CA2354217C - Plug bypass valves and heat exchangers - Google Patents

Plug bypass valves and heat exchangers Download PDF

Info

Publication number
CA2354217C
CA2354217C CA 2354217 CA2354217A CA2354217C CA 2354217 C CA2354217 C CA 2354217C CA 2354217 CA2354217 CA 2354217 CA 2354217 A CA2354217 A CA 2354217A CA 2354217 C CA2354217 C CA 2354217C
Authority
CA
Canada
Prior art keywords
actuator
bypass valve
housing
flow
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA 2354217
Other languages
French (fr)
Other versions
CA2354217A1 (en
Inventor
Gregory Merle Pineo
Brian Edward Cheadle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dana Canada Corp
Original Assignee
Dana Canada Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dana Canada Corp filed Critical Dana Canada Corp
Priority to CA 2354217 priority Critical patent/CA2354217C/en
Publication of CA2354217A1 publication Critical patent/CA2354217A1/en
Priority to US11/264,494 priority patent/US7487826B2/en
Application granted granted Critical
Publication of CA2354217C publication Critical patent/CA2354217C/en
Priority to US12/335,024 priority patent/US7854256B2/en
Priority to US12/916,710 priority patent/US20110042060A1/en
Priority to US13/410,425 priority patent/US20120152516A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Bypass valves and heat exchangers employing same are shown where the bypass valves cause the flow through the heat exchangers to be short-circuited under certain temperature conditions. The heat exchangers are formed of stacked plate pairs or tubes having enlarged communicating distal end portions forming inlet and outlet manifolds. The bypass valves can be plugged in where desired between the enlarged distal end portions to produce bypass flow between the inlet and outlet manifolds. The bypass valves include a housing which can be brazed in place during brazing of the heat exchanger. The housing has inlet and outlet openings in communication with the respective inlet and outlet manifolds for bypass flow therebetween. A removable temperature responsive actuator is located in the housing for blocking and unblocking the bypass flow through the valve.

Description

PLUG BYPASS VALVES AND HEAT EXCHANGERS
This invention relates to heat exchangers, and in particular, to bypass valves for bypassing or short-circuiting flow from the heat exchanger inlet to the heat exchanger outlet under conditions where the heat transfer function of the heat exchanger is not required or is only intermittently required.
In certain applications, such as in the automotive industry, heat exchangers are used to cool or heat certain fluids, such as engine oil or transmission fluid or oil. In the case of transmission fluid, for instance, a heat exchanger is usually used to cool the transmission fluid. The heat exchanger is usually located remote from the transmission and receives hot transmission fluid from the transmission through supply tubing, cools it, and delivers it back to the transmission again through return tubing. However, when the transmission is cold, such as at start-up conditions, the transmission oil is very viscous and does not flow easily through the heat exchanger, if at all. In such cases, the transmission can be starved of fluid and this may cause damage to the transmission or at least erratic performance. Damage can also be caused to the transmission if the quantity of fluid returned is adequate, but is over-cooled by the heat exchanger due to low ambient temperatures. In this case, water may accumulate in the transmission fluid as a result of condensation (which normally would be vaporized at higher temperatures) and this may cause corrosion damage or transmission fluid degradation.
In order to overcome the cold flow starvation problem, it has been proposed to insert a bypass valve between the supply and return tubing to and from the heat exchanger. This bypass valve may be temperature responsive so that it opens causing bypass flow when the transmission fluid is cold, and it closes to prevent bypass flow when the transmission fluid heats up to operating temperature. An example of such a bypass valve is shown in U.S. Patent No.
6,253,837 issued to Thomas F. Seiler et al. While this approach works satisfactorily, the heat exchanger and bypass valve assembly becomes quite large and includes fluid inlet and outlet tubing that may not otherwise be required.
In the present invention, the bypass valve can be incorporated as an integral part of the heat exchanger as a plug-in item that can be located anywhere desired between the inlet and outlet flow manifolds of the heat exchanger.
According to one aspect of the invention, there is provided a bypass valve for a heat exchanger including a plurality of parallel, tubular members having adjacent wall portions defining flow openings in communication to form flow manifolds. The bypass valve comprises a housing having a hollow plug portion with opposed plug walls defining inlet and outlet openings therein, the plug walls being adapted to be sealingly mounted between selected adjacent tubular member wall portions to allow fluid flow respectively between the flow manifolds and the inlet and outlet openings. The housing also has an actuator portion located adjacent to the plug portion. Also, an actuator is releasably mounted in the actuator portion and has a reciprocating plunger extending into the plug portion to block and unblock flow between the inlet and outlet openings.
According to another aspect of the invention, there is provided a heat exchanger comprising a plurality of parallel, tubular members having adjacent wall portions defining flow openings in communication to form inlet and outlet manifolds for the flow of fluid through the tubular members. A bypass valve includes a housing having a hollow plug portion with opposed plug walls defining inlet and outlet openings therein, the plug walls being sealingly mounted between selected adjacent tubular member wall portions to allow fluid flow respectively between the flow manifolds and the inlet and outlet openings.
The housing also has an actuator portion located adjacent to the plug portion.
Also, an actuator is releasably mounted in the actuator portion and has a reciprocating plunger extending into the plug portion to block and unblock flow between the inlet and outlet openings.
Preferred embodiments of the invention will now be described by way of example, with reference to the accompanying drawings, in which:
Figure 1 is an elevational view of a heat exchanger having a preferred embodiment of a bypass valve according to the present invention mounted therein;
Figure 2 is an enlarged view of the portion of Figure 1 indicated by circle 2;
Figure 3 is a perspective view, partly broken away of the bypass valve of Figure 2 shown in the closed position;
Figure 4 is a perspective view similar to Figure 3 but showing the bypass valve in the open position;
Figure 5 is an elevational view similar to Figure 2, but showing another preferred embodiment of a bypass valve according to the present invention, the valve being shown partially in cross-section;
Figure 6 is an elevational view similar to Figure 2, yet showing another preferred embodiment of a bypass valve according to the present invention, the valve being shown in cross-section and in the closed position;
Figure 7 is an elevational view similar to Figure 6, but showing the bypass valve of Figure 6 in the open position;
Figure 8 is a schematic view of a heat exchanger having multiple passes and more than one bypass valve; and Figure 9 is an elevational view of a portion of another preferred embodiment of a heat exchanger and bypass valve according to the present invention.
Referring firstly to Figures 1 and 2, a heat exchanger is generally indicated by reference in 10, and a preferred embodiment of a bypass valve according to the present invention is generally indicated by reference numeral 12. Heat exchanger 10 is formed of a plurality of parallel, spaced-apart, tubular members 14 preferably with enlarged distal end portions 16 that have adjacent wall portions 17 defining flow openings (not shown) in communication. Tubular members 14 are preferably formed of mating plate pairs with transversely protruding cupped end portions to form these enlarged end portions 16 that also together form flow manifolds 19 and 21. However, tubular members 14 could be formed of tubes with separate joined enlarged end portions 16, if desired.
Alternatively, tubular members of uniform width or thickness could be used, in which case tubular spacers could be used between the tube ends in place of enlarged distal end portions 16. If it is not necessary to space tubular members 14 apart transversely, then such spacers would not be required. Yet another possibility would be to use transversely orientated tubular manifolds 19 and attached in communication with the ends of tubular members 14. For the purpose of this disclosure, the term "distal end portions" is intended to include all of the above-mentioned tube member communicating wall structures.
Corrugated cooling fins 18 are located between the tubular members 14 where the tubular members 14 are spaced apart transversely.
In the heat exchangers shown in Figures 1 and 2, the tubular members 14 are formed into two upper and lower groups separated by central back-to-back dimpled plates 20 having offset end portions 22, 24. As seen best in Figure 2, the space between offset end portions 22, 24 provides a location where bypass valve 12 can be plugged into heat exchanger 10. Bypass valve 12 includes a hollow plug portion 26 located in this space, and which will be described in further detail below.
As mentioned above, the enlarged distal end portions 16 have transverse openings therethrough (not shown), so that the distal end portions 16 located above bypass valve 12 are all in communication and form either an inlet or an outlet manifold 19 depending on the direction in which fluid is to flow through heat exchanger 10. Similarly, the enlarged distal end portions 16 located below bypass valve 12 are all in communication and form a respective outlet or inlet manifold 21. As seen best in Figure 1, an inlet or outlet fitting 28 communicates with the enlarged distal end portions below it and an inlet or outlet fitting communicates with the enlarged distal end portions above it. So, for example, fluid entering inlet fitting 28 travels from right to left as shown in Figure through all of the tubular members 14 located above dimpled plates 20, to a similar left hand manifold formed by enlarged distal end portions 32, and then downwardly through a cross-over fitting 34 into a left hand manifold in the lower section of heat exchanger 10 formed by enlarged distal end portions 32, and then back to the right end and out through outlet fitting 30. Heat exchanger is thus called a two-pass heat exchanger and can have any number of tubular members 14 above or below the dimpled plates 20. In fact, there could just be one tubular member 14 above or below dimpled plates 20, as illustrated in the embodiment shown in Figure 9 and as described further below.
Heat exchanger 10 also has upper and lower dimpled plates 36. Suitable mounting brackets 40 are attached to dimpled plates 36, 38 as are the inlet and outlet fittings 28, 30.
Referring next to Figures 3 and 4, bypass valve 12 includes a housing 42 having a hollow plug portion 26 with spaced-apart, opposed, flat, parallel plug side walls 43 defining transversely located inlet and outlet openings 44, 46 formed therein for the flow of fluid through plug portion 26 when valve 12 is in the open position as shown in Figure 4. Plug walls 43 are sealingly mounted between selected adjacent tubular member wall portions 17 of the enlarged distal end portions 16 of tubular members 14. The distal end portions 16 have flat mating surfaces. The offset end portions 22 mate flush against their adjacent distal end portion flat surfaces and the flat housing side walls 43 mate flush against the flat offset end portions 22. However, housing side or plug walls would mate flush against the flat portions of distal end portions 16, if dimpled plates 22 were not used in heat exchanger 10. This mounting allows bypass fluid flow directly between selected distal end portions 16, or respectively between the flow manifolds 19 and 21 and the inlet and outlet openings 44 and 46, or between the inlet and outlet fittings 28, 30 when bypass valve 12 is open.
Bypass valve side or plug walls 43 are spaced apart a predetermined distance so as to determine the spacing between adjacent heat exchanger tubular members, especially if dimpled plates 20 are not used.
Bypass valve housing 42 also has an actuator portion 48 located adjacent to and communicating with plug portion 26. A temperature responsive actuator 50 is located in housing 42. Actuator 50 has a central shaft 52 attached to a removable closure 54 located remote from plug portion 26. Removable closure 54 has an O-ring seal 56 and is held in position by a split pin 58 passing through openings 60 in housing actuator portion 40 and a through hole 62 in closure 54.
Temperature responsive actuator 50 has a reciprocating barrel portion 64 which forms a plunger slidably located in housing plug portion 26 to block and unblock flow between inlet and outlet openings 44, 46. A spring 66 is located in housing actuator portion 48 and bears against an annular shoulder 68 on barrel 64 to act as bias means to urge the actuator 50 to retract so that barrel or plunger unblocks the flow of fluid through inlet and outlet openings 44, 46 of bypass valve 12, when the actuator is not extended due to temperature, as described next below.
Temperature responsive actuator 50 is sometimes referred to as a thermal motor and it is a piston and cylinder type device. Barrel or plunger 64 is filled with a thermal sensitive material, such as wax, that expands and contracts, causing the actuator to extend axially upon being heated to a predetermined temperature and to retract upon being cooled below this predetermined temperature. Where bypass valve 12 is used in conjunction with an automotive transmission fluid or oil cooler, this predetermined temperature is about 80°C, which is the temperature of the fluid from the transmission when bypass flow is no longer required.
Referring next to Figure 5, another preferred embodiment of a bypass valve according to the present invention is generally indicated by reference numeral 70.
Bypass valve 70 is similar to bypass valve 12 except that a sliding plate 72 bears against central shaft 52 and a spring 74 is located in housing actuator portion 48 to urge central shaft 52 toward the housing plug portion 26. Spring 74 absorbs any pressure spikes or peeks that may occur in the inlet and outlet manifolds of heat exchanger 10. A notch 76 is formed in barrel 64 to allow the fluid to act against the end of barrel 64 and provide this pressure relief even when bypass valve 70 is closed. A bleed hole through plunger or barrel 64 _7_ communicating with inlet opening 44 could also be used in place of notch 76 for this purpose. Otherwise, bypass valve 70 is substantially the same as bypass valve 12.
Referring next to Figures 6 and 7, another preferred embodiment of a bypass valve according to the present invention is generally indicated by reference numeral 80. In bypass valve 80, the temperature responsible actuator 50 includes a solenoid having a solenoid coil 82 and a central actuator shaft attached to a plunger 86. Plunger 86 also has a notch or bleed hole 76 to provide pressure spike relief when valve 80 is closed. Actuator shaft 84 extends upon energization of solenoid coil 82, so that plunger 86 blocks flow between the housing inlet and outlet openings 44, 46. A spring 88 located in housing plug portion 26 bears against plunger 86 to act as bias means for urging the actuator shaft 84 to retract upon the energization of solenoid coil 82.
A temperature sensor 90 is attached to plunger 86 and is in the form of a thermistor electrically coupled to solenoid coil 82 for actuation of the solenoid coil when the temperature of the fluid going through heat exchanger 10 reaches a predetermined temperature. Temperature sensor 90 could be located elsewhere in bypass valve 80, or even elsewhere in heat exchanger 10.
Preferably, temperature sensor 90 is electrically connected to an electrical control circuit 92 mounted in housing actuator portion 48. Electrical control circuit 92 is in turn is electrically connected to solenoid coil 82 for controlling the movement of plunger 86 in accordance with the temperature sensed by temperature sensor 90. In this way, the opening of bypass valve 80 could be controlled to provide variable opening, rather than a simple on or off, but the latter is also possible.
Referring next to Figure 8, a heat exchanger 100 is shown schematically and it is like two heat exchangers 10 of Figure 1 mounted in series. Two bypass valves 102, 104 are used to provide thermal modulation of the fluid flowing through the heat exchanger 100. Bypass valve 102 may have a predetermined temperature set point or activation temperature, and bypass valve 104 may have a somewhat higher temperature set point or activation temperature. Heat _$_ exchanger 100 is a four pass heat exchanger having four groups or stacks 106, 108, 110 and 112 of tubular members.
Where both bypass valves 102 and 104 are open, such as during cold flow operation, there is full fluid bypass from inlet fitting 28 to outlet fitting 30.
Where bypass valve 102 is closed and valve 104 is open, such as during warm up or an interim temperature of fluid flowing through heat exchanger 100, there would be fluid flow through the top two passes 106 and 108 of heat exchanger 100, but passes 110 and 112 would be bypassed through bypass valve 104.
Where the fluid reaches its hot operating temperature, both bypass valves 102 and 104 would close giving flow through all four passes 106, 108, 110 and 112 and no bypass flow at all. Additional multiples of passes and bypass valves could be used in a single heat exchanger as well. Any of the types of bypass valves described above could be used in heat exchanger 100.
Referring next to Figure 9, other preferred embodiments of a heat exchanger 113 and a bypass valve 115 are shown. In bypass valve 115, inlet and outlet openings 44, 46 are formed in opposed plug walls 114, 116 and this shows that inlet and outlet openings 44, 46 can be located anywhere in plug portion 26 as long as one of these openings is blocked when valve 115 is closed. Otherwise, bypass valve 115 is substantially similar to or can incorporate the features of the bypass valves 12, 70 and 80 described above. In the embodiment of Figure 9, plate 38 (which preferably is dimpled but may be flat) and a bottom plate 118 (which may also be dimpled or flat), together form a tubular member 120 which is one of the tubular members that make up heat exchanger 113. Tubular member 120 is actually a bypass channel and has flow openings 122 that communicate with the flow openings in the adjacent enlarged distal end portions 16 of adjacent tubular member 14, and as such forms part of the inlet and outlet manifolds of heat exchanger 113. Instead of tubular member 120, a regular tubular member 14 could be used in heat exchanger 113, if desired. This would produce a full flood or single pass heat exchanger.
Tubular members 14 may or may not have turbulizers in them or be made of dimpled plates, but the bottom tubular member 120 likely would not be turbulized or have other types of flow augmentation, such as dimples.

_g_ In the assembly of heat exchangers 10, 100 and 113,-the various components, such as the tubular members 14 or 120 and fins 18 are stacked together along with dimpled plates 20, if desired, and upper and lower dimpled plates 36, 38. Mounting plates or brackets 40 and inlet and outlet fittings 28, 30 can be preassembled to upper and lower dimpled plates 36, 38, or assembled along with all of the other components. The housing 42 of the preferred bypass valve 12, 70, 80 or 115 (without any other bypass valve components) is then placed in the desired location in the heat exchanger and the entire assembly is brazed together in a brazing furnace. It will be appreciated that in the preferred embodiments, aluminum or a brazing-clad aluminum is used for most of the parts of the heat exchangers, so that all of the parts can be brazed together in a brazing furnace. After this assembly is cooled, the desired actuator components of the bypass valves are inserted into housing 42 and the removable closures are secured in position with split pins 58.
Having described preferred embodiments of the invention, it will be appreciated that various modifications can be made to the structures described above. For example, instead of using a thermal motor or solenoid type actuator for the bypass valves, other devices could be used as well, such as a bi-metallic helix to move the barrel or plunger of the valve. The tubular members can also have other shapes or configurations as well.
From the above, it will be appreciated that the bypass valves of the present invention are in the form of plugs that can be plugged in at any desired location in the heat exchanger with a simple rearrangement of the location of some components. The bypass valve housings actually act as a form of baffle plate to intermittently block flow between manifold portions of the heat exchangers. In fact, the bypass valves could be plugged in anywhere in the heat exchangers where it is desired to have bypass flow between the plate pairs or tubes. The bypass valve housings are brazed in place along with all of the other heat exchanger components. The actual valve elements in the actuators are then removably or releasably located in the bypass valve housings to complete the assembly. No external tubing or peripheral components are required to make the actuator valves active.

As will be apparent to those skilled in the art in the light of the foregoing disclosure, many alterations and modifications are possible in the practice of this invention without departing from the spirit or scope thereof. The foregoing description is of the preferred embodiments and is by way of example only, and it is not to limit the scope of the invention.

Claims (20)

1. A bypass valve, for use with a heat exchanger of the type having a plurality of tubular members, the tubular members having respective, adjacent, spaced-apart wall portions defining flow openings therein for the flow of fluid between the tubular members, the bypass valve comprising:
a housing having a hollow plug portion with opposed plug walls defining respective inlet and outlet openings in said plug walls, the plug walls being adapted to be sealingly mounted between selected heat exchanger adjacent, spaced-apart wall portions to allow bypass fluid flow from one selected wall portion flow opening to the housing inlet opening, and from the housing outlet opening to another selected wall portion flow opening;
the bypass valve housing also having an actuator portion located adjacent to the plug portion; and an actuator releasably mounted in the actuator portion and having a reciprocating plunger extending into the plug portion to substantially block and unblock flow between said inlet and outlet openings.
2. A bypass valve as claimed in claim 1 wherein the actuator is a temperature responsive actuator having a central shaft mounted in the housing actuator portion and a reciprocating barrel portion forming said plunger.
3. A bypass valve as claimed in claim 2 wherein the actuator is a thermal motor adapted to extend axially upon being heated to a predetermined temperature and to retract upon being cooled below said temperature.
4. A bypass valve as claimed in claim 2 wherein the housing actuator portion includes a removable closure located remote from the plug portion, the actuator central shaft being attached to the removable closure.
5. A bypass valve as claimed in claim 3 or 4 and further comprising bias means located in the housing for urging the actuator to retract and the plunger to unblock the flow through the bypass valve.
6. A bypass valve as claimed in claim 1 wherein the housing plug portion opposed plug walls are flat, parallel side walls defining said inlet and outlet openings.
7. A bypass valve as claimed in claim 6 wherein said side walls are spaced apart a predetermined distance so as to determine the spacing between adjacent heat exchanger tubular members.
8. A bypass valve as claimed in claim 2 and further comprising a spring located in the housing actuator portion to urge the central shaft toward the housing plug portion.
9. A bypass valve as claimed in claim 4 and further comprising a spring located between the removable closure and the actuator central shaft to urge the actuator into the housing plug portion.
10. A bypass valve as claimed in claim 1 wherein the actuator includes a solenoid having a central actuator shaft attached to the plunger, the shaft extending upon energization of the solenoid, so that the plunger blocks flow between the inlet and outlet openings, and further comprising bias means for urging the actuator shaft to retract upon de-energization of the solenoid.
11. A bypass valve as claimed in claim 10 and further comprising a temperature sensor electrically coupled to the solenoid for energization of the solenoid when the temperature of the fluid going to the heat exchanger reaches a pre-determined temperature.
12. A bypass valve as claimed in claim 11 wherein the temperature sensor is a thermistor mounted on the plunger.
13. A bypass valve as claimed in claim 12 and further comprising an electrical control circuit mounted in the housing and electrically connected between the thermistor and the solenoid for controlling the movement of the plunger in accordance with the temperature sensed by the thermistor.
14. A heat exchanger comprising:
a plurality of tubular members having respective, adjacent, spaced-apart wall portions defining flow openings in the wall portions for the flow of fluid between the tubular members;
a bypass valve including a housing having a hollow plug portion with opposed plug walls defining respective inlet and outlet openings in said plug walls;
the plug walls being sealingly mounted between selected adjacent, spaced-apart wall portions to allow bypass fluid flow from one selected wall portion flow opening to the housing inlet opening, and from the housing outlet opening to another selected wall portion flow opening;
the bypass valve housing also having an actuator portion located adjacent to the plug portion; and an actuator releasably mounted in the actuator portion and having a reciprocating plunger extending into the plug portion to substantially block and unblock flow between said inlet and outlet openings.
15. A heat exchanger as claimed in claim 14 wherein the tubular members are formed of plate pairs having enlarged distal end portions joined together to form inlet and outlet manifolds, the distal end portions of a selected plate pair in each manifold defining said spaced-apart wall portion flow openings, said plug walls being spaced-apart side walls defining said inlet and outlet openings and being joined respectively to said selected plate pair spaced-apart wall portions, so that fluid can flow between the inlet and outlet manifolds through the bypass valve when the flow through the bypass valve is unblocked.
16. A heat exchanger as claimed in claim 15 wherein said plug walls are spaced apart a predetermined distance so as to determine the spacing between adjacent heat exchanger tubular members.
17. A heat exchanger as claimed in claim 14 wherein the actuator is a temperature responsive actuator having a central shaft mounted in the housing actuator portion and a reciprocating barrel portion forming said plunger.
18. A heat exchanger as claimed in claim 17 wherein the actuator is a thermal motor adapted to extend axially upon being heated to a predetermined temperature and to retract upon being cooled below said temperature.
19. A heat exchanger as claimed in claim 14 wherein the actuator includes a solenoid having a central actuator shaft attached to the plunger the shaft extending upon energization of the solenoid, so that the plunger blocks flow between the inlet and outlet openings, and further comprising bias means for urging the actuator shaft to retract upon de-energization of the solenoid.
20. A heat exchanger as claimed in claim 19 and further comprising a temperature sensor electrically coupled to the solenoid for activation of the solenoid when the temperature of the fluid going to the heat exchanger reaches a pre-determined temperature.
CA 2354217 2001-07-26 2001-07-26 Plug bypass valves and heat exchangers Expired - Lifetime CA2354217C (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA 2354217 CA2354217C (en) 2001-07-26 2001-07-26 Plug bypass valves and heat exchangers
US11/264,494 US7487826B2 (en) 2001-07-26 2005-11-01 Plug bypass valves and heat exchangers
US12/335,024 US7854256B2 (en) 2001-07-26 2008-12-15 Plug bypass valves and heat exchangers
US12/916,710 US20110042060A1 (en) 2001-07-26 2010-11-01 Plug Bypass Valves and Heat Exchangers
US13/410,425 US20120152516A1 (en) 2001-07-26 2012-03-02 Plug Bypass Valves and Heat Exchangers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2354217 CA2354217C (en) 2001-07-26 2001-07-26 Plug bypass valves and heat exchangers

Publications (2)

Publication Number Publication Date
CA2354217A1 CA2354217A1 (en) 2003-01-26
CA2354217C true CA2354217C (en) 2007-02-13

Family

ID=4169595

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2354217 Expired - Lifetime CA2354217C (en) 2001-07-26 2001-07-26 Plug bypass valves and heat exchangers

Country Status (1)

Country Link
CA (1) CA2354217C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020204271A1 (en) * 2019-04-05 2020-10-08 Dana Canada Corporation Heat exchanger arrangement with integrated valve and pressure bypass

Also Published As

Publication number Publication date
CA2354217A1 (en) 2003-01-26

Similar Documents

Publication Publication Date Title
US7487826B2 (en) Plug bypass valves and heat exchangers
US7854256B2 (en) Plug bypass valves and heat exchangers
US9557749B2 (en) Valves for bypass circuits in heat exchangers
US8960269B2 (en) Plug bypass valve and heat exchanger
US10890389B2 (en) Heat exchanger assemblies with integrated valve
US6253837B1 (en) By-pass values for heat exchanger
US20180371968A1 (en) Method of Controlling the Temperature of Oil for Vehicle Powertrain
US10619530B2 (en) Thermal management unit for vehicle powertrain
CA2216451C (en) By-pass valves for heat exchangers
US11268773B2 (en) Dual heat exchangers with integrated diverter valve
US7832467B2 (en) Oil cooler
US11287197B2 (en) Heat exchanger assembly with integrated valve and pressure bypass
CN106246884B (en) Tank heat exchanger
US20060237184A1 (en) Tubular flapper valves
US20110067853A1 (en) Fluid cooling device for a motor vehicle
US20060237079A1 (en) Self-riveting flapper valves
CA2354217C (en) Plug bypass valves and heat exchangers
GB2090957A (en) Heat exchanger
EP0053003A1 (en) Heat exchanger
CA2805377A1 (en) Valves for bypass circuits in heat exchangers
CA2504757A1 (en) Tubular flapper valves
WO2006111006A1 (en) Self-riveting flapper valves
JP2016145596A (en) Temperature increase device and temperature increase method of automatic transmission fluid

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20210726