CA2360624C - Formulation of herbicides and plant growth regulators - Google Patents

Formulation of herbicides and plant growth regulators Download PDF

Info

Publication number
CA2360624C
CA2360624C CA2360624A CA2360624A CA2360624C CA 2360624 C CA2360624 C CA 2360624C CA 2360624 A CA2360624 A CA 2360624A CA 2360624 A CA2360624 A CA 2360624A CA 2360624 C CA2360624 C CA 2360624C
Authority
CA
Canada
Prior art keywords
alkyl
haloalkyl
alkoxy
formula
ome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2360624A
Other languages
French (fr)
Other versions
CA2360624A1 (en
Inventor
Gerhard Schnabel
Detlev Haase
Thomas Maier
Julio Martinez De Una
Jochen Wurtz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1999103064 external-priority patent/DE19903064A1/en
Priority claimed from DE19963383A external-priority patent/DE19963383A1/en
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Publication of CA2360624A1 publication Critical patent/CA2360624A1/en
Application granted granted Critical
Publication of CA2360624C publication Critical patent/CA2360624C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/36Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< directly attached to at least one heterocyclic ring; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants

Abstract

The present invention relates to formulations comprising a) at least one phosphonium or sulfonium salt of a sulfonylurea, where the phosphonium and sulfonium cation of the salt has at least one substituent which is different from hydrogen, and b) customary auxiliaries and additives.

Description

Description Formulation of herbicides and plant growth regulators The invention relates to the technical field of the formulation of herbicides and plant growth regulators, in particular of herbicides for controlling undesirable vegetation, for example of broad-leaved weeds and weed grasses in crops of useful plants.

It is known that sulfonylureas have herbicidal and plant-growth-regulating properties. For use in agrochemistry, it is customary to formulate the sulfonylureas. Here, the chemical stability and the concentration of the active compound in the formulation are important for their activity.

Surprisingly, it has now been found that formulations based on certain sulfonylurea salts have excellent properties.

Summary of Invention The present invention provides a herbicide formulation, comprising a) at least one phosphonium or sulfonium salt of a sulfonylurea, where the phosphonium or sulfonium cation of the salt has at least one substituent which is different from hydrogen, and b) at least one of an auxiliary or an additive.

The present invention further provides use of the formulation as described herein as a herbicidal or plant-growth-regulating composition.

The present invention further provides a compound of the formula (Ia) as described herein.

la The present invention further provides use of one or more compounds of the formula (Ia) as described herein as a herbicidal or plant-growth-regulating agent.

The present invention further provides a process for preparing the compound of the formula (Ia) as described herein, comprising deprotonating a neutral sulfonylurea using a base of formula M+B- wherein B- is a hydroxyl or alkoxy anion or an anion of a herbicide formulation auxiliary which has at least one OH group, and M+ is a phosphonium or sulfonium ion.

The present invention further provides a process for preparing the compound of the formula (Ia) as described herein, comprising exchanging a cation of a metal salt of a sulfonylurea with a reagent of formula M+X_ wherein M+ is a phosphonium or sulfonium ion, and X- is a halide ion or an organic or inorganic phosphate, sulphate or carboxylate anion.

The present invention further provides a process for preparing the compound of the formula (Ia) as described herein comprising deprotonating and exchanging a cation of a neutral sulfonylurea with the reagent of formula M+X- as described herein, and a base of the formula MetB wherein Met is an alkali metal cation and B is a hydroxy or alkoxy anion.

The present invention further provides a process for preparing the compound of the formula (Ia) as described herein comprising reacting a sulphonamide salt with an isocyanate, wherein the sulphonamide salt is prepared by reacting a sulphonamide with the base M+B- as described herein.

lb The present invention further provides a process for preparing the compound of the formula (Ia) as described herein comprising reacting a sulphonamide salt with a carbamate wherein the sulphonamide salt is prepared by reacting a sulphonamide with the base M+B- as described herein.

The present invention further provides use of a compound of the formula (XVIII) R-0(EO)u,(PO)x(EO)y(PO) M6 (XVIII) in which w, x, y and z independently of one another are integers from 0 to 50, R is a C8-C40-hydrocarbon, EO is an ethoxy unit, PO is a propoxy unit and M is a phosphonium or sulfonium ion, for preparing the herbicide formulation as described herein.
Accordingly, the present invention provides formulations, in particular agrochemical, for example herbicidal, formulations, comprising a) at least one phosphonium or sulfonium salt of a sulfonylurea, where the phosphonium and sulfonium cation of the salt has at least one substituent which is different from hydrogen, and b) customary auxiliaries and additives.

In a preferred embodiment, the present invention relates to formulations, in particular emulsifiable concentrates (EC), comprising at least one primary, is secondary, tertiary or quaternary, preferably a quaternary, phosphonium salt or at least one primary, secondary or tertiary, preferably a tertiary, sulfonium salt of a sulfonylurea.

Preference is given to formulations comprising a sulfonylurea salt of the formula (Ia), MO

Ra-SO2-N-CONRI -R b (Ia) in which Ra is a substituted aliphatic, aromatic or heterocyclic radical or an electron-withdrawing group, such as a substituted sulfonamide radical;
preferably Ra is a radical of the formula ll-lVc, O
3 R" 3 2 C NRsRs' (11) (III) (IVa) II OR6õ 4 R6"

R7õ
~' 45 6 N 2 (IVb) (IVc) Rb is a heterocyclyl radical, preferably a nitrogen-containing heterocyclyl radical, particularly preferably a heterocyclyl radical having 2 or 3 nitrogen atoms in the ring, very particularly preferably a radical Y
N--~
~ Z
N=4 X
in which R~ is H or a Ci-C10-hydrocarbon radical, such as (C1-C6)-alkyl, R2 is a substituted or unsubstituted C1-C20-hydrocarbon radical, such as substituted or unsubstituted (Ci-C6)-alkyl, substituted or unsubstituted (C2-C6)-alkenyl, substituted or unsubstituted (C2-C6)-alkynyl, substituted or unsubstituted (C3-C7)-cycloalkyl, R3 is a substituted or unsubstituted C1-C20-hydrocarbon radical, such as substituted or unsubstituted (C1-C6)-alkyl, substituted or unsubstituted (C2-C6)-alkenyl, substituted or unsubstituted (C2-C6)-alkynyl, substituted or unsubstituted (C3-C7)-cycloalkyl, R4 is halogen, such as F, Cl, Br, I, or a substituted or unsubstituted C1-C20-hydrocarbon radical or C1-C20-hydrocarbonoxy radical, such as (C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C1-C6)-alkoxy, (C3-C6)-alkenyloxy, (C3-C6)-alkynyloxy, where the 6 last-mentioned radicals may be substituted by one or more radicals, preferably from the group consisting of halogen, such as F, Cl, Br or I, and (C1-C3)-alkoxy, R5 is H, halogen, such as F, Cl, Br, I, or a substituted or unsubstituted C1-C20-hydrocarbon radical or C1-C20-hydrocarbonoxy radical, such as (Ci-C6)-alkyl, which may be substituted by one or more radicals from the group consisting of halogen, such as F, Cl, Br or I, and (C1-C3)-alkoxy, or (C1-C5)-alkoxy which may be substituted by one or more radicals from the group consisting of halogen (F, Cl, Br, I) and (Cj-C3)-alkoxy, R 6 and R are identical or different and are H or a substituted or unsubstituted C1-C20-hydrocarbon radical, such as Cl-C6-alkyl (for example Me, Et, nPr, i Pr, cPr), where R6 and R6 may form an unsubstituted or substituted ring, R7 is H, halogen, such as F, Cl, Br or I, OH, NR" Ry, in which Rx and Ry are H or (C1-C3)-alkyl, or R7 is N-(C1-C3)-alkyl-N-acylamino, N-acylamino or a substituted or unsubstituted C1-C20-hydrocarbon radical or hydrocarbonoxy radical, such as (C1-C3)-alkyl, (C1-C3)-haloalkyl, halogen, (C1-C3)-alkyl-(N-(C1-C3)-alkyl-N-acylamino), (C1-C3)-alkyl-(N-acylamino) or (C1-C3)-alkoxy, 6"
R is a substituted or unsubstituted C1-C20-hydrocarbon radical, such as substituted or unsubstituted (C1-C6)-alkyl, substituted or unsubstituted (C3-C6)-alkenyl, substituted or unsubstituted (C3-C6)-cycloalkyl, substituted or unsubstituted (C3-C7)-alkynyl, substituted or unsubstituted (C4-C8)-cycloalkylalkyl, R
is halogen, such as F, Cl, Br or I, OH, NRxRy, in which Rx and Ry are H or (C1-C3)-alkyl, or R71 is N-(C1-C3)-alkyl-N-acylamino, N-acylamino or a substituted or unsubstituted C1-C20-hydrocarbon radical or C1-C20-hydrocarbonoxy radical, such as (C1-C3)-alkyl, (C1-C3)-haloalkyl, (C1-C3)-alkyl-(N-(C1-C3)-alkyl-N-acylamino), (C1-C3)-alkyl-(N-acylamino) or (C1-C3)-alkoxy, 6"' R is halogen, such as F, Cl, Br or I, or a substituted or unsubstituted C1-C20-hydrocarbon-containing radical, such as (C1-C6)-alkyl, which may be substituted by one or more radicals from the group consisting of halogen (F, Cl, Br, I) and (C1-C3)-alkoxy, (C1-C6)-alkoxy which may be substituted by one or more radicals from the group consisting of halogen (F, Cl, Br, I) or (C1-C3)-alkoxy, substituted or unsubstituted alkoxycarbonyl, substituted or unsubstituted dialkylamino carbonyl, substituted or unsubstituted (C1-C6)-alkylsulfonyl (C1-C6)-mono- or -dialkylamino, N-(C1-C6)-alkyl-N-acylamino or N-acylamino, R is halogen, such as F, Cl, Br or I, OH, NRxRy, in which Rx and Ry õ
are H or (C1-C3)-alkyl, or R T t a substituted or unsubstituted C1-C20-hydrocarbon radical or hydrocarbonoxy radical, such as (C1-C6)-alkyl, (C1-C6)-haloalkyl, (C1-C6)-alkoxy or (C1-C6)-haloalkoxy, M is a quaternary phosphonium ion or a tertiary sulfonium ion, X is substituted or unsubstituted (C1-C6)-alkyl, substituted or unsubstituted (C1-Ce)-alkoxy, halogen, such as F, Cl, Br or I, substituted or unsubstituted (C1-C6)-mercaptoalkyl or (C1-C3)-mono- or (C1-C3)-dialkylamino, Y is substituted or unsubstituted (C1-C6)-alkyl, substituted or unsubstituted (C1-C6)-alkoxy, halogen, such as F, Cl, Br or I, substituted or unsubstituted (C1-C6)-mercaptoalkyl or (C1-C3)-mono- or (C1-C3)-dialkylamino, and Z is C-halogen, such as CF, CCI, CBr or Cl, CH or N.

The sulfonylurea salts of the formula (la) are novel and likewise form part of the subject matter of this invention.
In the formula (la) and in the other formulae used in this application, the radicals alkyl, alkoxy, haloalkyl, haloalkoxy, alkylamino and alkylthio and the corresponding unsaturated and/or substituted radicals can in each case be straight-chain or branched in the carbon skeleton. Alkyl radicals, are, for example, methyl, ethyl, n- or isopropyl, n-, iso-, t- or 2-butyl, pentyls, hexyls, such as n-hexyl, isohexyl and 1,3-dimethylbutyl, heptyls, such as n-heptyl, 1-methylhexyl and 1,4-dimethylpentyl; alkenyl and alkynyl radicals have the meaning of the possible unsaturated radicals which correspond to the alkyl radicals, alkenyl is, for example, allyl, 1-methylprop-2-en-1-yl, 2-methylprop-2-en-1-yl, but-2-en-1-yl, but-3-en-1-yi, 1-methylbut-3-en-1-yl and 1-methylbut-2-en-1-yl; alkynyl is, for example, propargyl, but-2-yn-1-yl, but-3-yn-1-yl, 1-methylbut-3-yn-1-yl.

The abbreviations used in this application have the following meanings:
Me = methyl, Et = ethyl, Pr = propyl, Bu = butyl, nPr = n-propyl, Pr = isopropyl, CPr = cyclopropyl, nBu = n-butyl, iBu = isobutyl, S t C
Bu = secondary butyl, Bu = tertiary butyl, Bu = cyclobutyl, Ph = phenyl.
Halogen is, for example, fluorine, chlorine, bromine or iodine. Haloalkyl, -alkenyl and -alkynyl are alkyl, alkenyl and alkynyl, respectively, which are partially or fully substituted by halogen, preferably by fluorine, chlorine and/or bromine, in particular by fluorine or chlorine, for example CF3, CHF2, CH2F, CF3CF2, CH2FCHCI, CC13, CHC12, CH2CH2CI; haloalkoxy is, for example, OCF3, OCHF2, OCH2F, CF3CF2O, OCH2CF3 and OCH2CH2CI; this applies correspondingly to haloalkenyl and other halogen-substituted radicals.
Aryl is a mono-, bi- or polycyclic aromatic system, for example phenyl, naphthyl, tetrahydronaphthyl, indenyl, indanyl, pentalenyl, fluorenyl and the like, preferably phenyl.

A heterocyclic radical or ring (heterocyclyl) can be saturated, unsaturated or heteroaromatic and unsubstituted or substituted; it preferably contains one or more heteroatoms in the ring, preferably selected from the group consisting of N, 0 and S; it is preferably an aliphatic heterocyclyl radical having 3 to 7 ring atoms or a heteroaromatic radical having 5 to 6 ring atoms and contains 1, 2 or 3 heteroatoms. The heterocyclic radical can, for example, be a heteroaromatic radical or ring (heteroaryl), such as, for example, a mono-, bi- or polycyclic aromatic ring system in which at least one ring contains one or more heteroatoms, for example pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, thienyl, thiazolyl, oxazolyl, furyl, pyrrolyl, pyrazolyl and imidazolyl, or it is a partially or fully hydrogenated radical, such has oxiranyl, oxetanyl, pyrrolidyl, piperidyl, piperazinyl, dioxolanyl, morpholinyl, tetrahydrofuryl. Suitable substituents for a substituted heterocyclic radical are the substituents mentioned further below, and additionally also oxo. The oxo group can also be present at the heteroring atoms which can exist in different oxidation states, for example in the case of nitrogen and sulfur.

Substituted radicals, such as substituted hydrocarbon radicals, for example substituted alkyl, alkenyl, alkynyl, aryl, phenyl and benzyl, or substituted heteroaryl, a substituted bicyclic radical or ring or a substituted bicyclic radical, if appropriate with aromatic moieties, are, for example, substituted radicals which are derived from the unsubstituted parent compounds, where the substituents are, for example, one or more, preferably 1, 2 or 3, radicals selected from the group consisting of halogen, alkoxy, haloalkoxy, alkylthio, hydroxyl, amino, nitro, cyano, azido, alkoxycarbonyl, alkylcarbonyl, formyl, carbamoyl, mono- and dialkylaminocarbonyl, substituted amino, such as acylamino, mono- and dialkylamino, and alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl and, in the case of cyclic radicals, also alkyl and haloalkyl, and also unsaturated aliphatic radicals which correspond to the saturated hydrocarbon-containing radicals mentioned, such as alkenyl, alkynyl, alkenyloxy, alkynyloxy, etc. In the case of radicals having carbon atoms, preference is given to those having 1 to 4 carbon atoms, in particular 1 or 2 carbon atoms.

Mono- and disubstituted amino is, for example, alkylamino, dialkylamino, acylamino, arylamino, N-aryl-N-alkylamino.
An acyl radical is the radical of an organic acid, for example the radical of a carboxylic acid and radicals of acids derived therefrom, such as thiocarboxylic acid, optionally N-substituted iminocarboxylic acids, or the radical of carbonic monoesters, optionally N-substituted carbamic acid, sulfonic acids, sulfinic acids, phosphonic acids, phosphinic acids. Acyl is, for example, formyl, alkylcarbonyl, such as (C1-C4-alkyl)carbonyl, phenylcarbonyl, where the phenyl ring may be substituted, for example as indicated above for phenyl, or alkyloxycarbonyl, phenyloxycarbonyl, benzyloxycarbonyl, alkylsulfonyl, alkylsulfinyl, N-alkyl-1-iminoalkyl and other radicals of organic acids.

The formula (la) also embraces all stereoisomers of the formula (la), and mixtures thereof. Such compounds of formula (Ia) contain one or more asymmetric carbon atoms or else double bonds, which are not indicated separately in the general formula (la). The possible stereoisomers defined by their specific spatial form, such as enantiomers, diastereomers and Z
and E isomers, are all embraced by the formulae (la) and can be obtained by conventional methods from mixtures of these stereoisomers or else can be prepared by stereoselective reactions in combination with the use of stereochemically pure starting materials.

Of particular interest are formulations comprising sulfonylurea salts of the formula (Ia) in which R1 is H or Me, R2 is (C1-C3)-alkyl or (C1-C3)-haloalkyl, in particular Me and Et, R3 is (C1-C3)-alkyl or (C1-C3)-haloalkyl, in particular Me and Et, R4 is (C1-C6)-alkyl or (C1-C6)-haloalkyl or (Cl-C6)-alkoxy, in particular Me, Et, OMe, OEt or CF3, R5 is H, halogen, such as F, Cl, Br or I, OMe, OEt, Me, CF3, where the radicals R5 in the formula (III) which are different from hydrogen are preferably located in the 5-position on the phenyl ring, R6 and R 61 are identical or different C1-C6-alkyl radicals, preferably R6 =
Me, R6 = Me; R6 = Me, R = Et and R6 = Et, R6 = Et, R7 is H, Me, Et, CF3, F, Cl, Br, I, N[(C1-C3)-alkyl]-R8, NH-R9, CH2N[(C1-C3)-alkyl]-R10, CH2NH-R11, CH2CH2N[(Cl-C3)-alkyl]-R12, CH2CH2NH-R13, where the radicals R7 in the formula (lVa) which are different from hydrogen are preferably located in the 5-position on the phenyl ring and the radicals R8 to R13 are H, (C1-C6)-alkyl, (C1-C6)-haloalkyl, CHO, COO(C1-C6)-alkyl, COO(C1-C6)-haloalkyl, S02-(C1-C6)-alkyl or S02-(C1-C6)-haloalkyl, CO-(C1-C6)-alkyl or CO-(C1-C6)-haloalkyl, R is Me, Et, nPr, iPr, cPr, nBu, iBu, SBu, tBu, cBu, in particular Me or Et, R7 is H, Me, Et, CF3, F, Cl, Br, I, N[1C1-C3)-alkyl]-R8, NH-(C1-C3)-alkyl, CH2N[(C1-C3)-alkyl]-R 0, CH2NH-R , CH2CH2N[(C1-C3)-alkyl]-R , CH2CH2NH-R1 , where the radicals R7 in the formula (lVb) which are different from hydrogen are preferably located in the 5-position on the phenyl ring and the radicals R8 and R10 to R13 are H, (C1-C6)-alkyl, (C1-C6)-haloalkyl, CHO, COO(C1-C6)-alkyl, COO(C1-C6)-haloalkyl, SO2-(C1-C6)-alkyl, SO2-(C1-C6)-haloalkyl, CO-(C1-C6)-alkyl or CO-(C1-C6)-haloalkyl, R is Me, Et, Pr, CH2CH2CF3, OMe, OEt, O Pr, OCH2CH2CI, F, CI, COOMe, COOEt, COOnPr, COO'Pr, CONMe2, CONEt2, SO2Me, SO2Et, SO2iPr, unsubstituted or substituted NH-(C1-C6)-alkyl-acyl, unsubstituted or substituted NH-(C3-C7)-cycloalkyl, unsubstituted or substituted (C4-C8)-cycloalkylalkyl, unsubstituted or substituted N-(C3-C7)-cycloalkyl-aryl, unsubstituted or substituted N-(C4-C8)-cycloalkylalkyl-acyl, preferably N-(C1-C6)-alkyl-CHO, N-(C1-C6)-alkyl-CO-R, N-(C1-C6)-alkyl-SO2R, NH-CHO, NH-CO-R, NHSO2R, where the radicals R are (C1-C6)-(halo)alkyl, (C1-C6)-(halo)alkoxy, (C1-C3)-alkoxy-(C1-C6)-alkyl, (C1-C3)-alkoxy-(C 1-C6)-alkoxy or mono- and di-(C1-C6)-alkylamino, 7"
R is H, F, Cl, Me, Et, CF3, OCH3, OEt, OCH2CF3, preferably H, M+ is [SR18R19R20]+ or [PR21 R22R23R24 ]+, where R18 to R25 are identical or different from one another and are substituted or unsubstituted (C1-C30)-alkyl, substituted or unsubstituted (C1-C1o)-alkyl-(hetero)aryl, substituted or unsubstituted (C3-C30)-(oligo)alkenyl, substituted or unsubstituted (C3-C10)-(oligo)alkenyl-(hetero)aryl, substituted or unsubstituted (C3-C30)-(oligo)alkynyl, substituted or unsubstituted (C3-C10)-(oligo)alkynyl-(hetero)aryl, substituted or unsubstituted (hetero)aryl and where two radicals R18/R19, R21/R22 and R23/R24 together may form an unsubstituted or substituted ring, X is Me, Et, Pr, 'Pr, CF3, CC13, OMe, OEt, O'Pr, OCHCI2, OCH2CC13, OCH2CF3, F, Cl, Br, SMe, SEt, NHMe, NMe2, NHEt, preferably OMe, OEt, Me, Cl Y is Me, Et, Pr, 'Pr, CF3, CCI3, OMe, OEt, O'Pr, OCHCI2, OCH2CCI3, OCH2CF3, F, Cl, Br, SMe, SEt, NHMe, NMe2, NHEt, preferably OMe, OEt, Me, Cl and Z is CH or N.

Suitable cations M include cyclic cations of the formula [SR18R19R20]+ or [PR21 R22R23R24]+

in which two radicals R18/R19, R21/R22 or R23/R24 together form an unsubstituted or substituted ring.
R18/R19 together with the charge-bearing sulfur atom can, for example, form a heterocyclic ring, such as, for example, shown in formulae X-XII

O(~+
Q
S s (X) (XI) (XII) or R21/R22 together with the charge-bearing phosphorus atom form a heterocyclic ring, such as, for example, shown in formulae Xa-Xlla G
P P P

(Xa) (XIa) (XIIa) Particular preference is given to cations M+ in which R18 to R24 are identical or different from one another and are (C1-C22)-alkyl, unsubstituted or substituted by one or more radicals selected from the group consisting of (C1-C5)-alkyl, (C1-C5)-alkoxy, (C1-C5)-haloalkoxy, halogen, such as fluorine, chlorine, bromine and iodine, O-(CH2-CH2-O)XH, O-(CH2-CH2-0)x-(C1-C3)-alkyl, O-(CH2-CH2-0)x-(CO)-(C1-C3)-alkyl or 0-(CH2-CH2-O)x-(CO)-(C1-C3)-alkoxy, phenyl, unsubstituted or substituted by one or more radicals selected from the group consisting of (C1-C5)-alkyl, (C1-C5)-alkoxy, (C1-C5)-haloalkoxy, halogen, such as fluorine, chlorine, bromine and iodine, O-(CH2-CH2-O)XH, O-(CH2-CH2-0)x-(C1-C3)-alkyl, O-(CH2-CH2-0)x-(CO)-(C1-C3)-alkyl, O-(CH2-CH2-O)X(CO)-(C1-C3)-alkoxy, C1-C10-alkyl, which may likewise be substituted by one of the radicals O-(CH2-CH2)X-OH, O-(CH2-CH2)X-O-(C1-C3)-alkyl, O-(CH2-CH2-0)x-(CO)-(CI-C3)-alkyl or O-(CH2-CH2-O)x-(CO)-(C 1-C3)-alkoxy, (C3-C22)-alkenyl, unsubstituted or substituted by one or more radicals selected from the group consisting of (C1-C5)-alkyl, (C1-C5)-alkoxy, (Ct-C5)-haloalkoxy, halogen, such as fluorine, chlorine, bromine and iodine, 0-(CH2-CH2-O)xH, O-(CH2-CH2-O)x-(Cj-C3)-alkyl, O-(CH2-CH2-O)x-(CO)-(C1-C3)-alkyl or O-(CH2-CH2-0)x-(CO)-(Cl-C3)-alkoxy, where the alkenyl radical is mono- or polyunsaturated and preferably carries from one to three double bonds, (C3-C22)-alkynyl, unsubstituted or substituted by one or more radicals selected from the group consisting of (Ci-C5)-alkyl, (C1-C5)-alkoxy, (C1-C5)-haloalkoxy, halogen, such as fluorine, chlorine, bromine and iodine, O-(CH2-CH2-O)XH, O-(CH2-CH2-0)x-(CI-C3)-alkyl, 0-(CH2-CH2)x-(CO)-(C1-C3)-alkyl or O-(CH2-CH2-0)x-(CO)-(Cl-C3)-alkoxy, where the alkynyl radical is mono- or polyunsaturated, and preferably carries from one to three triple bonds, where x is an integer of from 1 to 40.

The abovementioned sulfonylurea salts, preferably those of the formula (la), in combination with auxiliaries and additives, are suitable for preparing formulations, in particular for preparing EC formulations.

The following are examples of possible formulations: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions, suspension concentrates (SC), oil- or water-based dispersions, solutions which are miscible with oils, capsule suspensions (CS), dusts (DP), seed-dressing products, granules for broadcasting and soil application, granules (GR) in the form of microgranules, spray granules, coated granules and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV
formulations, microcapsules and waxes.
These individual types of formulation are known in principle and are described, for example, in: Winnacker-Kuchler, "Chemische Technologic"
[Chemical Technology], Volume 7, C. Hauser Verlag Munich, 4th Ed. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973; K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd. London.

Formulation auxiliaries such as inert materials, surfactants, solvents and other additives are also known and are described, for example, in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry";
2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, "Solvents Guide"; 2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schonfeldt, "Grenzflachenaktive Athylenoxidaddukte" [Surface-active ethylene oxide adducts], Wiss. Verlagsgesell., Stuttgart 1976;
Winnacker-Kuchler, "Chemische Technologie" [Chemical Technology], Volume 7, C. Hauser Verlag Munich, 4th Ed. 1986.

Based on these formulations, it is also possible to prepare combinations with other pesticidally active substances, such as, for example, insecticides, acaricides, herbicides, fungicides, and also with safeners, such as ethyl 1-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylate (Mefenpyr) or ethyl 5,5-diphenyl-2-isoxazoline-carboxylate, fertilizers and/or growth regulators, for example in the form of a ready mix or a tank mix.

Wettable powders are preparations which are. uniformly dispersible in water and which, besides the active substance, also comprise ionic and/or nonionic surfactants (wetting agents, dispersants), for example poly-ethoxylated alkylphenols, polyethoxylated fatty alcohols, polyethoxylated fatty amines, fatty alcohol polyglycol ether sulfates, alkanesulfonates, alkylbenzenesulfonates, sodium lignosulfonate, sodium 2,2'-dinaphthyl-methane-6,6'-disulfonate, sodium dibutylnaphthalenesulfonate or else sodium oleoylmethyltaurinate, in addition to a diluent or inert substance. To prepare the wettable powders, the herbicidally active substances are ground finely, for example in customary equipment such as hammer mills, blower mills and air-jet mills, and simultaneously or subsequently mixed with the formulation auxiliaries.
Emulsifiable concentrates are prepared, for example, by dissolving the active substance in an organic solvent, for example butanol, cyclo-hexanone, dimethylformamide, xylene, or else higher-boiling aromatics or hydrocarbons or mixtures of the organic solvents with the addition of one or more ionic and/or nonionic surfactants (emulsifiers). Examples of emulsifiers which can be used are: calcium salts of alkylarylsulfonic acids such as calcium dodecylbenzenesulfonate, or nonionic emulsifiers such as alkylaryl polyglycol ethers which are different than para-alkyl phenol ethoxylates, fatty acid polyglycol esters, fatty alcohol polyglycol ethers, propylene oxide/ethylene oxide condensates, alkyl polyethers, sorbitan esters, for example sorbitan fatty acid esters or polyoxyethylene sorbitan esters, for example polyoxyethylene sorbitan fatty acid esters.

Dusts are obtained by grinding the active substance with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.

Suspension concentrates can be water- or oil-based. They can be prepared, for example, by wet grinding using commercially available bead mills with an optional addition of surfactants such as have already been mentioned above for example in the case of the other types of formulation.
Emulsions, for example oil-in-water emulsions (EW), can be prepared for example by means of stirrers, colloid mills and/or static mixers using aqueous organic solvents and, if appropriate, surfactants such as have already been mentioned above for example in the case of the other types of formulation.

Granules can be prepared either by spraying the active substance onto adsorptive granulated inert material or by applying active substance concentrates to the surface of carriers such as sand, kaolinites or of granulated inert material by means of binders, for example sugar and pentoses and hexoses or else mineral oils. Suitable active substances can also be granulated in the manner which is conventional for the production of fertilizer granules, if desired as a mixture with fertilizers.
Water-dispersible granules are generally prepared by the customary processes such as spray drying, fluidized-bed granulation, disk granulation, mixing with high-speed mixers and extrusion without solid inert material.

For the preparation of disk, fluidized-bed, extruder and spray granules, see, for example, the processes in "Spray-Drying Handbook" 3rd ed. 1979, G.
Goodwin Ltd., London; J.E. Browning, "Agglomeration", Chemical and Engineering 1967, pages 147 et seq.; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, pp. 8-57.
For further details on the formulation of crop protection products see, for example, G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, pages 81-96 and J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pages 101-103.

In addition, the abovementioned formulations of active substances comprise, if appropriate, the adhesives, wetting agents, dispersants, emulsifiers, penetrants, preservatives, antifreeze agents, solvents, fillers, carriers, colorants, antifoams, evaporation inhibitors and pH and viscosity regulators which are customary in each case.

Novel and also part of the subject matter of this invention is the use of the auxiliaries of the formula (XVIII) as formulation auxiliaries for agrochemical formulations and their use in the synthesis of salts of agrochemically active compounds having acidic proton(s).

R-O(EO)w(PO)X(EO)y(PO)ze M
(XVIII) The auxiliaries of the formula (XVIII) can be used as a pure substance or in the form of a solid or liquid mixture. In the formula (XVIII), the indices w, x, y and z can, independently of one another, be an integer of from 0 to 50, preferably from 0 to 20, particularly preferably from 1 to 20. The radical R
is an unsubstituted or substituted C8-C40-hydrocarbon radical, for example a C8-C40-alkyl radical. This can be saturated or unsaturated, linear or branched. Suitable substituents are, for example, F, Cl, Br or I or a hydroxyl or amino group. This definition also includes substitution of a carbon atom of the alkyl chain by one or more oxygen or nitrogen atoms. M is a phosphonium or sulfonium ion or a metal cation, such as, for example, an alkali metal ion, such as a sodium or potassium ion. EO is an ethoxy unit and PO is a propoxy unit.

Components which can be used in combination with the sulfonylurea salts in the formulations according to the invention are, for example, known active substances as they are described, for example, in Weed Research 26, 441-445 (1986), or "The Pesticide Manual", 11th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 1997, and the literature cited therein. Examples of active substances which may be mentioned as herbicides which are known and which can be combined with the sulfonylurea salts are the following (note: either the common names in accordance with the International Organization for Standardization (ISO) or the chemical names, if appropriate together with a customary code number, of the compounds are given):
acetochlor; acifluorfen; aclonifen; AKH 7088, i.e. [[[1-[5-[2-chloro-4-(tri-fluoromethyl)phenoxy]-2-n itrophenyl]-2-methoxyethylidene]amino]oxy]-acetic acid and its methyl ester; alachlor; alloxydim; ametryn;
amidosulfuron; amitrol; AMS, i.e. ammonium sulfamate; anilofos; asulam;
atrazine; azafenidin; azimsulfurone (DPX-A8947); aziprotryn; barban;
BAS 516 H, i.e. 5-fluoro-2-phenyl-4H-3,1-benzoxazin-4-one; BAS 620 H;
BAS 65400H; BAY FOE 5043; benazolin; benfluralin; benfuresate;
bensulfuron-methyl; bensulide; bentazone; benzofenap; benzofluor;
benzoylprop-ethyl; benzthiazuron; bialaphos; bifenox; bispyribac-Na;
bromacil; bromobutide; bromofenoxim; bromoxynil; bromuron; buminafos;
busoxinone; butachior; butamifos; butenachior; buthidazole; butralin;
butroxydim; butylate; cafenstrole (CH-900); caloxydim; carbetamide;
carfentrazone-ethyl; CDAA, i.e. 2-chloro-N,N-di-2-propenylacetamide;
CDEC, i.e. 2-chloroallyl diethyldithiocarbamate; chlomethoxyfen;
chloramben; chlorazifop-butyl; chlorbromuron; chlorbufam; chlorfenac;
chlorflurecol-methyl; chloridazon; chlorimuron-ethyl; chlornitrofen;
chlorotoluron; chlorouron; chiorpropham; chlorsulfuron; chlorthal-dimethyl;
chlorthiamid; cinmethylin; cinosulfuron; clethodim; clodinafop and its ester derivatives (for example clodinafop-propargyl); clomazone; clomeprop;
cloproxydim; clopyralid; cloransulam-methyl; cumyluron (JC 940);
cyanazine; cycloate; cyclosulfamuron (AC 104); cycloxydim; cycluron;
cyhalofop and its ester derivatives (for example butyl ester, DEH-112);
cyperquat; cyprazine; cyprazole; daimuron; 2,4-DB; dalapon;
desmedipham; desmetryn; di-allate; dicamba; dichlobenil; dichlorprop;
diclofop and its esters, such as diclofop-methyl; diclosulam, i.e.
N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro-[1,2,4]triazolo[1,5-c]pyrimidine-2-sulfonamide; diethatyl; difenoxuron; difenzoquat; diflufenican; diflufenzopyr (BAS 654 00H), dimefuron; dimethachlor; dimethametryn; dimethenamid (SAN-582H); dimethazone, clomazon; dimethipin; dimetrasulfuron, dinitramine; dinoseb; dinoterb; diphenamid; dipropetryn; diquat; dithiopyr;
diuron; DNOC; eglinazine-ethyl; EL 77, i.e. 5-cyano-1-(1,1-dimethylethyl)-N-methyl-1 H-pyrazole-4-carboxamide; endothal; EPTC; esprocarb;
ethalfluralin; ethametsulfuron-methyl; ethidimuron; ethiozin; ethofumesate;
F5231, i.e. N-[2-ch loro-4-fl u oro-5-[4-(3-fl u oro pro pyl)-4,5-d i hyd ro-5-oxo-1H-tetrazol-1-yl]phenyl]ethanesulfonamide; ethoxyfen and its esters (for example ethyl ester, HN-252); etobenzanid (HW 52); fenoprop; fenoxan, fenoxaprop and fenoxaprop-P and their esters, for example fenoxaprop-P-ethyl and fenoxaprop-ethyl; fenoxydim; fenuron; flamprop-methyl;
flazasulfuron; fluazifop and fluazifop-P and their esters, for example fluazifop-butyl and fluazifop-P-butyl; fluchloralin; flumetsulam; flumeturon;
flumiclorac and its esters (for example pentyl ester, S-23031); flumioxazin (S-482); flumipropyn; flupoxam (KNW-739); fluorodifen; fluoroglycofen-ethyl; flupropacil (UBIC-4243); flupyrsulfuron-methyl-sodium; fluridone;
flurochloridone; fluroxypyr; flurtamone; fluthiacet-methyl; fomesafen;
fosamine; furyloxyfen; glufosinate; glyphosate; halosafen; halosulfuron and its esters (for example methyl ester, NC-319); haloxyfop and its esters;
haloxyfop-P (= R-haloxyfop) and its esters; hexazinone;
imazamethabenz-methyl; imazamox; imazapyr; imazaquin and salts, such as the ammonium salt; imazethamethapyr; imazethapyr; imazosulfuron;
indanofan (MK-243), ioxynil; isocarbamid; isopropalin; isoproturon; isouron;
isoxaben; iodosulfuron, isoxaflutole; isoxapyrifop; karbutilate; lactofen;
lenacil; linuron; MCPA; MCPB; mecoprop; mefenacet; mefluidid;
metamitron; metazachlor; methabenzthiazuron; metham; methazole;
methoxyphenone; methyldymron; metobenzuron; metobromuron;
metolachlor; metosulam (XRD 511); metoxuron; metribuzin;
metsulfuron-methyl; MH; molinate; monalide; monocarbamide dihydrogensulfate; monolinuron; monuron; MT 128, i.e. 6-chloro-N-(3-chloro-2-propenyl)-5-methyl-N-phenyl-3-pyridazinamine; MT 5950, i.e.
N-[3-chloro-4-(1-methylethyl)phenyl]-2-methylpentanamide; naproanilide;
napropamide; naptalam; NC 310, i.e. 4-(2,4-dichlorobenzoyl)-1-methyl-5-benzyloxypyrazole; neburon; nicosulfuron; nipyraclophen; nitralin;
nitrofen; nitrofluorfen; norflurazon; orbencarb; oryzalin; oxadiargyl (RP-020630); oxadiazon; oxasulfuron; oxazidomefone (MY-100);
oxyfluorfen; paraquat; pebulate; pendimethalin; pentoxazone (KPP-314);
perfluidone; phenisopham; phenmedipham; picloram; piperophos;
piributicarb; pirifenop-butyl; pretilachlor; primisulfuron-methyl; procyazine;
prodiamine; profluralin; proglinazine-ethyl; prometon; prometryn;
propachlor; propanil; propaquizafop and its esters; propazine; propham;
propisochlor; propyzamide; prosulfalin; prosulfocarb; prosuifuron (CGA-1 52005); prynachlor; pyroflufen-ethyl; pyrazolinate; pyrazon;
pyrazosulfuron-ethyl; pyrazoxyfen; pyribenzoxim (LGC-40836);
pyributicarb; pyridate; pyriminobac-methyl; pyrithiobac (KIH-2031);
pyroxofop and its esters (for example propargyl ester); quinclorac;
quinmerac; quinofop and its ester derivatives, quizalofop and quizalofop-P
and their ester derivates, for example quizalofop-ethyl; quizalofop-P-tefuryl and -ethyl; renriduron; rimsulfuron (DPX-E 9636); S 275, i.e. 2-[4-chloro-2-fluoro-5-(2-propynyloxy)phenyl]-4,5,6,7-tetrahydro-2H-indazole; sec-bumeton; sethoxydim; siduron; simazine; simetryn; SN 106279, i.e.
2-[[7-[2-chloro-4-(trifluoromethyl)phenoxy]-2-naphthalenyl]oxy]propanoic acid and its methyl ester; sulcotrione; sulfentrazone (FMC-97285, F-6285);
sulfazuron; sulfometuron-methyl; sulfosate (ICI-A0224); sulfosulfuron; TCA;
tebutam (GCP-5544); tebuthiuron; terbacil; terbucarb; terbuchlor;
terbumeton; terbuthylazine; terbutryn; TFH 450, i.e. N,N-diethyl-3-[(2-ethyl-6-m ethyl phenyl)sulfonyl]-1 H-1,2,4-triazole-1-carboxamide; thenylchlor (NSK-850); thiazafluron; thiazopyr (Mon-13200); thidiazimine (SN-24085);
thifensulfuron-methyl; thiobencarb; tiocarbazil; tralkoxydim; tri-allate;
trisulfuron; triaziflam; triazofenamide; tribenuron-methyl; triclopyr;
tridiphane; trietazine; trifluralin; triflusulfuron and esters (for example methyl ester, DPX-66037); trimeturon; tsitodef; vernolate; WL 110547, i.e.
5-phenoxy-1-[3-(trifluoromethyl)phenyl]-1 H-tetrazole; JTC-101; UBH-509;
D-489; LS 82-556; KPP-300; NC-324; NC-330; KH-218; DPX-N8189; SC-0774; DOWCO-535; DK-8910; V-53482; PP-600; MBH-001; KIH-9201; ET-751; KIH-6127 and KIH-2023.
For use, the formulations, which are in commercially available form, are, if appropriate, diluted in the customary manner, for example using water in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules.

In general, the formulations according to the invention comprise 0.1 to 99%
by weight, in particular 0.1 to 95% by weight, of active substance, preferably a sulfonylurea salt of the formula (la). The active substance concentration in wettable powders is, for example, approximately 10 to 90% by weight, the remainder to 100% by weight being composed of customary formulation components. In the case of emulsifiable concentrates, the active substance concentration may amount to approximately 1 to 90, preferably 5 to 80, % by weight. Formulations in the form of dusts comprise 1 to 30% by weight of active substance, in most cases preferably 5 to 20% by weight of active substance, and sprayable solutions comprise approximately 0.05 to 80, preferably 2 to 50, % by weight of active substance. The active substance content of water-dispersible granules depends partly on whether the active compound is in liquid or solid form and on which granulation auxiliariesõ fillers and the like are being used. The active substance content of the water-dispersible granules amounts to, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.

Formulations in the form of dusts, granules for soil application or for broadcasting and sprayable solutions are conventionally not diluted any more with inert substances prior to use.
The proportion of sulfonylurea salts in the EC formulations according to the invention is generally 0.01-70% by weight, preferably 0.1-70% by weight, particularly preferably 0.1-50% by weight. In addition, the formulations can comprise further agrochemicals from the field of crop protection - for example herbicides, fungicides, insecticides, growth regulators, safeners or fertilizers - in an amount of from 0 to 70% by weight. They can also comprise from 1 to 40% by weight, preferably 2-40% by weight, of a surfactant system. The surfactant system can be composed, for example, of a) one or more nonionic surfactants, b) one or more betainic surfactants, c) one or more anionic surfactants, d) one or more cationic surfactants, or e) a mixture of the surfactants mentioned under a)-d).

The EC formulations can comprise from 0 to 95% by weight, preferably from 5 to 95% by weight, of a solvent system. Suitable solvent systems are, for example, a) a nonpolar solvent, for example aromatic hydrocarbons such as Solvesso , esters of long-chain saturated or unsaturated (fatty) acids and/or alcohols, such as, for example, rapeseed oil methyl ester, or a mixture of nonpolar solvents b) a polar protic or aprotic solvent, for example gamma-butyrolactone, propylene carbonate, propionitrile or methanol, ethanol, or else mixtures thereof or c) mixtures of the solvent systems mentioned above under a) and b).

In addition, the EC formulations according to the invention may optionally comprise 3-90% by weight of a wetting agent, which may have bioactivating properties, or else a mixture of different wetting agents, which may have bioactivating properties.

The formulations may optionally comprise further stabilizing compounds, for example pH-stabilizing reagents (for example pH 5-9), substances having antifoam properties, acid scavengers, water scavengers or crystallization inhibitors.

A further embodiment of the formulations according to the invention is characterized by the fact that it . is a dispersion, where the liquid homogeneous phase is composed as described above and in which one or more insoluble compounds are dispersed. The insoluble compounds can be agrochemicals, such as, for example, herbicides, insecticides, fungicides, safeners or fertilizers, or else formulation auxiliaries, such as, for example, surfactants which are insoluble in the organic phase, such as, for example, Netzer IS (from Clariant).
The EC formulations according to the invention are preferably characterized by the fact that the proportion of sulfonfylurea salt, in particular of the formula (la), or of the mixture of sulfonylurea salts is generally 0.1-70.0% by weight, preferably 0.1-50.0% by weight. Suitable solvents are polar solvents, such as, for example, gamma-butyrolactone, acetonitrile, propionitrile; their proportion is 5.0-95.0% by weight. To obtain a stable emulsion after addition to water, the finished EC product should comprise a proportion by weight of 2.0-40.0% by weight of a mixture of one anionic and one nonionic surfactant or a mixture of cationic and nonionic surfactants. In addition, it is possible to add, if appropriate, other components to the EC formulations: by adding 1.0-90.0% by weight of a hydrophobic solvent, it is possible to modify the emulsion formation in aqueous spray mixtures advantageously. Suitable solvent components are, for example, rapeseed oil methyl ester, aromatic solvents such as, for example, Solvesso, esters of long-chain acids and alcohols, or else mixtures of hydrophobic solvents.
The EC formulations thus described may optionally comprise 3.0 - 90.0%
by weight of a wetting agent, which may have bioactivating properties, or of a mixture of wetting agents.
Agrochemical combination preparations can be obtained by adding 20.0 -50.0% by weight of agrochemically active compounds which are chemically inert to sulfonylurea salts and readily soluble in the solvent systems which are typical for the formulation type according to the invention. This is the case for a large number of commercial agrochemicals. The formulations according to the invention may optionally also comprise stabilizers which, for example, stabilize the pH of the tank mix at between 6 and 8.

EC formulations according to the invention preferably have the following composition:
1) the sulfonylurea salt content is generally 0.1 - 70.0% by weight, preferably 0.1 - 50.0% by weight; the formulation may comprise one or more active compounds 2) the formulation may optionally comprise between 0 and 50.0% by weight of other agrochemicals (herbicides, insecticides, fungicides, growth regulators, safeners, fertilizers), 3) 5.0 - 95.0% by weight of a polar solvent, such as, for example, gamma-butyrolactone, acetonitrile, propionitrile, propylene carbonate, or else mixtures thereof 4) optionally 1.0 - 90.0% by weight of a hydrophobic solvent, for example rapeseed oil methyl ester, aromatic solvents, esters of long-chain acids and alcohols 5) 2.0 - 40.0% by weight of a mixture of anionic and nonionic compounds or 6) 2.0 - 40.0% by weight of a mixture of cationic and nonionic compounds 7) optionally 3.0 - 90.0% by weight of a wetting agent, which may have bioactivating properties, or of a mixture of different wetting agents, which may have bioactivating properties, 8) optionally other stabilizing agents - for example pH-stabilizing reagents (pH between 6 and 8), substances having antifoam properties, substances which can serve as acid scavengers, water scavengers or crystallization inhibitors.

To prepare an EC formulation, it is possible to dissolve, for example, from 0.1 to 15.0% by weight of a sulfonylurea salt in from 15.0 to 25.0% by weight of propylene carbonate and from 30.0 to 50.0% by weight of an aromatic compound or a mixture of aromatic compounds (boiling range 219-282 C) with stirring at 20 C - 30 C.
After the sulfonylurea salt has been completely dissolved, from 5.0 to 15.0% by weight of the calcium or sodium salt of dodecylbenzenesulfonic acid or of a salt mixture, from 5.0 to 15.0% by weight of a (C12-C18)-fatty acid polyglycol ester 40 EO and from 15.0 to 20.0% by weight of a fatty alcohol polyglycol ether are added with stirring to the solution.
If appropriate, a water scavenger, an acid scavenger, and antifoam or a crystallization inhibitor may also be added.

The sulfonylurea salts comprised in the formulations according to the invention, for example those of the formula (Ia) can be prepared from known sulfonylureas or sulfonylurea metal salts, in particular alkali metal salts (see, for example, EP-A-30138, EP-A-7687), or else from sulfonamide salts, for example by the following routes:
1) Deprotonation of neutral sulfonylureas, for example of the formula (XIII), with a suitable base of the formula M+B- (Eq. 1), where B is, for example, hydroxyl or alkoxy anions, such as methoxy, ethoxy, npropoxy, 'propoxy, nbutoxy or tbutoxy, or anions of formulation auxiliaries which carry at least one OH group, for example alkoxides, which can be alkoxylated, for example ethoxylated or propoxylated, such as CBH17(OCH2CH2)Oe, and where M+ is a phosphonium or sulfonium ion.
Y M (D
Y
N + M
R~-S02-NH-CO-NRI~ Z HB Ra SOZ N-CONR1 OZ (1) HB
N
N
x (Ia) X
(XIII) To this end, the sulfonylurea, for example of the formula (XIII), is dissolved or suspended in an inert solvent or solvent mixture and reacted with one equivalent of M+B at temperatures between -20 C
and 100 C, preferably between -10 C and 50 C.

2) Cation exchange of metal salts of sulfonylureas, for example of the formula (XIV), in which Met is a metal cation, preferably an alkali metal ion, such as Na+ or K+, with suitable reagents of the formula M+X' (Eq. 2), where M+' is a phosphonium or sulfonium ion and X'- is an anion, for example a halide anion, such as F , Cl or Br, or a phosphate, sulfate or carboxylate anion, where this definition includes inorganic and organic salts, as are customarily used, for example, in surfactant chemistry (for example organic phosphate anions, phosphonate anions, sulfate anions, sulfonate anions, carboxylates).

Metes MQ
Y Y
O N N ~~( Ra-SO2N-CO-NR1 --<O Z MeMX~' R-SO2OCONR' O Z (2) (XIV) ~X N~X
(la) To this end, the metal salts, for example alkali metal salts (for example Mete = Na, K+), which are known from the literature or prepared in a manner known from the literature, of the corresponding sulfonylureas are dissolved in an inert solvent or solvent mixture and reacted with one equivalent of the reagent M+X'-. After the reaction has ended, the salt, for example the alkali metal salt (such as NaCl), which is obtained as a by-product, can be removed by filtration.
3) In situ deprotonation and cation exchange (Eq. 3), starting from neutral sulfonylureas, for example of the formula (XIII), with suitable reagents a) of the formula M+X' , where M+ is a phosphonium or sulfonium ion and X is an anion, for example a halide anion, such as F , Cl or Br, or a phosphate, sulfate or carboxylate anion, where this definition includes inorganic and organic salts, as are customarily used, for example, in surfactant chemistry (for example organic phosphate anions, phosphonate anions, sulfate anions, sulfonate anions, carboxylates) and b) of the formula MetB, where Met is a metal cation, in particular an alkali metal cation, such as Na+ or K+, and B is a suitable base, for example a hydroxy or alkoxy anion, such as methoxy, ethoxy, npropoxy, 'propoxy or nbutoxy.

MO
Y + Y
+MX O N-~
R1SOZ-NH-CO-NR' O Z R-SOZ-N-CONR1 O Z (3) - McUC
(X111) X -HB N ~ X
(la) To this end, the sulfonylurea is dissolved in an inert solvent or solvent mixture and reacted with one equivalent each of the reagents M+X' and MetB. After the reaction has ended, the metal salt, in particular alkali metal salt (for example NaCI) which is obtained as a by-product, can be removed by filtration.

4) Reaction of a sulfonamide salt, for example of the formula XV, with an isocyanate, for example of the formula XVI (Eq. 4).

Y
Y M N' (30 N a Z
---- R S02-N-CONH N"j~ x (4) R SO2-NHM + O_C =N O Z i (XV) (XVI) N (Ia) X

The reaction is carried out in an inert solvent or solvent mixture -such as, for example, tetrahydrofuran (THF) - at temperatures between -20 C and 100 C, preferably between -10 C and 70 C, by reacting equimolar amounts of the isocyanate, for example of the formula XVI, with the sulfonamide salt, for example of the formula XV. The sulfonamide salt, for example of the formula XV, can be employed directly or formed in situ - for example by reacting the corresponding sulfonamide with a suitable base M+X , where M+
is a phosphonium or sulfonium ion and X is, for example, a hydroxy or alkoxy anion. Isocyanates, for example of the formula XVI, are well known from the literature. These reactions always lead to compounds in which R1 is hydrogen.
5) Reaction of a sulfonamide salt, for example of the formula XV, with a carbamate, for example of the formula XVII (Eq. 5).

MO
Y Y
OO+ /N 0 N ~:~
Ra_SO2NHM +ArO-CO-NR' -{ O Z A., Ra-SO2-N-CONR1 O z (5) --~ N~ ArOH N

()(V) (XVII) X
X
(la) The reaction is carried out in an inert solvent (or solvent mixture) - such as tetrahydrofuran - at temperatures between -20 C and 100 C, preferably between -10 C and 70 C, by reacting equimolar amounts of the carbamate, for example of the formula XVII, with the sulfonamide salt, for example of the formula XV. The sulfonamide salt, for example of the formula XV, can be employed directly or formed in situ - for example by reacting the corresponding sulfonamide with a suitable base MX , where M is a phosphonium or sulfonium ion and X is, for example, a hydroxy or alkoxy anion. Carbamates, for example of the formula XVII, are well known from the literature. In the formula XVII, Ar is a substituted or unsubstituted aromatic radical, such as phenyl or 2,4-dichlorophenyl.

This reaction is carried out at temperatures of from -20 C to +100 C, preferably between -10 C and 50 C, in inert solvents, such as, for example, THF, CH2CI2 or MeOH or solvent mixtures.

The definitions used in the Preparation Processes 1) to 5) have - unless indicated otherwise - the same meaning as given above for the formulae la and lb.
Inert solvents means that the solvents or solvent mixtures used are chemically inert under the reaction conditions mentioned.

Using the Preparation Processes 1) to 5), it is possible to prepare and isolate the sulfonylurea salts in a simple manner. Alternatively, the sulfonylurea salts can also be prepared by Processes 1), 2) and 3) even during the formulation process.

The preparation processes of the compounds of the formula (Ia) according to the invention are likewise novel and also form part of the subject matter of this invention.

The preparation processes mentioned above can be used to prepare, for example, the compounds listed in the tables below.
Compounds of the formula (A) below are listed in Table 1:

C) N
R2-SO2-N-SO2-N-CO-NR' --~ 0 Z
N
X
(A) Table 1 Ex. R1 R2 R3 M X Y Z
1 H Me Me S6Me3 OMe OMe CH
2 H Me Me SePh3 OMe OMe CH
3 H Me Me P'Ph4 OMe OMe CH
4 H Me Me PPh3CH2Ph OMe OMe CH
5 H Me Me PPh3Me OMe OMe CH
Compounds of the formula (B) below are listed in Table 2:

0 M+(D Y
o N-{\
R5 OSOZ~ICONR: O Z
N -^/
(8) X
Table 2 Ex. R1 R4 R5 M X Y Z
1 H OEt H SMe3 OMe OMe CH
2 H OEt H SPh3 OMe OMe CH
3 H OEt H PPh4 OMe OMe CH
4 H OEt H PPh3Me(' OMe OMe CH
Compounds of the formula (C) below are listed in Table 3:
CONR6R6' +(D Y
O M N--{
O
R7 SOZNCONR' O Z
(C) Nc X
Table 3 Ex. R1 NR6R6 R7 M X Y Z
1 H NMe2 NHCOOMe SMe3 OMe OMe CH
2 H NMe2 NHCOOMe SPh3 OMe OMe CH
3 H NMe2 NHCOOMe PPh4(D OMe OMe CH
4 H NMe2 NHCOOMe PPh3Me OMe OMe CH
5 H NMe2 NHCHO SMe3 OMe OMe CH
6 H NMe2 NHCHO SPh3 OMe OMe CH
Ex. R1 NR6R6 R7 M(D X Y Z
7 H NMe2 NHCHO PPh4 OMe OMe CH
8 H NMe2 NHCHO PPh3Me OMe OMe CH
9 H NMe2 NHCOCH3 SMe3 OMe OMe CH
H NMe2 NHCOCH3 SPh3(D OMe OMe CH
11 H NMe2 NHCOCH3 PPh4 OMe OMe CH
12 H NMe2 NHCOCH3 PPh3Me OMe OMe CH
Compounds of the formula (D) below are listed in Table 4:

Y
COOR6"
O MO N Z
R7' S02NCONR' N
X
5 (D) Table 4 Ex. R1 R6 R7 M X Y Z
1 H Me I SMe3 Me OMe N
2 H Me I SPh3(D Me OMe N
3 H Me I PPh4 Me OMe N
4 H Me I PPh3Me(D Me OMe N
H Me CH2NH SMe3 OMe OMe CH
CHO

6 H Me CH2NH SPh3 OMe OMe CH
CHO

7 H Me CH2NH PPh4 OMe OMe CH
CHO

8 H Me CH2NH PPh3Me OMe OMe CH
CHO

9 H Me CH2NH- SMe3 OMe OMe CH
COOMe H Me CH2NH- SPh3 OMe OMe CH
COOMe 11 H Me CH2NH- PPh4 OMe OMe CH
COOMe 12 H Me CH2NH- PPh3Me OMe OMe CH
COOMe 13 H Me CH2NH- SMe3 OMe OMe CH
S02Me 14 H Me CH2NH- SPh3 OMe OMe CH
S02Me H Me CH2NH- PPh4 OMe OMe CH
S02Me 16 H Me CH2NH- PPh3Me OMe OMe CH
S02Me 17 H Me CH2N SMe3 OMe OMe CH
McS02Me 18 H Me CH2N SPh3 OMe OMe CH
McS02Me Ex. R1 R6 R7- M X Y Z
19 H Me CH2N PPh4 OMe OMe CH
McS02Me 20 H Me CH2N PPh3Me OMe OMe CH
McS02Me 21 H Me I SMe3 OMe OMe N
22 H Me I SPh3(D OMe OMe N
23 H Me I PPh4 OMe OMe N
24 H Me I PPh3Me OMe OMe N
25 Me Me H SMe3 OMe Me N
26 Me Me H SPh3 OMe Me N
27 Me Me H PPh4 OMe Me N
28 Me Me H PPh3Me OMe Me N
29 H Me H SMe3 OMe Me N
30 H Me H SPh3 OMe Me N
31 H Me H PPh4 OMe Me N
32 H Me H PPh3Me OMe Me N
33 H Me F SMe3 OMe Me N
34 H Me F SPh3 OMe Me N
35 H Me F PPh4 OMe Me N
36 H Me F PPh3Me OMe Me N
37 H Me CI SMe3 OMe Me N
38 H Me CI SPh3 OMe Me N
39 H Me CI PPh4 OMe Me N
40 H Me CI Ph3Me Ome Me N

Compounds of the formula (E) below are listed in Table 5:

R61" +
MO Y

R" N S02NCONR1 Z
N
X
(E) Table 5 Ex. R1 R6 R7 M X Y Z
1 H Me Cf PPh3Me OMe Me N
2 H NMeS02Me H SMe3 OMe OMe CH
3 H NMeS02Me H SPh3 OMe OMe CH
4 H NMeS02Me H PPh4 OMe OMe CH
5 H NMeS02Me H PPh3Me OMe OMe CH
6 H NHSO2Me H SMe3 OMe OMe CH
7 H NHS02Me H SPh3 OMe OMe CH
8 H NHS02Me H PPh4 OMe OMe CH
9 H NHS02Me H PPh3Me OMe OMe CH
H NEtCOCH3 H SMe3 OMe OMe CH
11 H NEtCOCH3 H SPh3 OMe OMe CH
12 H NEtCOCH3 H PPh4 OMe OMe CH
13 H NEtCOCH3 H PPh3Me OMe OMe CH
14 H NEtCHO H SMe3 OMe OMe CH
H NEtCHO H SPh3 OMe OMe CH
16 H NEtCHO H PPh4 OMe OMe CH
17 H NEtCHO H PPh3Me OMe OMe CH
18 H NnPrCHO H SMe3 OMe OMe CH
19 H NnPrCHO H SPh3 OMe OMe CH
H NnPrCHO H PPh4 OMe OMe CH
21 H NnPrCHO H PPh3Me We OMe CH

The compounds of the formula (la) according to the invention and the formulations according to the invention can be employed as herbicides against a broad spectrum of economically important monocotyledonous and dicotyledonous harmful plants. The active compounds also act efficiently on perennial weeds which produce shoots from rhizomes, root stocks or other perennial organs and which are difficult to control. In this context, it is immaterial whether the substances are applied pre-sowing, pre-emergence or post-emergence. Specifically, examples may be mentioned of some representatives of the monocotyledonous and dicotyledonous weed flora which can be controlled by the compounds according to the invention, without these being restricted to certain species.
Examples of weed species on which the active compounds and formulations act efficiently are, from amongst the monocotyledons, Avena, Lolium, Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria and also Cyperus species from the annual sector and from amongst the perennial species Agropyron, Cynodon, Imperata and Sorghum, and also perennial Cyperus species.
In the case of the dicotyledonous weed species, the spectrum of action extends to species such as, for example, Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, lpomoea, Matricaria, Abutilon and Sida from amongst the annuals, and Convolvulus, Cirsium, Rumex and Artemisia in the case of the perennial weeds.
The active compounds according to the invention also effect outstanding control of harmful plants which occur under the specific conditions of rice growing such as, for example, Echinochloa, Sagittaria, Alisma, Eleocharis, Scirpus and Cyperus.
If the compounds according to the invention are applied to the soil surface prior to germination, then the weed seedlings are either prevented completely from emerging, or the weeds grow until they have reached the cotyledon stage but then their growth stops, and, eventually, after three to four weeks have elapsed, they die completely.

If the active compounds are applied post-emergence to the green parts of the plants, growth also stops drastically a very short time after the treatment and the weed plants remain at the developmental stage of the point in time of application, or they die completely after a certain time, so that in this manner competition by the weeds, which is harmful to the crop plants, is eliminated at a very early point in time and in a sustained manner.

Although the compounds and formulations according to the invention have an excellent herbicidal activity against monocotyledonous and dicotyledonous weeds, crop plants of economically important crops such as, for example, wheat, barley, rye, rice, corn, sugarbeet, cotton and soya, are not damaged at all, or only to a negligible extent. For these reasons, the present compounds are highly suitable for selectively controlling undesired plant growth in plantings for agricultural use or in plantings of ornamentals.

The substances and formulations according to the invention furthermore have outstanding growth-regulating properties on crop plants. They intervene in a regulatory manner in the endogenous metabolism of the plant and can thus be employed for influencing plant contents in a controlled manner and for facilitating harvesting, such as, for example, by triggering desiccation and stunting growth. They are furthermore also suitable for general control and inhibition of undesirable vegetative growth without killing the plants at the same time. Inhibition of vegetative growth plays a major role in many mono- and dicotyledonous crops, since lodging can be reduced or completely prevented by this means.
Owing to their herbicidal and plant growth-regulatory properties, the active compounds and formulations can also be employed for controlling harmful plants in crops of known or still to be developed genetically engineered plants. The transgenic plants generally have particularly advantageous properties, for example resistance to certain pesticides, in particular certain herbicides, resistance to plant diseases or causative organisms of plant diseases, such as certain insects or microorganisms such as fungi, bacteria or viruses. Other particular properties relate, for example, to the quantity, quality, storability, composition and to specific ingredients of the harvested product. Thus, transgenic plants having an increased starch content or a modified quality of the starch or those having a different fatty acid composition of the harvested product are known.

The use of the compounds and formulations according to the invention in economically important transgenic crops of useful and ornamental plants, for example of cereal, such as wheat, barley, rye, oats, millet, rice, maniok and corn, or else in crops of sugarbeet, cotton, soya, rapeseed, potato, tomato, pea and other vegetable species is preferred.

The formulations and compounds according to the invention can preferably be used as herbicides in crops of useful plants which are resistant or which have been made resistant by genetic engineering toward the phytotoxic effects of the herbicides.
Conventional ways of preparing novel plants which have modified properties compared to known plants comprise, for example, traditional breeding methods and the generation of mutants. Alternatively, novel plants having modified properties can be generated with the aid of genetic engineering methods (see, for example, EP-A 0 221 044, EP-A 0 131 624).
For example, there have been described several cases of genetically engineered changes in crop plants in order to modify the starch synthesized in the plants (for example WO 92/11376, WO 92/14827, WO 91/19806), - transgenic crop plants which are resistant to certain herbicides of the glufosinate-type (cf., for example, EP-A 0 242 236, EP-A 0 242 246) or glyphosate-type (WO 92/00377), or of the sulfonylurea-type (EP-A 0 257 993, US-A 5013659), - transgenic crop plants, for example cotton, having the ability to produce Bacillus thuringiensis toxins (Bt toxins) which impart to the plants resistance to certain pests (EP-A 0 142 924, EP-A 0 193 259), - transgenic crop plants having a modified fatty acid composition (WO 91/13972).
Numerous molecular-biological techniques which allow the preparation of novel transgenic plants having modified properties are known in principle;
see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; or Winnacker "Gene and Klone" [Genes and Clones], VCH
Weinheim, 2nd edition 1996, or Christou, "Trends in Plant Science" 1 (1996) 423-431).

In order to carry out such genetic engineering manipulations, it is possible to introduce nucleic acid molecules into plasmids which allow a mutagenesis or a change in the sequence to occur by recombination of DNA sequences. Using the abovementioned standard processes it is possible, for example, to exchange bases, to remove partial sequences or to add natural or synthetic sequences. To link the DNA fragments with each other, it is possible to attach adaptors or linkers to the fragments.

Plant cells having a reduced activity of a gene product can be prepared, for example, by expressing at least one appropriate antisense-RNA, a sense-RNA to achieve a cosuppression effect, or by expressing at least one appropriately constructed ribozyme which specifically cleaves transcripts of the abovementioned gene product.

To this end, it is possible to employ both DNA molecules which comprise the entire coding sequence of a gene product including any flanking sequences that may be present, and DNA molecules which comprise only parts of the coding sequence, it being necessary for these parts to be long enough to cause an antisense effect in the cells. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product but which are not entirely identical.

When expressing nucleic acid molecules in plants, the synthesized protein can be localized in any desired compartment of the plant cells. However, to achieve localization in a certain compartment, it is, for example, possible to link the coding region with DNA sequences which ensure localization in a certain compartment. Such sequences are known to the person skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227;
Wolter et al., Proc. NatI. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106).

The transgenic plant cells can be regenerated to whole plants using known techniques. The transgenic plants can in principle be plants of any desired plant species, i.e. both monocotyledonous and dicotyledonous plants.
In this manner, it is possible to obtain transgenic plants which have modified properties by overexpression, suppression or inhibition of homologous (= natural) genes or gene sequences or by expression of heterologous (= foreign) genes or gene sequences.
The compounds and formulations according to the invention can preferably be used in transgenic crops which are resistant to herbicides from the group consisting of the sulfonylureas, glufosinate-ammonium or glyphosate-isopropylammonium and analogous active compounds.

When using the active compounds according to the invention in transgenic crops, in addition to the effects against harmful plants which can be observed in other crops, there are frequently effects which are specific for the application in the respective transgenic crop, for example a modified or specifically broadened spectrum of weeds which can be controlled, modified application rates which can be used for the application, preferably good combinability with the herbicides to which the transgenic crop is resistant, and an effect on the growth and the yield of the transgenic crop plants.

The invention therefore also provides for the use of the formulations according to the invention and the compounds of the formula (la) according to the invention as herbicides or plant growth regulators.

The EC formulations according to the invention have the advantage that they are generally very user-friendly and can be prepared at low costs.
Moreover, this formulation type in principle offers the possibility to prepare combination preparations in a simple and cost-effective manner, provided that the combination partner is soluble in the desired concentration in the chosen organic solvent system and is chemically inert.

The formulations according to the invention, in particular the EC
formulations, have high chemical stability. Moreover, the formulations according to the invention, in particular the EC formulations, can, in addition to the chemical stability, also have "higher loading" (a higher concentration) of the formulation of active compound salts. The formulations according to the invention can furthermore be prepared both as a liquid formulation (for example EC formulation) or as a solid formulation (for example WP or WG formulation).

Examples Formulation examples The formulations mentioned in Table I are obtained by initially charging the solvent Dowanot PM at room temperature and admixing successively with mechanical stirring the sulfonylurea component and the auxiliaries mentioned.

The examples of Table I show that, using specific sulfonylurea salts, it is possible to prepare stable EC formulations having an economically attractive loading of active compound(s), in contrast to the corresponding neutral sulfonylureas or their metal salts.

C

E un o o c ca 0 0 0 o 75 of 1 1 1 I o q 0 W
E ti to o C) 0 '- co c LLI
C
o \ \ \ 0 LL)I N co co W
co o o 0 E co o U
C
CC) 0 0 =
dI N o d cf) W
E CD o 0 O
LL
C
co 0 12 :3 0 0 0 ~ U
cM)I 1 1 Q 1 1 1 c C) ' c w to o 0 E tri C) c o LL
c cu 0 0 0 0 75 NI cD o o W
E co O o L e- ti r O
LL. N CD
M
C CL CL
C E E
(0 W U U
E 0 0 0 0 0 '- s-o CD C 0 0 o -0-0 U- C C

O n. 0.
E E

0 o E
0 (0 tII a) o Ev v . a) 0 5 L N `~ CD ' 7 >' o X L -C 5 c) 0 4 IKT O a p a) w z Z
-ia Co Q E Q Q Q - Q o d o E cLo-E 5E E o c.C 0' c4 _0 0 0 0 a) 0 0 o a) a) 0) N v 0 E- 0 U U- 0 Z 0 0 N o CD E O a) w H

Claims (29)

CLAIMS:
1. A herbicide formulation, comprising a) at least one phosphonium or sulfonium salt of a sulfonylurea, where the phosphonium or sulfonium cation of the salt has at least one substituent which is different from hydrogen, and b) at least one of an auxiliary or an additive.
2. The formulation according to claim 1, wherein the at least one phosphonium or sulfonium salt of a sulfonylurea is a quaternary phosphonium salt or a tertiary sulfonium salt.
3. The formulation according to claim 1 or 2, wherein the at least one phosphonium or sulfonium salt of a sulfonylurea is a sulfonylurea salt of the formula (Ia) wherein R a is a radical of the formula II-IVc, R b is a heterocyclyl radical having at least one nitrogen atom in the ring, R1 is H or a C1-C10-hydrocarbon radical, R2 is a (C1-C6)-alkyl, (C1-C6)-haloalkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, or a (C3-C7)-cycloalkyl, R3 is a (C1-C6)-alkyl, (C1-C6)-haloalkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, or a (C3-C7)-cycloalkyl, R4 is a halogen, (C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C1-C6)-alkoxy, (C3-C6)-alkenyloxy, (C3-C6)-alkynyloxy, where the 6 last-mentioned radicals are unsubstituted or are substituted by one or more radicals selected from the group consisting of F, Cl, Br, I and (C1-C3)-alkoxy, R5 is H, a halogen, (C1-C6)-alkyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of F, Cl, Br, I and (C1-C3)-alkoxy, or (C1-C5)-alkoxy which is unsubstituted or substituted by one or more radicals selected from the group consisting of F, Cl, Br, I and (C1-C3)-alkoxy, R6 and R6' are identical or different and are H or a C1-C6-alkyl, where R6 and R6' may form an unsubstituted or substituted ring, R7 is H, CF3, a halogen, OH, or R7 is N- (C1-C3)-alkyl-N-acylamino or N-acylamino or (C1-C3)-alkyl, (C1-C3)-haloalkyl, (C1-C3)-alkyl- (N-(C1-C3)-alkyl-N-acylamino), (C1-C3)-alkyl-(N-acylamino), (C1-C3)-alkoxy, N[(C1-C3)-alkyl]-R8, NH-R9, CH2N[(C1-C3)-alkyl]-R10, CH2NH-R11, CH2CH2N[(C1-C3)-alkyl]-R12, CH2CH2NH-R13, and the radicals R8 to R13 are H, (C1-C6)-alkyl, (C1-C6)-haloalkyl, CHO, COO(C1-C6)-alkyl, COO(C1-C6)-haloalkyl, SO2-(C1-C6)-alkyl, SO2-(C1-C6)-haloalkyl, CO-(C1-C6)-alkyl or CO-(C1-C6)-haloalkyl, R6" is a (C1-C6)-alkyl, (C3-C6)-alkenyl, (C3-C6)-cycloalkyl, (C3-C7)-alkynyl, (C4-C8)-cycloalkylalkyl, R7' is H, a halogen, OH, or R7' is N-(C1-C3)-alkyl-N-acylamino, N-acylamino or a (C1-C3)-alkyl, (C1-C3)-haloalkyl, (C1-C3)-alkyl-(N-(C1-C3)-alkyl-N-acylamino), (C1-C3)-alkyl-(N-acylamino), (C1-C3)-alkoxy, NH2, N[(C1-C3)-alkyl] -R8, NH-(C1-C3)-alkyl, CH2N[(C1-C3)-alkyl]-R10, CH2NH-R11, CH2CH2N[(C1-C3)-alkyl]-R12, CH2CH2NH-R13, where the radicals R8 and R10 to R13 are H, (C1-C6)-alkyl, (C1-C6)-haloalkyl, CHO, COO(C1-C6)-alkyl, COO(C1-C6)-haloalkyl, SO2-(C1-C6)-alkyl, SO2-(C1-C6)-haloalkyl, CO-(C1-C6)-alkyl or CO-(C1-C6)-haloalkyl, R6'" is a halogen, (C1-C6)-alkyl, which may be substituted by one or more radicals selected from the group consisting of F, Cl, Br, I and (C1-C3)-alkoxy, (C1-C6)-alkoxy which may be substituted by one or more radicals selected from the group consisting of F, Cl, Br, I and (C1-C3)-alkoxy, an alkoxycarbonyl, a dialkylaminocarbonyl, (C1-C6)-alkylsulfonyl, (C1-C6)-mono- or -dialkylamino, N-(C1-C6)-alkyl-N-acylamino, N-acylamino, NH(C3-C7)cycloalkyl, (C4-C8)-cycloalkylalkyl, N-(C3-C7)cycloalkylaryl, N-(C4-C8)cycloalkyl-acyl, N-(C1-C6)-alkyl-CHO, N-(C1-C6)-alkyl-CO-R, N-(C1-C6)-alkyl-SO2R, NH-CHO, NH-CO-R, NHSO2R, where the radicals R are (C1-C6)-(halo)-alkyl, (C1-C6)-(halo)-alkoxy, (C1-C3)-alkoxy-(C1-C6)-alkyl, (C1-C3)-alkoxy-(C1-C6)-alkoxy or mono- and di-(C1-C6)-alkylamino, R7" is H, a halogen, OH, NR x R y, in which R x and R y are H or (C1-C3)-alkyl, or R7" is a (C1-C6)-alkyl, (C1-C6)-haloalkyl, (C1-C6)-alkoxy or (C1-C6)-haloalkoxy, and M+ is a quaternary phosphonium ion or a tertiary sulfonium ion.
4. The formulation of claim 3 wherein R b is wherein X is (C1-C6)-alkyl which may be substituted by a halogen atom, (C1-C6)-alkoxy which may be substituted by a halogen atom, a halogen, (C1-C6)-mercaptoalkyl or (C1-C3)-mono- or (C1-C3)-dialkylamino, Y is (C1-C6)-alkyl which may be substituted by a halogen atom, (C1-C6)-alkoxy which may be substituted by a halogen atom, a halogen, (C1-C6)-mercaptoalkyl or (C1-C3)-mono- or (C1-C3)-dialkylamino, and Z is a C-halogen, CH or N.
5. The formulation of any one of claims 1 to 4, further comprising at least one agrochemical which is different from the sulfonylurea salt defined in claim 1.
6. The formulation of claim 5 wherein the at least one agrochemical is a herbicide, a fungicide, an insecticide, a growth regulator, a safener or a fertilizer.
7. The formulation of any one of claims 1 to 6, further comprising a wetting agent or a mixture of different wetting agents.
8. The formulation of any one of claims 1 to 7, further comprising a pH-stabilizing substance or substance mixture.
9. The formulation of any one of claims 1 to 7, further comprising a substance or a substance mixture having antifoam properties.
10. The formulation of any one of claims 1 to 9, further comprising a substance or a substance mixture which acts as an acid scavenger.
11. The formulation of any one of claims 1 to 10, further comprising a substance or a substance mixture which acts as water scavenger.
12. The formulation of any one of claims 1 to 11, further comprising a substance or a substance mixture which acts as a crystallization inhibitor.
13. The formulation of any one of claims 1 to 12, further comprising a surfactant or surfactant mixture.
14. The formulation of any one of claims 1 to 13, comprising 0.01-70.0% by weight of the at least one phosphonium or sulfonium salt of a sulfonylurea, 5.0-95.0%
by weight of a solvent system consisting of at least one of a polar or nonpolar solvent and 2.0-40.0% by weight of a mixture of anionic and non-ionic surfactants or a mixture of cationic and nonionic surfactants.
15. Use of the formulation of any one of claims 1 to 14 as a herbicidal or plant-growth-regulating composition.
16. A compound of the formula (Ia)as defined in claim 3.
17. The compound of the formula (Ia)of claim 16, wherein R1 is H or Me, R2 is (C1-C3)-alkyl or (C1-C3)-haloalkyl, R3 is (C1-C3)-alkyl or (C1-C3)-haloalkyl, R4 is (C1-C6)-alkyl, (C1-C6)-haloalkyl or (C1-C6)-alkoxy, R5 is H, a halogen, OMe, OEt, Me or CF3, R6 and R6' are identical or different C1-C6-alkyl radicals, R7 is H, Me, Et, CF3, F, Cl, Br, I, N[(C1-C3)-alkyl]-R8, NH-R9, CH2N[(C1-C3)-alkyl]-R10, CH2NH-R11, CH2CH2N[(C1-C3)-alkyl]-R12, CH2CH2NH-R13, and the radicals R8 to R13 are H, (C1-C6)-alkyl, (C1-C6)-haloalkyl, CHO, COO(C1-C6)-alkyl, COO(C1-C6)-haloalkyl, SO2-(C1-C6)-alkyl, SO2-(C1-C6)-haloalkyl, CO-(C1-C6)-alkyl or CO-(C1-C6)-haloalkyl, R6" is Me, Et, n Pr, i Pr, c Pr, n Bu, i Bu, s Bu, t Bu, c Bu, R7' is H, Me, Et, CF3, F, Cl, Br, I, N[(C1-C3)-alkyl]-R8, NH-(C1-C3)-alkyl, CH2N[(C1-C3)-alkyl]-R10, CH2NH-R11, CH2CH2N[(C1-C3)-alkyl]-R12, CH2CH2NH-R13, where the radicals R8 and R10 to R13 are H, (C1-C6)-alkyl, (C1-C6)-haloalkyl, CHO, COO(C1-C6)-alkyl, COO(C1-C6)-haloalkyl, SO2-(C1-C6)-alkyl, SO2-(C1-C6)-haloalkyl, CO-(C1-C6)-alkyl or CO-(C1-C6)-haloalkyl, R6'" is Me, Et, Pr, CH2CH2CF3, OMe, OEt, O i Pr, OCH2CH2Cl, F, Cl, COOMe, COOEt, COO n Pr, COO i Pr, CONMe2, CONEt2, SO2Me, SO2Et, SO2 i Pr, NH-(C1-C6)-alkyl-acyl, NH-(C3-C7)-cycloalkyl, (C4-C8)-cycloalkylalkyl, N-(C3-C7)-cycloalkyl-aryl, N-(C4-C8)-cycloalkylalkyl-acyl, N-(C1-C6)alkyl-SO2R, NH-CHO, NH-CO-R or NHSO2R, R7" is H, F, Cl, Me, Et, CF3, OCH3, OEt, OCH2CF3, and M+ is [SR18R19R20]+ or [PR21R22R23R24]+, where R18 to R24 are identical or different from one another and are (C1-C30)-alkyl, (C1-C10)-alkyl-(hetero)aryl wherein the (hetero)aryl moiety comprises at least one N, O or S in the ring, (C3-C30)-alkenyl, (C3-C10)-alkenyl-(hetero)-aryl wherein the (hetero)aryl moiety comprises at least one N, O or S in the ring, (C3-C30)-alkynyl, (C3-C10)-alkynyl-(hetero)-aryl wherein the (hetero)aryl moiety comprises at least one N, O
or S in the ring, (hetero)aryl wherein the (hetero)aryl moiety comprises at least one N, O or S in the ring, and where two radicals R18/R19, R21/R22 and R23/R24 together may form a ring.
18. The compound of the formula (Ia)as defined in claim 4 wherein R1 is H or Me, R2 is (C1-C3)-alkyl or (C1-C3)-haloalkyl, R3 is (C1-C3)-alkyl or (C1-C3)-haloalkyl, R4 is (C1-C6)-alkyl, (C1-C6)-haloalkyl or (C1-C6)-alkoxy, R5 is H, a halogen, OMe, OEt, Me or CF3, R6 and R6' are identical or different C1-C6-alkyl radicals, R7 is H, Me, Et, CF3, F, Cl, Br, I, N[(C1-C3)-alkyl]-R8, NH-R9, CH2N[(C1-C3)-alkyl]-R10, CH2NH-R11, CH2CH2N[(C1-C3)-alkyl]-R12, CH2CH2NH-R13, and the radicals R8 to R13 are H, (C1-C6)-alkyl, (C1-C6)-haloalkyl, CHO, COO(C1-C6)-alkyl, COO(C1-C6)-haloalkyl, SO2-(C1-C6)-alkyl, SO2-(C1-C6)-haloalkyl, CO-(C1-C6)-alkyl or CO-(C1-C6)-haloalkyl, R6" is Me, Et, n Pr, i Pr, c Pr, n Bu, i Bu, s Bu, t Bu, c Bu, R7' is H, Me, Et, CF3, F, Cl, Br, I, N[(C1-C3)-alkyl]-R8, NH-(C1-C3)-alkyl, CH2N[(C1-C3)-alkyl]-R10, CH2NH-R11, CH2CH2N[(C1-C3)-alkyl]-R12, CH2CH2NH-R13, where the radicals R8 and R10 to R13 are H, (C1-C6)-alkyl, (C1-C6)-haloalkyl, CHO, COO(C1-C6)-alkyl, COO(C1-C6)-haloalkyl, SO2-(C1-C6)-alkyl, SO2-(C1-C6)-haloalkyl, CO-(C1-C6)-alkyl or CO-(C1-C6)-haloalkyl, R6'" is Me, Et, Pr, CH2CH2CF3, OMe, OEt, O i Pr, OCH2CH2Cl, F, Cl, COOMe, COOEt, COO n Pr, COO i Pr, CONMe2, CONEt2, SO2Me, SO2Et, SO2 i Pr, NH-(C1-C6)-alkyl-acyl, NH-(C3-C7)-cycloalkyl, (C4-C8)-cycloalkylalkyl, N-(C3-C7)-cycloalkyl-aryl, N-(C4-C8)-cycloalkylalkyl-acyl, N-(C1-C6)alkyl-SO2R, NH-CHO, NH-CO-R or NHSO2R, R7" is H, F, Cl, Me, Et, CF3, OCH3, OEt, OCH2CF3, M+ is [SR18R19R20]+ or [PR21R22R23R24]+, where R18 to R24 are identical or different from one another and are (C1-C30)-alkyl, (C1-C10)-alkyl-(hetero)-aryl wherein the (hetero)aryl moiety comprises at least one N, O or S in the ring, (C3-C30)-alkenyl, (C3-C10)-alkenyl-(hetero)aryl wherein the (hetero)aryl moiety comprises at least one N, O or S in the ring, (C3-C30)-alkynyl, (C3-C10)-alkynyl-(hetero)-aryl wherein the (hetero)aryl moiety comprises at least one N, O
or S in the ring, (hetero)aryl wherein the (hetero)aryl moiety comprises at least one N, O or S in the ring, and where two radicals R18/R19, R21/R22 and R23/R24 together may form a ring, X is Me, Et, Pr, i Pr, CF3, CCl3, OMe, OEt, O i Pr, OCHCl2, OCH2CCl3, OCH2CF3, F, Cl, Br, SMe, SEt, NHMe, NMe2, NHEt, Y is Me, Et, Pr, i Pr, CF3, CCl3, OMe, OEt, O i Pr, OCHCl2, OCH2CCl3, OCH2CF3, F, Cl, Br, SMe, SEt, NHMe, NMe2, NHEt, and Z is CH or N.
19. The compound of formula (Ia) of claim 17 or 18, wherein R5 is a halogen, OMe, OEt, Me or CF3 and wherein the radical R5 in the formula (III) is located in the 5-position on the phenyl ring.
20. The compound of formula (Ia) of any one of claims 17 to 19 wherein R7 in formula (IVa) is different from hydrogen and is located at the 5-position of the phenyl ring.
21. The compound of formula (Ia) of any one of claims 17 to 20 wherein R7' in formula (IVb) is different from hydrogen and is located at the 5-position on the phenyl ring.
22. The compound of formula (Ia) of any one of claims 17 to 21 wherein R6'" is N-(C1-C6)-alkyl-CHO, N-(C1-C6)-alkyl-CO-R, N-(C1-C6)-alkyl-SO2R, NH-CHO, NH-CO-R, NHSO2R, where the radicals R are (C1-C6)-(halo)-alkyl, (C1-C6)-(halo)-alkoxy, (C1-C3)-alkoxy-(C1-C6)-alkyl, (C1-C3)-alkoxy-(C1-C6)-alkoxy or mono- and di-(C1-C6)-alkylamino.
23. Use of one or more compounds of the formula (Ia) as defined in any one of claims 17 to 22 as a herbicidal or plant-growth-regulating agent.
24. A process for preparing the compound of the formula (Ia)of any one of claims 17 to 22, comprising deprotonating a neutral sulfonylurea using a base of formula M+B- wherein B- is a hydroxyl or alkoxy anion or an anion of a herbicide formulation auxiliary which has at least one OH group, and M+ is a phosphonium or sulfonium ion.
25. A process for preparing the compound of the formula (Ia)of any one of claims 17 to 22 comprising exchanging a cation of a metal salt of a sulfonylurea with a reagent of formula M+X- wherein M+ is a phosphonium or sulfonium ion, and X- is a halide ion or an organic or inorganic phosphate, sulphate or carboxylate anion.
26. A process for preparing the compound of the formula (Ia) of any one of claims 17 to 22 comprising deprotonating and exchanging a cation of a neutral sulfonylurea with the reagent of formula M+X- as defined in claim 25, and a base of the formula MetB wherein Met is an alkali metal cation and B is a hydroxy or alkoxy anion.
27. A process for preparing the compound of the formula (Ia) of any one of claims 17 to 22 comprising reacting a sulphonamide salt with an isocyanate, wherein the sulphonamide salt is prepared by reacting a sulphonamide with the base M+B- as defined in claim 24.
28. A process for preparing the compound of the formula (Ia) of any one of claims 17 to 22 comprising reacting a sulphonamide salt with a carbamate wherein the sulphonamide salt is prepared by reacting a sulphonamide with the base M+B- as defined in claim 24.
29. Use of a compound of the formula (XVIII) R-O(EO)w(PO)x(EO)y(PO)z~M~ (XVIII) in which w, x, y and z independently of one another are integers from 0 to 50, R is a C8-C40-hydrocarbon, EO is an ethoxy unit, PO is a propoxy unit and M~ is a phosphonium or sulfonium ion, for preparing the herbicide formulation of claim 1.
CA2360624A 1999-01-27 2000-01-22 Formulation of herbicides and plant growth regulators Expired - Fee Related CA2360624C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE1999103064 DE19903064A1 (en) 1999-01-27 1999-01-27 New ammonium salt derivatives of sulfonyl urea compounds, useful as herbicides or plant growth regulators providing stable formulations, especially emulsifiable concentrates
DE19903064.2 1999-01-27
DE19963383.5 1999-12-28
DE19963383A DE19963383A1 (en) 1999-12-28 1999-12-28 Stable herbicide or plant growth regulator formulations, especially emulsifiable concentrates, contain new or known phosphonium or sulfonium salt derivatives of sulfonyl urea compounds
PCT/EP2000/000469 WO2000044227A1 (en) 1999-01-27 2000-01-22 Formulation of herbicides and plant growth regulators

Publications (2)

Publication Number Publication Date
CA2360624A1 CA2360624A1 (en) 2000-08-03
CA2360624C true CA2360624C (en) 2011-06-07

Family

ID=26051498

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2360624A Expired - Fee Related CA2360624C (en) 1999-01-27 2000-01-22 Formulation of herbicides and plant growth regulators

Country Status (13)

Country Link
EP (1) EP1158858B1 (en)
JP (1) JP2002535345A (en)
AR (1) AR030017A1 (en)
AT (1) ATE263488T1 (en)
AU (1) AU763467B2 (en)
BR (1) BR0007772A (en)
CA (1) CA2360624C (en)
CO (1) CO5210952A1 (en)
DE (1) DE50005994D1 (en)
DK (1) DK1158858T3 (en)
ES (1) ES2218128T3 (en)
TW (1) TWI284125B (en)
WO (1) WO2000044227A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512398A (en) * 1999-10-26 2003-04-02 アベンティス・クロップサイエンス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Herbicide
DE10036184A1 (en) 2000-07-24 2002-02-14 Aventis Cropscience Gmbh Substituted sulfonylaminomethylbenzoic acid (derivatives) and process for their preparation
CN1311748C (en) * 2005-03-21 2007-04-25 南开大学 Herbicide composition of sulfonylurea compound water-soluble salt
EP2103216A1 (en) 2008-03-19 2009-09-23 Bayer CropScience AG Selected salts from 3-(5,6-dihydro-1,4,2-dioxazin-3-yl)-N-[(4,6-dimethoxypyrimidin-2-yl)carbamoyl] pyridine-2-sulfonamide, methods for their production and their usage as herbicides and plant growth regulators

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240982A (en) * 1973-11-15 1980-12-23 The Dow Chemical Company Novel onium surfactants
DE2609105A1 (en) * 1976-03-05 1977-09-15 Basf Ag AMMONIUM AND SULPHONIUM SALTS
GR71993B (en) * 1980-11-19 1983-08-26 Stavffer Chemical Company
DE3900472A1 (en) * 1989-01-10 1990-07-12 Basf Ag HERBIC SULFONYL HARVES, PROCESS FOR THEIR PREPARATION AND THEIR USE
DE4024754A1 (en) * 1990-08-03 1992-02-06 Basf Ag HERBIC SULFONYL HARBONS, METHOD AND INTERMEDIATE PRODUCTS FOR THEIR PREPARATION AND THEIR USE
DE19608831A1 (en) * 1996-03-07 1997-09-18 Bayer Ag Substituted thienylsulfonyl (thio) ureas
DE19616362A1 (en) * 1996-04-24 1997-10-30 Bayer Ag N- (2-alkylphenylsulfonyl) -N '- (4,6-dimethoxy-2-pyrimidinyl) - (thio) ureas

Also Published As

Publication number Publication date
AU763467B2 (en) 2003-07-24
WO2000044227A1 (en) 2000-08-03
AU2798100A (en) 2000-08-18
AR030017A1 (en) 2003-08-13
JP2002535345A (en) 2002-10-22
CA2360624A1 (en) 2000-08-03
TWI284125B (en) 2007-07-21
EP1158858A1 (en) 2001-12-05
ATE263488T1 (en) 2004-04-15
ES2218128T3 (en) 2004-11-16
DE50005994D1 (en) 2004-05-13
DK1158858T3 (en) 2004-08-02
BR0007772A (en) 2001-10-30
CO5210952A1 (en) 2002-10-30
EP1158858B1 (en) 2004-04-07

Similar Documents

Publication Publication Date Title
US6750222B2 (en) Substituted phenyl derivatives
US6069114A (en) 2-amino-4-bicycloamino-1,3,5-Triazines, their preparation, and their use as herbicide and plant growth regulators
US6420317B1 (en) Benzoylpyrazoles and their use as herbicides
US5648315A (en) Phenylsulfonylureas, Processes for their-preparation, and their use as herbicides and plant growth regulators
US6239071B1 (en) 2,4-diamino-1,3,5-triazines, processes for their preparation and their use as herbicides and plant growth regulators
US20060148647A1 (en) Combinations of phenylsulfonylurea herbicides and safeners
US20100113276A1 (en) Use of n2-phenylamidines as herbicides
US6124240A (en) Combinations of sulfonylurea herbicides and safeners
US6645916B1 (en) 2,4-diamino-1,3,5-triazines, their preparation and their use as herbicides and plant growth regulators
US6071860A (en) 2,4-Diamino-1, 3,5-triazines, their preparation, and their use as herbicides and plant growth regulators
US20030186817A1 (en) Substituted 2,4-diamino-1,3,5-triazines, processes for their preparation and their use as herbicides and plant growth regulators
CA2206125C (en) N-substituted hydrazinophenylsulphonylureas, as herbicides and plant growth regulators
CA2360624C (en) Formulation of herbicides and plant growth regulators
US6228808B1 (en) Carbamoylphenylsulfonylureas, processes for their preparation and their use as herbicides and plant growth regulators
CA2252952C (en) Substituted aminomethylphenylsulphonylureas, their preparation, and their use as herbicides and plant growth regulators
US6265348B1 (en) Alkylidenehydrazinophenylsulfonylureas, processes for their preparation and their use as herbicides and plant growth regulators
US6331506B1 (en) Disubstituted methylidene hydrazinophenyl sulfonylureas, process for their production and their use as herbicides and plant growth regulators
US6410483B1 (en) Phenylsulfonylureas, processes for their preparation, and their use as herbicides and plant growth regulators
US7163910B1 (en) Formulation of herbicides and plant growth regulators
WO2000044226A1 (en) Herbicidal formulation
CA2254784A1 (en) (hetero)aryl sulphonyl ureas with an iminofunction, the preparation and use thereof as herbicides and plant growth regulators
DE19903064A1 (en) New ammonium salt derivatives of sulfonyl urea compounds, useful as herbicides or plant growth regulators providing stable formulations, especially emulsifiable concentrates
CA2237577A1 (en) Triazolylmethyl cyclophosphane oxides, the uses thereof as herbicides or plant growth regulators and process for producing the same
DE19963395A1 (en) New ammonium salt derivatives of sulfonyl urea compounds, useful as herbicides or plant growth regulators providing stable formulations, especially emulsifiable concentrates
WO1998001430A1 (en) Nitroalkyl-substituted pyrimidinyl or triazinyl (oxy, thio, methyl) phenyl or pyridinyl derivatives, their production and use as herbicides or plant growth regulators

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20140122