CA2350047C - Pump drive head with stuffing box - Google Patents
Pump drive head with stuffing box Download PDFInfo
- Publication number
- CA2350047C CA2350047C CA2350047A CA2350047A CA2350047C CA 2350047 C CA2350047 C CA 2350047C CA 2350047 A CA2350047 A CA 2350047A CA 2350047 A CA2350047 A CA 2350047A CA 2350047 C CA2350047 C CA 2350047C
- Authority
- CA
- Canada
- Prior art keywords
- drive
- drive head
- sleeve
- fluid
- seal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims abstract description 172
- 238000007789 sealing Methods 0.000 claims description 68
- 230000003068 static effect Effects 0.000 claims description 30
- 238000012856 packing Methods 0.000 claims description 21
- 230000002250 progressing effect Effects 0.000 claims description 20
- 239000003921 oil Substances 0.000 claims description 19
- 238000004891 communication Methods 0.000 claims description 11
- 239000003129 oil well Substances 0.000 claims description 10
- 238000012423 maintenance Methods 0.000 claims description 8
- 230000006872 improvement Effects 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 claims description 2
- 230000001050 lubricating effect Effects 0.000 claims 10
- 230000001276 controlling effect Effects 0.000 claims 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 238000006073 displacement reaction Methods 0.000 claims 1
- 239000010687 lubricating oil Substances 0.000 claims 1
- 238000009434 installation Methods 0.000 description 9
- 239000010779 crude oil Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/12—Methods or apparatus for controlling the flow of the obtained fluid to or in wells
- E21B43/121—Lifting well fluids
- E21B43/126—Adaptations of down-hole pump systems powered by drives outside the borehole, e.g. by a rotary or oscillating drive
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/02—Surface sealing or packing
- E21B33/08—Wipers; Oil savers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/03—Valves operated by gear mechanisms, e.g. rack and pinion mechanisms
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Sealing Devices (AREA)
Abstract
A drive head assembly for use to fluid sealingly rotate a rod extending down a well, comprising a housing having upper and lower openings for receiving the rod therethrough; a rotatable sleeve adapted to concentrically receive a portion of the rod therethrough, the sleeve being rotatably mounted in the housing and having an upper and passing through the upper opening to extend outwardly of the housing; a prime mover drivingly connected to the sleeve for rotation thereof; means disposed on the upper end of the sleeve for drivingly connecting the sleeve to the rod; and seal means within the sleeve to prevent the escape of well fluids, wherein the means for drivingly connecting the sleeve to the rod are removable from the upper end of the sleeve for servicing of the seal means without removal of the drive head assembly from the well.
Description
PUMP DRIVE HEAD WITH STUFFING BOX
FIELD OF THE INVENTION
The present invention relates generally to progressing cavity pump oil well installations and, more specifically, to a drive head for use in progressing cavity pump oil well installations.
BACKGROUND OF THE INVENTION
Progressing cavity pump drives presently on the market have weaknesses with respect to the stuffing box, backspin retarder and the power transmission system. Oil producing companies need a pump drive which requires little or no maintenance, is very safe for operating personnel and minimizes the chances of product leakage and resultant environmental damage. When maintenance is required on the pump drive, it must be safe and very fast and easy to do.
Due the abrasive sand particles present in crude oil and poor alignment between the wellhead and stuffing box, leakage of crude oil from the stuffing box is common in some applications. This costs oil companies money in service time, down time and environmental clean up. It is especially a problem in heavy crude oil wells in which the oil is often produced from semi-consolidated sand formations since loose sand is readily transported to the stuffing box by the viscosity of the crude oil. Costs associated with stuffing box failures are one of the highest maintenance costs on many wells.
Servicing of stuffing boxes is time consuming and difficult. Existing stuffing boxes are mounted below the drive head. Stuffing boxes are typically separate from the drive and are mounted in a wellhead frame such that they can be serviced from below the drive head without removing it. This necessitates mounting the drive head higher, constrains the design and still means a difficult service job. Drive heads with integral stuffing boxes mounted on the bottom of the drive head have more recently entered the market. In order to service the stuffing box, the drive must be removed which necessitates using a rig with two winch lines, one to support the drive and the other to hold the polished rod. This is more expensive and makes servicing the stuffing box even more difficult. As a result, these stuffing boxes are typically exchanged in the field and the original stuffing box is sent back to a service shop for repair-still unsatisfactory.
Due to the energy stored in wind up of the sucker rods used to drive the progressing cavity pump and the fluid column on the pump, each time a well shuts down a backspin retarder brake is required to slow the backspin shaft speed to a safe level and dissipate the energy. Because sheaves and belts are used to transmit power from the electric motor to the pump drive head on all existing equipment in the field, there is always the potential for the brake to fail and the sheaves to spin out of control. If sheaves turn fast enough, they will explode due to tensile stresses which result due to centrifugal forces.
Exploding sheaves are very dangerous to operating personnel.
SUMMARY OF THE INVENTION
The present invention seeks to address all these issues and combines all functions into a single drive head . The drive head of the present invention eliminates the conventional belts and sheaves that are used on all drives presently on the market, thus eliminating belt tensioning and replacement. Elimination of belts and sheaves removes a significant safety hazard that arises due to the release of energy stored in wind up of rods and the fluid column above the pump.
One aspect of the invention relates to a centrifugal backspin retarder, which controls backspin speed and is located on a drive head input shaft so that it is considerably more effective than a retarder located on the output shaft due to its mechanical advantage and the higher centrifugal forces resulting from higher speeds acting on the centrifugal brake shoes.
A ball-type clutch mechanism is employed so that brake components are only driven when the drive is turning in the backspin direction, thus reducing heat buildup due to viscous drag.
Another aspect of the present invention relates to the provision of an integrated rotating stuffing box mounted on the top side of the drive head, which is made possible by a unique standpipe arrangement. This makes the stuffing box easier to service and allows a pressurization system to be used such that any leakage past the rotating seals or the standpipe seals goes down the well bore rather than spilling onto the ground or into a catch tray and then onto the ground when that overflows.
In the present invention, only one winch line is required to support the polish rod because the drive does not have to be removed to service the stuffing box. In order to eliminate the need for a rig entirely, a still further aspect of the present invention provides a special clamp integrated with the drive head to support the polished rod and prevent rotation while the stuffing box is serviced. Preferably, blow out preventers are integrated into the clamping means and are therefore closed while the stuffing box is serviced, thus preventing any well fluids from escaping while the stuffing box is open.
According to the present invention then, there is provided a drive head assembly for use to fluid sealingly rotate a rod extending down a well, comprising a housing having upper and lower openings for receiving said rod therethrough; a rotatable sleeve adapted to concentrically receive a portion of said rod therethrough, said sleeve being rotatably mounted in said housing and having an upper end passing through said upper opening to extend outwardly of said housing; a prime mover drivingly connected to said sleeve for rotation thereof; means disposed on said upper end of said sleeve for drivingly connecting said sleeve to the rod; and seal means within said sleeve to prevent the escape of well fluids, wherein said means for drivingly connecting said sleeve to said rod are removable from said upper end of said sleeve for servicing of said seal means without removal of said drive head assembly from the well.
According to a further aspect of the present invention, there is also provided in a stuffing box for sealing the end of a rotatable rod extending from a well bore, the improvement comprising a first fluid passageway disposed concentrically around at least a portion of the rod passing through the stuffing box; a second fluid passageway disposed concentrically inside said first passageway, said second passageway being in fluid communication with wellhead pressure during normal operations; said first and second passageways being in fluid communication with one another and having seal means disposed therebetween to permit the maintenance of a pressure differential between them;
and means to pressurize fluid in said first passageway to a pressure in excess of wellhead pressure to prevent the leakage of well fluids through said stuffing box.
According to yet another aspect of the present invention, there is provided a drive head for use with a progressing cavity pump in an oil well, comprising a drive head housing;
a drive shaft rotatably mounted in said housing for connection to a drive motor; an annular tubular sleeve rotatably mounted in said housing and drivingly connected to said drive shaft;
a tubular standpipe concentrically mounted within said sleeve in annularly spaced relation thereto defining a first tubular fluid passageway for receiving fluid at a first pressure and operable to receive a polished rod therein in annularly spaced relation defining a second tubular fluid passageway exposed to oil well pressure during normal operation;
seal means disposed in said first fluid passageway; means for maintaining the fluid pressure within said first fluid passageway greater than the fluid pressure in said second fluid passageway; arid means for releasably drivingly connecting said sleeve to said polished rod received in said standpipe.
According to yet another aspect of the present invention, there is provided in a drive head for rotating a rod in a well having a housing for fluid sealingly receiving the rod therethrough, said housing having a lower end and an upper openable end, the improvement comprising a stuffing box for said rod integrated into said upper end of said housing to enable said stuffing box to be serviced by opening said openable upper end of said housing, without removing said drive head from the well bore, According to yet a further aspect of the present invention, there is provided a drive head with a prime mover for rotatably driving a polished rod in a progressing cavity pump well, including a housing with upper and lower openings for receiving the polished rod therethrough; a tubular drive sleeve rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive sleeve having an upper end extending outwardly of said housing through said upper opening therein; releasable connecting means accessible from outside of said housing for drivingly connecting said upper end of said drive sleeve to said polished rod; a stuffing box to seal said rod against the pressure of fluid in said well disposed in said tubular drive sleeve, said stuffing box being accessible for servicing from outside of said drive head upon removal of said connecting means from said upper end of said sleeve.
In accordance with yet another aspect of the present invention, there is provided a drive head for sealing and rotating a polished rod extending into a well bore, including a housing having aligned upper and lower openings therein for receiving the polished rod therethrough; a tubular drive sleeve rotatably mounted in said housing for axially supporting and rotatably driving the polished rod, said drive sleeve having an upper end extending through said upper opening of said housing; a prime mover for rotation of said tubular drive sleeve; means located outside of said housing for drivingly and releasably connecting said upper end of said drive sleeve to said polished rod; a tubular standpipe secured to said housing within said drive sleeve in annularly spaced relation thereto for generally concentrically receiving said polished rod therethrough in annularly spaced apart relation;
rotary seal means disposed in an annular space between said drive sleeve and said standpipe, said rotary seal means being exposed on one side thereof to well fluids; and static seal means disposed between said drive sleeve and said polished rod.
According to yet a further aspect of the present invention, there is also provided a drive head for rotatably driving a polished rod in a well, including a housing having vertically aligned upper and lower openings therein for passage of said polished rod therethrough; a tubular drive sleeve rotatably mounted in said housing to concentrically receive said polished rod therethrough; a non-rotatable tubular standpipe concentrically received within said tubular sleeve and sealingly and detachably secured to said housing to define a first annulus between said sleeve and said standpipe and a second annulus between said polished rod and said standpipe; rotary seal means disposed in said first annulus between said standpipe and said drive sleeve in contact with well fluids on one side thereof and with said first annulus on the other side thereof; means for rotating said tubular drive sleeve; and means connecting said tubular drive sleeve to said polished rod for rotation thereof.
According to yet another aspect of the present invention, there is provided a drive head for rotatably driving a polished rod in a progressing cavity pump well, comprising sealing means to prevent well fluids from escaping from the well; said sealing means being accessible from above said drive head to facilitate servicing of said sealing means.
In accordance with yet a further aspect of the present invention, there is provided a drive head for rotatably driving a polished rod in a progressing cavity pump well, comprising a housing for receiving a polished rod therethrough; a tubular drive shaft rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive shaft having an upper end extending outwardly of said housing; sealing means for preventing well fluids from escaping from said well, said sealing means being accessible from the top of said drive head to facilitate servicing of said sealing means; and connecting means accessible from the top of said housing for drivingly connecting said upper end of said shaft to said polished rod.
In accordance with yet a further aspect of the present invention, there is provided a drive head for rotatably driving a polished rod in a progressing cavity pump well, comprising a housing for receiving a polished rod therethrough; a tubular drive shaft rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive shaft having an upper end extending outwardly of said housing; a tubular standpipe disposed within said drive shaft in annularly spaced relation thereto for receiving said polished rod therethrough in annularly spaced apart relation, said drive shaft and said standpipe forming an annular seal chamber; sealing means for preventing well fluids from escaping from said well, said sealing means including rotary seal means disposed in said seal chamber to prevent flow of well fluids along the interior of said drive shaft; and static seal means disposed between said drive shaft and said polished rod to prevent the escape of well fluids along said polished rod; means for non-rotatably and compliantly securing a bottom end of said standpipe to said housing below a lower end of said drive shaft to permit said standpipe to tilt with respect to said drive shaft to adjust for mis-alignment of said standpipe and said drive shaft at said rotary seal means; and connecting means accessible from the top of said housing for drivingly connecting said upper end of said shaft to said polished rod, said connecting means including a removable cap member for engaging said upper end of drive shaft and closing said drive shaft, said cap member being removable to provide access to said static seal means and said rotary seal means.
FIELD OF THE INVENTION
The present invention relates generally to progressing cavity pump oil well installations and, more specifically, to a drive head for use in progressing cavity pump oil well installations.
BACKGROUND OF THE INVENTION
Progressing cavity pump drives presently on the market have weaknesses with respect to the stuffing box, backspin retarder and the power transmission system. Oil producing companies need a pump drive which requires little or no maintenance, is very safe for operating personnel and minimizes the chances of product leakage and resultant environmental damage. When maintenance is required on the pump drive, it must be safe and very fast and easy to do.
Due the abrasive sand particles present in crude oil and poor alignment between the wellhead and stuffing box, leakage of crude oil from the stuffing box is common in some applications. This costs oil companies money in service time, down time and environmental clean up. It is especially a problem in heavy crude oil wells in which the oil is often produced from semi-consolidated sand formations since loose sand is readily transported to the stuffing box by the viscosity of the crude oil. Costs associated with stuffing box failures are one of the highest maintenance costs on many wells.
Servicing of stuffing boxes is time consuming and difficult. Existing stuffing boxes are mounted below the drive head. Stuffing boxes are typically separate from the drive and are mounted in a wellhead frame such that they can be serviced from below the drive head without removing it. This necessitates mounting the drive head higher, constrains the design and still means a difficult service job. Drive heads with integral stuffing boxes mounted on the bottom of the drive head have more recently entered the market. In order to service the stuffing box, the drive must be removed which necessitates using a rig with two winch lines, one to support the drive and the other to hold the polished rod. This is more expensive and makes servicing the stuffing box even more difficult. As a result, these stuffing boxes are typically exchanged in the field and the original stuffing box is sent back to a service shop for repair-still unsatisfactory.
Due to the energy stored in wind up of the sucker rods used to drive the progressing cavity pump and the fluid column on the pump, each time a well shuts down a backspin retarder brake is required to slow the backspin shaft speed to a safe level and dissipate the energy. Because sheaves and belts are used to transmit power from the electric motor to the pump drive head on all existing equipment in the field, there is always the potential for the brake to fail and the sheaves to spin out of control. If sheaves turn fast enough, they will explode due to tensile stresses which result due to centrifugal forces.
Exploding sheaves are very dangerous to operating personnel.
SUMMARY OF THE INVENTION
The present invention seeks to address all these issues and combines all functions into a single drive head . The drive head of the present invention eliminates the conventional belts and sheaves that are used on all drives presently on the market, thus eliminating belt tensioning and replacement. Elimination of belts and sheaves removes a significant safety hazard that arises due to the release of energy stored in wind up of rods and the fluid column above the pump.
One aspect of the invention relates to a centrifugal backspin retarder, which controls backspin speed and is located on a drive head input shaft so that it is considerably more effective than a retarder located on the output shaft due to its mechanical advantage and the higher centrifugal forces resulting from higher speeds acting on the centrifugal brake shoes.
A ball-type clutch mechanism is employed so that brake components are only driven when the drive is turning in the backspin direction, thus reducing heat buildup due to viscous drag.
Another aspect of the present invention relates to the provision of an integrated rotating stuffing box mounted on the top side of the drive head, which is made possible by a unique standpipe arrangement. This makes the stuffing box easier to service and allows a pressurization system to be used such that any leakage past the rotating seals or the standpipe seals goes down the well bore rather than spilling onto the ground or into a catch tray and then onto the ground when that overflows.
In the present invention, only one winch line is required to support the polish rod because the drive does not have to be removed to service the stuffing box. In order to eliminate the need for a rig entirely, a still further aspect of the present invention provides a special clamp integrated with the drive head to support the polished rod and prevent rotation while the stuffing box is serviced. Preferably, blow out preventers are integrated into the clamping means and are therefore closed while the stuffing box is serviced, thus preventing any well fluids from escaping while the stuffing box is open.
According to the present invention then, there is provided a drive head assembly for use to fluid sealingly rotate a rod extending down a well, comprising a housing having upper and lower openings for receiving said rod therethrough; a rotatable sleeve adapted to concentrically receive a portion of said rod therethrough, said sleeve being rotatably mounted in said housing and having an upper end passing through said upper opening to extend outwardly of said housing; a prime mover drivingly connected to said sleeve for rotation thereof; means disposed on said upper end of said sleeve for drivingly connecting said sleeve to the rod; and seal means within said sleeve to prevent the escape of well fluids, wherein said means for drivingly connecting said sleeve to said rod are removable from said upper end of said sleeve for servicing of said seal means without removal of said drive head assembly from the well.
According to a further aspect of the present invention, there is also provided in a stuffing box for sealing the end of a rotatable rod extending from a well bore, the improvement comprising a first fluid passageway disposed concentrically around at least a portion of the rod passing through the stuffing box; a second fluid passageway disposed concentrically inside said first passageway, said second passageway being in fluid communication with wellhead pressure during normal operations; said first and second passageways being in fluid communication with one another and having seal means disposed therebetween to permit the maintenance of a pressure differential between them;
and means to pressurize fluid in said first passageway to a pressure in excess of wellhead pressure to prevent the leakage of well fluids through said stuffing box.
According to yet another aspect of the present invention, there is provided a drive head for use with a progressing cavity pump in an oil well, comprising a drive head housing;
a drive shaft rotatably mounted in said housing for connection to a drive motor; an annular tubular sleeve rotatably mounted in said housing and drivingly connected to said drive shaft;
a tubular standpipe concentrically mounted within said sleeve in annularly spaced relation thereto defining a first tubular fluid passageway for receiving fluid at a first pressure and operable to receive a polished rod therein in annularly spaced relation defining a second tubular fluid passageway exposed to oil well pressure during normal operation;
seal means disposed in said first fluid passageway; means for maintaining the fluid pressure within said first fluid passageway greater than the fluid pressure in said second fluid passageway; arid means for releasably drivingly connecting said sleeve to said polished rod received in said standpipe.
According to yet another aspect of the present invention, there is provided in a drive head for rotating a rod in a well having a housing for fluid sealingly receiving the rod therethrough, said housing having a lower end and an upper openable end, the improvement comprising a stuffing box for said rod integrated into said upper end of said housing to enable said stuffing box to be serviced by opening said openable upper end of said housing, without removing said drive head from the well bore, According to yet a further aspect of the present invention, there is provided a drive head with a prime mover for rotatably driving a polished rod in a progressing cavity pump well, including a housing with upper and lower openings for receiving the polished rod therethrough; a tubular drive sleeve rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive sleeve having an upper end extending outwardly of said housing through said upper opening therein; releasable connecting means accessible from outside of said housing for drivingly connecting said upper end of said drive sleeve to said polished rod; a stuffing box to seal said rod against the pressure of fluid in said well disposed in said tubular drive sleeve, said stuffing box being accessible for servicing from outside of said drive head upon removal of said connecting means from said upper end of said sleeve.
In accordance with yet another aspect of the present invention, there is provided a drive head for sealing and rotating a polished rod extending into a well bore, including a housing having aligned upper and lower openings therein for receiving the polished rod therethrough; a tubular drive sleeve rotatably mounted in said housing for axially supporting and rotatably driving the polished rod, said drive sleeve having an upper end extending through said upper opening of said housing; a prime mover for rotation of said tubular drive sleeve; means located outside of said housing for drivingly and releasably connecting said upper end of said drive sleeve to said polished rod; a tubular standpipe secured to said housing within said drive sleeve in annularly spaced relation thereto for generally concentrically receiving said polished rod therethrough in annularly spaced apart relation;
rotary seal means disposed in an annular space between said drive sleeve and said standpipe, said rotary seal means being exposed on one side thereof to well fluids; and static seal means disposed between said drive sleeve and said polished rod.
According to yet a further aspect of the present invention, there is also provided a drive head for rotatably driving a polished rod in a well, including a housing having vertically aligned upper and lower openings therein for passage of said polished rod therethrough; a tubular drive sleeve rotatably mounted in said housing to concentrically receive said polished rod therethrough; a non-rotatable tubular standpipe concentrically received within said tubular sleeve and sealingly and detachably secured to said housing to define a first annulus between said sleeve and said standpipe and a second annulus between said polished rod and said standpipe; rotary seal means disposed in said first annulus between said standpipe and said drive sleeve in contact with well fluids on one side thereof and with said first annulus on the other side thereof; means for rotating said tubular drive sleeve; and means connecting said tubular drive sleeve to said polished rod for rotation thereof.
According to yet another aspect of the present invention, there is provided a drive head for rotatably driving a polished rod in a progressing cavity pump well, comprising sealing means to prevent well fluids from escaping from the well; said sealing means being accessible from above said drive head to facilitate servicing of said sealing means.
In accordance with yet a further aspect of the present invention, there is provided a drive head for rotatably driving a polished rod in a progressing cavity pump well, comprising a housing for receiving a polished rod therethrough; a tubular drive shaft rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive shaft having an upper end extending outwardly of said housing; sealing means for preventing well fluids from escaping from said well, said sealing means being accessible from the top of said drive head to facilitate servicing of said sealing means; and connecting means accessible from the top of said housing for drivingly connecting said upper end of said shaft to said polished rod.
In accordance with yet a further aspect of the present invention, there is provided a drive head for rotatably driving a polished rod in a progressing cavity pump well, comprising a housing for receiving a polished rod therethrough; a tubular drive shaft rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive shaft having an upper end extending outwardly of said housing; a tubular standpipe disposed within said drive shaft in annularly spaced relation thereto for receiving said polished rod therethrough in annularly spaced apart relation, said drive shaft and said standpipe forming an annular seal chamber; sealing means for preventing well fluids from escaping from said well, said sealing means including rotary seal means disposed in said seal chamber to prevent flow of well fluids along the interior of said drive shaft; and static seal means disposed between said drive shaft and said polished rod to prevent the escape of well fluids along said polished rod; means for non-rotatably and compliantly securing a bottom end of said standpipe to said housing below a lower end of said drive shaft to permit said standpipe to tilt with respect to said drive shaft to adjust for mis-alignment of said standpipe and said drive shaft at said rotary seal means; and connecting means accessible from the top of said housing for drivingly connecting said upper end of said shaft to said polished rod, said connecting means including a removable cap member for engaging said upper end of drive shaft and closing said drive shaft, said cap member being removable to provide access to said static seal means and said rotary seal means.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features of preferred embodiments of the present invention will become more apparent from the following description in which reference is made to the appended drawings in which:
Figure 1 is a view of a progressing cavity pump oil well installation in an earth formation with a typical drive head, wellhead frame and stuffing box;
Figure 2 is a view similar to the upper end of Figure 1 but illustrating a conventional drive head with an integrated stuffing box extending from the bottom end of the drive head;
Figure 3 is a cross-sectional view according to a preferred embodiment of the present invention;
Figure 4 is an enlarged, partially broken cross-sectional view of the drive head of Figure 3 including the main shaft and stuffing box thereof modified to include an additional pressure control system;
Figure 5 is an enlarged cross-sectional view of the pressure control system shown in Figure 4;
Figure 6 is a cross-sectional view of another preferred embodiment of the drive head including a floating labyrinth seal;
Figure 7 is an enlarged cross sectional view of the floating labyrinth seal shown in Figure 6;
Figure 8 is a cross sectional view of another embodiment of the drive head including a top mounted stuffing box which is not pressurized;
Figure 9 is a cross sectional view of another embodiment of the drive head with a hydraulic motor and another embodiment of the floating labyrinth seal;
Figure 10 is a side elevational cross-sectional view of a centrifugal backspin retarder according to a preferred embodiment of the present invention;
Figure 11 is a plan view of the centrifugal backspin retarder shown in Figure 10;
Figure 12 is a partially broken, cross-sectional view illustrating ball actuating grooves formed in the driving and driven hubs of the centrifugal backspin retarder shown in Figure '10 when operating in the forward direction;
Figure 13 is similar to Figure 12 but illustrates the backspin retarder being driven in the backwards direction when the retarder brakes are engaged;
Figure 14 is a side elevational, cross-sectional view of one embodiment of a polished rod lock-out clamp according to the present invention;
Figure 15 is a top plan view of the clamp of Figure 14;
These and other features of preferred embodiments of the present invention will become more apparent from the following description in which reference is made to the appended drawings in which:
Figure 1 is a view of a progressing cavity pump oil well installation in an earth formation with a typical drive head, wellhead frame and stuffing box;
Figure 2 is a view similar to the upper end of Figure 1 but illustrating a conventional drive head with an integrated stuffing box extending from the bottom end of the drive head;
Figure 3 is a cross-sectional view according to a preferred embodiment of the present invention;
Figure 4 is an enlarged, partially broken cross-sectional view of the drive head of Figure 3 including the main shaft and stuffing box thereof modified to include an additional pressure control system;
Figure 5 is an enlarged cross-sectional view of the pressure control system shown in Figure 4;
Figure 6 is a cross-sectional view of another preferred embodiment of the drive head including a floating labyrinth seal;
Figure 7 is an enlarged cross sectional view of the floating labyrinth seal shown in Figure 6;
Figure 8 is a cross sectional view of another embodiment of the drive head including a top mounted stuffing box which is not pressurized;
Figure 9 is a cross sectional view of another embodiment of the drive head with a hydraulic motor and another embodiment of the floating labyrinth seal;
Figure 10 is a side elevational cross-sectional view of a centrifugal backspin retarder according to a preferred embodiment of the present invention;
Figure 11 is a plan view of the centrifugal backspin retarder shown in Figure 10;
Figure 12 is a partially broken, cross-sectional view illustrating ball actuating grooves formed in the driving and driven hubs of the centrifugal backspin retarder shown in Figure '10 when operating in the forward direction;
Figure 13 is similar to Figure 12 but illustrates the backspin retarder being driven in the backwards direction when the retarder brakes are engaged;
Figure 14 is a side elevational, cross-sectional view of one embodiment of a polished rod lock-out clamp according to the present invention;
Figure 15 is a top plan view of the clamp of Figure 14;
Figure 16 is a side elevational, cross-sectional view of another embodiment of a polished rod lock-out clamp according to the present invention;
Figure 17 is a top plan view of the claim of Figure 16;
Figure 18 is a side elevational, cross-sectional view of another embodiment of a polished rod lock-out clamp according to the present invention;
Figure 19 is a top plan view of the clamp of Figure 18;
Figure 20 is a side elevational, cross-sectional view of one embodiment of a blow-out preventer having an integrated polished rod lock-out clamp according to the present invention; and Figure 21 is a top plan view of the clamp of Figure 20.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
Figure 1 illustrates a known progressing cavity pump installation 10. The installation includes a typical progressing cavity pump drive head 12 , a wellhead frame 14 , a stuffing box 16, an electric motor 18, and a belt and sheave drive system 20 , all mounted on a flow tee 22 . The flow tee is shown with a blow out preventer 24 which is, in turn, mounted on a wellhead 25 . The drive head supports and drives a drive shaft 26 , generally known as a "polished rod". The polished rod is supported and rotated by means of a polish rod clamp 28, which engages an output shaft 30 of the drive head by means of milled slots (not shown) in both parts. Wellhead frame 14 is open sided in order to expose polished rod 26 to allow a service crew to install a safety clamp on the polished rod and then perform maintenance work on stuffing box 16 . Polished rod 26 rotationally drives a drive string 32, sometimes referred to as "sucker rods", which, in turn, drives a progressing cavity pump 34 located at the bottom of the installation to produce well fluids to the surface through the wellhead.
Figure 2 illustrates a typical progressing cavity pump drive head 36 with an integral stuffing box 38 mounted on the bottom of the drive head and corresponding to that portion of the installation in Figure 1 which is above the dotted and dashed line 40.
The main advantage of this type of drive head is that, since the main drive head shaft is already supported with bearings, stuffing box seals can be placed around the main shaft, thus improving alignment and eliminating contact between the stuffing box rotary seals and the polished rod. This style of drive head reduces the height of the installation because there is no wellhead frame and also reduces cost because there is no wellhead frame and there are fewer parts since the stuffing box is integrated with the drive head. The main disadvantage is that the drive head must be removed to do maintenance work on the stuffing box. This necessitates using a service rig with two lifting lines, one to support the polished rod and the other to support the drive head.
The drive head of the present invention is arranged to be connected directly to and between an electric or hydraulic drive motor and a conventional flow tee of an oil well installation to house drive means for rotatably driving a conventional polished rod, and for not only providing the function of a stuffing box, but one which can be accessed from the top of the drive head to facilitate servicing of the drive head and stuffing box components.
Another preferred aspect of the present invention is the provision of a polished rod lock-out clamp for use in clamping the polished rod during drive head servicing operations.
The clamp can be integrated with the drive head or provided as a separate assembly below the drive head. Finally, the drive head may be provided with a backspin retarder to control backspin of the pump drive string following drive shut down.
Referring to Figures 3 and 4, the drive head assembly according to a preferred embodiment of the present invention is generally designated by reference numeral 5 and comprises a drive head 50 and a prime mover such as electric motor 18 to actuate drive head 50 and rotate polished rod 26 as will be described below. The drive head assembly includes a housing 52 in which is mounted an input or drive shaft 54 connected to motor 18 for rotation and, as part of the drive head 50, an output shaft assembly 56 drivingly connected to a conventional polished rod 26. Drive shaft 54 is connected directly to electric drive motor 18, eliminating the conventional drive belts and sheaves and the disadvantages associated therewith. Output shaft assembly 56 provides a fluid seal between the fluid in drive head 50 and formation fluid in the well. The fluid pressure on the drive head side of the seal is above the wellhead pressure. The fluid seal provides the functions of a conventional stuffing box and, accordingly, not only eliminates the need for a separate stuffing box, which further reduces the height of the assembly above the flow tee, but is easily serviceable from the top of the drive head, as will be explained.
Electric motor 18 is secured to housing 52 by way of a motor mount housing 60 which encloses the motor's drive shaft 62 which in turn is drivingly connected to drive shaft 54 by a releasable coupling 64 known in the art. Drive shaft 54 is rotatably mounted in upper and lower shaft bearing assemblies 66 and 68 , respectively, which are secured to housing 52.
The lower end of drive shaft 54 is advantageously coupled to a centrifugal backspin retarder 70 and to an oil pump 72. A drive gear 74 is mounted on drive shaft 54 and meshes with a driven gear 76 .
Driven gear 76 is drivingly connected to and mounted on a tubular sleeve 80 which is part of tubular output shaft assembly 56 . Depending on the viscosity or weight of the fluids being produced from the well, the ratios between the drive and driven gears can be changed for improved operation. Part of assembly 56 functions as a rotating stuffing box as will now be described.
Sleeve 80 is mounted for rotation in upper and lower bearing cap assemblies 84 and 86, respectively, secured to housing 52 as seen most clearly in Figure 4.
Upper bearing cap assembly 84 is located in opening 51 formed in housing 52's upper surface, and lower bearing cap assembly 86 is situated in vertically aligned opening 53 formed in the housing's lower surface. The upper end of sleeve 80 extends through upper cap 84 so that the top of shaft assembly 56 is easily accessible from outside the housing's upper surface for service access without having to remove the drive head from the well.
Where sleeve 80 exits bearing cap 84, sealing is provided by any suitable means such as an oil seal 55 and a rubber flinger ring 57.
Upper bearing cap assembly 84 houses a roller bearing 88 and lower bearing cap houses a thrust roller bearing 90 which vertically supports and locates sleeve 80 and driven gear 76 in the housing.
A standpipe 92 is concentrically mounted within the inner bore of sleeve 80 in spaced apart relation to define a first axially extending outer annular fluid passage 94 between the standpipe's outer surface and sleeve 80's inner surface. Standpipe 92 is arranged to concentrically receive polished rod 26 therethrough in annularly spaced relation to define a second inner axially extending annular fluid passage 114 between the standpipe's inner surface and the polished rod's outer surface. Lower bearing cap assembly 86 includes a downwardly depending tubular housing portion 96 with a bore 98 formed axially therethrough which communicates with inner fluid passage 114. The lower end of the standpipe is seated on an annular shoulder defined by a snap ring 102 mounted in a mating groove in inner bore 98 of the lower bearing cap assembly. The standpipe is prevented from rotating by, for example, a pin 104 extending between the lower bearing cap assembly and the standpipe.
The upper end of the standpipe is received in a static or ring seal carrier 110 which is mounted in the upper end of sleeve 80.
A plurality of ring seals or packings 116 are provided at the upper end of outer annular fluid passage 94 between a widened portion of the inner bore of sleeve 80 and outer surface of the standpipe 92, and between the underside of seal carrier 110 and a compression spring 118 which biases the packings against seal carrier 110, or at least towards the carrier if by chance wellhead pressure exceeds the force of the spring and the pressure in outer passage 94. A bushing or labyrinth seal 120 is provided between the outer surface of the lower end of sleeve 80 and an inner bore of lower bearing cap assembly 86.
The upper end of inner fluid passage 114 communicates with the upper surface of packings 116. As will be described below, pressurized fluid in outer fluid passage 94 and spring 118 act on the lower side of the packings, opposing the pressure exerted by the well fluid in passage 114 to prevent leakage.
The upper end of sleeve 80 extending above housing 52 is threadedly coupled to a drive cap 122 which in turn is coupled to a polished rod drive clamp 124 which engages polished rod 26 for rotation. A plurality of static seals 126 are mounted in static seal carrier 110 to seal between the seal carrier and the polished rod. 0-rings 236 seal the static seal carrier 110 to the inside of sleeve 80.
As there is clearance between the upper end of standpipe 92 and seal carrier 110 for fluid communication between fluid passages 114 and 94, there is some compliancy in the standpipe's vertical orientation which allows it to adapt to less than perfect alignment of the polished rod.
A pressurization system is provided to pressurize outer annular fluid passage 94. To that end, the lower bearing cap assembly includes a diametrically extending oil passage 130.
One end of passage 130 in the lower bearing cap is connected to the high pressure side of oil pump 72 by a conduit (not shown) and communicates with the lower end of outer annular passage 94. The high pressure side of the pump is also connected to a pressure relief valve 133 which, if the pressure delivered by the pump reaches a set point, will open to allow oil to flow into passage 132 in the upper bearing cap assembly by a conduit (not shown) to lubricate bearings 88 and oil seal 55. The other end of passage 132 in the upper bearing cap assembly communicates with a similar passage 134 in upper bearing cap 66 supporting drive shaft 54. The fluid pressure supplied to passage 130 from pump 72 is maintained above the pressure at the wellhead. A pressure differential in the order of 50 to 500 psi is believed to be adequate although greater or lesser differentials are contemplated.
An enhancement to automatically adjust stuffing box pressure in relation to wellhead pressure is illustrated in Figures 4 and 5. A valve spool or piston 140 is mounted in a port 142 formed in the wall 144 of lower tubular portion 96 of lower bearing cap assembly 86.
An access cap 146 is threaded into the outer end of the port. A spring 148 normally biases spool 140 radially outwardly. As best shown in Figure 5, an axial fluid passage 1 50 communicates pump pressure to the left side of valve spool 140. A second passage 152 connects to upper bearing cap 84. The inner end of valve spool 140 communicates with wellhead pressure in bore 98. The outer end of the spool communicates with pump pressure against the action of the spring and the wellhead pressure. The spool valve serves to maintain the fluid pressure applied to the first annular passage 94 greater than the well pressure in the second annular passage 114.
In operation, when electric motor 18 is powered, the motor drives shaft 54 which, in turn, rotates drive gear 74 and driven gear 76. Driven gear rotates sleeve 80 and drive cap 122 to rotate polished rod 26 via rod clamp 124. Drive shaft 54 also operates oil pump 72 which applies fluid to outer fluid passage 94 at a pressure which is greater than the wellhead pressure in inner fluid passage 114. This higher pressure is intended to prevent oil well fluids from leaking through the stuffing box and entering into drive head housing 52.
The pressure applied to outer annular passage 94 can be set by adjusting pressure relief valve 133 or in the enhanced embodiment of Figure 4, the spool valve automatically adjusts the pressure applied to outer fluid passage 94 in response to wellhead pressure. Excess flow which is not required to the stuffing box can be released to the top bearings or gear mesh for lubrication.
Sleeve 80, packings 116, spring 118, static seals 126 and seal carrier 110 all rotate or are adapted to rotate relative to standpipe 92.
The labyrinth seal 120 between sleeve 80 and the main bearing cap 86 as shown in Figure 3 is used in the present invention so that there is no contact and thus no wear between these parts in normal operation. However, it is difficult to manufacture a close fitting labyrinth due to run out which is common in all manufactured parts. Due to the difficulty of manufacture, a preferred embodiment of the labyrinth seal is a floating seal 229 which is compliantly mounted to main bearing cap 86 by studs 230 and locknuts 231 as shown in Figure 6 and in greater detail in Figure 7. In this embodiment, sleeve 80 is shortened to provide clearance for the seal. Labyrinth seal 229 has clearance holes to receive studs 230 to allow movement of the seal in the horizontal plane. Lock nuts 231 are adjusted to provide a sliding clearance between seal 229 and the top surface of bottom bearing cap 86. An Co-ring 232 prevents the flow of oil between the labyrinth seal and the bottom bearing cap. The O-ring preferably has a diameter nearly equal to that of the labyrinth seal since this balances the hydraulic load on the labyrinth seal, reduces force on the lock nuts and allows the labyrinth seal to move and align itself more easily within rotating driven gear 76. Due to typical diametral clearances of 0.002 to 0.005 inches between the stationary labyrinth seal and the rotating driven gear, leakage occurs. Due to hydrodynamic forces generated within the leaked oil by the rotation of the rotating member, similar to the principle of a journal bearing, the labyrinth seal tends to align itself in the center of the rotating component. The rotating component can be the driven gear as shown in Figure 6, the main bearing inner race as shown in Figure 9, sleeve 80 or a bushing fixed to the sleeve.
Figure 17 is a top plan view of the claim of Figure 16;
Figure 18 is a side elevational, cross-sectional view of another embodiment of a polished rod lock-out clamp according to the present invention;
Figure 19 is a top plan view of the clamp of Figure 18;
Figure 20 is a side elevational, cross-sectional view of one embodiment of a blow-out preventer having an integrated polished rod lock-out clamp according to the present invention; and Figure 21 is a top plan view of the clamp of Figure 20.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
Figure 1 illustrates a known progressing cavity pump installation 10. The installation includes a typical progressing cavity pump drive head 12 , a wellhead frame 14 , a stuffing box 16, an electric motor 18, and a belt and sheave drive system 20 , all mounted on a flow tee 22 . The flow tee is shown with a blow out preventer 24 which is, in turn, mounted on a wellhead 25 . The drive head supports and drives a drive shaft 26 , generally known as a "polished rod". The polished rod is supported and rotated by means of a polish rod clamp 28, which engages an output shaft 30 of the drive head by means of milled slots (not shown) in both parts. Wellhead frame 14 is open sided in order to expose polished rod 26 to allow a service crew to install a safety clamp on the polished rod and then perform maintenance work on stuffing box 16 . Polished rod 26 rotationally drives a drive string 32, sometimes referred to as "sucker rods", which, in turn, drives a progressing cavity pump 34 located at the bottom of the installation to produce well fluids to the surface through the wellhead.
Figure 2 illustrates a typical progressing cavity pump drive head 36 with an integral stuffing box 38 mounted on the bottom of the drive head and corresponding to that portion of the installation in Figure 1 which is above the dotted and dashed line 40.
The main advantage of this type of drive head is that, since the main drive head shaft is already supported with bearings, stuffing box seals can be placed around the main shaft, thus improving alignment and eliminating contact between the stuffing box rotary seals and the polished rod. This style of drive head reduces the height of the installation because there is no wellhead frame and also reduces cost because there is no wellhead frame and there are fewer parts since the stuffing box is integrated with the drive head. The main disadvantage is that the drive head must be removed to do maintenance work on the stuffing box. This necessitates using a service rig with two lifting lines, one to support the polished rod and the other to support the drive head.
The drive head of the present invention is arranged to be connected directly to and between an electric or hydraulic drive motor and a conventional flow tee of an oil well installation to house drive means for rotatably driving a conventional polished rod, and for not only providing the function of a stuffing box, but one which can be accessed from the top of the drive head to facilitate servicing of the drive head and stuffing box components.
Another preferred aspect of the present invention is the provision of a polished rod lock-out clamp for use in clamping the polished rod during drive head servicing operations.
The clamp can be integrated with the drive head or provided as a separate assembly below the drive head. Finally, the drive head may be provided with a backspin retarder to control backspin of the pump drive string following drive shut down.
Referring to Figures 3 and 4, the drive head assembly according to a preferred embodiment of the present invention is generally designated by reference numeral 5 and comprises a drive head 50 and a prime mover such as electric motor 18 to actuate drive head 50 and rotate polished rod 26 as will be described below. The drive head assembly includes a housing 52 in which is mounted an input or drive shaft 54 connected to motor 18 for rotation and, as part of the drive head 50, an output shaft assembly 56 drivingly connected to a conventional polished rod 26. Drive shaft 54 is connected directly to electric drive motor 18, eliminating the conventional drive belts and sheaves and the disadvantages associated therewith. Output shaft assembly 56 provides a fluid seal between the fluid in drive head 50 and formation fluid in the well. The fluid pressure on the drive head side of the seal is above the wellhead pressure. The fluid seal provides the functions of a conventional stuffing box and, accordingly, not only eliminates the need for a separate stuffing box, which further reduces the height of the assembly above the flow tee, but is easily serviceable from the top of the drive head, as will be explained.
Electric motor 18 is secured to housing 52 by way of a motor mount housing 60 which encloses the motor's drive shaft 62 which in turn is drivingly connected to drive shaft 54 by a releasable coupling 64 known in the art. Drive shaft 54 is rotatably mounted in upper and lower shaft bearing assemblies 66 and 68 , respectively, which are secured to housing 52.
The lower end of drive shaft 54 is advantageously coupled to a centrifugal backspin retarder 70 and to an oil pump 72. A drive gear 74 is mounted on drive shaft 54 and meshes with a driven gear 76 .
Driven gear 76 is drivingly connected to and mounted on a tubular sleeve 80 which is part of tubular output shaft assembly 56 . Depending on the viscosity or weight of the fluids being produced from the well, the ratios between the drive and driven gears can be changed for improved operation. Part of assembly 56 functions as a rotating stuffing box as will now be described.
Sleeve 80 is mounted for rotation in upper and lower bearing cap assemblies 84 and 86, respectively, secured to housing 52 as seen most clearly in Figure 4.
Upper bearing cap assembly 84 is located in opening 51 formed in housing 52's upper surface, and lower bearing cap assembly 86 is situated in vertically aligned opening 53 formed in the housing's lower surface. The upper end of sleeve 80 extends through upper cap 84 so that the top of shaft assembly 56 is easily accessible from outside the housing's upper surface for service access without having to remove the drive head from the well.
Where sleeve 80 exits bearing cap 84, sealing is provided by any suitable means such as an oil seal 55 and a rubber flinger ring 57.
Upper bearing cap assembly 84 houses a roller bearing 88 and lower bearing cap houses a thrust roller bearing 90 which vertically supports and locates sleeve 80 and driven gear 76 in the housing.
A standpipe 92 is concentrically mounted within the inner bore of sleeve 80 in spaced apart relation to define a first axially extending outer annular fluid passage 94 between the standpipe's outer surface and sleeve 80's inner surface. Standpipe 92 is arranged to concentrically receive polished rod 26 therethrough in annularly spaced relation to define a second inner axially extending annular fluid passage 114 between the standpipe's inner surface and the polished rod's outer surface. Lower bearing cap assembly 86 includes a downwardly depending tubular housing portion 96 with a bore 98 formed axially therethrough which communicates with inner fluid passage 114. The lower end of the standpipe is seated on an annular shoulder defined by a snap ring 102 mounted in a mating groove in inner bore 98 of the lower bearing cap assembly. The standpipe is prevented from rotating by, for example, a pin 104 extending between the lower bearing cap assembly and the standpipe.
The upper end of the standpipe is received in a static or ring seal carrier 110 which is mounted in the upper end of sleeve 80.
A plurality of ring seals or packings 116 are provided at the upper end of outer annular fluid passage 94 between a widened portion of the inner bore of sleeve 80 and outer surface of the standpipe 92, and between the underside of seal carrier 110 and a compression spring 118 which biases the packings against seal carrier 110, or at least towards the carrier if by chance wellhead pressure exceeds the force of the spring and the pressure in outer passage 94. A bushing or labyrinth seal 120 is provided between the outer surface of the lower end of sleeve 80 and an inner bore of lower bearing cap assembly 86.
The upper end of inner fluid passage 114 communicates with the upper surface of packings 116. As will be described below, pressurized fluid in outer fluid passage 94 and spring 118 act on the lower side of the packings, opposing the pressure exerted by the well fluid in passage 114 to prevent leakage.
The upper end of sleeve 80 extending above housing 52 is threadedly coupled to a drive cap 122 which in turn is coupled to a polished rod drive clamp 124 which engages polished rod 26 for rotation. A plurality of static seals 126 are mounted in static seal carrier 110 to seal between the seal carrier and the polished rod. 0-rings 236 seal the static seal carrier 110 to the inside of sleeve 80.
As there is clearance between the upper end of standpipe 92 and seal carrier 110 for fluid communication between fluid passages 114 and 94, there is some compliancy in the standpipe's vertical orientation which allows it to adapt to less than perfect alignment of the polished rod.
A pressurization system is provided to pressurize outer annular fluid passage 94. To that end, the lower bearing cap assembly includes a diametrically extending oil passage 130.
One end of passage 130 in the lower bearing cap is connected to the high pressure side of oil pump 72 by a conduit (not shown) and communicates with the lower end of outer annular passage 94. The high pressure side of the pump is also connected to a pressure relief valve 133 which, if the pressure delivered by the pump reaches a set point, will open to allow oil to flow into passage 132 in the upper bearing cap assembly by a conduit (not shown) to lubricate bearings 88 and oil seal 55. The other end of passage 132 in the upper bearing cap assembly communicates with a similar passage 134 in upper bearing cap 66 supporting drive shaft 54. The fluid pressure supplied to passage 130 from pump 72 is maintained above the pressure at the wellhead. A pressure differential in the order of 50 to 500 psi is believed to be adequate although greater or lesser differentials are contemplated.
An enhancement to automatically adjust stuffing box pressure in relation to wellhead pressure is illustrated in Figures 4 and 5. A valve spool or piston 140 is mounted in a port 142 formed in the wall 144 of lower tubular portion 96 of lower bearing cap assembly 86.
An access cap 146 is threaded into the outer end of the port. A spring 148 normally biases spool 140 radially outwardly. As best shown in Figure 5, an axial fluid passage 1 50 communicates pump pressure to the left side of valve spool 140. A second passage 152 connects to upper bearing cap 84. The inner end of valve spool 140 communicates with wellhead pressure in bore 98. The outer end of the spool communicates with pump pressure against the action of the spring and the wellhead pressure. The spool valve serves to maintain the fluid pressure applied to the first annular passage 94 greater than the well pressure in the second annular passage 114.
In operation, when electric motor 18 is powered, the motor drives shaft 54 which, in turn, rotates drive gear 74 and driven gear 76. Driven gear rotates sleeve 80 and drive cap 122 to rotate polished rod 26 via rod clamp 124. Drive shaft 54 also operates oil pump 72 which applies fluid to outer fluid passage 94 at a pressure which is greater than the wellhead pressure in inner fluid passage 114. This higher pressure is intended to prevent oil well fluids from leaking through the stuffing box and entering into drive head housing 52.
The pressure applied to outer annular passage 94 can be set by adjusting pressure relief valve 133 or in the enhanced embodiment of Figure 4, the spool valve automatically adjusts the pressure applied to outer fluid passage 94 in response to wellhead pressure. Excess flow which is not required to the stuffing box can be released to the top bearings or gear mesh for lubrication.
Sleeve 80, packings 116, spring 118, static seals 126 and seal carrier 110 all rotate or are adapted to rotate relative to standpipe 92.
The labyrinth seal 120 between sleeve 80 and the main bearing cap 86 as shown in Figure 3 is used in the present invention so that there is no contact and thus no wear between these parts in normal operation. However, it is difficult to manufacture a close fitting labyrinth due to run out which is common in all manufactured parts. Due to the difficulty of manufacture, a preferred embodiment of the labyrinth seal is a floating seal 229 which is compliantly mounted to main bearing cap 86 by studs 230 and locknuts 231 as shown in Figure 6 and in greater detail in Figure 7. In this embodiment, sleeve 80 is shortened to provide clearance for the seal. Labyrinth seal 229 has clearance holes to receive studs 230 to allow movement of the seal in the horizontal plane. Lock nuts 231 are adjusted to provide a sliding clearance between seal 229 and the top surface of bottom bearing cap 86. An Co-ring 232 prevents the flow of oil between the labyrinth seal and the bottom bearing cap. The O-ring preferably has a diameter nearly equal to that of the labyrinth seal since this balances the hydraulic load on the labyrinth seal, reduces force on the lock nuts and allows the labyrinth seal to move and align itself more easily within rotating driven gear 76. Due to typical diametral clearances of 0.002 to 0.005 inches between the stationary labyrinth seal and the rotating driven gear, leakage occurs. Due to hydrodynamic forces generated within the leaked oil by the rotation of the rotating member, similar to the principle of a journal bearing, the labyrinth seal tends to align itself in the center of the rotating component. The rotating component can be the driven gear as shown in Figure 6, the main bearing inner race as shown in Figure 9, sleeve 80 or a bushing fixed to the sleeve.
In some cases, pressurization of the stuffing box is not worthwhile economically but having the stuffing box mounted on the top of the drive head remains a service benefit.
Figure 8 shows a preferred embodiment of a stuffing box which can be serviced from the top of the drive but does not have outer annular passage 94 pressurized. In this embodiment, wellhead pressure is applied to inner annular passage 114. Stuffing box spring 118 is placed between packing rings 116 and static seal carrier 110 to act in the same direction against the seals as wellhead pressure and to eliminate the need for adjustment of the packing rings.
Static seals 126 prevent escape of well fluids between polished rod 26 and static seal carrier 110. O-rings 236 prevent escape of well fluids between static seal carrier 110 and the inner bore of sleeve 80. Drive cap 122 is threaded onto sleeve 80 and transmits torque to polished rod clamp 124 to rotate polished rod 26. Leakage past packing rings 116 flows into a lantern ring 239 which has radial holes 242 to communicate with radial holes 238 in sleeve 80 to drain the fluid for collection away from the housing. Leakage of well fluids into the drive head is prevented by static O-rings 241 between the lantern ring and sleeve 80 and by dynamic lip seals 240 between lantern ring 239 and standpipe 92.
In some cases, progressing cavity pump drives use a hydraulic motor rather than an electric motor. Use of hydraulic power provides an opportunity to simplify the drive system and the stuffing box pressurization which will be explained with reference to Figure 9, showing a preferred embodiment of a drive head driven by a hydraulic motor 233. The drive head assembly 234 shown in this figure with hydraulic drive does not have a backspin retarder braking system since the braking action can be achieved by restricting the flow of hydraulic oil in the backspin direction. Additionally, the pressure from the hydraulic system can be used to pressurize the stuffing box, thus eliminating the need for oil pump 72. Both simplifications affect the drive shaft from the motor since the braking system and the oil pump can be left out of the design thus reducing cost, size and complexity. In hydraulic drive head assembly 234, hydraulic pressure on the input port of hydraulic motor 233 is diverted though a channel (not shown) to a pressure reducing valve 235. The reduced pressure fluid is supplied to oil passage 130 in the lower bearing assembly to pressurize outer fluid passage 94. The pressure reducing valve is set higher than the wellhead pressure in inner fluid passage 114 as in other embodiments.
When it is time to service the part of shaft assembly 56 that functions as the stuffing box, it is merely necessary to remove rod clamp 124 and drive cap 122 to gain access to static seals 126, seal carrier 110, packing rings 116 and spring 118 without having to remove the drive head itself. During servicing, the polished rod can be held in place by a winch line, but as will be described below, the present invention preferably includes its own polished rod clamp which will hold the rod for the length of time required to complete the servicing. When the present unit incorporates its own rod clamp, winch lines can be eliminated altogether for a substantial operational saving.
As mentioned above, backspin from the windup in sucker rods 34 can reach destructive levels. The present drive head assembly can therefore advantageously incorporate a braking assembly to retard backspin, as will now be described in greater detail.
Referring to Figures 10 - 13, a centrifugal brake assembly 70 is comprised of a driving hub 190 and a driven hub 192. Driving hub 190 is connected to the drive shaft 54 for rotation therewith. Driven hub 192 is mounted to freewheel around shaft 54 using an upper roller bearing 194 and a lower thrust bearing assembly 196. One end of each of a pair of brake shoes 198 is pivotally connected to a respective driven hub by a pivot pin 200. A pin 202 on the other end of each of the brake shoes is connected to an adjacent pivot pin 200 on the other respective brake shoe by a helical tension spring 204 so as to bias the brake shoes inwardly toward respective non-braking positions. Brake linings 206 are secured to the outer arcuate sides of the brake shoes for frictional engagement with the inner surface 208 of an encircling portion of drive head housing 52. One end of each brake shoe is fixed to the driven hub by means of one of the pivot pins 200. The other end of each shoe is free to move inwardly under the influence of springs 204, or outwardly due to centrifugal force.
Referring to Figures 12 and 13, the driving and driven hubs 190 and 192 are formed with respective grooves 210 and 212, respectively, in adjacent surfaces 214 and 216, for receiving drive balls 218, of which only one is shown. Groove 210 in driving hub 190 is formed with a ramp or sloped surface 220 which terminates in a ball chamber 222 where it is intersected by a radial hole 209 in which the edge of the ball is located when drive shaft 54 rotates in a forward direction. Centrifugal force holds the ball radially outwards and upwards in the ball chamber by pressing it against radial hole 209 so there is no ball motion or contact with freewheeling driven hub 192 while rotation is in the forward direction. When the drive shaft rotates in the reverse direction, the ball moves downward to a position in which it engages and locks both hubs together.
When the drive head starts to turn in the forward direction, the ball 218 rests on driven hub 192. The edge 211 of ball chamber 222 pushes the ball to the right and causes it to ride up ramped surface 215. As the speed increases, the ball jumps slightly above the ramp and is thrown up into ball chamber 222, where it is held by centrifugal force as shown in Figure 12.
When the electric motor turning the drive head is shut off, the drive head stops and ball 218 drops back onto driven hub 192 as windup in the sucker rod begins to counter or reverse rotate the drive head, which transmits the reverse rotation to drive shaft 54 through sleeve 80 and driven gear 76. More specifically, sloped surface 220 of driving hub 190 pushes the ball to the left until it falls into groove 212 of the driven hub.
The ball continues to be pushed to the left until it becomes wedged between the spherical surface 213 of the driving hub and the spherical surface 217 of the driven hub thus starting the driven hub and thereby the brake shoes turning. This position is illustrated in Figure 13.
The reverse ramp 220 of driving hub 190 serves an important function associated with the centrifugal brake.
The centrifugal brake has no friction against housing surface 208 until the brake turns fast enough to overcome brake retraction springs 204. If the driving hub generates a sufficient impact against driven hub 192 during engagement, the driven hub can accelerate away from the driving hub. If the driving hub is itself turning fast enough, the ball can rise up into ball chamber 222 and stay there. By adding reverse ramp 220, the ball cannot rise up during impact and since the ramp is relatively long, it allows driving hub 190 to catch up to driven hub 192 and keep the ball down where it can wedge between the driving and driven hubs.
Brake assembly 70 is preferably but not necessarily an oil brake with surface (which acts as a brake drum) having, for example, parts for oil to enter or fall into the brake to reduce wear.
As will be appreciated, energy from the recoiling sucker rod is transmitted to brake 70 to safely dissipate that energy non-destructively.
A further aspect of the present invention is the provision of a polished rod lock out clamp 160 for use in securing the polished rod when it is desired to service the drive head.
The clamp may be integrated into the drive head or may be provided as a separate assembly, which is secured to and between the drive head and a flow tee.
Figures 14-17 illustrate two embodiments of a lock-out clamp.
As shown, in each embodiment, the clamp includes a tubular clamp body 162 having a bore 164 for receiving polished rod 26 in annularly spaced relation therethrough. A bushing 166 is mounted on an annular shoulder 168 formed at the bottom end of bore 164 for centering the polished rod in the housing. Flanges 167 or threaded connections depending on the application are formed at the upper and lower ends of the housing for bolting or otherwise securing the housing to the underside of the drive head and to the upper end of the flow tee. The clamp includes two or more equally angularly spaced clamp members or shoes 170 about the axis of the housing/polished rod. The clamp shoes are generally in the form of a segment of a cylinder with an arcuate inner surface 172 dimensioned to correspond to the curvature of the surface of the polished rod. Arcuate inner surfaces 172 should be undersize relative to the polished rod's diameter to enhance gripping force.
In the embodiment of Figures 14 and 15, spring means 174 are provided to normally bias the clamp members into an un-clamped position. In the embodiment of Figures 16 and 17, the ends of bolts 176 are generally T-shaped to hook into correspondingly shaped slots 169 in shoes 170 to positively retract the shoes without the need for springs 174.
Clamp shoes 170 are actuated by radial bolts 176, for example, to clamp the polished rod such that it cannot turn or be displaced axially. The lock out clamp may be located between the flow tee and the bottom of the drive head. Alternately, it can be built into the lower bearing cap 86 of the drive head.
In some applications it is preferable not to restrict the diameter through the bore 164 of the lock out clamp so that the sucker rods can be pulled through the clamp 160. In this embodiment of the polish rod clamp as shown in Figure 18 and 19, where like numerals identify like elements, two opposing radial pistons 182 are actuated by bolts 184 to force the pistons together and around polish rod 26. The polish rod is gripped by arcuate recesses 186, which are preferably made undersize relative to the polished rod to enhance gripping force.
In a further embodiment of the polished rod lock out clamp, the clamping means are integrated with a blow out preventer 180, shown in Figures 20 and 21. Blow out preventers are required on most oil wells. They traditionally have two opposing radial pistons 182 actuated by bolts 184 to force the pistons together and around the polish rod to effect a seal.
The pistons are generally made of elastomer or provided with an elastomeric liner such that when the pistons are forced together by the bolts, a seal is formed between the pistons, between the pistons and the polish rod and between the pistons and the piston bores.
Actuation thus serves as a means to prevent well fluids from escaping from the well.
In accordance with the present invention, an improved blow out preventer serves as a lock out clamp for well servicing. In order to serve this purpose, the pistons must be substantially of metal which can be forced against the polished rod to prevent axial or rotational motion thereof. The inner end of the pistons is formed with an arcuate recess 186 with curvature corresponding substantially to that of the polished rod.
Enhanced gripping force can be achieved if the arcuate recess diameter is undersize relative to the polished rod.
The sealing function of the blow out preventer must still be accomplished.
This can be done by providing a narrow elastomeric seal 188 which runs across the vertical flat face of the piston, along the arcuate recess, along the mid height of the piston and then circumferentially around the piston. Seal 188 seals between the pistons, between the pistons and the polish rod and between the pistons and the piston bores. Thus, well fluid is prevented from coming up the well bore and escaping while the well is being serviced, as might be the case while the stuffing box is being repaired. By including the sealing function of the BOP with clamping means, one set of pistons can accomplish both functions, enhancing safety and convenience without increasing cost or size.
The above-described embodiments of the present invention are meant to be illustrative of preferred embodiments and are not intended to limit the scope of the present invention. Various modifications, which would be readily apparent to one skilled in the art, are intended to be within the scope of the present invention. The only limitations to the scope of the present invention are set forth in the following claims appended hereto.
Figure 8 shows a preferred embodiment of a stuffing box which can be serviced from the top of the drive but does not have outer annular passage 94 pressurized. In this embodiment, wellhead pressure is applied to inner annular passage 114. Stuffing box spring 118 is placed between packing rings 116 and static seal carrier 110 to act in the same direction against the seals as wellhead pressure and to eliminate the need for adjustment of the packing rings.
Static seals 126 prevent escape of well fluids between polished rod 26 and static seal carrier 110. O-rings 236 prevent escape of well fluids between static seal carrier 110 and the inner bore of sleeve 80. Drive cap 122 is threaded onto sleeve 80 and transmits torque to polished rod clamp 124 to rotate polished rod 26. Leakage past packing rings 116 flows into a lantern ring 239 which has radial holes 242 to communicate with radial holes 238 in sleeve 80 to drain the fluid for collection away from the housing. Leakage of well fluids into the drive head is prevented by static O-rings 241 between the lantern ring and sleeve 80 and by dynamic lip seals 240 between lantern ring 239 and standpipe 92.
In some cases, progressing cavity pump drives use a hydraulic motor rather than an electric motor. Use of hydraulic power provides an opportunity to simplify the drive system and the stuffing box pressurization which will be explained with reference to Figure 9, showing a preferred embodiment of a drive head driven by a hydraulic motor 233. The drive head assembly 234 shown in this figure with hydraulic drive does not have a backspin retarder braking system since the braking action can be achieved by restricting the flow of hydraulic oil in the backspin direction. Additionally, the pressure from the hydraulic system can be used to pressurize the stuffing box, thus eliminating the need for oil pump 72. Both simplifications affect the drive shaft from the motor since the braking system and the oil pump can be left out of the design thus reducing cost, size and complexity. In hydraulic drive head assembly 234, hydraulic pressure on the input port of hydraulic motor 233 is diverted though a channel (not shown) to a pressure reducing valve 235. The reduced pressure fluid is supplied to oil passage 130 in the lower bearing assembly to pressurize outer fluid passage 94. The pressure reducing valve is set higher than the wellhead pressure in inner fluid passage 114 as in other embodiments.
When it is time to service the part of shaft assembly 56 that functions as the stuffing box, it is merely necessary to remove rod clamp 124 and drive cap 122 to gain access to static seals 126, seal carrier 110, packing rings 116 and spring 118 without having to remove the drive head itself. During servicing, the polished rod can be held in place by a winch line, but as will be described below, the present invention preferably includes its own polished rod clamp which will hold the rod for the length of time required to complete the servicing. When the present unit incorporates its own rod clamp, winch lines can be eliminated altogether for a substantial operational saving.
As mentioned above, backspin from the windup in sucker rods 34 can reach destructive levels. The present drive head assembly can therefore advantageously incorporate a braking assembly to retard backspin, as will now be described in greater detail.
Referring to Figures 10 - 13, a centrifugal brake assembly 70 is comprised of a driving hub 190 and a driven hub 192. Driving hub 190 is connected to the drive shaft 54 for rotation therewith. Driven hub 192 is mounted to freewheel around shaft 54 using an upper roller bearing 194 and a lower thrust bearing assembly 196. One end of each of a pair of brake shoes 198 is pivotally connected to a respective driven hub by a pivot pin 200. A pin 202 on the other end of each of the brake shoes is connected to an adjacent pivot pin 200 on the other respective brake shoe by a helical tension spring 204 so as to bias the brake shoes inwardly toward respective non-braking positions. Brake linings 206 are secured to the outer arcuate sides of the brake shoes for frictional engagement with the inner surface 208 of an encircling portion of drive head housing 52. One end of each brake shoe is fixed to the driven hub by means of one of the pivot pins 200. The other end of each shoe is free to move inwardly under the influence of springs 204, or outwardly due to centrifugal force.
Referring to Figures 12 and 13, the driving and driven hubs 190 and 192 are formed with respective grooves 210 and 212, respectively, in adjacent surfaces 214 and 216, for receiving drive balls 218, of which only one is shown. Groove 210 in driving hub 190 is formed with a ramp or sloped surface 220 which terminates in a ball chamber 222 where it is intersected by a radial hole 209 in which the edge of the ball is located when drive shaft 54 rotates in a forward direction. Centrifugal force holds the ball radially outwards and upwards in the ball chamber by pressing it against radial hole 209 so there is no ball motion or contact with freewheeling driven hub 192 while rotation is in the forward direction. When the drive shaft rotates in the reverse direction, the ball moves downward to a position in which it engages and locks both hubs together.
When the drive head starts to turn in the forward direction, the ball 218 rests on driven hub 192. The edge 211 of ball chamber 222 pushes the ball to the right and causes it to ride up ramped surface 215. As the speed increases, the ball jumps slightly above the ramp and is thrown up into ball chamber 222, where it is held by centrifugal force as shown in Figure 12.
When the electric motor turning the drive head is shut off, the drive head stops and ball 218 drops back onto driven hub 192 as windup in the sucker rod begins to counter or reverse rotate the drive head, which transmits the reverse rotation to drive shaft 54 through sleeve 80 and driven gear 76. More specifically, sloped surface 220 of driving hub 190 pushes the ball to the left until it falls into groove 212 of the driven hub.
The ball continues to be pushed to the left until it becomes wedged between the spherical surface 213 of the driving hub and the spherical surface 217 of the driven hub thus starting the driven hub and thereby the brake shoes turning. This position is illustrated in Figure 13.
The reverse ramp 220 of driving hub 190 serves an important function associated with the centrifugal brake.
The centrifugal brake has no friction against housing surface 208 until the brake turns fast enough to overcome brake retraction springs 204. If the driving hub generates a sufficient impact against driven hub 192 during engagement, the driven hub can accelerate away from the driving hub. If the driving hub is itself turning fast enough, the ball can rise up into ball chamber 222 and stay there. By adding reverse ramp 220, the ball cannot rise up during impact and since the ramp is relatively long, it allows driving hub 190 to catch up to driven hub 192 and keep the ball down where it can wedge between the driving and driven hubs.
Brake assembly 70 is preferably but not necessarily an oil brake with surface (which acts as a brake drum) having, for example, parts for oil to enter or fall into the brake to reduce wear.
As will be appreciated, energy from the recoiling sucker rod is transmitted to brake 70 to safely dissipate that energy non-destructively.
A further aspect of the present invention is the provision of a polished rod lock out clamp 160 for use in securing the polished rod when it is desired to service the drive head.
The clamp may be integrated into the drive head or may be provided as a separate assembly, which is secured to and between the drive head and a flow tee.
Figures 14-17 illustrate two embodiments of a lock-out clamp.
As shown, in each embodiment, the clamp includes a tubular clamp body 162 having a bore 164 for receiving polished rod 26 in annularly spaced relation therethrough. A bushing 166 is mounted on an annular shoulder 168 formed at the bottom end of bore 164 for centering the polished rod in the housing. Flanges 167 or threaded connections depending on the application are formed at the upper and lower ends of the housing for bolting or otherwise securing the housing to the underside of the drive head and to the upper end of the flow tee. The clamp includes two or more equally angularly spaced clamp members or shoes 170 about the axis of the housing/polished rod. The clamp shoes are generally in the form of a segment of a cylinder with an arcuate inner surface 172 dimensioned to correspond to the curvature of the surface of the polished rod. Arcuate inner surfaces 172 should be undersize relative to the polished rod's diameter to enhance gripping force.
In the embodiment of Figures 14 and 15, spring means 174 are provided to normally bias the clamp members into an un-clamped position. In the embodiment of Figures 16 and 17, the ends of bolts 176 are generally T-shaped to hook into correspondingly shaped slots 169 in shoes 170 to positively retract the shoes without the need for springs 174.
Clamp shoes 170 are actuated by radial bolts 176, for example, to clamp the polished rod such that it cannot turn or be displaced axially. The lock out clamp may be located between the flow tee and the bottom of the drive head. Alternately, it can be built into the lower bearing cap 86 of the drive head.
In some applications it is preferable not to restrict the diameter through the bore 164 of the lock out clamp so that the sucker rods can be pulled through the clamp 160. In this embodiment of the polish rod clamp as shown in Figure 18 and 19, where like numerals identify like elements, two opposing radial pistons 182 are actuated by bolts 184 to force the pistons together and around polish rod 26. The polish rod is gripped by arcuate recesses 186, which are preferably made undersize relative to the polished rod to enhance gripping force.
In a further embodiment of the polished rod lock out clamp, the clamping means are integrated with a blow out preventer 180, shown in Figures 20 and 21. Blow out preventers are required on most oil wells. They traditionally have two opposing radial pistons 182 actuated by bolts 184 to force the pistons together and around the polish rod to effect a seal.
The pistons are generally made of elastomer or provided with an elastomeric liner such that when the pistons are forced together by the bolts, a seal is formed between the pistons, between the pistons and the polish rod and between the pistons and the piston bores.
Actuation thus serves as a means to prevent well fluids from escaping from the well.
In accordance with the present invention, an improved blow out preventer serves as a lock out clamp for well servicing. In order to serve this purpose, the pistons must be substantially of metal which can be forced against the polished rod to prevent axial or rotational motion thereof. The inner end of the pistons is formed with an arcuate recess 186 with curvature corresponding substantially to that of the polished rod.
Enhanced gripping force can be achieved if the arcuate recess diameter is undersize relative to the polished rod.
The sealing function of the blow out preventer must still be accomplished.
This can be done by providing a narrow elastomeric seal 188 which runs across the vertical flat face of the piston, along the arcuate recess, along the mid height of the piston and then circumferentially around the piston. Seal 188 seals between the pistons, between the pistons and the polish rod and between the pistons and the piston bores. Thus, well fluid is prevented from coming up the well bore and escaping while the well is being serviced, as might be the case while the stuffing box is being repaired. By including the sealing function of the BOP with clamping means, one set of pistons can accomplish both functions, enhancing safety and convenience without increasing cost or size.
The above-described embodiments of the present invention are meant to be illustrative of preferred embodiments and are not intended to limit the scope of the present invention. Various modifications, which would be readily apparent to one skilled in the art, are intended to be within the scope of the present invention. The only limitations to the scope of the present invention are set forth in the following claims appended hereto.
Claims (125)
1. A drive head assembly for use to fluid sealingly rotate a rod extending down a well, comprising:
a housing having upper and lower openings for receiving said rod therethrough;
a rotatable sleeve adapted to concentrically receive a portion of said rod therethrough, said sleeve being rotatably mounted in said housing and having an upper end passing through said upper opening to extend outwardly of said housing;
a prime mover drivingly connected to said sleeve for rotation thereof;
means disposed on said upper end of said sleeve for drivingly connecting said sleeve to the rod; and seal means within said sleeve to prevent the escape of well fluids, wherein said means for drivingly connecting said sleeve to said rod are removable from said upper end of said sleeve for servicing of said seal means without removal of said drive head assembly from the well.
a housing having upper and lower openings for receiving said rod therethrough;
a rotatable sleeve adapted to concentrically receive a portion of said rod therethrough, said sleeve being rotatably mounted in said housing and having an upper end passing through said upper opening to extend outwardly of said housing;
a prime mover drivingly connected to said sleeve for rotation thereof;
means disposed on said upper end of said sleeve for drivingly connecting said sleeve to the rod; and seal means within said sleeve to prevent the escape of well fluids, wherein said means for drivingly connecting said sleeve to said rod are removable from said upper end of said sleeve for servicing of said seal means without removal of said drive head assembly from the well.
2. The drive head assembly of claim 1 further comprising a tubular standpipe concentrically mounted within said sleeve in annular spaced relation defining a first annular fluid passageway between said standpipe and said sleeve and a second annular fluid passageway between said standpipe and said rod, said second passageway being in fluid communication with wellhead pressure in said well during normal operations.
3. The drive head assembly of claim 2 wherein said seal means are disposed between said first and second passageways permitting the maintenance of a fluid pressure differential therebetween.
4. The drive head assembly of claims 2 or 3 including means for maintaining the fluid pressure in said first passageway in excess of wellhead pressure in said second passageway.
5. The drive head assembly of claim 4 wherein said seal means are disposed in said first passageway.
6. The drive head assembly of claim 5 wherein said seal means are compressively loaded in said first passageway for enhanced sealing.
7. The drive head assembly of claims 4, 5 or 6 wherein said means for maintaining the fluid pressure in said first passageway comprise a fluid pump and a fluid conduit for the delivery of pressurized fluid from said pump to said first passageway.
8. The drive head assembly of claim 7 wherein said pump is actuatable by said prime mover.
9. The drive head assembly of any of claims 1 to 8 wherein said means for drivingly connecting said sleeve to the rod comprises a cap member releasably and tightenably connectable to said upper end of said sleeve for rotation therewith, said cap member having a bore for the passage of the rod therethrough, and a rod clamp connected to said cap member connected to said cap member for transmitting rotational torque from said cap member to said rod.
10. The drive head assembly of claim 9 further comprising static seal means disposed in sealing contact around said rod adjacent said upper end of said sleeve.
11. The drive head assembly of claim 10 wherein said static seal means comprise one or more vertically stacked sealing members and a rigid seal carrier for supporting said seal members about the rod, said seal carrier sealingly occupying the annular space between said sealing members and the inner surface of said upper end of said sleeve.
12. The drive head assembly of claim 11 wherein said seal means and said static seal means operably function together as a stuffing box for said rod.
13. The drive head assembly of any of claims 9 to 12 wherein removal of said cap member from said sleeve enables said stuffing box to be serviced without removing said drive head assembly from the well.
14. The drive head assembly of claim 13 wherein tightening said cap member on said sleeve compressively loads said stuffing box for fluid sealing purposes.
15. The drive head of claims 11, 12, 13 or 14 including means to bias said seal means towards said seal carrier and, in turn, said seal carrier towards said cap member.
16. The drive head assembly of claim 15 wherein said means to bias press said seal means against said seal carrier and, in turn, said seal carrier against said cap member when the fluid pressure in said first passageway exceeds wellhead pressure in said second passageway
17. The drive head assembly of claims 11, 12, 13 or 14 including a ring member disposed beneath said seal means to support said seal means in said first passageway
18. The drive head assembly of claim 17 including means to bias said seal means against said ring member and to bias said seal carrier against said cap member.
19. The drive head assembly of claims 15, 16, 17 or 18 wherein said means to bias is a resilient member.
20. The drive head assembly of claim 19 wherein said means to bias is a spring
21. The drive head assembly of any of claims 1 to 20 further including a first upper and a second lower spaced apart bearing hubs, each having a bore formed axially therethrough for rotatably supporting said sleeve therein
22. The drive head assembly of claim 21 wherein a lower end of said standpipe is received into said bore in said lower bearing hub for a fluid tight connection between said standpipe's outer surface and said bore, the interior of said standpipe remaining exposed to wellhead pressure
23. The drive head assembly of claim 22 further including a labyrinth seal for fluid sealing between said first fluid passageway and said lower bearing hub.
24. The drive head assembly of claim 23 wherein said labyrinth seal is sealingly biased against an inner surface of said first fluid passageway and a contiguous surface of said lower bearing hub
25. The drive head assembly of claim 24 wherein said labyrinth seal includes a plurality of aperatures formed axially therethrough for respective fastening members adjustably connecting said labyrinth seal to said contiguous surface of said lower bearing hub.
26. The drive head assembly of claim 25 wherein the diameter of said aperatures exceeds the diameter of said fasteners permitting said labyrinth seal to move in the horizontal plane relative to said contiguous surface of the lower hub for self alignment of said labyrinth seal to said inner surface of said first fluid passageway.
27. The drive head assembly of claims 24, 25 or 26 including an 0-ring seal between said labyrinth seal and said contiguous surface of said lower bearing hub for additional sealing therebetween.
28. The drive head assembly of any of claims 1 to 28 wherein said prime mover is drivingly connected to said sleeve by gears.
29. The drive head assembly of claim 28 wherein said gears comprise a drive gear connected for rotation to a drive shaft extending from said prime mover, and a driven gear fixedly connected to said sleeve for transferring rotational torque from said drive gear to said sleeve.
30. The drive head assembly of claim 29 wherein said inner surface of said first fluid passageway is defined by one or more of the inner surface of said sleeve, said driven gear, a bearing member rotatably supporting said sleeve or an extension member connected to said sleeve.
31. The drive head assembly of any of claims 28 to 30 wherein said housing supports said prime mover and said first and second bearing hubs thereon, and encloses said drive shaft and said drive and driven gears therein.
32. The drive head assembly of any of claims 4 to 31 including adjustable valve means for controlling the pressure of fluid in said first fluid passageway.
33. The drive head assembly of claim 32 wherein the pressure of fluid in said first fluid passageway is maintained in the range of 50 to 500 psi in excess of wellhead pressure in said second fluid passageway.
34. In a stuffing box for sealing the end of a rotatable rod extending from a well bore, the improvement comprising:
a first fluid passageway disposed concentrically around at least a portion of the rod passing through the stuffing box;
a second fluid passageway disposed concentrically inside said first passageway, sad second passageway being in fluid communication with wellhead pressure during normal operations;
said first and second passageways being in fluid communication with one another and having seal means disposed therebetween to permit the maintenance of a pressure differential between them; and means to pressurize fluid in said first passageway to a pressure in excess of wellhead pressure to prevent the leakage of well fluids through said stuffing box.
a first fluid passageway disposed concentrically around at least a portion of the rod passing through the stuffing box;
a second fluid passageway disposed concentrically inside said first passageway, sad second passageway being in fluid communication with wellhead pressure during normal operations;
said first and second passageways being in fluid communication with one another and having seal means disposed therebetween to permit the maintenance of a pressure differential between them; and means to pressurize fluid in said first passageway to a pressure in excess of wellhead pressure to prevent the leakage of well fluids through said stuffing box.
35. The stuffing box of claim 34 including means to normally bias said seal means in opposition to wellhead pressure in said second passageway.
36. The stuffing box of claims 34 or 35 wherein said seal means are disposed in said first passageway between said means to bias and a seal retaining member.
37. The stuffing box of claims 35 or 36 wherein said means to bias comprise a spring to act with or without pressure in said first passageway to oppose wellhead pressure in said second passageway.
38. The stuffing box of any of claims 34 to 37 further comprising an outer axially disposed tubular sleeve disposed around a tubular standpipe concentrically mounted within said sleeve in annular spaced relation to said sleeve and the rod, the annular space between said sleeve and said standpipe defining said first passageway and the annular space between said standpipe and the rod defining said second fluid passageway.
39. The stuffing box of claim 38 wherein said sleeve is supported for rotation and is drivingly connected to said rod for rotation thereof.
40. The stuffing box of claim 39 wherein said sleeve is supported for rotation by a housing having vertically aligned upper and lower openings for receiving said rotatable rod therethrough.
41. The stuffing box of claims 38, 39 or 40 wherein said sleeve has an upper and a lower end, said upper end being adapted for a releasable and tightenable connection to a cap member that closes said upper end around the rod.
42. The stuffing box of claim 41 wherein said upper end of said tubular sleeve extends through said upper opening to extend upwardly and outwardly from said housing.
43. The stuffing box of claim 42 additionally comprising static seal means disposed in sealing contact around said rod in said upper end of said tubular sleeve.
44. The stuffing box of claim 43 wherein said static seal means comprise one or more vertically stacked sealing members and a rigid seal carrier for supporting said seal members about the rod, said seal carrier sealing occupying the annular space between said sealing members and the inner surface of said upper end of said tubular sleeve.
45. The stuffing box of claim 44 wherein said cap member is releasable from said upper end of said tubular sleeve for servicing of said stuffing box from outside said housing.
46. The stuffing box of any of claims 34 to 45 wherein said means to pressurize fluid in said first passageway comprise a fluid pump and a fluid conduit for the delivery of pressurized fluid from said pump to said first passageway.
47. The stuffing box of claim 46 wherein said pump is actuatable by a prime mover, said prime mover also being drivingly connected to said sleeve for rotation thereof, said sleeve in turn being drivingly connected to said rotatably rod so that rotation of said sleeve by said prime mover causes rotation of said rod.
48. A drive head for use with a progressing cavity pump in an oil well, comprising:
a drive head housing;
a drive shaft rotatably mounted in said housing for connection to a drive motor;
an annular tubular sleeve rotatably mounted in said housing and drivingly connected to said drive shaft;
a tubular standpipe concentrically mounted within said sleeve in annularly spaced relation thereto defining a first tubular fluid passageway for receiving fluid at a first pressure and operable to receive a polished rod therein in annularly spaced relation defining a second tubular fluid passageway exposed to oil well pressure during normal operation;
seal means disposed in said first fluid passageway;
means for maintaining the fluid pressure within said first fluid passageway greater than the fluid pressure in said second fluid passageway; and means for releasably drivingly connecting said sleeve to said polished rod received in said standpipe.
a drive head housing;
a drive shaft rotatably mounted in said housing for connection to a drive motor;
an annular tubular sleeve rotatably mounted in said housing and drivingly connected to said drive shaft;
a tubular standpipe concentrically mounted within said sleeve in annularly spaced relation thereto defining a first tubular fluid passageway for receiving fluid at a first pressure and operable to receive a polished rod therein in annularly spaced relation defining a second tubular fluid passageway exposed to oil well pressure during normal operation;
seal means disposed in said first fluid passageway;
means for maintaining the fluid pressure within said first fluid passageway greater than the fluid pressure in said second fluid passageway; and means for releasably drivingly connecting said sleeve to said polished rod received in said standpipe.
49. The drive head as defined in claim 48, further including a centrifugal backspin retarder coupled to said drive shaft for reducing reverse rotation of said sleeve.
50. In a drive head for rotating a rod in a well having a housing for fluid sealingly receiving the rod therethrough, said housing having a lower end and an upper openable end, the improvement comprising a stuffing box for said rod integrated into said upper end of sad housing to enable said stuffing box to be serviced by opening said openable upper end of said housing, without removing said drive head from the well bore.
51. In a drive head as defined in claim 50 wherein said stuffing box seals said rod against the pressure of fluid in the well, further including a fluid pump for pressurizing said stuffing box.
52. In a drive head as defined in claim 51, wherein said fluid pump maintains an uphole side of said stuffing box at a higher pressure than a downhole side thereof to limit leakage of fluid from said well bore.
53. A drive head with a prime mover for rotatably driving a polished rod in a progressing cavity pump well, including:
a housing with upper and lower openings for receiving the polished rod therethrough;
a tubular drive sleeve rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive sleeve having an upper end extending outwardly of said housing through said upper opening therein;
releasable connecting means accessible from outside of said housing for drivingly connecting said upper end of said drive sleeve to said polished rod;
a stuffing box to seal said rod against the pressure of fluid in said well disposed in said tubular drive sleeve, said stuffing box being accessible for servicing from outside of said drive head upon removal of said connecting means from said upper end of said sleeve.
a housing with upper and lower openings for receiving the polished rod therethrough;
a tubular drive sleeve rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive sleeve having an upper end extending outwardly of said housing through said upper opening therein;
releasable connecting means accessible from outside of said housing for drivingly connecting said upper end of said drive sleeve to said polished rod;
a stuffing box to seal said rod against the pressure of fluid in said well disposed in said tubular drive sleeve, said stuffing box being accessible for servicing from outside of said drive head upon removal of said connecting means from said upper end of said sleeve.
54. A drive head as defined in claim 53, further including:
a tubular standpipe secured to prevent axial displacement and rotation of said standpipe relative to said housing;
said standpipe being disposed within said drive sleeve in annularly spaced relation thereto for generally concentrically receiving said polished rod therethrough in annularly spaced apart relation;
rotary sealing means disposed between said standpipe and said drive sleeve to prevent the flow of well fluids into the annulus between said drive sleeve and said standpipe;
and static sealing means disposed between said drive sleeve and said polished rod to prevent the escape of well fluids between said drive sleeve and said polished rod.
a tubular standpipe secured to prevent axial displacement and rotation of said standpipe relative to said housing;
said standpipe being disposed within said drive sleeve in annularly spaced relation thereto for generally concentrically receiving said polished rod therethrough in annularly spaced apart relation;
rotary sealing means disposed between said standpipe and said drive sleeve to prevent the flow of well fluids into the annulus between said drive sleeve and said standpipe;
and static sealing means disposed between said drive sleeve and said polished rod to prevent the escape of well fluids between said drive sleeve and said polished rod.
55. A drive head as defined in claim 54, wherein said standpipe, said drive sleeve, said rotary sealing means and said static sealing means operably function together as said stuffing box for said polished rod.
56. A drive head as defined in claims 54 or 55, further including pressurization means to apply a fluid pressure in excess of well pressure against said rotary sealing means.
57. A drive head as defined in claim 56, wherein said fluid pressure acts on a lower side of said rotary sealing means against well pressure acting on an upper side of said rotary sealing means.
58. A drive head as defined in claims 54, 55, 56 or 57 further including a first lower sealing means to seal a lower end of said tubular drive sleeve against the pressure of fluid in said annulus between said tubular drive sleeve and said standpipe.
59. A drive head as defined in claim 58 including a second lower sealing means to seal a lower end of said standpipe to prevent well fluids from escaping into said annulus between said tubular drive sleeve and said standpipe.
60. A drive head as defined in claim 59, wherein said first lower sealing means comprise a labyrinth seal between said housing and said tubular drive sleeve.
61. A drive head as defined in any of claims 56 to 60, wherein said pressurization means includes a source of pressurized fluid and a fluid passage in communication with said annulus between said tubular drive sleeve and said standpipe and between said rotary seal means and said first lower sealing means.
62. A drive head as defined in claim 61, wherein said source of pressurized fluid includes a pump driven from said prime mover
63. A drive head as defined in claim 62, wherein said prime mover is a hydraulic motor which operates to rotate said polished rod and pump said pressurized fluid.
64. A drive head as defined in claim 58, wherein said lower end of said standpipe is compliantly secured relative to said housing to minimize misalignment of said standpipe relative to said rotary sealing means.
65. A drive head as defined in any of claims 54 to 64, said static seal means including one or more axially stacked sealing members and a rigid seal carrier for supporting said sealing members about said polished rod, said seal carrier sealingly occupying the annular space between said sealing members and an inner surface of said upper end of said drive sleeve.
66. A drive head as defined in any of claims 54 to 65, said rotary sealing means including one or more ring seals, said ring seals rotating with and sealed to said drive sleeve and rotating against and sealing to said standpipe.
67. A drive head as defined in claim 66, said ring seals comprising packings, said packings rotating with and sealing to said drive sleeve and rotating against and sealing to said standpipe.
68. A drive head as defined in claim 67, further including spring means for compressively loading said packings.
69. A drive head as defined in claim 68, further including pressurizing means for maintaining lubricating fluid pressure against said packings above the discharge pressure of fluid in said well.
70. A drive head as defined in claim 69, said pressurizing means including lower rotary sealing means between said housing and a lower end of said drive sleeve to form an annular fluid chamber between said drive sleeve and said standpipe below said packings and above said lower rotary sealing means; and fluid communication between said annular fluid chamber and a pressure source for said lubricating fluid.
71. A drive head as defined in claim 70, wherein said lower rotary sealing means comprise a labyrinth seal between said housing and said drive sleeve.
72. A drive head as defined in claim 71, said pressure source including a pump and a pressure relief valve to regulate said lubricating fluid pressure to said annular fluid chamber.
73. A drive head as defined in claim 72, said pump being driven by said prime mover.
74. A drive head as defined in any of claims 70 to 73, said pressure source being a hydraulic system including a hydraulic motor, said hydraulic motor being operatively connected to said polished rod for the rotation thereof, and said annular fluid chamber being in fluid communication with said hydraulic system for maintaining said lubricating fluid pressure therein by means of a pressure reducing valve.
75. A drive head as defined in any of claims 53 to 74, said upper end of said drive sleeve being threaded; said releasable connecting means including a threaded cap member for threadedly engaging said threaded drive sleeve and clamp means for coupling to said threaded cap and to said polished rod.
76. A drive head for sealing and rotating a polished rod extending into a well bore, including:
a housing having aligned upper and lower openings therein for receiving the polished rod therethrough;
a tubular drive sleeve rotatably mounted in said housing for axially supporting and rotatably driving the polished rod, said drive sleeve having an upper end extending through said upper opening of said housing;
a prime mover for rotation of said tubular drive sleeve;
means located outside of said housing for drivingly and releasably connecting said upper end of said drive sleeve to said polished rod;
a tubular standpipe secured to said housing within said drive sleeve in annularly spaced relation thereto for generally concentrically receiving said polished rod therethrough in annularly spaced apart relation;
rotary seal means disposed in an annular space between said drive sleeve and said standpipe, said rotary seal means being exposed on one side thereof to well fluids; and static seal means disposed between said drive sleeve and said polished rod.
a housing having aligned upper and lower openings therein for receiving the polished rod therethrough;
a tubular drive sleeve rotatably mounted in said housing for axially supporting and rotatably driving the polished rod, said drive sleeve having an upper end extending through said upper opening of said housing;
a prime mover for rotation of said tubular drive sleeve;
means located outside of said housing for drivingly and releasably connecting said upper end of said drive sleeve to said polished rod;
a tubular standpipe secured to said housing within said drive sleeve in annularly spaced relation thereto for generally concentrically receiving said polished rod therethrough in annularly spaced apart relation;
rotary seal means disposed in an annular space between said drive sleeve and said standpipe, said rotary seal means being exposed on one side thereof to well fluids; and static seal means disposed between said drive sleeve and said polished rod.
77. A drive head as defined in claim 76, said standpipe being non-rotatably and compliantly secured to said housing to permit said standpipe to accommodate mis-alignment at said rotary seal means.
78. A drive head as defined in claims 76 or 77, said rotary seal means including one or more ring seals, said ring seals rotating with and sealing to said drive sleeve and rotating against and sealing to said standpipe.
79. A drive head as defined in claim 78, said ring seals including packings, said packings rotating with and sealing to said drive sleeve and rotating against and sealing to said standpipe.
80. A drive head as defined in claim 79, further including spring means for compressively loading said packings.
81. A drive head as defined in claims 79 or 80, further including pressurizing means for maintaining lubricating fluid pressure against said packings above the discharge pressure of fluid in said well.
82. A drive head as defined in claim 81, said pressurizing means further including lower rotary sealing means between said housing and said drive sleeve forming an annular fluid chamber between said drive sleeve and said standpipe below said packings and above said lower sealing means; and fluid communication between said annular fluid chamber and a pressure source for said lubricating fluid.
83. A drive head as defined in claim 82, said lower rotary sealing means including a labyrinth seal between said housing and said drive sleeve.
84. A drive head as defined in claims 82 or 83, said pressure source including a pump and a pressure relief valve to regulate said lubricating fluid pressure to said annular fluid chamber
85. A drive head as defined in claim 84, said pump being driven by said prime mover.
86. A drive head as defined in claim 85 wherein said prime mover is an electric motor.
87. A drive head as defined in claim 85, wherein said prime mover is a hydraulic motor that both rotates said tubular drive sleeve and maintains said lubricating fluid pressure in said annular fluid chamber
88. A drive head as defined in claim 87, including a pressure reducing valve disposed between said hydraulic motor and said annular fluid chamber.
89. A drive head for rotatably driving a polished rod in a well, including:
a housing having vertically aligned upper and lower openings therein for passage of said polished rod therethrough;
a tubular drive sleeve rotatably mounted in said housing to concentrically receive said polished rod therethrough;
a non-rotatable tubular standpipe concentrically received within said tubular sleeve and sealingly and detachably secured to said housing to define a first annulus between said sleeve and said standpipe and a second annulus between said polished rod and said standpipe;
rotary seal means disposed in said first annulus between said standpipe and said drive sleeve in contact with well fluids on one side thereof and with said first annulus on the other side thereof;
means for rotating said tubular drive sleeve; and means connecting said tubular drive sleeve to said polished rod for rotation thereof.
a housing having vertically aligned upper and lower openings therein for passage of said polished rod therethrough;
a tubular drive sleeve rotatably mounted in said housing to concentrically receive said polished rod therethrough;
a non-rotatable tubular standpipe concentrically received within said tubular sleeve and sealingly and detachably secured to said housing to define a first annulus between said sleeve and said standpipe and a second annulus between said polished rod and said standpipe;
rotary seal means disposed in said first annulus between said standpipe and said drive sleeve in contact with well fluids on one side thereof and with said first annulus on the other side thereof;
means for rotating said tubular drive sleeve; and means connecting said tubular drive sleeve to said polished rod for rotation thereof.
90. The drive head of claim 89 additionally including means for drainage of well fluids flowing past said rotary seal means away from said housing.
91. The drive head of claim 90 wherein said means for drainage include a ring member in said first annulus beneath said rotary seal means, said ring member having one or more holes formed therein in alignment with one or more holes in said tubular sleeve through which said well fluids can drain for disposal.
92. The drive head of claim 91 wherein said means for drainage additionally include lower seal means disposed in said first annulus beneath said ring member to prevent the flow of well fluids into said housing.
93. The drive head of claim 92 wherein said ring member is a lantern ring.
94. The drive head of claims 92 or 93 wherein said lower seal means comprise one or more ring seals.
95. The drive head of any of claims 89 to 94 further including static seal means to seal well fluids between said polished rod and said tubular drive sleeve.
96. The drive head of any of claims 89 to 95 wherein said tubular drive sleeve has an upper end extending through said upper opening in said housing to project above said housing for access.
97. The drive head of any of claims 89 to 96 wherein said means connecting said tubular drive sleeve to said polished rod comprise a cap tightenably and removably connectable to said upper end of said tubular drive sleeve and a rod clamp connectable between said cap and said polished rod for transmitting rotational torque to said rod.
98. The drive head of claim 97 wherein, upon removal of said cap and said rod clamp from said tubular sleeve, said static seal means, said rotary seal means, said ring member and said lower seal means are removable upwardly through said tubular drive sleeve for servicing.
99. A drive head for rotatably driving a polished rod in a progressing cavity pump well, comprising:
means connecting said polished rod to a prime mover for rotating said polished rod;
and sealing means to prevent well fluids from escaping from the well;
said sealing means being accessible from above said drive head upon removal of said connecting means to facilitate servicing of said sealing means with the drive head remaining on the well.
means connecting said polished rod to a prime mover for rotating said polished rod;
and sealing means to prevent well fluids from escaping from the well;
said sealing means being accessible from above said drive head upon removal of said connecting means to facilitate servicing of said sealing means with the drive head remaining on the well.
100. A drive head for rotatably driving a polished rod in a progressing cavity pump well, comprising:
a housing for receiving a polished rod therethrough;
a tubular drive shaft rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive shaft having an upper end extending outwardly of said housing;
sealing means for preventing well fluids from escaping from said well, said sealing means being accessible from the top of said drive head to facilitate servicing of said sealing means; and connecting means accessible from the top of said housing for drivingly connecting said upper end of said shaft to said polished rod.
a housing for receiving a polished rod therethrough;
a tubular drive shaft rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive shaft having an upper end extending outwardly of said housing;
sealing means for preventing well fluids from escaping from said well, said sealing means being accessible from the top of said drive head to facilitate servicing of said sealing means; and connecting means accessible from the top of said housing for drivingly connecting said upper end of said shaft to said polished rod.
101. A drive head as defined in claim 100, further including:
a tubular standpipe disposed within said drive shaft in annularly spaced relation thereto for receiving said polished rod therethrough in annularly spaced apart relation, said drive shaft and said standpipe forming an annular seal chamber;
said sealing means including rotary seal means disposed in said seal chamber to prevent flow of well fluids along the interior of said drive shaft; and static seal means disposed between said drive shaft and said polished rod to prevent the escape of well fluids along said polished rod.
a tubular standpipe disposed within said drive shaft in annularly spaced relation thereto for receiving said polished rod therethrough in annularly spaced apart relation, said drive shaft and said standpipe forming an annular seal chamber;
said sealing means including rotary seal means disposed in said seal chamber to prevent flow of well fluids along the interior of said drive shaft; and static seal means disposed between said drive shaft and said polished rod to prevent the escape of well fluids along said polished rod.
102. A drive head as defined in claim 101, further including means for non-rotatably and compliantly securing a bottom end of said standpipe to said housing below a lower end of said drive shaft to permit said standpipe to tilt with respect to said drive shaft to adjust for mis-alignment of said standpipe and said drive shaft at said rotary seal means.
103. A drive head as defined in claims 101 or 102, said connecting means including a removable cap member for engaging said upper end of said drive shaft, said cap member being removable to provide access to said static seal means and said rotary seal means.
104. A drive head as defined in claims 101, 102 or 103, said static seal means including one or more axially stacked sealing members about said polished rod and sealingly occupying an annular space between said sealing members and an inner surface of said upper end of said shaft.
105. A drive head as defined in claims 101, 102, 103 or 104, said rotary sealing means including one or more ring seals, said ring seals sealingly engaging an inner surface of said drive shaft and an outer surface of said standpipe, and being rotatable with said drive shaft with respect to said standpipe.
106. A drive head as defined in any of claims 101 to 105, said rotary seal means being compression packings.
107. A drive head as defined in claim 106, further including spring means disposed in said seal chamber for compressively loading said compression packings.
108. A drive head as defined in any of claims 101 to 107, further including means for pressurizing said seal chamber and maintaining a fluid pressure therein above well fluid discharge pressure.
109. A drive head as defined in claim 108, said means for pressurizing including further seal means between said housing and the lower end of said drive shaft for sealing a lower end of said seal chamber, and means for communicating fluid under pressure to said seal chamber from a fluid pressure source.
110. A drive head as defined in claim 109, said further seal means including a labyrinth seal between said housing and said drive shaft
111. A drive head as defined in claims 109 or 110, said means for communicating fluid under pressure including an oil pump and a pressure relief valve for regulating lubricating pressure supplied to said annular fluid chamber.
112. A drive head as defined in claim 111, said oil pump being driven by said drive head.
113. A drive head as defined in any of claims 108 to 112, said means for pressuring including means for taking fluid pressure from a hydraulic motor that drives said drive head and a pressure reducing valve for regulating said lubricating fluid pressure to said seal chamber.
114. A drive head as defined in any of claims 111 to 113, further including secondary rotary seal means between said drive shaft and said standpipe disposed below fluid passages extending through said drive shaft to prevent well fluid that leaks past said rotary seal means from leaking down a passage between said drive shaft and said standpipe and into drive head lubricating oil, said fluid passages allowing the well fluid to drain through the wall of said drive shaft.
115. A drive head as defined in claim 114, further including a lantern ring disposed adjacent to and in communication with said fluid passages through said drive shaft and located above said secondary rotary seal means.
116. A drive head as defined in claims 114 or 115, said secondary rotary seal means including rotary lip seals.
117. A drive head as defined in any of claims 101 to 116, further including means for rotatably driving said drive shaft, including an input shaft in said housing for connection to a prime mover; first gear means mounted on said input shaft for rotation therewith, and second gear means in meshing engagement with said first gear means and secured to said main shaft for rotatably driving said main shaft.
118. A drive head for rotatably driving a polished rod in a progressing cavity pump well, comprising.
a housing for receiving a polished rod therethrough, a tubular drive shaft rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive shaft having an upper end extending outwardly of said housing;
a tubular standpipe disposed within said drive shaft in annularly spaced relation thereto for receiving said polished rod therethrough in annularly spaced apart relation, said drive shaft and said standpipe forming an annular seal chamber;
sealing means for preventing well fluids from escaping from said well, said sealing means including rotary seal means disposed in said seal chamber to prevent flow of well fluids along the interior of said drive shaft; and static seal means disposed between said drive shaft and said polished rod to prevent the escape of well fluids along said polished rod;
means for non-rotatably and compliantly securing a bottom end of said standpipe to said housing below a lower end of said drive shaft to permit said standpipe to tilt with respect to said drive shaft to adjust for mis-alignment of said standpipe and said drive shaft at said rotary seal means; and connecting means accessible from the top of said housing for drivingly connecting said upper end of said shaft to said polished rod, said connecting means including a removable cap member for engaging said upper end of drive shaft and closing said drive shaft, said cap member being removable to provide access to said static seal means and said rotary seal means.
a housing for receiving a polished rod therethrough, a tubular drive shaft rotatably mounted in said housing for axially supporting and rotatably driving said polished rod, said drive shaft having an upper end extending outwardly of said housing;
a tubular standpipe disposed within said drive shaft in annularly spaced relation thereto for receiving said polished rod therethrough in annularly spaced apart relation, said drive shaft and said standpipe forming an annular seal chamber;
sealing means for preventing well fluids from escaping from said well, said sealing means including rotary seal means disposed in said seal chamber to prevent flow of well fluids along the interior of said drive shaft; and static seal means disposed between said drive shaft and said polished rod to prevent the escape of well fluids along said polished rod;
means for non-rotatably and compliantly securing a bottom end of said standpipe to said housing below a lower end of said drive shaft to permit said standpipe to tilt with respect to said drive shaft to adjust for mis-alignment of said standpipe and said drive shaft at said rotary seal means; and connecting means accessible from the top of said housing for drivingly connecting said upper end of said shaft to said polished rod, said connecting means including a removable cap member for engaging said upper end of drive shaft and closing said drive shaft, said cap member being removable to provide access to said static seal means and said rotary seal means.
119. A drive head as defined in any of claims 1 to 33 or 48 to 118, further including a backspin retarder for controlling reverse rotation of said drive shaft when means for rotating said drive shaft are deactivated.
120. A drive head as defined in claim 119, said backspin retarder including a backspin retarder actuating mechanism for engaging and disengaging a brake, comprising:
a drive member connected to said drive shaft and having at least one ball retaining groove in a lower surface, and a torque transfer ball in each groove, each groove having a ball chamber at one end for holding a ball in a disengaged position above said lower surface, a ball engaging surface at the other end of said groove and a ramped bottom surface sloping toward the lower surface from the ball chamber to the torque transfer surface;
and a brake actuating member freely rotatably mounted on said drive shaft below said drive member and having an upper surface juxtaposed to said lower surface and at least one ball receiving groove in said upper surface for receiving a torque transfer ball, the ball receiving groove having a ball engaging torque transfer surface at one end thereof for engaging the ball and transferring torque to the brake actuating member when the drive member rotates in a reverse direction.
a drive member connected to said drive shaft and having at least one ball retaining groove in a lower surface, and a torque transfer ball in each groove, each groove having a ball chamber at one end for holding a ball in a disengaged position above said lower surface, a ball engaging surface at the other end of said groove and a ramped bottom surface sloping toward the lower surface from the ball chamber to the torque transfer surface;
and a brake actuating member freely rotatably mounted on said drive shaft below said drive member and having an upper surface juxtaposed to said lower surface and at least one ball receiving groove in said upper surface for receiving a torque transfer ball, the ball receiving groove having a ball engaging torque transfer surface at one end thereof for engaging the ball and transferring torque to the brake actuating member when the drive member rotates in a reverse direction.
121. A drive head as defined in claim 120, said ball receiving groove having a depth at said ball engaging surface approximately equal to the radius of a ball and sloping upwardly to said upper planar surface.
122. A drive had as defined in claim 121, said ball retaining groove having a depth at said ball chamber approximately equal to the diameter of said ball, and having a depth at said ball engaging surface approximately equal to the radius of said ball, said bottom surface thereof sloping downwardly from said ball chamber to said ball engaging surface.
123. A drive head as defined in claim 122, each said ball retaining groove having a radial hole in said drive member opening into said ball chamber, said hole having a diameter less than the diameter of said ball formed to intersect said ball chamber at approximately a height above said lower surface equal to the radius of said ball, said hole forming a ball seat on which said ball is seated when the speed of rotation of said drive shaft is at or above a threshold value.
124. A drive head as defined in claim 123, wherein, when the speed of rotation of said shaft is less than said threshold value, said ramped bottom surface is operable to push a ball along said ball receiving groove toward said torque transfer surface thereof until said ball engages said torque transfer surface.
125. A drive head as defined in claims 120, 121, 122, 123 or 124, said ball being moveable into said disengaged position in said ball chamber when the forward rotational speed of said driving member exceeds a threshold value, said ball moving out of said chamber and falls toward said driven member when the rotational speed falls below said threshold and said ball engaging said torque transfer surfaces when said drive member rotates in a reverse direction.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2716430A CA2716430C (en) | 2000-06-09 | 2001-06-11 | Pump drive head with stuffing box |
CA2710783A CA2710783C (en) | 2000-06-09 | 2001-06-11 | Pump drive head with stuffing box |
CA2350047A CA2350047C (en) | 2000-06-09 | 2001-06-11 | Pump drive head with stuffing box |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2,311,036 | 2000-06-09 | ||
CA002311036A CA2311036A1 (en) | 2000-06-09 | 2000-06-09 | Pump drive head with leak-free stuffing box, centrifugal brake and polish rod locking clamp |
CA2350047A CA2350047C (en) | 2000-06-09 | 2001-06-11 | Pump drive head with stuffing box |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2710783A Division CA2710783C (en) | 2000-06-09 | 2001-06-11 | Pump drive head with stuffing box |
CA2716430A Division CA2716430C (en) | 2000-06-09 | 2001-06-11 | Pump drive head with stuffing box |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2350047A1 CA2350047A1 (en) | 2001-12-09 |
CA2350047C true CA2350047C (en) | 2010-10-19 |
Family
ID=25681872
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2716430A Expired - Lifetime CA2716430C (en) | 2000-06-09 | 2001-06-11 | Pump drive head with stuffing box |
CA2710783A Expired - Lifetime CA2710783C (en) | 2000-06-09 | 2001-06-11 | Pump drive head with stuffing box |
CA2350047A Expired - Lifetime CA2350047C (en) | 2000-06-09 | 2001-06-11 | Pump drive head with stuffing box |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2716430A Expired - Lifetime CA2716430C (en) | 2000-06-09 | 2001-06-11 | Pump drive head with stuffing box |
CA2710783A Expired - Lifetime CA2710783C (en) | 2000-06-09 | 2001-06-11 | Pump drive head with stuffing box |
Country Status (1)
Country | Link |
---|---|
CA (3) | CA2716430C (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD691180S1 (en) | 2012-04-27 | 2013-10-08 | S.P.M. Flow Control, Inc. | Center portion of a fluid cylinder for a pump |
US8662865B2 (en) | 2010-12-09 | 2014-03-04 | S.P.M. Flow Control, Inc. | Offset valve bore in a reciprocating pump |
USD705817S1 (en) | 2012-06-21 | 2014-05-27 | S.P.M. Flow Control, Inc. | Center portion of a fluid cylinder for a pump |
USD706397S1 (en) | 2011-08-19 | 2014-06-03 | S.P.M. Flow Control, Inc. | Portion of fluid end |
USD706832S1 (en) | 2012-06-15 | 2014-06-10 | S.P.M. Flow Control, Inc. | Fluid cylinder for a pump |
US9273543B2 (en) | 2012-08-17 | 2016-03-01 | S.P.M. Flow Control, Inc. | Automated relief valve control system and method |
US9322243B2 (en) | 2012-08-17 | 2016-04-26 | S.P.M. Flow Control, Inc. | Automated relief valve control system and method |
RU170007U1 (en) * | 2016-08-15 | 2017-04-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" | Transmission section of a submersible screw pump installation |
US10330097B2 (en) | 2012-01-27 | 2019-06-25 | S.P.M. Flow Control, Inc. | Pump fluid end with integrated web portion |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2311036A1 (en) | 2000-06-09 | 2001-12-09 | Oil Lift Technology Inc. | Pump drive head with leak-free stuffing box, centrifugal brake and polish rod locking clamp |
CA2397360A1 (en) | 2002-08-09 | 2004-02-09 | Oil Lift Technology Inc. | Stuffing box for progressing cavity pump drive |
US7337851B2 (en) * | 2004-09-03 | 2008-03-04 | Weatherford/Lamb, Inc. | Rotating stuffing box with split standpipe |
US7673674B2 (en) | 2006-01-31 | 2010-03-09 | Stream-Flo Industries Ltd. | Polish rod clamping device |
US8870233B2 (en) | 2007-07-03 | 2014-10-28 | S.P.M. Flow Control, Inc. | Swivel joint with uniform ball bearing requirements |
US7931078B2 (en) | 2008-02-22 | 2011-04-26 | Scope Production Developments Ltd. | Stuffing box apparatus |
CN102400642B (en) * | 2011-12-12 | 2013-11-06 | 山东省水利科学研究院 | Drilling rotary swing power head for high pressure jet grouting |
US8899314B2 (en) | 2012-02-06 | 2014-12-02 | Brightling Equipment Ltd. | Stuffing box |
GB2520218A (en) | 2012-08-16 | 2015-05-13 | Spm Flow Control Inc | Plug valve having preloaded seal segments |
CA2916699A1 (en) | 2013-07-01 | 2015-01-08 | S.P.M. Flow Control, Inc. | Manifold assembly |
US9568053B2 (en) | 2014-08-19 | 2017-02-14 | Brightling Equipment Ltd. | Method and apparatus for limiting rotation of a drive shaft in a reverse direction |
US10557576B2 (en) | 2015-06-15 | 2020-02-11 | S.P.M. Flow Control, Inc. | Full-root-radius-threaded wing nut having increased wall thickness |
US10677365B2 (en) | 2015-09-04 | 2020-06-09 | S.P.M. Flow Control, Inc. | Pressure relief valve assembly and methods |
CA2967606C (en) | 2017-05-18 | 2023-05-09 | Peter Neufeld | Seal housing and related apparatuses and methods of use |
CN107237611B (en) * | 2017-07-24 | 2023-06-09 | 广东明珠流体机械有限公司 | High-temperature high-pressure oil well oil pump blowout prevention valve |
AU2021351470A1 (en) * | 2020-09-30 | 2023-03-09 | Apergy Artificial Lift Pty Ltd | Drive head assembly |
US12024969B2 (en) | 2021-03-29 | 2024-07-02 | Bellofram Acquisition II, LLC | High velocity and pressure BOP ram seal, ram body, and ram seal assembly |
CN117108234B (en) * | 2023-10-24 | 2024-01-30 | 克拉玛依红山油田有限责任公司 | Sectional type thermal recovery polished rod static seal structure |
CN117905410B (en) * | 2024-03-20 | 2024-05-28 | 大庆强弘科技有限公司 | Blowout-preventing sealing protection device for petroleum wellhead |
-
2001
- 2001-06-11 CA CA2716430A patent/CA2716430C/en not_active Expired - Lifetime
- 2001-06-11 CA CA2710783A patent/CA2710783C/en not_active Expired - Lifetime
- 2001-06-11 CA CA2350047A patent/CA2350047C/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9784262B2 (en) | 2010-12-09 | 2017-10-10 | S.P.M. Flow Control, Inc. | Offset valve bore in a reciprocating pump |
US8662865B2 (en) | 2010-12-09 | 2014-03-04 | S.P.M. Flow Control, Inc. | Offset valve bore in a reciprocating pump |
US8662864B2 (en) | 2010-12-09 | 2014-03-04 | S.P.M. Flow Control, Inc. | Offset valve bore in a reciprocating pump |
US8668470B2 (en) | 2010-12-09 | 2014-03-11 | S.P.M. Flow Control, Inc. | Offset valve bore for a reciprocating pump |
US9989044B2 (en) | 2010-12-09 | 2018-06-05 | S.P.M. Flow Control, Inc. | Offset valve bore in a reciprocating pump |
USD706397S1 (en) | 2011-08-19 | 2014-06-03 | S.P.M. Flow Control, Inc. | Portion of fluid end |
US10330097B2 (en) | 2012-01-27 | 2019-06-25 | S.P.M. Flow Control, Inc. | Pump fluid end with integrated web portion |
USD706833S1 (en) | 2012-04-27 | 2014-06-10 | S.P.M. Flow Control, Inc. | Center portion of a fluid cylinder for a pump |
USD691180S1 (en) | 2012-04-27 | 2013-10-08 | S.P.M. Flow Control, Inc. | Center portion of a fluid cylinder for a pump |
USD706832S1 (en) | 2012-06-15 | 2014-06-10 | S.P.M. Flow Control, Inc. | Fluid cylinder for a pump |
USD705817S1 (en) | 2012-06-21 | 2014-05-27 | S.P.M. Flow Control, Inc. | Center portion of a fluid cylinder for a pump |
US9273543B2 (en) | 2012-08-17 | 2016-03-01 | S.P.M. Flow Control, Inc. | Automated relief valve control system and method |
US9322243B2 (en) | 2012-08-17 | 2016-04-26 | S.P.M. Flow Control, Inc. | Automated relief valve control system and method |
RU170007U1 (en) * | 2016-08-15 | 2017-04-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" | Transmission section of a submersible screw pump installation |
Also Published As
Publication number | Publication date |
---|---|
CA2716430C (en) | 2012-05-29 |
CA2350047A1 (en) | 2001-12-09 |
CA2710783C (en) | 2013-08-06 |
CA2716430A1 (en) | 2001-12-09 |
CA2710783A1 (en) | 2001-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6843313B2 (en) | Pump drive head with stuffing box | |
CA2350047C (en) | Pump drive head with stuffing box | |
US4154448A (en) | Rotating blowout preventor with rigid washpipe | |
US7080685B2 (en) | High pressure rotating drilling head assembly with hydraulically removable packer | |
US5251869A (en) | Rotary blowout preventer | |
US4531591A (en) | Drilling head method and apparatus | |
US7044217B2 (en) | Stuffing box for progressing cavity pump drive | |
US20030205864A1 (en) | Rotary sealing device | |
CA2436924C (en) | Stuffing box for progressing cavity pump drive | |
US4496032A (en) | Brake unit | |
CA1153320A (en) | Brake unit | |
US11414939B2 (en) | Washpipe system | |
US2207199A (en) | Blowout preventer | |
CA3107031A1 (en) | A braking system and wellbore fluid sealing systems for progressive cavity pump(pcp) drive head | |
US20080257555A1 (en) | Linear Drive Assembly with Rotary Union for Well Head Applications and Method Implemented Thereby | |
EP0727007B1 (en) | Pressurized sheave mechanism for high pressure wireline service | |
EP0209310A2 (en) | Axial balancing device for downhole drilling motors | |
CA1135231A (en) | Mantle | |
GB2129076A (en) | Self brake assembly | |
WO2002077499A1 (en) | Rotary sealing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKEX | Expiry |
Effective date: 20210611 |