
CA (1) | CA2403432A1 (en) |
WO (1) | WO2001070245A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1749889A1 (en) * | 2000-06-05 | 2007-02-07 | Corixa Corporation | Leader peptides for enhancing secretion of recombinant protein from a host cell |
EP1290197B1 (en) * | 2000-06-05 | 2006-03-29 | Corixa Corporation | Leader peptides for enhancing secretion of recombinant protein from a host cell |
WO2009003492A1 (en) | 2007-07-03 | 2009-01-08 | Dako Denmark A/S | Mhc multimers, methods for their generation, labeling and use |
CN1615316A (en) * | 2001-11-16 | 2005-05-11 | 法麦克萨有限公司 | Novel immunogenic mimetics of multimer proteins |
WO2004007528A2 (en) | 2002-07-12 | 2004-01-22 | Dana-Farber Cancer Institute, Inc. | Novel compositions and methods for the generation of mhc class ii compounds by peptide exchange |
WO2005054292A1 (en) * | 2003-11-25 | 2005-06-16 | The University Of Iowa Research Foundation | Compositions and methods related to a dimeric mhc class i and ii-like molecule (dsmhc i and dsmhc ii) |
US7576183B2 (en) * | 2003-12-24 | 2009-08-18 | Los Alamos National Security, Llc | Structure-based receptor MIMICS targeted against bacterial superantigen toxins |
EP2361930A3 (en) | 2007-03-26 | 2011-10-26 | Dako Denmark A/S | Multimers of MHC-peptide complexes and uses thereof in Borrelia infectious diseases |
EP2197908A2 (en) | 2007-09-27 | 2010-06-23 | Dako Denmark A/S | Mhc multimers in tuberculosis diagnostics, vaccine and therapeutics |
DK2254592T3 (en) | 2008-02-28 | 2019-09-09 | Dako Denmark As | MHC multimers for Borrelia diagnostics and disease |
WO2010009735A2 (en) | 2008-07-23 | 2010-01-28 | Dako Denmark A/S | Combinatorial analysis and repair |
GB0817244D0 (en) | 2008-09-20 | 2008-10-29 | Univ Cardiff | Use of a protein kinase inhibitor to detect immune cells, such as T cells |
US11992518B2 (en) | 2008-10-02 | 2024-05-28 | Agilent Technologies, Inc. | Molecular vaccines for infectious disease |
WO2010037402A1 (en) | 2008-10-02 | 2010-04-08 | Dako Denmark A/S | Molecular vaccines for infectious disease |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5194425A (en) * | 1988-06-23 | 1993-03-16 | Anergen, Inc. | Mhc-mediated toxic conjugates useful in ameliorating autoimmunity |
EP0889964A1 (en) * | 1996-03-28 | 1999-01-13 | The Johns Hopkins University | Soluble divalent and multivalent heterodimeric analogs of proteins |
US6268411B1 (en) * | 1997-09-11 | 2001-07-31 | The Johns Hopkins University | Use of multivalent chimeric peptide-loaded, MHC/ig molecules to detect, activate or suppress antigen-specific T cell-dependent immune responses |
CA2301709C (en) * | 1997-08-19 | 2011-03-01 | Sofia Casares | Epitope-bearing major histocompatibility complex class ii element/immunoglobulin chimeric molecules |
DE69840600D1 (en) * | 1997-09-16 | 2009-04-09 | Univ Oregon Health & Science | RECOMBINANT MHC MOLECULES WHICH ARE USEFUL FOR THE MANIPULATION OF ANTIGEN-SPECIFIC T CELLS |
-
2001
- 2001-03-22 WO PCT/US2001/009616 patent/WO2001070245A1/en not_active Application Discontinuation
- 2001-03-22 EP EP01934857A patent/EP1307211A4/en not_active Withdrawn
- 2001-03-22 CA CA002403432A patent/CA2403432A1/en not_active Abandoned
- 2001-03-22 AU AU2001261005A patent/AU2001261005A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP1307211A1 (en) | 2003-05-07 |
AU2001261005A1 (en) | 2001-10-03 |
WO2001070245A1 (en) | 2001-09-27 |
WO2001070245A9 (en) | 2002-12-19 |
EP1307211A4 (en) | 2005-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930002835B1 (en) | Mhc-mediated toxic conjugates useful in ameliorating autoimmunity | |
EP3472208B9 (en) | T cell receptors and uses thereof | |
AU765378B2 (en) | Monovalent, multivalent, and multimeric MHC binding domain fusion proteins and conjugates, and uses therefor | |
AU2019336031B2 (en) | Chimeric antigen receptor for solid cancer and T cells expressing chimeric antigen receptor | |
CA2196085C (en) | Mhc complexes and uses thereof | |
US5130297A (en) | Conjugates useful in ameliorating autoimmunity MHC-II-peptide | |
EP1973573B1 (en) | Methods and compositions for expanding t regulatory cells | |
US20050003431A1 (en) | Monovalent, multivalent, and multimeric MHC binding domain fusion proteins and conjugates, and uses therefor | |
CA2403432A1 (en) | Immune mediators and related methods | |
US5824315A (en) | Binding affinity of antigenic peptides for MHC molecules | |
US20020082411A1 (en) | Immune mediators and related methods | |
JP2000504564A (en) | Immunoglobulin fusion proteins and antibodies with modified effector functions and uses thereof | |
CA2371193A1 (en) | Family of immunoregulators designated leukocyte immunoglobulin-like receptors (lir) | |
CN110577591A (en) | t cell receptor for identifying AFP antigen short peptide and its coding sequence | |
US6090587A (en) | Prokaryotic expression of MHC proteins | |
US20150218516A1 (en) | Compositions and methods for enhancing immune responses mediated by antigen-presenting cells | |
KR100369286B1 (en) | Prokaryotic Expression of MHC Proteins | |
CA2532721A1 (en) | Ra antigenic peptides | |
US20020151707A1 (en) | Immune mediators and related methods | |
WO1996040944A2 (en) | Fused soluble mhc heterodimer:peptide complexes and their uses | |
US6060309A (en) | Immune mediators and related methods | |
WO2024149347A1 (en) | Antigen binding protein and use thereof | |
US20060099202A1 (en) | Immunoglobulin construct containing tumor- specific p53bp2 sequenes for eliciting an anti-tumor response | |
Deng | The role of antigen processing in determinant selection and immunodominance | |
AU2003271276A1 (en) | Monovalent, multivalent and multimeric MHC binding domain fusion proteins and conjugates, and uses therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Discontinued |