CA2344197C - Methods and systems for treating breast tissue - Google Patents

Methods and systems for treating breast tissue Download PDF

Info

Publication number
CA2344197C
CA2344197C CA002344197A CA2344197A CA2344197C CA 2344197 C CA2344197 C CA 2344197C CA 002344197 A CA002344197 A CA 002344197A CA 2344197 A CA2344197 A CA 2344197A CA 2344197 C CA2344197 C CA 2344197C
Authority
CA
Canada
Prior art keywords
energy
duct
agent
breast
ductal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002344197A
Other languages
French (fr)
Other versions
CA2344197A1 (en
Inventor
David Hung
Chris Ken
Julian Nikolchev
Susan Love
Shawn O'leary
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atossa Therapeutics Inc
Original Assignee
Cytyc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cytyc Corp filed Critical Cytyc Corp
Priority claimed from PCT/US1999/021378 external-priority patent/WO2000016708A1/en
Publication of CA2344197A1 publication Critical patent/CA2344197A1/en
Application granted granted Critical
Publication of CA2344197C publication Critical patent/CA2344197C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1485Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent

Abstract

Methods, systems, and kits for treating breast tissue rely on transferring energy to or from cells lining an individual breast duct.
Energy can be introduced into the breast duct, e.g., by filling the duct with an electrically conductive medium and applying radio frequency energy to the medium. Other energy forms could also be used, such as light, ultrasound, radiation, microwave energy, heat, cold, direct current, and the like. By treating individual breast ducts, cancerous and pre-cancerous conditions originating in the duct can be effectively treated.

Description

METHODS AND SYSTEMS FOR TREATING BREAST TISSUE
BACKGROUND OF THE INVENTION
I. Field of the Invention The present invention relates generally to medical methods and S apparatus for treating breast tissues. More particularly, the present invention relates to methods and apparatus for ablating or inhibiting the proliferation of epithelial and other cells lining a breast duct.
Breast cancer is the most common cancer in women, with well over 100,000 new cases being diagnosed each year in the United States alone. Breast cancer usually begins in the cells lining a breast duct, with the first stage thought to be excessive proliferation of individual cells) leading to "ductal hyperplasia." Some of the hyperplastic cells may then become atypical, with a significant risk of the atypical hyperplastic cells becoming neoplastic or cancerous. Initially, the cancerous cells remain in the breast ducts, and the condition is referred to as ductal carcinoma in situ (DCIS).
After a time, however, the cancerous cells are able to invade outside of the ductal environment, presenting the risk of metastases, which can be fatal to the patient.
While breast cancer through the DCIS phase is in theory quite treatable, effective treatment requires both early diagnosis and an effective treatment modality. At present, mammography is the state-of the-art diagnostic tool for detecting breast cancer. Often, however, mammography is only able to detect tumors, which have reached a size in the range from 0.1 cm to 1 cm. Such a tumor mass may be reached as long as from 8 to 10 years following initiation of the disease process.
Detection of breast cancer at such a late stage is often too late to permit effective treatment.
Alternative diagnostic modalities, which promise much earlier detection of breast cancer and DCIS, are described in U.S. Patent Nos.
6,168,779;
6,221,622 and 6,494,859. Together, these applications describe techniques for identifying one or more (usually all) individual ductal orifices on a nipple in a breast and for collecting cellular and other materials from individual ductal networks to determine if hyperplasia, DCIS, or other abnormal conditions are present in that network.
While these techniques will be very useful in providing early and accurate diagnosis of breast cancer and other diseased conditions, they do not directly provide for treatment of the condition once it is diagnosed. Conventional treatments for breast cancer have been focused on the treatment of a latter stage disease and include removal of the breast, localized removal of the tumor ("lumpectomy"), radiation, and chemotherapy. While these techniques are often S very effective, they suffer from certain deficiencies. Removal of the breast provides the best assurance against recurrence of the cancer, but is' disfiguring and requires the patient to make a very difficult choice. Lumpectomy is less disfiguring, but is associated with greater risk of recurrence of the cancer. Radiation and chemotherapy are arduous and are not completely effective against recurrence. Such conventional treatments will not always be able to take full advantage of emerging diagnostic techniques, which promise to allow detection of pre-cancerous and cancerous conditions in the breast at a very early stage.
For these reasons, it would be desirable to provide improved and alternative techniques for treating breast cancer and pre-cancerous conditions such as ductal carcinoma in situ (DCIS) and atypical ductal hyperplasia (ADH). In particular, it would be desirable to provide treatment modalities, which can be used in conjunction with the newly developed techniques for diagnosing DCIS and other abnormal conditions within individual breast ducts. Such techniques should be less invasive and traumatic to the patient than the present techniques, should result in minimum or no disfigurement of the breast, and should be effective locally within target sites within the breast duct and/or throughout an entire ductal network. Preferably, the techniques should be capable of being performed in a single or very few treatment session(s). At least some of these objectives will be met by the invention described hereinafter.
2. Description of the Background Art Related U.S. Patent Nos 6,168,779; 6,221,622 and 6,494,859 have been described above. Publications by the inventor herein relating to breast duct access include Love and Barsky (1996) Lancet 348: 997-999; Love (1992) "Breast duct endoscopy: a pilot study of a potential technique for evaluating intraductal disease,"
presented at 15th Annual San Antonio Breast Cancer Symposium, San Antonio, TX, Abstract 197;
Barsky and Love (1996) "Pathological analysis of breast duct endoscoped mastectomies,"
Laboratory Investigation, Modern Pathology, Abstract 67. A description of the inventor's earlier breast duct access work was presented in Lewis (1997) Biophotonics International, pages 27-28, May/June 1997.
Nipple aspiration and/or the introduction of contrast medium into breast ducts prior to imaging are described in Sartorius ( 1995) Breast Cancer Res.
Treat. 35:
255-266; Satorius et al. (1977) "Contrast ductography for the recognition and localization of benign and malignant breast lesions: An improved technique," in: Logan (ed.), Breast Carcinoma, New York, Wiley, pp. 281-300; Petrakis (1993) Cancer Epidem.
Biomarker Prev. 2: 3-10; Petrakis (1993) Epidem. Rev. 15: 188-195; Petrakis (1986) Breast Cancer Res. Treat. 8: 7-19; Wrensch et al. (1992) Am. J. Epidem. 135: 130-141;
Wrensch et al.
( 1990) Breast Cancer Res. Treat. 15: 39-S 1; and Wrensch et al. ( I 989) Cancer Res. 49:
2168-2174. The presence of abnormal biomarkers in fine needle breast aspirates is described in Fabian et al. (1993) Proc. Ann. Meet. Am. Assoc. Cancer Res. 34:
A1556.
The use of a rigid 1.2 mm ductoscope to identify intraductal papillomas in women with nipple discharge is described in Makita et al. ( 1991 ) Breast Cancer Res.
Treat. 18: 179-1 S 188. The use of a 0.4 mm flexible scope to investigate nipple discharge is described in Okazaki et al. ( 1991 ) Jpn. J Clin. Oncol. 21: 188-193. The detection of CEA
in fluids obtained by a nipple blot is described in Imayama et al. (1996) Cancer 78:
1229-1234.
Delivery of epithelium-destroying agents to breasts by ductal cannulation is described in WO 97/05898 and U.S. Patent No. 5,763,41 S.
A company called Diagnostics Inc., formed in 1968, produced devices to obtain breast ductal fluid for cytological evaluation. The devices included a breast nipple aspiration device to collect NAF (nipple aspirate fluid) from subjects, and catheters to retrieve ductal fluid from breast ducts. The devices were sold prior to May 28, 1976 for the purpose of collecting breast ductal fluid for cytological evaluation.
Energy-mediated ablation of the uterus, gall bladder, blood vessels, and other hollow body organs are described in the following U.S. Patent Nos.:
4,776,349;
4,869,248; 4,872,458; 4,979,948; 5,045,056; 5,100,388; 5,159,925; 5,222,938;
5,277,201;
5,242,390; 5,403,311; 5,433,708; 5,507,744; and 5,709,224.
SUMMARY OF THE INVENTION
The present invention provides improved methods for treating individual milk ducts in human and animal breasts. Such treatments will usually be performed in patients diagnosed with cancer or precancerous conditions but may also find use prophylactically in patients at risk of cancer or other ductal diseases.
Treatment is directed at individual ducts in ductal networks within the breast and typically comprises transfernng energy to or from a lumen of the duct in an amount sufficient to destroy (ablate) or inhibit proliferation of cells lining the duct, such as epithelial cells which are atypical, excessively proliferating (neoplastic), and/or at risk of excessive proliferation. In an exemplary embodiment, high frequency electrical current is directed to the lumen in order to ablate or necrose at least a portion of the cellular lining of the duct. The present invention also encompasses directing other forms of energy to the lumen of the duct, including light energy, vibrational energy (e.g., ultrasonic or sonographic), radiation (electromagnetic, ultraviolet, infrared, nuclear (typically (3 but sometimes a and/or y), x-ray, etc.), heat, direct electrical current, microwave, ferromagnetic, and the like.
Cryogenic treatment may also find use with suitable cryogenic delivery systems as described, for example, in U.S. Patent Nos. 5,899,898 and 5,147,355.
Photodynamic therapy employing light with wavelengths from ultraviolet to infrared may find use with known photoactive agents, such as porfimer sodium (PHOTOFRIN'~), lutetium texaphrin (Antrin ), temoporfin (Foscan~), aminolevulinic acid HC 1 (Levulan~), and the like.
Exemplary phorphyrins and methods of making and other potential aids in the process of using them against breast cancer are described in U.S. Patent Nos. 4,935,498, 5,159,065, 5,292,414, 5,369,101, 5,439,570, 5,451,576, 5,457,183, 5,530,122, 5,567,687, 5,587,371, 5,587,463, 5,607,924, 5,756,726, 5,776,925, 5,801,229, 5,817,017, and 5,837,866.
Usually, the photoactive agent will be directed into an individual ductal network and light radiation directed to the ductal network and/or the entire breast. For example, the light may be introduced into the ductal network using a light fiber or waveguide in the form of a ductal access tool. Alternatively or additionally, light can be directed onto and through the exterior of the breast.
Other forms of energy and radiation may also be utilized to activate or enhance the activity of drugs and active agents which have been introduced into the ductal lumen(s). For example, ultrasonic energy may be used, e.g., to excite a fluid or material that is inside the duct. The fluid or material can then act upon the duct, including the ductal lining. For example, polymers which are sensitive to ultrasonic energy can be administered to a breast duct. The present invention provides intraductal delivery of the polymer spheres, and localized or intraductal exposure of the duct or breast to ultrasound to achieve the diagnostic or therapeutic purpose. If the polymers are beads that house a cavity, the cavity can be filled with a diagnostic or therapeutic material which is delivered to the breast duct. When exposed to ultrasonic energy the polymer wall breaks down and the bead disperses the material that was carried inside the polymer. Such beads are available from Point Biomedical located in San Carlos.
Photodynamic therapy (PDT) may be practiced by intravenous S (systemic) delivery or intraductal delivery of a photoactivatable material followed by exposure to light that activates the material. In this invention, a PDT drug, such as, for example, Lutex is delivered via catheter into one or more mammary ducts. At the desired time, light of the appropriate frequency is applied to the outer surface of the breast or intraductally using a fiber optic. The most desirable frequencies of light are in the range of 700 nm to 800 nm which is the range that provides the highest penetration depth in tissue and blood. The light activates the PDT drug and the therapeutic effects begin a8er the drug is activated.
The invention also provides for the delivery of radiosensitizers that enhance radiation treatment. A radiation sensitizer can be administered to the duct or systemically. The sensitizer can be, for example, gadolinium which goes though an electron reduction forming a free radical when exposed to x-ray or gamma radiation.
Texaphyrin can be combined with gadolinium to form a metallotexaphyrin (see U.S.
Patent No. 5,801,229) which is available from Pharmacyclics, Inc. The toxicity of gadolinium is further increased when exposed to the gamma or x-rays. The radiation sensitizer need not be metallic-based, but may also be a drug or chemical which enhances a cell's susceptibility to radiation, such as CMNa (a nitroimidazole compound, see U.S.
Patent Nos. 5,650,442, and 4,820,844), carboplatin (see U.S. Patent No.
5,780,653), or gemcitabine.
Radioisotopes can be delivered to the duct. A radioisotope can be delivered alone or conjugated to an antibody that is specific for a tumor or lesion antigen.
The antigen can be, for example, a ductal epithelial cell surface molecule, or a cell surface protein that is expressed on the surface of transformed. cells. The radioisotope can be conjugated to a monoclonal antibody which is capable of targeting breast ducal epithelial cell epitopes, e.g., the antibodies HER2 (see Ross and Fletcher, Oncologist 3(4):237-252 (1998); Pegram et al., Oncogene 18(3):2241-51 (1999)) or MUCI (C,'hu and Chang, Cancer Lett 142:121-7(1999); Goldenberg and Nabi, Semin Nuci Med 29:41-(1999)).
The radioisotope can be a particle emitting isotope, e.g., an alpha particle emitting radioisotope, e.g., Bismuth-213 (Bi-2 13). Alpha emitting radioisotopes are preferred because alpha particles have a short penetration depth (typica115r 3-fi layers of cells), are WO 00/16708 PCT!US99/21378 easily shielded, the present minimal radiation risks during handling. The alpha particles generated during the degradation of Bi-213 are particles with sufficient energy to ablate a limited radius of cells in the ductal lumen and surrounding the duct (e.g., myoepithelial cells, basal cells or stromal cells), and has a short half life, about 45 minutes.
Additionally, Bi-213 decays into stable Bi-209 which is approved for use in humans (and is biocompatible) and is routinely used in pharmaceuticals. To target specific lesions identified in a duct, any atypical ductal cells retrieved from a duct can be tested for antigens, and an appropriate antibody conjugated to the Bi-213 molecules for administration into the duct and specific targeting to the lesion.
Heating the breast duct (andlor fluid in the duct) may be provided in a number of ways. Heating the duct may be provided by intraductal access of a laser equipped ductal access tool for generating enough laser energy intraductally to ablate the ductal lumen tissue, including any lesions present in the duct. Preliminary work by radiologist Steven Harms at University of Arkansas has shown that laser ablation of tumors is possible and effective. Additionally, laser heating to ablate breast lesions is described in Robinson et al., JAm Coll Surg 186(3):284-292 (1998).
Radiowaves at particular frequencies or microwaves may be used to preferentially heat a medium in the breast ducts and thus ablate the ductal tissue but not other breast tissue distal from the duct. For example a fluid or material with a resonance frequency of that of an electromagnetic source (e.g., radiofrequency and microwave, etc.) can be administered to a breast milk duct. Upon application of the electromagnetic energy (either intraductally, or to the entire breast) the fluid or material in the duct with the resonance frequency that corresponds to that of the electromagnetic source would resonate the heat. The heat would destroy the ductal system that contains the resonating fluid or material. The amount of heating is controlled by the amount of electromagnetic energy applied. Metallic fluids such as gold or silver colloid can be used, for example, as the fluid or material placed into the duct to resonate at a particular electromagnetic frequency.
Microwave heating of the breast duct can also be accomplished with a breast duct access tool capable of generating a local heat that affects only the lesion and surrounding tissue of the ductal lumen. A company called Celsion, located at Columbia, MD, is developing this particular version of hyperthermia therapy, phone 410-290-5390.
The methods are described for application in broken tissue, whereas the present invention provides methods to apply the ablative therapy intraductally.
The present invention still comprises removing energy from the cellular lining of the duct, e.g., freezing the cellular lining, using cryogenic apparatus and methods. Agents of extreme cold, or agents which draw heat from surrounding tissue that contact the agent can be applied locally to the breast duct using a cryo-probe adapted for ductal access to ablate a lesion in the duct or other luminal tissue. A
company called Endocare, Inc. is developing a CRYOcare 1- Probe Surgical system for administration to surgical incision sites. The Endocare product may be adapted for administration to an accessed breast duct instead of a surgical site. Extreme cold is applied though administration of a cryo agent to the ductal lumen resulting in an ablation of the ductal tissue that contacts the agent. See article by Brown, J. Nat'l Cancer Inst.
90(5):351-353 (1998).
Additionally, Titan Corp. of San Diego and TomoTherapeutics has developed an x-ray needle its subsidiary. The tool may be applied or modified for use intraductally, to therapeutically ablate ductal tissue comprising a lesion.
Brachytherapy has been described to treat local breast disease. The brachytherapy described can be modified for administration intraductally, without incision or tissue removal. Dr. Robert Kuske is completing work along these lines at Ochsner Clinic in New Orleans, LA.
Finally, radiofrequency (RF) therapy can be applied intraductally. A
ductal access tool capable of delivering radiofrequency waves can be introduced into a breast duct and radiofrequency waves can be delivered to the duct to ablate tissue in the ductal lumen, including any lesion.
In a first specific aspect of the present invention, a method comprises selecting an individual duct and transferring energy to or from cells lining the duct in an amount sufficient to destroy or inhibit proliferation of said cells. The individual duct is usually selected based on a prior diagnosis or evaluation of that duct indicating a presence or risk of DCIS or other cancer within the duct. Particular methods for accessing individual ducts through an associated orifice in the nipple and for diagnosing abnormal conditions within the duct are described in U.S. Patent Nos. 6,168,779;
6,221,622 and 6,494,859.
Briefly, at least one and usually all ductal orifices in the nipple of a breast are first located and marked using localization techniques. The lumens of each of the ductal networks can then be accessed using small diameter catheters which permit collection of cellular and other materials. By evaluating the cellular and other materials which are collected, the presence or risk of disease within an individual ductal network can be evaluated. Those individual ducts which are diseased or at risk of disease can then be selected for treatment according to the methods of the present invention.
While it will frequently be desirable to locate and screen all of the ductal orifices as just described, in certain cases it will be necessary to screen only pre-selected ductal orifices, e.g. those which display indications suggesting that they may be pre-cancerous or otherwise of particular interest. For example, it may be possible to identify regions of the breast or even particular ductal orifices which have conditions such as calcification indicating that only certain ductal orifices need to be screened. In some instances, it may even be possible to identify particular ductal networks and associated network orifices for treatment by the methods of the present invention without performing a specific ductal screening technique, e.g. using mammography, ultrasound, magnetic resonance imaging (MRI), or other ductal non-specific screening technique.
Depending on the nature of the diagnosis, the entire ductal network or only a portion thereof can be treated. To treat a portion of the ductal network, the transfer of energy will preferably be limited to the cells lining only that portion.
Usually, however, it will be desirable to treat substantially the entire ductal network and energy will be transferred to or from the cells lining the entire ductal lumen.
When applying high frequency or other forms of electrical energy to the ductal lumen, it will usually be desirable to first introduce an electrically conductive medium, such as saline, electrically conductive contrast medium, or the like, to substantially fill (and usually distend) the entire duct. Methods utilizing dual lumen catheters for flushing and filling ductal networks are described in U.S.
Patent Nos.
6,221,622 and 6,494,859. Once the ductal network has been filled with the electrically conductive medium, an electrode or other electrically conductive member can be introduced to the lumen, typically through the ductal orifice, and current flow established through the conductive medium to reach substantially all portions of the cellular lining. In the case of radiofrequency and other electrical energy treatments, a monopolar" energy or current flow will usually be established. That is, the electrically conductive medium within the ductal network will be connected to one pole of a suitable radiofrequency or other power supply, while the other pole is connected to a dispersive electrode which is placed on the patient's skin, preferably over at least a portion of the breast, and more preferably over a region which circumscribes the breast.
Alternatively, the dispersive electrode can be placed on the patient's thigh, or over the lower back, percutaneously with the breast tissue, or in any other manner typically used in monopoiar electrosurgical procedures.
Electrical energy could also be applied in a bipolar fashion with a first pole spaced-apart from a second pole within the lumen. In that way, electrical energy could be focused with a well defined length of the lumen.
While electrical energy will usually be delivered into the electrically conductive medium within the ductal network directly using electrode(s), it will also be possible to selectively heat the medium within the ductal network using radiofrequency induction. A radiofrequency antenna or other source, optionally shaped to conform to the exterior of the breast, may be used to selectively excite and heat the conductive medium 1 S which has been delivered into the breast. As breast tissue is primarily water, such conductive heating will generally be useful to raise the ductal temperature to very high temperatures, but rather be useful to selectively increase the temperature relative to the rest of the duct to inhibit cellular proliferation. Energy may also be transferred to the breast by introducing energy active species, such as photodynamic species, followed by a subsequent treatment of the breast using ultraviolet or other light or radiation having a wavelength selected to excite the introduced photodynamic or other species. It will be appreciated that the present invention is directed at the ductal-specific delivery of energy to the ductal network and may comprise a wide variety of specific techniques for such delivery.
The agent can comprise an agent sensitive to vibrational energy, for example, collagen spheres that break-up upon a diagnostic level of ultrasound applied to the breast or ductal lumen.
The energy will be applied in an amount and over a time sufficient to at least inhibit cellular proliferation of cells lining the ductal lumen, usually epithelial cells lining the lumen. More usually, the energy will be applied in order to necrose all cells lining the ductal lumen. Usually, at least the inner Layer of epithelial cells which line and are directly exposed in the ductal lumen will be effected, usually being destroyed. Often, it will be further desirable to treat and usually destroy an epithelial layer below the first layer, and in some instances it may even be desirable to destroy the myoepithelial Layer or beyond. The electrical energy will typically be applied at a power level from about 50 W
to 300 W, usually from about 120 W to 200 W. The power may be applied continuously, or may be applied at a duty cycle typically in the range from 10 percent to 90 percent, often from 25 percent to 75 percent. Optionaliy, the amount of power delivered can be controlled based on preselected algorithms and/or feedback control algorithms.
For example, the amount of power delivered to the duct could be controlled based on the temperature of the ductal lining, the temperature of the electrically conductive medium within the duct, electrical impedance bet<veen electrodes, or other measured values taken during the treatment protocol.
In addition to various forms of electrical energy, the present invention may provide for delivery of other forms of radiation, including electromagnetic, ultraviolet, infrared, nuclear, x-ray, and the like. In particular, nuclear radiation can be delivered using a solution, dispersion, sol, seeds, or other form of radio isotopic medium which can be introduced into and throughout the ducta) lumen, typically using a syringe, a infusion 1 S catheter, or other device. Nuclear radiation may also be delivered to the ductal lumen using a radioactive catheter, wire, stem, implantable seed, or the like.
Catheters may be designed to immobilize a nuclear radiation source, where the source may then be advanced through the ductal lumen to selectively expose portions of the luminai wall.
Alternatively, or additionally, catheters may provide delivery paths for introducing nuclear materials, where the materials may be transported within the catheter to provide the desired treatment times and regions. Infrared and ultraviolet radiation may be delivered using suitable light fibers and other optical systems. X-ray energy can be delivered using a miniaturized x-ray source which can be introduced and translated through at least selected portions of the ductal lumen system.
Systems according to the present invention for applying high frequency or other electrical current to a breast duct comprise a lumen electrode, a dispersive electrode, and optionally conductive fluids to be introduced into the ductal network. The lumen electrode will be adapted to enter a lumen of the duct, typically through the associated ductal orifice, but alternatively percutaneously through tissue into the duct.
The lumen electrode may be a simple single wire or filament electrode, with the primary requirement being the ability to carry sufficient power to the ductal lumen, i.e., within the power ranges set forth above. The dispersive electrode will be adapted for placement on and conformance to a region on the patient's skin, usually on the breast, more usually circumscribing the breast, but alternatively on other locations, such as the lower back, thigh, abdomen, or the like. The system may further comprise a sheath having a lumen for introducing the lumen electrode through the ductal orifice. The sheath will typically be composed of an electrically insulating material, and the electrode will be advanced out a distal tip of the sheath in order to contact the electrically conductive medium that has been introduced to the ductal lumen, as described above.
Suitable electrically conductive fluids include saline, Ringer's medium, lactate solution, and other physiologically acceptable electrolyte. Usually, from 0.1 ml to 10 ml, typically 0.5 ml to 5 ml will be introduced into a single ductal network, and systems and kits may include vials, syringes and other containers holding pre-measured amounts of the conductive fluids. Optionally, the system may further comprise a high frequency electrical power supply having a first pole for connection to the lumen electrode and a second pole for connection to the dispersive electrode. The power supply may incorporate control features to implement the control protocols described above.
The present invention further comprises kits for treating a breast duct.
The kits will usually comprise a probe,' such as a lumen electrode, and optionally a dispersive electrode and conductive fluids as just described. In addition, the kits will include at least instructions for use, usually in a printed format, more usually being printed on a separate piece of paper packaged together with the kit, or printed on a portion of the kit packaging. The instructions will set forth a method for treating a breast duct as generally described above, where the probes used to transform energy to or from the duct. The kit may further comprise a suitable package, usually in the form of a pouch, tray, box, tube, or other conventional package structure.
Usually, although not necessarily, at least the electrode component of the kit will be sterilized and maintained in a sterile condition within the kit, e.g., usually being maintained in a sterile package or sterile portion of the package. The instructions for use may set forth any of the protocols set forth above in connection with the description of the methods of the present invention.
While the present invention is particularly useful for delivering energy to the ductal network in an amount and for a time sufficient to destroy at least a portion of the epithelial or other cellular lining of the ductal lumens, as described above, the invention will also find use in treating cancers and other conditions which extend beyond the cellular lining of the ductal network.

According to an aspect of the invention, there is provided the use of energy in amounts sufficient to ablate or inhibit the proliferation of cells lining a breast duct.
According to another aspect of the invention, there is provided the use of energy for delivery through a lumen of a duct of a breast for the treatment of breast tissue.
According to another aspect of the invention, there is provided a system for applying high frequency electrical current to a breast duct, the system comprises:
a lumen electrode adapted to enter a lumen of the duct; and a dispersive electrode adapted to conform to a patient's skin.
According to another aspect of the invention, there is provided a kit for treating a breast duct, the kit comprises:
a probe adapted for introduction to a lumen of a breast duct; and instructions for treating the breast duct with the probe according to claim 8, wherein the probe is used for transferring energy to or from the duct.
According to another aspect of the invention, there is provided the use of a radioactive material for delivery into a least a portion of a ductal lumen for the treatment of tissue surrounding the ductal lumen.
According to another aspect of the invention, there is provided the use of an energy sensitive agent for delivery into and treatment of a breast duct of a patient, the agent being sensitive to at least one energy selected from the group consisting of light energy, electrical energy, electromagnetic energy, radiation energy and vibrational energy, the energy being capable of disrupting the agent which acts on target cells lining the breast duct.
According to another aspect of the invention, there is provided the use of a radioisotope for delivery into a breast duct for the treatment of the breast duct wherein the radioisotope emits a particle capable of contacting a cell lining the duct and ablating it.
lla According to a further aspect, there is provided use of energy to treat a breast duct having a device positioned therein, the energy capable of being transferred to or from cells lining the duct in an amount sufficient to ablate or inhibit proliferation of said cells.
According to another aspect, there is provided use of energy to treat breast tissue, wherein a breast duct has a conductive medium therein, the energy capable of being applied to the breast tissue through the conductive medium located within the breast duct.
According to a further aspect, there is provided use of an agent sensitive to at least one energy selected from the group consisting of light energy, electrical energy, electromagnetic energy, radiation energy and vibrational energy in a breast duct targeted for treatment in a patient, the agent capable of receiving specific light, electrical, electromagnetic, radiation or vibrational energy in an amount Buff dent to disrupt the agent such that the agent acts on target cells lining the breast duct.
According to another aspect, there is provided use of a device for treating a breast duct, the device capable of being positioned within an individual duct and said device being capable of transferring energy to or from cells lining the duct in an amount sufficient to ablate or inhibit proliferation of said cells.
According to a further aspect, there is provided use of energy to treat a breast duct having a medium therein, the energy capable of being transferred to or from cells lining the duct in an amount sufficient to ablate or inhibit proliferation of said cells.
According to another aspect, there is provided use of energy to treat a breast duct, wherein the breast duct contains a medium and a device, contacting the medium, the energy capable of being transferred to or from cells lining the duct in an amount sufficient to ablate or inhibit proliferation of the cells.
According to a further aspect of the present invention, there is provided a use of a tool and an agent for treating a breast duct of a patient, said agent sensitive to at least one form of energy and said agent capable of being systemically introduced into said patient targeted for treatment, said tool capable of being introduced into said breast duct through a ductal opening and said tool capable of transferring said at least one form of energy to the agent in the duct in an amount sufficient to disrupt the agent whereupon the agent acts on target cells lining the breast duct.
llb According to another aspect of the present invention, there is provided a use of an energy delivering tool and an agent for treating a breast duct of a patient, said agent sensitive to at least one form of energy and capable of being systemically introduced into said patient targeted for treatment, said tool capable of being introduced into said breast duct and said tool capable of transferring said at least one form of energy to the agent in the duct in an amount sufficient to disrupt the agent whereupon the agent acts on target cells lining the breast duct, said target cells including benign cells and at least one of the following types of cells:
cancerous and precancerous cells.
llc BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is an anterior view of a human female breast, shown in section, and illustrating three of the six to nine ductal networks extending inwardly from the nipple.
Fig. 2 is an enlarged view of the nipple of Fig. 1 illustrating the orifices leading to each of the three ductal networks.
Figs. 3A-3C illustrate a catheter suitable for accessing and diagnosing an individual ductal network as well as for introducing an electrode for high frequency energy therapeutic treatment according to the method of the present invention.
Fig. 4A illustrates use of the catheter of Fig. 3 for accessing and diagnosing a ductal lumen as a preliminary step to performing the therapeutic treatment of the present invention.
Fig. 4B illustrates use of the catheter of Fig. 3 for introducing an electrode for performing high frequency electrical treatment according to the methods of the present mvent~on.
I S Fig. 5 illustrates a system according to the present invention in use during a therapeutic treatment.
Fig. 6 illustrates a kit comprising a lumen electrode, a dispersive electrode, and instructions for use according to the methods of the present invention.
Figs. 7A-7D illustrate a photodynamic therapy for ablation of the ductal epithelium.
Figs. 8A-8C illustrate ultrasound activation of biopolymers.
Figs. 9A and 9B illustrate a ductal access device comprising fiber optic capacity.
Figs. 1 OA and l OB illustrate devices and materials for administration of a radioactive panicle emitter.

The present invention comprises methods, systems, and kits for treating the cellular linings of ductal networks in a human or animal breast. A typical breast B, as illustrated in Fig. 1, includes a nipple N and from six to nine ducts D. Three ductal networks D,_3 extending inwardly from the nipple N into the breast tissue are illustrated.
As best seen in Fig. 2, each ductal network D,_3 begins with an orifice O~_3 which lies at the surface of the nipple N and extends inwardly through a ductal sinus S,_3 and then into a branching network. Each network D comprises a series of successively smaller lumens which are arranged in complex, three-dimensional patterns. The networks of each duct will overlap within the breast tissue but will not be interconnected. 'the total volume of each network is usually in the range from 0.1 ml to 0.5 ml, but the walls are somewhat compliant so the internal volume may increase as fluid is introduced. The treatment methods of the present invention generally rely on accessing the ductal networks) through the orifice 0 of the duct D within the nipple N. Usually, there will be from six to nine orifices which open into a like number of ductal networks. If desired, confirmation of the number and location of the ductal orifices for any individual patient can be made by labeling the nipple as described below.
The therapeutic methods of the present invention will usually be performed following a diagnosis or evaluation of cancer or a pre-cancerous condition or other disease in one or more of the ducts) of the patient. In some cases, however, the methods could be used prophylactically in asymptomatic patients at significant risk of cancer or other breast diseases. The manner of making a diagnosis does not form part of the present invention and may be performed as described in U. S. Patent Nos.
6,221,622 and 6,494,859. Briefly, such diagnosis of individual breast ducts relies on collecting endogenous ductal fluids and cellular and non-cellular marker materials from the individual ductal networks on a duct-by-duct basis. That is, fluids and marker materials are obtained from a single duct without obtaining material from any other ducts. This is in contrast to other techniques which, in some instances, are able to obtain cellular and other materials from all milk ducts at once by applying a mild vacuum to the nipple.
It should be noted, however, that in some instances such screening of all ducts in a single step may be appropriate in order to identify patients showing abnormalities for whom further, duct-specific testing is appropriate. Other identification techniques may also be employed. For example, calcification may be identified using mammography followed by duct-specific diagnosis to confirm the identity of the associated duct and to confirm that the calcification are associated with DCIS or other abnormal conditions.
In order to carry out the diagnosis, a location of at least one duct will be determined, typically by labeling at least one and usually all ductal orifices as described in U.S. Patent No. 6,168,779. Briefly, a portion of the epithelial lining present exposed at the ductal orifice may be labeled with a visible marker which allows the treating professional to identify the entry orifice for each of the ductal networks in the breast. Following identification of the ductal orifice, a washing fluid will be introduced into the duct in order to loosen and mobilize cellular material from the ductal lining, primarily epithelial cells from the lining. The washing fluid is introduced in an amount and a manner such that substantially the entire volume of the duct will be washed with the fluid in order to obtain a sample which is representative of the entire ductal network.
Cellular components from the sample will usually be of the most interest, but ductal fluids and secreted molecular species (both small molecules and more usually biological macromolecules such as proteins and carbohydrates) may also be analyzed. The washing fluid carrying the cells and other materials is then collected, and the materials morphologically, (i.e., cytologically), histologically, immunohistologically, chemically, immunologically, enzymatically, or otherwise examined in order to determine any abnormal or disease conditions within the ductal network, particularly cancer or a pre-cancerous condition.
1 S An exemplary catheter 100 suitable for accessing ductal lumens for both diagnosis and therapy according to the present invention is illustrated in Figs. 3A-3C. The catheter 100 is a three French double lumen catheter with a length from hub 102 to distal tip or port 104 of about 30 cm, and outer diameter Do (Fig. 3B) of about 1 mm, a guidewire DGW of about 0.5 mm, and a crescent-shaped lumen 110. The outer tip diameter DoT is about 0.8 mm and the luminal tip diameter D,,T is about 0.4 mm, with the distal end 116 being tapered. A sideport 120 having an oval geometry opens from the crescent-shaped lumen 110 and is spaced proximally of the tip 104 by a distance DS of about 4 mm. Fluid for washing the duct is introduced through port 130 into the lumen 110 and out through the side port 120 into the ductal lumen. Fluid may be collected through port 140 on the hub 102 via the guidewire lumen 142 which extends to the distal tip 104. The catheter may be formed from a wide variety of polymeric materials which possess sufficient flexibility and hoop strength, such as polyethylenes, polyimides, and the like.
The particular dimensions and geometry set forth above have been found to be suitable for accessing and diagnosing the breast and would further be suitable for introducing an electrode into the ductal lumen, as described in more detail hereinafter.

As illustrated in Fig. 4A, the catheter 100 is used for collecting the cellular and other marker materials from a ductal network DZ by first accessing the duct with a guidewire, such as a conventional 0.014 inch guidewire (not shown).
After the guidewire is introduced, typically by a distance in the range from 0.25 cm to 2.5 cm past the orifice O2, the catheter 100 will be introduced over the guidewire by passing the distal port 104 thereover. The distal port 104 is introduced, also typically to a depth from about 0.25 cm to 2.5 cm, usually from about 0.5 cm to 1.5 cm. Fluid is first introduced through port 120 to substantially fill and slightly distend the ductal lumen, typically at a gauge pressure from 1 psi to 20 psi. The fluid may then be collected through distal port 104.
Typically, fluid will be recirculated continuously from the port 120, through the ductal network, and then collected into the distal port 104. Particular techniques and alternative techniques for performing the washing and analysis of the ductal lumens is described in U.S. Patent 6,221,622 and 6,494,859.
After the diagnosis is complete, the methods, systems, and kits of the present invention may be used to treat individual ductal lumens which are diagnosed as having cancerous, pre-cancerous, or other abnormal cells or disease conditions. A
preferred method for treating the duct DZ is illustrated in Fig. 4B. A sheath or other cannula which may be the catheter 100 described above, is reintroduced to the duct DZ, usually to a depth substantially equivalent to that used for diagnosis. A
luminal electrode 150 is then introduced through the guidewire lumen so that it extends distally of proximal port 104 into the ductal lumen. Before or after introducing the electrode, an electrically conductive medium will be introduced to substantially completely fill the entire ductal network. Unlike the diagnosis step, however, the fluid will typically be maintained in a static condition, i.e., without recirculation. Usually, a slight static pressure will be maintained on the fluid in order to completely fill and slightly distend the ductal network, typically at least about I psi, often at least about 3 psi, and sometimes 5 psi or higher.
Refernng now to Fig. S, the electrode 1 SO may be connected to a first pole 152 of a high frequency power supply, such as a conventional electrosurgical power supply. A dispersive electrode 154 may be placed about the exterior of the breast B, typically circumscribing the breast, as illustrated in Fig. 5. The dispersive electrode will be connected to the other pole 156 of the power supply 160. Suitable electrosurgical power supplies are available from a number of commercial vendors, such as Valleylab, Aspen, Bovie, and Butcher. The power supply will usually provide energy at high frequencies in the range from about 200 kiHz to 4 MHz, and may employ conventional WO 00/16708 PCT/U S99/2 t 378 sinusoidal or non-sinusoidal waveforms. The total power delivered to each ductal lumen may be in the range from SO W to 300 W, usually from about 120 W to 200 W. The electrical energy will be applied for a time sufficient to inhibit proliferation of the cells lining the breast duct, usually for a time sufficient to ablate or necrose substantially the S entire cellular layer lining the breast duct.
As illustrated in Fig. S, operation of the electrosurgical system is "monopolar." That is, the current flows between the lumen electrode, which is considered an active electrode to the dispersive electrode disposed on the exterior of the patient's skin. In other cases, it might be possible to perform the procedure in a bipolar manner.
In such cases, two or more electrodes may be penetrated into the ductal lumen, where the electrodes are energized with opposite polarities. In some cases, at least one of the two electrodes might be introduced percutaneously, e.g., using a needle stick, into the breast tissue so that it is disposed at or near a distal terminus of the ductal network. In general, however, monopolar operation as illustrated in Fig. S will be preferred.
1 S As described thus far, the electrically conductive fluid is directly energized by contact with at least a single electrode disposed in the duct lumen. It will also be possible to indirectly heat the fluid by inductive heating where an external antenna or electrode is brought into proximity with the breast and energized to excite and heat the fluid which fills the ductal lumen. Ultrasonic energy may be used, e.g., to excite a fluid or material that is inside the duct. The fluid or material can then act upon the duct, including the ductal lining.
Kits 200 according to the present invention are illustrated in Fig. 6. The exemplary kit 200 comprises a lumen electrode, such as electrode 1 S0, a dispersive electrode, such as electrode 1 S4, and instructions for use 1 S6 setting forth a treatment 2S protocol for an individual breast duct according to the principals described above. The components of the kit will typically be packaged in a conventional medical device package, such as pouch 210, where some or all of the components may be maintained in a sterile environment.
Fig. 7 depicts photodynamic therapy using light sensitive chemical (e.g., texaphyrins (porphyrins)) delivered locally to the breast duct, and applying the light source stimulation to the breast, either in the duct or at the breast generally. Fig. 7A
depicts the chemical lutetium texaphyrin that after exposure to light emits cytotoxic signlet oxygen which attacks tumor cells. Fig. 7B depicts breast duct 300, nipple and breast 301, ductal orifice 302, and intraductal lesion 304. The duct 300 is accessed at the orifice 302 by catheter 307 containing a chemical 306, for example, lutetium texaphyrins in syringe delivery receptacle 308, delivered to the duct and contacting the lesion 304.
Fig. 7C depicts the application of general light from a light source 309 to the external portions of the breast to excite the chemicals 306 in the duct 300. Fig. 7D
depicts the S application of an intraductally delivered light from a source 310 configured to access a breast duct 300 in order to excite chemicals 306 which in turn act on the lesion 304.
The device depicted in Fig. 7 may also be applied to administer a radiation sensitizer to a breast duct and activate it there. For example duct 300 is accessed at the orifice 302 by catheter 307 containing chemical 306, for example, the radiation sensitizer XCYTRIN, a metallotexaphyrin, can be administered to the duct in a syringe delivery receptacle 308, delivered to the duct and contacting lesion 304. An x-ray or gamma ray source is applied to the breast to activate the radiation sensitizer and provide toxic effects for intraductal tumor cells. The XCYTRIN molecules can capture electrons produced by x-ray or gamma radiation, resulting in one electron reduction of the complex.
A pi (7c) -1 S radical cation is created that is reactive and capable of destroying neighboring biomolecules such as DNA. The radiation therapy is preformed by irradiation of the tumor site with x-rays or gamma rays (while shielding adjacent normal tissue to minimize toxicity). The x-rays and gamma rays interact with molecules in the duct such as water to generate high energy electrons and free radicals which are highly reactive and short-lived molecules. Radiation sensitizers are chemicals that increase the lethal effects of radiation when administered in conjunction with it. Tumor cells, which are hypoxic, are 2.3 to 3.0 times more resistant than normal cells to the damaging effects of ionizing radiation.
Administration of 'C~'YCT 1N l:rov:des ue agen: of strong c'.~c.r<,a z:fnity ezp,able of reacting with hydrated electrons to prevent them from neutralizing cytotoxic hydroxyl 2S radicals, and thus promote radiation sensitization of hypoxic cells.
Chemical 306 can comprise a chelating agent, such as e.g., ETPA or DTPA, to bind the metallic radioactive ions making them chemically inert, but still radioactive.
Fig. 8 depicts ultrasound activation of high molecular weight collagen derived biopolymers to better visualize the breast duct or to deliver diagnostic or therapeutic agents to the breast duct. Fig. 8A shows a polymer sphere housing either air or a diagnostic or therapeutic chemical 403. The sphere has an outer wall 402 and an inner wall 401 that can be designed to be sensitive to ultrasonic energy and to break open to release particles 403 as depicted. Fig. 8B shows a breast 404 containing a breast duct trade-mark 405 and spheres 400 with particles 403 inside. The spheres are delivered in a ductal access tool 406 from a syringe delivery receptacle 407 in order to treat or diagnose lesion 408. Fig. 8C depicts the same duct 405 accessed by ductal access tool 410 having an ultrasonic signal transmitter connected to energy source 409. Lesion 408 is diagnosed or treated when particles 403 are released upon application of the ultrasonic wave energy.
Fig. 8C also depicts delivery of a fluid or substance that resonates at a particular frequency. Different mediums will resonate at different frequencies, and a medium selected to resonate at the frequency of applied radiofrequency or microwave energy will be preferentially heated over the surrounding breast tissue. In this embodiment, lesion 408 is ablated when medium 403 is delivered (for example, a gold colloid) to breast duct 405. Energy delivery tool 410 connected to energy source 409 supplies the radiofrequency waves or the microwaves that heat the medium preferentially and thus destroy some of the lining of the duct including the lesion 408. The resonant energy can also be applied externally to the outside of the whole breast and the effects of the energy would be felt where the medium was administered, i.e., in the target breast ducts.
Fig. 9 depicts a breast duct S00 in a breast 501 accessed by a needle containing ductal access tool 505 through orifice 502, so that fiberoptic light and energy source 504 can be threaded through the needle or lumen SOS to contact the lesion 503 and apply laser generated heat to the lesion. Fig. 9B shows the follow-up procedure to check that all the lesion is removed using a ductal access tool 506 with fiberoptic scope apparatus 507 placed into duct 500 in breast 501 to visualize that the lesion has been removed by laser-generated heat. See Robinson et al. JAm Coll Smg. 186(3):284-292, for details of the procedure with regard to systemic delivery of the ultrasonic sensitive agent and application of laser hyperthermia. A similar procedure can be performed using a cryo probe in place of the ductal access tool emitting laser-generated heat.
Referring now to Fig. 9A, the cryo probe 504 is placed in the duct S00 and extremely cold temperatures are delivered to the duct and preferably contacting the lesion and killing the neoplastic cells of the lesion. The heat therapy can also be performed using a probe that delivers by microwave energy a concentrated heat that burns the ductal lumen including the lesion, but does not substantially damage other breast tissue.
Figs. l0A and 10B depict administration of a radioactive alpha emitter to the breast duct. The radioactive alpha particle emitter can be, for example, Bismuth 213 (Bi-213) (half life 45 minutes), Bi-212 (half life 60 minutes), Tb-I49 (half life 4.13 hours), At-211 (half life 7.21 hours), Fm-256 (half life 20.1 hours), Ac-225 (half life 10 days), and Ra-223 (half life 1 1.4 days). Pure Bismuth 213 (Bi-213) may be coupled to an alpha particle emitter. Fig. l0A indicates Bi-213 conjugated to an antibody specific for a tumor antigen. Either the compound is administered to breast duct 600 in breast 601 by accessing the ductal orifice 602 with breast duct access tool and therapeutic drug administrator 603. The radioactive alpha emitter Bi-213 either alone or conjugated to a tumor or lesion specific antibody is contained in delivery receptacle 604 and administered through tool 603 from the receptacle. Inside the duct, the radioactive alpha emitter decays emitting an alpha particle capable of penetrating a cell wall and violating the integrity of a cell, including the hyperplastic or neoplastic cells of a tumor or lesion.
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used.
Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

Claims (73)

WHAT IS CLAIMED IS:
1. Use of energy to treat a breast duct having a device positioned therein, the energy capable of being transferred to or from cells lining the duct in an amount sufficient to ablate or inhibit proliferation of said cells.
2. A use as in claim 1, wherein the energy is capable of being transferred substantially throughout an entire ductal network.
3. A use as in claim 1, wherein the device is capable of transferring energy within only a portion of the ductal network.
4. A use as in claim 3, wherein the energy is capable of being transferred only to the portion of the ductal network to be treated.
5. A use as in claim 1, wherein energy is capable of being introduced to a lumen of the duct.
6. A use as in claim 5, wherein the energy is capable of being introduced by filling at least a portion of a ductal network with an electrically conductive medium and applying high frequency current to the medium.
7. A use as in claim 6, wherein from 50 W to 300 W of energy is capable of being applied.
8. A use as in claim 6, wherein the device comprises an electrode that is capable of contacting the electrically conductive medium to apply the high frequency current, the electrode capable of being introduced through a ductal orifice and capable of applying electrical current between the electrode and a dispersive electrode capable of being on the patient's skin or within a breast.
9. A use as in claim 8, wherein the dispersive electrode is capable of being disposed on the exterior of the breast.
10. A use as in claim 9, wherein the dispersive electrode is capable of being disposed circumferentially about the breast.
11. A use as in claim 1, wherein a radiation source in the duct is capable of transferring the energy.
12. A use as in claim 11, wherein the radiation source comprises a radioisotope.
13. A use as in claim 11, wherein the radiation source comprises an X-ray source.
14. A use as in claim 1, wherein the energy capable of being transferred comprises heat removal from at least a portion of an epithelial lining of an entire ductal network.
15. A use as in claim 14, wherein a cold fluid is capable of being introduced through the ductal network for heat removal.
16. A use as in claim 14, wherein a fluid is capable of being introduced through the ductal network and is capable of being frozen for heat removal.
17. A use as in claim 1, wherein the device comprises an electrically conductive probe.
18. A use as in claim 17, wherein said electrically conductive probe comprises a lumen electrode.
19. Use of energy to treat breast tissue, wherein a breast duct has a conductive medium therein, the energy capable of being applied to the breast tissue through the conductive medium located within the breast duct.
20. A use as in claim 19, wherein the energy is capable of being applied throughout substantially an entire ductal network.
21. A use as in claim 19, wherein the energy is high frequency electrical energy.
22. A use as in claim 19, wherein the conductive medium is an electrically conductive medium and the energy is electrical energy.
23. A use as in claim 22, wherein an electrode is capable of applying the electrical energy through contacting the electrically conductive medium through a ductal orifice.
24. A use as in claim 23, wherein a dispersive electrode is capable of being disposed on an exterior surface of the breast such that a current is capable of passing between the electrically conductive medium and the dispersive electrode.
25. A use as in claim 24, wherein the energy has a power in the range from 50 W
to 300 W.
26. Use of an agent sensitive to at least one energy selected from the group consisting of light energy, electrical energy, electromagnetic energy, radiation energy and vibrational energy in a breast duct targeted for treatment in a patient, the agent capable of receiving specific light, electrical, electromagnetic, radiation or vibrational energy in an amount sufficient to disrupt the agent such that the agent acts on target cells lining the breast duct.
27. A use as in claim 26, wherein the agent is capable of acting ablatively on the target cells lining the breast duct.
28. A use as in claim 26, wherein the agent is capable of acting to inhibit proliferation of the target cells lining the breast duct.
29. A use as in claim 26, wherein the agent is capable of acting prophylactically on the target cells lining the breast duct.
30. A use as in claim 26, wherein the agent is capable of contacting substantially all of the ductal network.
31. A use as in claim 26, wherein the agent is capable of contacting a portion of the ductal network.
32. A use as in claim 26, wherein energy is capable of being transferred only to a portion of the ductal network to be treated.
33. A use as in claim 26, wherein the energy is capable of being introduced to a lumen of the duct.
34. A use as in claim 26, wherein an energy source is capable of transferring energy to the breast.
35. A use as in claim 26, wherein the agent is sensitive to vibrational energy and comprises collagen spheres.
36. A use as in claim 26, wherein the agent is sensitive to light energy comprising wavelengths in the range from ultraviolet to infrared.
37. A use as in claim 35, wherein the agent comprises a photoactive agent selected from the group consisting of porfimer sodium (PHOTOFRIN®), lutetium texaphrin (lutex or Antrin®), temoporfin (Foscan®), and aminolevulinic acid HCl (Levulan®).
38. A use as in claim 26, wherein the agent comprises a resonant frequency of an electromagnetic energy, wherein the electromagnetic energy is capable of being transferred to the breast duct.
39. A use as in claim 38, wherein the electromagnetic energy comprises radiofrequency waves or microwaves.
40. A use as in claim 37, wherein the agent comprises a metallic fluid.
41. A use as in claim 40, wherein the metallic fluid is gold or silver.
42. A use as in claim 26, wherein the agent is a radiation sensitizer, and the energy comprises x-ray radiation or gamma radiation.
43. A use as in claim 41, wherein the radiation sensitizer comprises gadolinium.
44. A use as in claim 41, wherein the radiation sensitizer comprises texaphyrin.
45. Use of a device for treating a breast duct, the device capable of being positioned within an individual duct and said device being capable of transferring energy to or from cells lining the duct in an amount sufficient to ablate or inhibit proliferation of said cells.
46. A use as in claim 45, wherein the duct contains a medium.
47. A use as in claim 46, wherein the medium is an electrically conductive fluid.
48. A use as in claim 46, wherein at least a portion of the device is capable of being positioned in the medium and is capable of applying a high frequency current to the medium.
49. A use as in claim 48, wherein the device is an electrically conductive probe.
50. Use of energy to treat a breast duct having a medium therein, the energy capable of being transferred to or from cells lining the duct in an amount sufficient to ablate or inhibit proliferation of said cells.
51. A use as in claim 50, wherein the medium is electrically conductive.
52. A use as is claim 51, wherein the medium is a fluid that is capable of being introduced into the duct through a ductal opening.
53. A use as in claim 51, further comprising a therapeutic device capable of being introduced into the duct through a ductal opening and at least a portion of the therapeutic device being capable of contacting the medium.
54. A use as in claim 53, wherein a high frequency electrical current is capable of being transferred from the therapeutic device to the medium.
55. Use of energy to treat a breast duct, wherein the breast duct contains a medium and a device, contacting the medium, the energy capable of being transferred to or from cells lining the duct in an amount sufficient to ablate or inhibit proliferation of the cells.
56. Use of a tool and an agent for treating a breast duct of a patient, said agent sensitive to at least one form of energy and said agent capable of being systemically introduced into said patient targeted for treatment, said tool capable of being introduced into said breast duct through a ductal opening and said tool capable of transferring said at least one form of energy to the agent in the duct in an amount sufficient to disrupt the agent whereupon the agent acts on target cells lining the breast duct.
57. A use according to claim 56 wherein said at least one form of energy is selected from the group consisting of light energy, electrical energy, electromagnetic energy, radiation energy and vibrational energy.
58. A use according to claim 56 wherein said agent is capable of contacting substantially all of a ductal network of said breast duct.
59. A use according to claim 56 wherein a portion of the duct to be treated is capable of being identified and said at least one form of energy is capable of being transferred to only said portion of said duct to be treated.
60. A use according to claim 56 wherein said agent is capable of ablating the target cells lining the breast duct.
61. A use according to claim 56 wherein said agent is capable of inhibiting proliferation of the target cells lining the breast duct.
62. A use according to claim 56 wherein said agent is capable of acting prophylactically on the target cells lining said breast duct.
63. A use according to claim 56 wherein said agent comprises a photoactive agent.
64. A use according to claim 57 wherein said radiation energy comprises nuclear energy.
65. Use of an energy delivering tool and an agent for treating a breast duct of a patient, said agent sensitive to at least one form of energy and capable of being systemically introduced into said patient targeted for treatment, said tool capable of being introduced into said breast duct and said tool capable of transferring said at least one form of energy to the agent in the duct in an amount sufficient to disrupt the agent whereupon the agent acts on target cells lining the breast duct, said target cells including benign cells and at least one of the following types of cells:
cancerous and precancerous cells.
66. A use according to claim 65 wherein said at least one form of energy is selected from the group consisting of light energy, electrical energy, electromagnetic energy, radiation energy and vibrational energy.
67. A use according to claim 65 wherein said agent is capable of contacting substantially all of a ductal network of said breast duct.
68. A use according to claim 65 wherein a portion of the duct to be treated is capable of being identified and said at least one form of energy is capable of being transferred to only said portion of said duct to be treated.
69. A use according to claim 65 wherein said agent is capable of ablating the target cells lining the breast duct.
70. A use according to claim 65 wherein said agent is capable of inhibiting proliferation of the target cells lining the breast duct.
71. A use according to claim 65 wherein said agent is capable of acting prophylactically on the target cells lining said breast duct.
72. A use according to claim 65 wherein said agent comprises a photoactive agent.
73. A use according to claim 66 wherein said radiation energy comprises nuclear energy.
CA002344197A 1998-09-18 1999-09-17 Methods and systems for treating breast tissue Expired - Fee Related CA2344197C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10085398P 1998-09-18 1998-09-18
US60/100,853 1998-09-18
PCT/US1999/021378 WO2000016708A1 (en) 1998-09-18 1999-09-17 Methods and systems for treating breast tissue

Publications (2)

Publication Number Publication Date
CA2344197A1 CA2344197A1 (en) 2000-03-30
CA2344197C true CA2344197C (en) 2007-05-01

Family

ID=22281882

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002344197A Expired - Fee Related CA2344197C (en) 1998-09-18 1999-09-17 Methods and systems for treating breast tissue

Country Status (2)

Country Link
AU (1) AU6044799A (en)
CA (1) CA2344197C (en)

Also Published As

Publication number Publication date
CA2344197A1 (en) 2000-03-30
AU6044799A (en) 2000-04-10

Similar Documents

Publication Publication Date Title
US6712816B2 (en) Methods and systems for treating breast tissue
WO2000016708A9 (en) Methods and systems for treating breast tissue
Ahmed et al. Radiofrequency ablation: effect of surrounding tissue composition on coagulation necrosis in a canine tumor model
Goldberg et al. Image-guided tumor ablation: standardization of terminology and reporting criteria
US6788977B2 (en) System and method for heating the prostate gland to treat and prevent the growth and spread of prostate tumor
EP1581145B1 (en) Thermotherapy apparatus for treatment and prevention of cancer in male and female patients and cosmetic ablation of tissue
EP1292362B1 (en) System for heating the prostate gland
Testoni et al. Systematic review of endoscopy ultrasound-guided thermal ablation treatment for pancreatic cancer
US8172770B2 (en) System and method for minimally invasive disease therapy
US20110040170A1 (en) Endoscopic imaging photodynamic therapy system and methods of use
US8696545B2 (en) System and method for minimally invasive disease therapy
CA2381939A1 (en) Microwave devices for medical hyperthermia, thermotherapy and diagnosis
CN1681556A (en) Method for improved safety in externally focused microwave thermotherapy for treating breast cancer
US20080140063A1 (en) Non-invasive method and system for using radio frequency induced hyperthermia to treat medical diseases
CA2344197C (en) Methods and systems for treating breast tissue
US20130090545A1 (en) Methods and apparatuses for the localization and treatment of cancer
De Vita et al. A review on radiofrequency, laser, and microwave ablations and their thermal monitoring through fiber Bragg gratings
Nishioka Applications of lasers in gastroenterology
RU2368406C2 (en) Method and device for destroying malignant tumours
Zou et al. Comparison of ultrasound-guided laser ablation and radiofrequency ablation in the treatment of small hepatocellular carcinoma
Pawlik et al. Radiofrequency ablation for primary and metastatic liver tumors
CN117503316A (en) Nanometer medicine mediated multi-physical-field coupling ablation equipment
Persson 24 Microwaves, RF-radiation and EMF-fields

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20170918