CA2341418C - No-spill drinking cup apparatus - Google Patents

No-spill drinking cup apparatus Download PDF

Info

Publication number
CA2341418C
CA2341418C CA002341418A CA2341418A CA2341418C CA 2341418 C CA2341418 C CA 2341418C CA 002341418 A CA002341418 A CA 002341418A CA 2341418 A CA2341418 A CA 2341418A CA 2341418 C CA2341418 C CA 2341418C
Authority
CA
Canada
Prior art keywords
valve
opening
flexible material
cap
cup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002341418A
Other languages
French (fr)
Other versions
CA2341418A1 (en
Inventor
Nouri E. Hakim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45582095&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2341418(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/138,588 external-priority patent/US6321931B1/en
Priority claimed from US09/271,779 external-priority patent/US6357620B1/en
Application filed by Individual filed Critical Individual
Publication of CA2341418A1 publication Critical patent/CA2341418A1/en
Application granted granted Critical
Publication of CA2341418C publication Critical patent/CA2341418C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • A47G19/22Drinking vessels or saucers used for table service
    • A47G19/2205Drinking glasses or vessels
    • A47G19/2266Means for facilitating drinking, e.g. for infants or invalids
    • A47G19/2272Means for facilitating drinking, e.g. for infants or invalids from drinking glasses or cups comprising lids or covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D43/00Lids or covers for rigid or semi-rigid containers
    • B65D43/02Removable lids or covers
    • B65D43/0202Removable lids or covers without integral tamper element
    • B65D43/0225Removable lids or covers without integral tamper element secured by rotation
    • B65D43/0231Removable lids or covers without integral tamper element secured by rotation only on the outside, or a part turned to the outside, of the mouth of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/20Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge
    • B65D47/2018Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge comprising a valve or like element which is opened or closed by deformation of the container or closure
    • B65D47/2031Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge comprising a valve or like element which is opened or closed by deformation of the container or closure the element being formed by a slit, narrow opening or constrictable spout, the size of the outlet passage being able to be varied by increasing or decreasing the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/16Closures not otherwise provided for with means for venting air or gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/16Closures not otherwise provided for with means for venting air or gas
    • B65D51/1633Closures not otherwise provided for with means for venting air or gas whereby venting occurs by automatic opening of the closure, container or other element
    • B65D51/1644Closures not otherwise provided for with means for venting air or gas whereby venting occurs by automatic opening of the closure, container or other element the element being a valve
    • B65D51/165Closures not otherwise provided for with means for venting air or gas whereby venting occurs by automatic opening of the closure, container or other element the element being a valve formed by a slit or narrow opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00018Overall construction of the lid
    • B65D2543/00046Drinking-through lids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00018Overall construction of the lid
    • B65D2543/00064Shape of the outer periphery
    • B65D2543/00074Shape of the outer periphery curved
    • B65D2543/00092Shape of the outer periphery curved circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00018Overall construction of the lid
    • B65D2543/00259Materials used
    • B65D2543/00296Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00342Central part of the lid
    • B65D2543/00351Dome-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00481Contact between the container and the lid on the inside or the outside of the container
    • B65D2543/0049Contact between the container and the lid on the inside or the outside of the container on the inside, or a part turned to the inside of the mouth of the container
    • B65D2543/00527NO contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00481Contact between the container and the lid on the inside or the outside of the container
    • B65D2543/00537Contact between the container and the lid on the inside or the outside of the container on the outside, or a part turned to the outside of the mouth of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00953Sealing means
    • B65D2543/00962Sealing means inserted
    • B65D2543/00972Collars or rings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pediatric Medicine (AREA)
  • Closures For Containers (AREA)
  • Table Devices Or Equipment (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Devices For Dispensing Beverages (AREA)

Abstract

A no-spill cup (22) and valve assembly (31) which provides an seal against accidental liquid flow. The suck-ing action at the cup spout creates nega-tive pressure against a valve member (37, 39) near the spout (14) having an opening therein, causing the valve member (37, 39) and opening to move off of a pro-truding member, thereby unblocking the opening in the valve. When the open-ing is unblocked, liquid can flow freely through the valve and spout. When not in use, the valve sits in a closed position, with the opening in the valve sitting on a protruding member and pressed against the protruding member's base, sealing off the opening in the valve assembly (31). The closed position provides a seal against fluid leakage during inadvertent spills. The cup assembly allows variable liquid flow rates by rotating the position of the valve assembly in the cover (11) of the cup.

Description

, .... . .. . . . ... ...y...n.-.-...n. . .._... . . . .,.,.. vv..:..... , _ ... ......... . .. . . .. . .. . . . . .

No-Spill Drinking Cup Apparatus Field Of The Invention The present invention relates to a no-spill cup assembly with an improved valve mechanism to prevent liquid from flowing out of the cup when not desired.
Background Of The Invention No-spill cup assemblies are well known in the art. In the past, a variety of such assemblies have been developed and marketed. In general, the goal of a no-spill cup is to provide a construction which minimizes or prevents liqnid from emerging out of the cup when liquid flow is not desired, i.e. when the user is not drinking.
However, though the assemblies of the prior art are intended to avoid such accidents, their construction is such that they generally do not provide a secure enough protection against undesirable spilling or leakage. Thus, when such cups are inverted, or more significantly, when they are shaken vigorously, liquid will often emerge from them.
This can be a particular problem with young children, for whom these cups are usually intended. Accordingly, there is a need in the art for an improved cup assembly for preventing undesired spilling of liquids.
SUMMARY OF THE INVENTION

It is an object of the present invention to provide an improved no-spill cup assembly.

In accordance with this invention apparatus for preventing spilling during drinking comprises a valve having a closed position and an open position, the valve comprising a protruding member and a valve member, the valve member including an opening therein. The closed position is a configuration in which the protruding member extends through the opening in the valve member, to block passage of liquid I

.. . . . . .. .._ .. y .. ... . . . . . .. .. . . . . w._.y n,. a . _. . . ._ .... . . . . . .

through that opening. The valve is movable into an open position in which the valve member is pulled away from the protruding member, for passage of liquid through the opening. The valve moves from the closed position to the open position upon application of negative pressure to the valve member.

In another embodiment a no-spill drinking apparatus comprises a valve including a sealing member and a flexible valve member, the sealing member comprising a protruding member and a base, and the valve member having an opening therein.
The valve has a closed position and an open position. At least a portion of the sealing member extends through the opening while the valve is in the closed position; the valve member resting closer to the base in the closed position than in the open position.
The protruding member of the valve is fixed, and the valve member moves upon application of negative pressure to the valve member.

In another aspect the invention provides a no-spill drinking apparatus comprising: a cap and a cup, the cap being removably attachable to and detachable from the cup, and the cap including a soft spout; a valve, the valve comprising a flexible material having an opening and further comprising a protruding member, the protruding member extending into the opening, and the valve having a resting position and an open position wherein, in the resting position, liquid is blocked from passing through the opening and through the spout; a valve holder which holds the flexible material, the valve holder being attachable to the cap and separable from the cap; and an air vent. The apparatus is configured such that application of negative pressure through the spout causes the flexible material to move, with the opening in the flexible material moving along the protruding member toward the spout, such that liquid passes through the opening and out of the spout, and further such that air passes into the apparatus through the vent.

Therefore, the invention provides an improved cup construction and valve assembly which provides an extremely secure seal against accidental liquid flow from the cup spout. Further to the invention, a user places his or her mouth against the spout of the cup assembly to suck liquid out of the cup when desired. The act of sucking at the spout of the cup creates negative pressure or a partial vacuum against a valve in the cup spout, causing the valve to begin to invert, or turn inside out, thereby unblocking an opening such as an orifice or slit in the valve. In the preferred embodiment, the application of negative pressure to the top of the valve causes an opening in a portion of the valve to move up off of the base of a protruding member extending through that opening. Once the opening is unblocked, liquid can flow freely through the valve and spout.

In contrast, when not in use, the valve sits in a resting, closed position, with the opening pressed against the center seal-off, thereby sealing off the opening, slit or orifice in the valve assembly. Thus, in its relaxed state, with no negative pressure applied, the valve sits in a closed position with the fluid opening sealed by the center seal-off. In the preferred embodiment, the protruding member extends through the opening in a male to female relationship such that the orifice sits tightly on the protruding member against the protruding member's bottom portion and the center seal-off or sealing member's base.

In one embodiment, a dual valve device is provided having an adjacent valve which similarly seals when no negative pressure is applied, thereby blocking off the air vents in the cover of the cup, and further preventing the possibility of fluid flow.
In each of the embodiments of the invention, the closed valve position provides an extremely secure seal against fluid leakage, such that inadvertent spills or even deliberate attempts to force liquid outside of the cup, such as by turning the cup upside down, or shaking the cup, are ineffective.

In a further embodiment of the invention, the cup assembly allows liquid flow to be regulated between regular or maximum flow and minimal flow levels or rates by rotating the position of a valve assembly in the cap or cover of the cup. The valve holder is constructed as a two subunit assembly, with one subassembly holding a valve with a larger slit or orifice for fluid flow than the valve in the second subunit. Thus, upon rotation of the valve holder, either a low-flow valve or a higher flow valve can be positioned in the hole leading to the spout. In this manner, a dual position valve assembly is provided allowing either regular flow or minimal liquid flow conditions.

Brief Description of the Drawings Figure 1(a) is an exploded front view of a no-spill cup assembly in accordance with the present invention. Figure 1(b) is an exploded perspective view of the no-spill cup assembly of Figure 1(a).

Figure 2(a) is an exploded front view of a second embodiment of a no-spill cup assembly in accordance with the present invention. Figure 1(b) is an exploded perspective view of the no-spill cup assembly of Figure 2(a).

Figure 3 is a perspective view of the valve assembly of the present invention.

Figure 4 is an exploded, perspective view of another embodiment of the valve assembly of the no-spill cup, in accordance with the present invention.

Figure 5(a) is an exploded front view of the cup assembly of the present invention, showing the rotation of the valve holder or assembly, into two alternate positions for placement in the cap or cover of the cup. Figure 5(b) is an exploded perspective view, showing the placement of the valve holder into the cap, in either of the two positions illustrated in Figure 5(a).

Figure 6 (a) - (e) are a series of additional views of the valve holder or assembly of Figure 3. Figure 6(a) is a top view of the valve holder. Figure 6(b) is a front view of the valve holder. Figure 6(c) is a side view of the valve holder. Figure 6(d) is a cross-sectional view of the valve holder wherein the valve is in a relaxed state, sealing off fluid flow. Figure 6(e) is a cross-sectional view of the valve holder, showing the valve in an inverted state, to allow fluid flow through the valve.

Figure 7 is an exploded, perspective view of another embodiment of the valve assembly of the no-spill cup, in accordance with the present invention.

Figure 8 (a) - (e) are a series of additional views of a further embodiment of the valve assembly shown in Figure 6. Figure 8(a) is a top view of the valve holder or assembly. Figure 8(b) is a front view of the valve holder. Figure 8(c) is a side view of the valve holder. Figure 8(d) is a cross-sectional view of the valve holder wherein the valve is in a relaxed state, sealing off fluid flow. Figure 8(e) is a cross-sectional view of the valve holder, showing the valve in an inverted state, to allow fluid flow through the valve.

Figure 9 (a) - (e) are a series of additional views of another embodiment of the valve assembly shown in Figure 8. Figure 9(a) is a top view of the valve holder or assembly. Figure 9(b) is a front view of the valve holder. Figure 9(c) is a side view of the valve holder. Figure 9(d) is a cross-sectional view of the valve holder wherein the valve is in a relaxed state, sealing off fluid flow. Figure 9(e) is a cross-sectional view of the valve holder, showing the valve in an inverted state, to allow fluid flow through the valve.

Figure 10 is a side view of a no-spill cup with a soft gripping area, in accordance with the present invention.

Figure 11(a) - (c) are a series of additional views of another embodiment of the cap of the present invention. Figure 11(a) is a partial sectional view of a cap with an insert molded or glued in gasket, in accordance with the invention. Figure 11(b) is a side sectional view of the cap of Figure 11(a). Figure 11(c)-is a top sectional view of the cap of Figure 11(b).

Figure 12 (a) - (c) are a series of additional views of another embodiment of the cap of the present invention. Figure 12(a) is a partial sectional view of a cap with a molded lip which wedges against into the inside surface of the cup, in accordance with the invention. Figure 12(b) is a side sectional view of the cap of Figure 12(a). Figure 12(c) is a top sectional view of the cap of Figure 12(b).

Figure 13 is a side sectional view of a cap having a soft spout, in accordance with a further embodiment of the invention.

Figure 14 is a side sectional view of a cap having a reduced volume spout, in accordance with a further embodiment of the invention.

Figures 15(a) -(f) are a series of additional views of a preferred embodiment of the present invention in which the center stop has been modified, and the opening in the valve is an approximately circular orifice or hole.

Figure 15 (a) is a top view of the valve holder, holding the modified valve, in accordance with the invention.

Figure 15(b) is a cross sectional view of the valve holder of Figure 15(a) showing the modified valves therein, including a modified center stop having a protruding member. The valve includes an approximately circular opening in the valve that is blocked by the protruding member, which extends therethrough.

Figure 15(c) is a side view of the valve holder of Figure 15(a).

Figure 15(d) is an end view of the valve holder of Figure 15(a).

Figure 15(e) is a cross sectional view of the valve within the valve holder of Figure 15(a), showing the fast flow valve, in accordance with the embodiment of the invention in which the center stop has been modified to include a protruding member extending therefrom.

Figure 15 (f) is a cross sectional view of the valve within the valve holder of Figure 15(a), showing the slow flow valve, in accordance with the embodiment of the invention in which the center stop has been modified to include a protruding member extending therefrom.

Figures 16(a)-(d) are a series of views of one of the valve holder subunits of the valve holder shown in Figures 15 (a) -(f). Figure 16(a) is a top view of the valve holder subunit, for attachment to a cap of a no spill cup. Figure 16(b) is a cross sectional view of the valve holder subunit of Figure 16(a). Figure 16(c) is a side view of the valve holder subunit shown in Figure 16(a). Figure 16(d) is a perspective view of the valve holder subunit.

Figures 17(a)-(d) are a series of views of the valve, in accordance with the preferred embodiment of the invention shown in Figures 15(a) -(f), and Figures 16(a)-(d). Figure 17(a) is a top view of the valve, for placement within a valve holder subunit, as shown in Figures 16(a)-(d) and/or placement in a valve holder, as shown in Figures 15 (a) -(f).
Figure 17(b) is a cross sectional view of the valve of Figure 17(a). Figure 17(c) is a side view of the valve shown in Figure 17(a). Figure 17(d) is an exploded view of a portion of the valve shown in Figure 17(b).

Detailed Description of the Invention and the Preferred Embodiments As will be shown in conjunction with the attached drawings, a novel cup assembly is disclosed for providing prevention against accidental liquid spills. Figures 1(a) and 1(b) are a front view and a perspective view, respectively, of an embodiment of the cup assembly, in accordance with the present invention. The volume of the cup or liquid holding portion of the assembly can be adjusted as desired. In one embodiment, a 7 oz. drinking cup is provided, as shown in Figure 1. Alternatively, a 9 oz. drinking cup, as shown in Figure 2, a 6'fi oz. cup, or any other desired size can be provided, as well.

The sides of the cup can be provided with no handles, one handle, two handles or any other number of handles, for the user's use to grip the cup. This handle or handle is preferably sized for a child's hands. In addition, the outside appearance of the cup and/or the cap can be a solid color, or can be printed with any desired design.

In a further embodiment of the invention, a no spill cup with a soft gripping area can be provided, as shown in Figure 10. In accordance with this embodiment, a soft ring 102 is provided around the outside of the cup. This ring can be of any width desired, and serves as a finger grip, to make it easier to grasp the cup securely. Preferably, the ring is approximately two inches (2") wide. In a preferred embodiment, the soft ring 102 has shapes or designs 106 cut out of it, such as stars, ovals, or so forth. The hard cup, in turn, has raised areas or protuberances corresponding to those shapes or designs. The soft ring fits snugly over these raised areas of the cup, each of the protruding hard shapes fitting into the cutouts of the soft ring, with the surface of the raised areas and the soft ring being flush when the ring is inserted onto the cup.

In one embodiment of the invention, the cup is constructed from polycarbonate.
In an alternate embodiment, the cup is constructed from polypropylene. If desired, clear polypropylene can be utilized. Alternatively, any other suitable materials can be used for the components of the no-spill cup. The components of the cup are all made of durable materials, resistant to breakage, dishwasher safe, and preferably color fast.

In accordance with the invention, cup 7 includes a no-spill cap or cover 11, a valve holder or assembly 31 and tumbler cup 22. No-spill cap 11 includes a spout 14 for drinking liquid from the cup. The spout is sized to allow an individual to place his or her mouth over the spout to drink therefrom. In the preferred embodiment, the spout is sized for the mouth of a child, particularly for a child of a young age.

No-spill cap 11 forms a cover for placement over tumbler cup 22. When attached to the cup 22, a secure seal is formed such that no liquid can emerge through the connection between the cap 11 and cup 22. In use, cap 11 is sufficiently secured to cup 22 such that shaking the cup assembly, dropping the cup on the floor, or other vigorous movement of the cup assembly, or application of sharp force thereto, is insufficient to separate the cap from the cup.

In one embodiment, no-spill cap 11 and tumbler cup 22 include mating male and female screw threads, such that the cap 11 is a screw-on cap which can be easily rotated onto the tumbler cup 22, as shown in Figure 2. In an alternative embodiment, a snap-on cap is used, as shown in Figure 1. In this embodiment, a resilient ring portion of cap 11 securely fits over lip 10 of tumbler cup 22, as is well known in the art. Although a screw-on cap or a snap-on cap are shown as two preferred embodiments, alternatively, any other suitable mechanism to secure the cap to the tumbler cup can be utilized.

Either the screw-on cap and/or the snap-on cap can be further provided with a gasket 110 between the tumbler cup and the cap, to further seal the connection between the cup and the cap. This gasket can be part of the tumbler cup 22 or the cap 11, or can be a separate element inserted between the cap and the cup. In a preferred embodiment, the gasket 110 is part of cap 11, as shown in Figures 11(a)-(c).

Alternatively, the cap can be provided with a small annular inner lip, on the inside of the cap, which acts as a gasket. This lip, as shown in Figures 12(a)-(c), wedges inside the cup when the cap is screwed or placed upon it. The lip acts to further prevent the possibility of liquid flow through the contact between the cup and the cap.

In a preferred embodiment, finger grips are provided on the outside of the cap, such as grooves or the like. These grips facilitate removal and application of the cap, particularly in embodiments requiring the screwing of the cap on and off of the cup.

The cap is also preferably interchangeable with numerous tumbler cups of different sizes. In this embodiment, the rim of the tumbler cups are all of the same diameter, although the tumbler cups themselves are of different volumes. For example, the same sized cap could be used on a 6~fi oz. cup and/or a 7 oz. cup and/or a 9 oz. cup, and so forth.

In a further embodiment of the cap, the cap has a soft spout 130 as shown in Figure 13.
Preferably, the spout is made of a thermo-elastimer. Spout 130 can be insert molded to a polypropylene cap, providing a combination cap having a hard section for attachment to the cup, and a soft spout portion. Preferably, the spout has a small channel extending therethrough to reduce the liquid volume which can be trapped within the spout portion.

In a further embodiment of the cap, the cap has a reduced volume spout as shown in Figure 14. Reduced volume spout 140 is designed to reduce the volume of liquid which can be trapped within the spout. Reduced volume spout 140 has a volume reduction member 144 inserted therein to reduce the internal volume of the spout, and to provide a channel 148 for liquid flow. Preferably, valve assembly subunit 142 extends up into spout 140 to further reduce the amount of liquid which can be trapped in spout 140. Valve assembly subunit 142 can, for example, extend into volume reduction member 144. Accordingly, this embodiment reduces the space between the valve and the opening of the drinking spout, to reduce the amount of liquid potentially trapped in this area.

As shown in Figure 1(b), no-spill cap 11 includes valve assembly carriers 16 and 18.
In the preferred embodiment, valve assembly carriers 16 and 18 are tapered holes provided on the underside of the cap. Valve assembly carrier or tapered hole 181eads to an open spout 14, providing a path for liquid flow. Thus, valve assembly carrier or hole 18 is fully open on both sides, both on its top surface, which leads to spout 14, and on its bottom surface opposite tumbler cup 32, for the flow of liquid out of tumbler cup 22 through hole 18 and through spout 14 into the user's mouth.

Valve assembly carrier or tapered hole 16, in contrast, provides a passage for the flow of air into the cup during use, allowing liquid to exit through opposing hole 18 and spout 14.
Hole 16 is open on one side, i.e. on its lower surface opposite tumbler cup 22. On the opposing side, hole 16 merges into the inner surface of cap 11. The inner surface of cap 11 is further provided with one or more, preferably small, vents or holes for air flow, allowing air to flow through the vents of cap 11 and through hole 16 into the cup assembly during use.

As shown in Figures 1 and 2, no-spill cup 7 further includes valve holder or assembly 31. Valve holder 31 is preferably constructed from a high temperature ABS
material, and is dimensioned to fit snugly into cap 11. In the preferred embodiment, valve holder is a separate assembly which fits into cap 11. Alternatively, the valve holder can be provided as an integral part of cap 11 and/or cup 7. For example, valve holder 31 can be molded as a part of cap 11, such that the valve holder is inseparable from the cap.

In the preferred embodiment, valve holder 31 is a two-subunit assembly connected by bridge 34. Each subunit of the two-subunit assembly is sized to frictionally fit into and be held by either one of tapered holes 16 and 18. The spacing between tapered holes 16 and 18 is the same as between the subunits of valve holder 31, such that the valve holder can be easily secured within cap 11. The sizing and tapering of holes 16 and 18 and the sizing of valve holder 31 are dimensioned so as to provide a secure, snug mating between the valve assembly and the tapered holes. In a preferred embodiment, the top of the valve holder (i.e. the side facing the spout) and the bottom of the valve holder (i.e. the side facing the cup) has two different diameters. The top is proportioned to fit snugly into the tapered hole, and the bottom is proportioned such that it cannot be inserted into hole 16 or 18. In this way, a mechanism is provided to prevent the valve holder from being inserted into the holes in the wrong orientation, i.e. upside down.

Figure 3 is an enlarged, exploded, perspective view of the valve holder of the present invention. Valve holder 31 consists of two valve holder subunits 37 and 39, connected by a bridge 34. Each valve holder subunit is intended to hold a single valve therein. As shown in the figure, valve or valve member 42 is intended for placement in subunit 37, and valve or valve member 45 is intended for placement in subunit 39. Valves 42 and 45 each include a slit or orifice for the passage of liquid. The slit or orifice is preferably through the center portion of the valve, and is dimensioned to allow a predeterrnined flow level or rate of liquid therethrough, as desired.

Valve holder subunits 37 and 39 open into sealing units 37a and 39(a) and valve retainers or endcaps 37b and 39(b), respectively. Taking subunit 37 as an example of the function of each subunit, as shown in Figure 3, subunit 37 is initially in an open position in which the sealing unit and the valve retainer have been pulled or hinged apart. In one embodiment, the sealing unit and the valve retainer have a tab 60 connecting them, to prevent the components from being permanently separated accidentally. Alternatively, the valve retainer can be welded into place (e.g. by sonic welding), as shown in Figures 4 and 7. The sealing units each have at least one open section 58, such that, in the valve assembly's disassembled state, fluid can pass, unobstructed, through the sealing unit since no valve is in place. Likewise, the valve retainers are open on both sides for unobstructed passage of fluid through the valve retainer in the disassembled state when no valve is in place.

To assemble the valve assembly, valve 42 is inserted into the valve holder by placement of the valve between sealing unit 37a and valve retainer 37b. After a valve has been placed into one or both of the subunits, the valve retainers can each be folded or hinged back about tab 60, over the sealing unit 37 (or under sealing unit 39, in the orientation shown in the figure) and snapped into place to close the subunits, as shown in Figure 5. The resilience of the sealing unit allows for a tight seal to be established between the valve retainer and the sealing unit. When closed, each subunit secures or encapsulates a valve tightly therein, maintaining the valve in place in the valve holder. For clarity, reference is primarily made to subunit 37, although subunits 37 and 39 are preferably the same in all features other than the size of the valve opening. For the purposes of the present discussion, it is assumed that subunit 37 is the subunit intended for initial placement into hole 18.

As shown in Figures 5, 6, 8 and 9, upon closing a subunit (e.g. subunit 37 in Figure 3), valve 42 sits securely against center seal-off stop or center stop 52 in sealing unit 37a, with the opening 70 in valve 42 being flush against center seal-off stop 52. Valve 42 includes a top, proximal side which will face the spout of the cap, and a distal side which rests against the center seal-off stop when the valve is placed in valve holder 31.

Center stop 52 functions as a sealing member or blocking element of the valve assembly which seals off and blocks the flow of fluid through the valve. In one embodiment, center stop 52 consists of a solid substantially flat central area or portion 56 which is impenetrable to the flow of liquid therethrough. In a further, preferred, embodiment, center stop or seal off 101 is provided with a protruding member 108 extending off of the base of the center seal off, as shown in Figure 15.

Surrounding the central area or portion 56, a peripheral area or region 58 can be provided having open areas such as slots or so forth, for allowing the passage of liquid therethrough, as shown, for example in Figure 8(a). Central area 56 or center stop 52 can further include stems 74. As shown in Figure 9, stems 74 can further be reinforced with braces 72, which are reinforcing elements, which provide additional material strength to the connection between the stems and the valve holder.

When in the normal resting position, valve 42 relaxes to sit securely against the center stop 52, as shown in Figure 8(d). In this resting position, opening or orifice 70 of valve 42 presses firmly against the central area 56 of center stop 52, preventing any fluid flow through the valve, and maintaining the valve in a closed configuration. In an alternate embodiment, the orifice can sit firmly against and upon a protruding member 108, as shown in Figure 15.

To drink from the cup, a user raises the cup to his or her mouth and begins to suck liquid through spout 14. In the process, the user creates negative pressure or a partial vacuum against the top of valve 42 in subunit 37. In one embodiment, valve 42 is constructed of a flexible material which is designed to fully invert and turn inside out, or to begin to invert and turn inside out, upon creation of a partial vacuum against the top of the valve 42, as shown in Figure 8(e). For example, valve 42 can be a membrane, either in whole or in part.
Preferably, the valve is constructed of Kraton or silicone. If silicone is used, a 45 durometer silicone such as Lims 6045 is preferred, which is available from General Electric or from Wacker (a subsidiary of Bayer) of Germany. The materials used for the valve assembly and its components are sufficiently durable and heat resistant that the entire valve assembly can be placed in a dishwasher or boiled.

In one embodiment, the valve material is constructed of a single material with a greater thickness of material on the center area which seals off on the center stop, and with a thinner portion of material on the sidewalls. Providing a thinner sidewall portion contributes to the flexibility of the valve at its edges, which further assists and encourages inversion of the valve, by causing the valve to flex at the sidewalls first upon application of negative pressure thereto. Preferred dimensions for the valve thickness are approximately 0.4 mm of thickness on the sidewalls and approximately 0.9 mm of thickness on the center area.

In a first embodiment, upon inversion of valve 42, opening or orifice 70 is displaced away from central area 56 of center stop 52. The inversion of the valve therefore unblocks opening 70 allowing fluid flow through the subunit. As negative pressure is being applied to WO 00/10434 PC1'/1JS99/19238 the top of the valve 42 located next to the spout, negative pressure is likewise being applied to the bottom of the adjacent valve in the other subunit, located in the other tapered hole of the cup cover. Thus, this negative pressure, opens the second valve as well, by displacing the opening in the other valve away from its center stop. Inversion of valves 42 allows fluid flow to proceed through both subunits of the assembly. Liquid will flow through one subunit of the valve assembly, the subunit connected to the spout, concurrently accompanied by air flow through the other subunit of the assembly, the subunit connected to the air vents. In this manner, liquid smoothly and easily flows though the valve assembly, the spout, and out of the cup.

In a further embodiment, the valve assembly is provided with a flow bridge 84.
Flow bridge 84 blocks movement or expansion of the valve 42 beyond a certain maximum distance to prevent the valve from overextending itself, or from being subjected to excessive strain or distension, as shown in Figure 8(e). Thus, the flow bridge prevents the valve from inverting beyond the point where it can no longer easily revert to its original position. In addition, the flow bridge provides a shield or a barrier preventing the valve from damage.
Thus, it blocks objects such as a spoon or so forth, whether in a dishwasher or otherwise, from easily damaging the valve.

When negative pressure is released or removed from the spout, the valve reverts back to its resting position, and fluid cannot flow through the closed slit or orifice in the valve.
In the resting position, no liquid will spill from or emerge out of the cup.

Further embodiments of the valve holder and assembly are shown in Figures 4,7-9 and 15-17. As shown in Figure 4, instead of the valve retainer shown in Figure 3, a detachable snap fit valve retainer 81 can alternatively be provided. Or, as shown in Figure 7, valve retainer 94 can be provided as well. Valve retainers 81 and 94 serve the same function as valve retainers 37b and 39(b), holding and securing the valve within the valve assembly. It is preferred that the valve retainer, whichever embodiment is utilized, be sonic welded on, to ensure that the valve cannot be dislodged or removed from the holder.

Thus, in accordance with the invention, a system is provided for maintaining a tight seal against fluid flow when the cup is not in use. An extremely secure seal is provided, such that excessive or vigorous shaking is ineffective to force fluid out of the cup. Significantly, the valve construction disclosed results in a much tighter seal than that observed in the no-spill cup assemblies of the prior art. In accordance with the invention, unless the user sucks through the spout, no liquid will flow through the valve:

In the preferred embodiment, subunits 37 and 39 are preferably identical in all respects excepts for the size of the orifice or slit in valve 42 and the orifice or slit in valve 45. It is preferred that one valve be provided with a larger opening than the other valve, such as a longer slit or larger orifice in one valve than the other. In one embodiment, one valve is provided with an opening in the form of a slit of approximately two hundred thousandths (200/1000) of an inch in length, while the second valve is provided with a slit of approximately fifty thousandths (50/1000) of an inch. Alternatively, other lengths or sizes may, of course, be used as well in accordance with the invention.

By varying the size andlor shape of the opening in the valve, the present inventor has further provided a novel dual acting flow system for regulating fluid flow. In this system, the level of flow of liquid out of the cup during use can be easily regulated.
Regulation is accomplished by a simple rotation of the valve assembly which converts the cup between a faster or higher liquid flow, and a slower or lower flow system.

As shown in Figure 5, valve holder 31 can be inserted into cap 11 in either of two configurations. In a first configuration, valve 45, having a larger opening or orifice or slit, is placed into hole 18, the hole in communication with spout 14. In this configuration, a first, higher, flow level of liquid through the valve is established when the user sucks liquid through the spout, due to the use of the valve having the larger opening therein. By removing the valve holder 31 from holes 16 and 18, and flipping the valve holder 31 one hundred eighty degrees (1800), the other valve 42, having the smaller opening, can be inserted into hole 18.
This valve 42 provides a second, lower flow state, in which liquid can still flow out of the spout, but at a lower flow rate than flow through the first valve. In this way, the rate of flow of liquid out of the cup can be regulated by a parent. Although a two level flow system is disclosed, greater or fewer flow levels can be provided by varying the number of attached subunits having valves therein, or by providing replacement valve holders having different sized openings 70 therein. In all configurations, however, liquid only flows through the valve when the user sucks through the spout, as disclosed above.

Any form of desired opening suitable for passage of a desired level of liquid can be utilized in the valve. The opening 70 can be, for example, a slit, a slot, an orifice (including any form of hole), or so forth. Likewise, by the term opening, it is contemplated that multiple openings of these or any other types can be provided as well.

In one embodiment, the opening 70 is an "X" shaped slot 78, as shown in Figure 7.
In another preferred embodiment, the opening is a "T" shaped slot 76, as also shown in Figure 7. Use of the X-shaped slot 78 shown in Figure 7, will provide a higher flow rate than the T-shaped slot 76 shown therein. The flow rate, of course, depends on the total length of the slots, or in general, on the size of the opening. Accordingly, both the X-shaped slot and the T-shaped slot can be used in a single valve assembly, each placed in its respective subunit. In this preferred embodiment, a two level flow system is provided, as previously discussed.

In a further embodiment, both openings are X-shaped, with one opening larger than the other. A 7mm opening (the length from end to end of each crossbar of the "X") can be used for the fast side, and a 6mm opening for the slow side.

In a preferred embodiment of the invention, the valve includes a valve member 126 and a center stop or seal off with a protruding member. The preferred configurations and dimensions for the valve are shown in Figures 15-17.

As shown in Figure 17(a), valve member 126 includes an opening such as orifice or hole 118, and is preferably a membrane or flexible portion of material. The valve member and, likewise the protruding member, can each be made of a suitable flexible or plastic material, such as silicone, kraton, latex or ABS (Acrylonitrile-Butadiene-Styrene).

Valve member 126 is preferably encapsulated within an valve assembly subunit 114, 116 or 130, the valve assembly subunit being shown in Figures 15(a) and 16.
Valve assembly subunit 130 is provided with openings therethrough, for passage of liquid through one side of the subunit, then through the valve, when the valve is in the open position, and then through the other side of the subunit, allowing a user to drink when negative pressure or suction is applied to the valve. The valve subunit or another suitable anti-inversion member or flow bridge placed in proximity to the valve member can further serve to block excessive inversion of the valve member. In accordance with this embodiment, the side of the valve subunit or the anti-inversion member is placed at a sufficiently close distance to the valve member such that upon the application of negative pressure or suction to the valve member, the valve member will hit the side of the subunit before fully inverting.

In the preferred embodiment, center stop or sealing member 101 is provided with a protruding member 108 which extends off of a base 104, as shown in Figure 15(b) and Figures 15(e) -(f}. Protruding member 108 is a male sealing or protruding member, which in the closed valve state extends through orifice 118. Preferably, a circular or approximately circular orifice is used, although any shaped orifice can be used consistent with the invention.

Further preferably, male sealing or protruding member 108 is a post or pin, such as a frustoconical or conical post, or a finger-like shaped member. Male sealing or protruding member 108 extends off of the base 104 as a protrusion or projection toward the orifice 118.
Preferably, sealing or protruding member 108 is tapered. Specifically, in the preferred embodiment, the protruding member 108 has a greater diameter at its bottom portion (near the base 104 of the center seal-off), than its diameter at the top. In the preferred embodiment, base 104 is subtantially flat.

In accordance with the preferred embodiment of the invention, protruding member 108 is provided opposite female orifice 118, with the protruding member 108 and the orifice 118 in the center seal off forming a male to female mating relationship. In the relaxed state, with no negative pressure applied, center, _ seal off 101 presses against orifice 118, with protruding member 108 tightly extending through the orifice and forming a seal against the flow of fluid through the valve. Due to the mating between the sealing member and the orifice, and due to the tapering of the sealing member with the larger diameter provided at the protruding member's base, the orifice sits snugly against the wider diameter bottom portion of protruding member 108 to form a very tight seal against fluid flow. In addition, in the preferred embodiment, the protruding member 108 extends past the orifice 118, i.e., in the closed valve state, the top of the protruding or sealing member 108 extends both through and past the orifice 118, to further ensure a tight barrier against fluid flow through the valve and to prevent the orifice from overtravelling and moving off of the protruding member. In accordance with the invention, even if the cup with the valve is shaken vigorously no fluid flows therethrough. In fact, shaking the cup can further wedge the protruding member 108 into the orifice 118, further tightening the seal between the protruding member and the edges of the orifice.

In this preferred embodiment, when the child or user tilts back the cup to drink therefrom and sucks at the top of the valve, the negative pressure he or she is applying to the top of the valve will open the valve by pulling the valve member containing the opening up and off of the valve and away from the protruding member. Accordingly, with the opening or orifice pulled off of the protruding member, the opening or orifice is unblocked and liquid can flow through the opening into the user's mouth.

In accordance with the preferred embodiment of the invention, a variable flow valve is provided, such that the harder the user sucks on the spout the greater the flow of liquid that comes out through the valve. Since the valve member preferably rests on a tapered protruding member, such as cone or frusto-conical member, the higher the negative pressure on the top of the valve member, i.e. the more the user sucks on the spout, the more the valve member is pulled off of the cone. As the valve member is further pulled off the base of the protruding member 108 and up its height (e.g. up the height of a cone), the opening or orifice in the valve member becomes progressively less blocked by the tapered protruding member 108, revealing a progressively greater cross-sectional area for fluid to flow therethrough.

Further in accordance with the embodiments shown in Figures 15-17, the application of negative pressure to the top of the valve causes the valve to partially invert, raising the valve off of the protruding member, but preferably not inverting totally. As the valve begins to invert, the orifice is raised off of the protruding member, partially unblocking the orifice, which results in fluid flow therethrough as disclosed above.

In the preferred embodiment, the orifice in valve member 124 is circular and approximately 3/32 of an inch in diameter for the slow valve side +/- 1/16 of an inch, and is approximately 1/8 of an inch in diameter for the fast flow valve, also +/-1/16 of an inch.
Preferably, the protruding member is provided with a diameter of slightly over an 1/8' at its base, and a diameter of approximately 1/16 of an inch at its top on the fast flow valve, and a diameter of over 3/32 of an inch at its base and approximately 1/32 of an inch at its top on the slower flow valve. The opening or hole in the valve member 124 is also preferably radiused on the face, as shown in Figures 17(b) and in the detailed, enlarged view of the orifice in Figure 17(d), to enable the valve member 124 to more easily move up and down the protruding member, and so that it does not stick on the protruding member during operation.
In the preferred embodiment, the radius is 0.0100 inches.

In one embodiment, the valve is part of one or more subunits 114 and/or 116 of a valve assembly 120 for attachment to a no-spill drinking cup, or the cap thereof. In an alternative embodiment of the invention, the valve is an integral part of the cap or cover of the drinking cup. In a preferred version of this embodiment, the valve holder is molded to the cup cap or cover, or or the cover is molded with the valve inserted therein. In a further preferred version of this embodiment, only a single valve is used, this valve having a protruding member with an approximately seven (7) degree taper.

In one embodiment of the invention, two valves are provided, one on each side of the lid or cap of the cup. In this embodiment, the protruding member on the fast flow side has a taper of approximately seven (7) degrees, and the protruding member on the slow flow side has a taper of approximately nine (9) degrees. In a further preferred embodiment of the invention, a single valve is used, this valve having a protruding member with an approximately seven (7) degree taper.

In the various embodiments of the invention, it is further preferred that the valve holder be marked to indicate which subunit is suitable for higher flow, and which for lower flow of liquid therethrough. Accordingly, the valve holders can be explicitly marked "Fast"
and "Slow" as shown in Figures 7 and 9, respectively. Alternatively, or additionally, the subunits or the valve holders can be marked with a hare or rabbit, signifying fast flow, and a tortoise or turtle, signifying slow flow, as respectively also shown in Figures 7 and 9. The subunit connected to the spout is, of course, the subunit which controls the liquid flow rate.
The valve holder can be marked, for example, on the subunit itself, or on the bridge in an area directly adjacent to the subunit, as shown in the figures. In one embodiment, the valve holder is marked on the top and bottom (i.e. the sides facing the spout and the cup, respectively), such that the symbols and/or words can be seen from the top when the valve holder is being inserted, and from the bottom, once it has already been inserted, to determine which speed valve is in place in the spout. In an alternate embodiment, the words and/or symbols are only on the bottom of the valve, so that the user can see them from the bottom when inserting the valve holder, and can also view the valve holder from the bottom, once inserted.

Having described this invention with regard to specific embodiments, it is to be understood that the description is not meant as a limitation since further modifications may suggest themselves, or may be apparent to those in the art. It is intended that the present application cover all such modifications and improvements thereon.

Claims (116)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. An apparatus for preventing spilling during drinking, the apparatus comprising:
a valve having a closed position and an open position, the valve comprising a protruding member and a valve member, the valve member including an opening therein;
wherein said closed position is a configuration in which said protruding member extends through said opening of said valve member to block the passage of liquid through said opening; said valve is movable into an open position in which said valve member is pulled away from said protruding member for the passage of liquid through said opening; and wherein said valve moves from said closed position to said open position upon the application of negative pressure to said valve member.
2. An apparatus as defined in claim 1, wherein said apparatus comprises a cap for a cup.
3. An apparatus as defined in claim 1 or 2, wherein said apparatus comprises a drinking cup.
4. An apparatus as defined in claim 1, 2 or 3, wherein said apparatus comprises a valve assembly.
5. An apparatus as defined in claim 1, wherein said apparatus comprises a valve assembly and a cap, said valve being a part of the valve assembly, and the valve assembly and cap are configured such that the valve assembly can be attached to the cap.
6. An apparatus as defined in any one of claims 1 to 5, further comprising a sealing member, the sealing member comprising said protruding member and a base, the protruding member being attached to the base.
7. An apparatus as defined in claim 6, wherein said base is approximately flat.
8. An apparatus as defined in claim 6 or 7, wherein said protruding member is a post.
9. An apparatus as defined in claim 8, wherein at least a portion of said post is tapered.
10. An apparatus as defined in any one of claims 6 to 9, wherein said protruding member is conical.
11. A no-spill drinking apparatus, comprising:
a valve, the valve comprising a sealing member and a flexible valve member, the sealing member comprising a protruding member and a base, and the valve member having an opening therein;
wherein said valve has a closed position, the closed position being a configuration in which said valve member rests proximal to said base with said protruding member extending through said opening, to block the passage of liquid through the opening; and wherein said valve moves into an open position upon application of negative pressure to the valve, the open position being a position in which said valve member is distal to said base, with said opening at least partially unblocked, to allow passage of liquid through said valve.
12. An apparatus as defined in claim 11, wherein said valve rests in said closed position, and begins to invert upon the application of negative pressure to said valve member, to move from said closed position to said open position.
13. A no-spill drinking apparatus, comprising:
a valve, the valve comprising a sealing member and a valve member, the sealing member comprising a protruding member and a base, the valve member having a substantially circular opening therein, the protruding member having an upper portion and a lower portion, the upper portion being of smaller diameter than the lower portion;
wherein said valve has a closed position and an open position, the closed position being a configuration in which said valve member rests proximal to said base with said protruding member extending through said opening to block passage of liquid through said opening; and wherein said valve moves into the open position upon application of negative pressure to said opening by the mouth of a user for the purpose of drinking out of said apparatus, the open position being a position in which said valve member moves distal to said base to separate away from said opening, such that the opening is at least partially unblocked to allow passage of liquid through the opening and said valve.
14. An apparatus as defined in claim 13, wherein said apparatus comprises a cap for a cup.
15. An apparatus as defined in claim 13 or 14, wherein said apparatus comprises a drinking cup.
16. An apparatus as defined in claim 13, 14 or 15, wherein said apparatus comprises a valve assembly.
17. An apparatus as defined in any one of claims 13 to 16, wherein said protruding member is tapered.
18. An apparatus as defined in any one of claims 13 to 17, wherein at least a portion of said protruding member is tapered at an angle of seven (7) degrees.
19. An apparatus as defined in any one of claims 13 to 17, wherein at least a portion of said protruding member is tapered at an angle of nine (9) degrees.
20. An apparatus as defined in any one of claims 13 to 19, wherein said protruding member extends through and beyond said opening when in said closed position.
21. An apparatus as defined in any one of claims 13 to 20, wherein said apparatus further comprises an anti-inversion member, the anti-inversion member being placed at a sufficiently close distance to said valve member such that the valve member will hit the anti-inversion member and be blocked from further inversion before the valve member fully inverts.
22. An apparatus as defined in any one of claims 13 to 21, wherein said valve member comprises a flexible material.
23. A no-spill drinking apparatus, comprising:
a valve, the valve comprising a sealing member and a flexible valve member, the sealing member comprising a protruding member and a base, and the valve member having an opening therein;
wherein said valve has a closed position and an open position; wherein at least a portion of said sealing member extends through said opening while said valve is in said closed position, said valve member resting closer to said base in said closed position than in said open position; and wherein said protruding member of said valve is fixed, and said valve member moves upon application of negative pressure to said valve member.
24. An apparatus as defined in claim 23, wherein said valve member moves away from said base upon application of negative pressure to said valve.
25. A no-spill drinking apparatus, comprising:
a valve, the valve comprising a post and a base, and the valve further comprising a flexible valve member having a hole therein;
wherein said valve has a closed position and an open position; wherein said post extends through said hole while said valve is in the closed position; wherein said flexible valve member rests closer to said base in said closed position than in said open position; and wherein said post of said valve is fixed and said flexible valve member moves away from said base upon application of negative pressure to said valve member.
26. A no-spill drinking apparatus, comprising:
a cap and a cup, the cap being removably attachable to and detachable from the cup, and the cap comprising a spout;

a valve, the valve comprising a flexible material having an opening, and further comprising a protruding member, the protruding member extending into the opening, and the valve having a resting position and an open position, wherein, in the resting position, liquid is blocked from passing through the opening and through the spout;

a valve holder which holds said flexible material, the valve holder being attachable to said cap and separable from said cap; and an air vent;
wherein the apparatus is configured such that application of negative pressure through said spout causes said flexible material to move, with said opening in said flexible material moving along said protruding member toward said spout, such that liquid passes through said opening and out of said spout and further such that air passes into said apparatus through said vent.
27. An apparatus as defined in claim 26, wherein said air vent comprises an opening, and the opening of said air vent is smaller than said opening in said flexible material of the valve.
28. An apparatus as defined in claim 26 or 27, wherein said spout is a soft spout and is connected to a hard section of said cap.
29. An apparatus as defined in claim 26, 27 or 28, wherein said opening of the air vent is closed before drinking, and opens during drinking of liquid through said spout.
30. An apparatus as defined in any one of claims 26 to 29, wherein said opening in said flexible material is a hole.
31. An apparatus as defined in any one of claims 26 to 30, wherein said flexible material is provided with a greater thickness of material in its central area.
32. An apparatus as defined in any one of claims 26 to 31, wherein said opening of the air vent is an opening in a flexible material.
33. An apparatus as defined in claim 32, wherein said opening of the air vent is in a flexible material separate from said flexible material through which liquid passes.
34. An apparatus as defined in any one of claims 26 to 33, wherein said opening of the air vent is closed when said opening in the flexible material is blocked, and said air vent opens upon application of negative pressure through said spout.
35. An apparatus as defined in claim 34, wherein application of negative pressure causes the flexible material to move to open said air vent.
36. An apparatus as defined in any one of claims 26 to 35, wherein said flexible material begins to invert upon said application of negative pressure.
37. An apparatus as defined in any one of claims 26 to 36, further comprising a flow bridge, the flow bridge providing a shield preventing said flexible material from drainage.
38. An apparatus as defined in any one of claims 26 to 36, further comprising a flow bridge, the flow bridge being placed in proximity to the flexible material to block excessive inversion of the flexible material.
39. An apparatus as defined in claim 38, wherein said flow bridge is a shield.
40. An apparatus as defined in any one of claims 26 to 39, wherein said valve holder and said cap are dimensioned such that the valve holder fits snugly into the cap.
41. An apparatus as defined in any one of claims 26 to 40, wherein said protruding member has a greater diameter at its bottom than at its top.
42. An apparatus as defined in any one of claims 26 to 41, wherein said protruding member extends tightly through said opening.
43. An apparatus as defined in any one of claims 26 to 42, wherein cups of different sizes are configured for interchangeable attachment to said cap.
44. An apparatus as defined in any one of claims 26 to 43, wherein said cap is provided with screw threads, such that it can be screwed onto and off of the cup.
45. An apparatus as defined in claim 44, wherein said cap is further provided with finger grips on its outside to facilitate screwing of the cap onto and off of said cup.
46. An apparatus as defined in any one of claims 26 to 45, wherein said cup is a hard cup.
47. An apparatus as defined in any one of claims 26 to 46, wherein liquid passes through said valve holder when a user drinks from said spout.
48. An apparatus as defined in any one of claims 26 to 47, wherein said flexible material comprises the shape of a bowl, the bowl having a rim and a bottom, the bottom moving both toward the rim and toward said spout upon application of negative pressure through said spout.
49. An apparatus as defined in any one of claims 26 to 48, wherein said flexible material inverts upon application of negative pressure.
50. Use of the apparatus as defined in any one of claims 26 to 49, as a no-spill drinking cup.
51. Use of the apparatus as defined in any one of claims 26 to 49, as a no-spill drinking cup for a child.
52. A method of dispensing a liquid using a no-spill drinking apparatus as defined in any one of claims 26 to 49, the method comprising:
applying negative pressure through said spout such that said flexible material moves with said opening in said flexible material, moving along said protruding member toward said spout to allow liquid to pass through said opening and out of said spout and further to allow air to pass into said apparatus through said vent.
53. An apparatus, comprising:

a no-spill drinking apparatus, said apparatus comprising an air vent and a valve, said valve comprising a post and a flexible material, said flexible material comprising an opening, said post extending into said opening, said valve having a closed position and in an open position;
said closed position being a configuration in which liquid is blocked from passage through said opening;

said open position being a configuration in which liquid can pass through said opening;
wherein air passes into said apparatus through said air vent and said valve moves from said closed position to said open position upon application of negative pressure to said flexible material, and wherein said flexible material inverts upon said application of negative pressure to said flexible material.
54. An apparatus as defined in claim 53, wherein said post is at least partially tapered.
55. An apparatus as defined in claim 53 or 54, wherein said apparatus comprises a hard cup.
56. An apparatus as defined in claim 53, 54 or 55, wherein said apparatus comprises an anti-inversion member.
57. An apparatus as defined in any one of claims 53 to 56, wherein said opening is against a center stop in said closed position.
58. An apparatus as defined in any one of claims 53 to 57, comprising a shield that said flexible material hits upon said application of negative pressure.
59. An apparatus as defined in any one of claims 53 to 58, wherein said opening is a hole.
60. An apparatus as defined in any one of claims 53 to 59, wherein said apparatus comprises an air valve, wherein said air valve comprises an opening, and wherein said opening of said air valve is smaller than said opening of said flexible material of said valve comprising said post.
61. An apparatus as defined in any one of claims 53 to 59, wherein said apparatus comprises an air valve, and wherein said air valve is closed before drinking, and opens during drinking.
62. An apparatus as defined in any one of claims 53 to 61, wherein said post has a greater diameter at its bottom than at its top.
63. An apparatus as defined in any one of claims 53 to 62, wherein said post extends tightly through said opening in said closed position.
64. An apparatus as defined in any one of claims 53 to 63, wherein said flexible material comprises the shape of a bowl.
65. An apparatus as defined in any one of claims 53 to 63, wherein said flexible material comprises the shape of a bowl, said bowl having a rim and a bottom, said bottom moving both toward said rim and toward said spout upon said application of negative pressure.
66. An apparatus as defined in any one of claims 53 to 65, wherein said apparatus comprises a cap for a cup, said cap comprising a soft spout.
67. An apparatus as defined in claim 66, further comprising cups of different sizes which are configured for interchangeable attachment to said cap.
68. An apparatus as defined in claim 66, comprising a cup, and wherein said cap is provided with screw threads, such that said cap can be screwed onto and off of the said cup.
69. An apparatus as defined in claim 66, comprising a cup, and wherein said cap is further provided with finger grips on the outside of said cap to facilitate screwing of said cap on and off of said cup.
70. An apparatus as defined in claim 53, wherein said apparatus comprises an air valve, and wherein said air valve opens for passage of air through said air valve upon said application of negative pressure.
71. An apparatus as defined in claim 70, wherein said application of negative pressure causes a flexible material to move to open said air valve.
72. An apparatus as defined in claim 70 or 71, wherein said air valve comprises an opening, said opening of said air valve being an opening in a flexible material, said opening of said air valve being in a separate flexible material from said flexible material through which passes liquid.
73. An apparatus as defined in claim 53, wherein said apparatus comprises a valve holder and wherein liquid passes through said valve holder when a person drinks from said apparatus.
74. An apparatus as defined in claim 73, wherein said apparatus further comprises a cap and wherein said valve holder and said cap are dimensioned such that said valve holder fits snugly into said cap.
75. An apparatus, comprising:
a no-spill drinking apparatus, said apparatus comprising a cap said cap comprising a spout;
a valve, said valve comprising a flexible material comprising an opening, said valve further comprising a post, said post extending into said opening, said valve having a closed position and an open position, wherein liquid is blocked from passing through said opening and through said spout when said valve is in said closed position;
an air vent; and, a subunit of said apparatus;
wherein said apparatus is configured such that application of negative pressure through said spout causes said flexible material to move, with said opening of said flexible material moving along said post toward said spout, such that liquid passes through said opening and out of said spout, and air passes into said apparatus through said air vent;
and, wherein upon said application of said negative pressure, said flexible material hits said subunit.
76. An apparatus as defined in claim 75, wherein said flexible material begins to invert upon said application of negative pressure.
77. An apparatus as defined in claim 75 or 76, wherein said flexible material inverts upon said application of negative pressure.
78. An apparatus as defined in claim 75, 76 or 77, wherein said opening is a hole.
79. An apparatus as defined in any one of claims 75 to 78, wherein said apparatus comprises an air valve, wherein said air valve comprises an opening, and wherein said opening of said air valve is smaller than said opening of said flexible material of said valve comprising said post.
80. An apparatus as defined in any one of claims 75 to 78, wherein said apparatus comprises an air valve, and wherein said air valve is closed before drinking, and opens during drinking.
81. An apparatus as defined in any one of claims 75 to 80, wherein said post has a greater diameter at its bottom than at its top.
82. An apparatus as defined in any one of claims 75 to 81, wherein said post extends tightly through said opening in said closed position.
83. An apparatus as defined in any one of claims 75 to 82, further comprising cups of different sizes which are configured for interchangeable attachment to said cap.
84. An apparatus as defined in any one of claims 75 to 82, comprising a cup, and wherein said cap is provided with screw threads, such that said cap can be screwed onto and off of the said cup.
85. An apparatus as defined in any one of claims 75 to 82, comprising a hard cup.
86. An apparatus as defined in any one of claims 75 to 82, comprising a cup, and wherein said cap is further provided with finger grips on the outside of said cap to facilitate screwing of said cap on and off of said cup.
87. An apparatus as defined in any one of claims 75 to 86, wherein said flexible material comprises the shape of a bowl.
88. An apparatus as defined in any one of claims 75 to 86, wherein said flexible material comprises the shape of a bowl, said bowl having a rim and a bottom, said bottom moving both toward said rim and toward said spout upon said application of negative pressure.
89. An apparatus as defined in any one of claims 75 to 88, wherein said opening is against a center stop in said closed position.
90. An apparatus as defined in any one of claims 75 to 89, wherein said subunit is a shield.
91. An apparatus as defined in any one of claims 75 to 89, wherein said subunit is a shield, and wherein said flexible material inverts upon said application of negative pressure.
92. An apparatus as defined in claim 75, wherein said apparatus comprises an air valve, and wherein said air valve opens for passage of air through said air valve upon said application of negative pressure.
93. An apparatus as defined in claim 92, wherein said air vent valve comprises an opening, said opening of said air valve being an opening in a flexible material.
94. An apparatus as defined in claim 92, wherein said air valve comprises an opening, said opening of said air valve being an opening in a flexible material, said opening of said air valve being in a separate flexible material from said flexible material through which passes liquid.
95. An apparatus as defined in claim 92, 93 or 94, wherein said application of negative pressure causes a flexible material to move to open said air valve.
96. An apparatus as defined in claim 75, wherein said apparatus comprises a valve holder, and wherein liquid passes through said valve holder when a person drinks from said spout.
97. An apparatus as defined in claim 96, wherein said valve holder and said cap are dimensioned such that said valve holder fits snugly into said cap.
98. An apparatus, comprising:
a no-spill drinking apparatus, said apparatus comprising a cap, said cap comprising a spout;
a valve, said valve comprising a flexible material comprising an opening, said valve further comprising a post, said post extending through said opening, said valve having a closed position and an open position, wherein liquid is blocked from passing through said opening and through said spout when said valve is in said closed position;
a valve holder which holds said flexible material, said valve holder being attachable to said cap and separable from said cap;
an air valve said air valve comprising an opening; and, a subunit of said apparatus, said subunit comprising a shield;
wherein said apparatus is configured such that application of negative pressure through said spout causes said flexible material to move, with said opening of said flexible material moving along said post toward said spout such that liquid passes through said opening and out of said spout, and air passes into said apparatus through said air valve;

wherein said air valve is closed when said valve is in said closed position, and said air valve opens upon said application of negative pressure through said spout;
said shield being at a sufficiently close distance to said flexible material such that upon said application of negative pressure said flexible material will hit said shield.
99. An apparatus as defined in claim 98, wherein said flexible material begins to invert upon said application of negative pressure.
100. An apparatus as defined in claim 98 or 99, wherein said flexible material inverts upon said application of negative pressure.
101. An apparatus as defined in claim 98, 99 or 100, wherein said opening is a hole.
102. An apparatus as defined in any one of claims 98 to 101, wherein said air valve comprises an opening and wherein said opening of said air valve is smaller than said opening of said flexible material of said valve comprising said post.
103. An apparatus as defined in any one of claims 98 to 101, wherein said air valve comprises an opening, and wherein said opening of said air valve is an opening in a flexible material.
104. An apparatus as defined in any one of claims 98 to 101, wherein said opening of said air valve is an opening in a flexible material, said opening of said air valve being in a separate flexible material from said flexible material through which passes liquid.
105. An apparatus as defined in any one of claims 98 to 104, wherein liquid passes through said valve holder when a person drinks from said spout.
106. An apparatus as defined in any one of claims 98 to 105, wherein said valve holder and said cap are dimensioned such that said valve holder fits snugly into said cap.
107. An apparatus as defined in any one of claims 98 to 106, wherein said post has a greater diameter at its bottom than at its top.
108. An apparatus as defined in any one of claims 98 to 107, wherein said post extends tightly through said opening in said closed position.
109. An apparatus as defined in any one of claims 98 to 108, further comprising cups of different sizes which are configured for interchangeable attachment to said cap.
110. An apparatus as defined in any one of claims 98 to 108, comprising a cup, and wherein said cap is provided with screw threads, such that said cap can be screwed onto and off of the said cup.
111. An apparatus as defined in any one of claims 98 to 108, comprising a hard cup.
112. An apparatus as defined in any one of claims 98 to 108, comprising a cup, and wherein said cap is further provided with finger grips on the outside of said cap to facilitate screwing of said cap on and off of said cup.
113. An apparatus as defined in any one of claims 98 to 112, wherein said application of negative pressure causes a flexible material to move to open said air valve.
114. An apparatus as defined in any one of claims 98 to 113, wherein said flexible material comprises the shape of a bowl.
115. An apparatus as defined in any one of claims 98 to 113, wherein said flexible material comprises the shape of a bowl, said bowl having a rim and a bottom, said bottom moving both toward said rim and toward said spout upon said application of negative pressure.
116. An apparatus as defined in any one of claims 98 to 115, wherein said opening is against a center stop in said closed position.
CA002341418A 1998-08-21 1999-08-20 No-spill drinking cup apparatus Expired - Fee Related CA2341418C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/138,588 US6321931B1 (en) 1997-08-21 1998-08-21 No-spill drinking cup apparatus
US09/138,588 1998-08-21
US09/271,779 1999-03-18
US09/271,779 US6357620B1 (en) 1997-08-21 1999-03-18 No-spill drinking cup apparatus
PCT/US1999/019238 WO2000010434A1 (en) 1998-08-21 1999-08-20 No-spill drinking cup apparatus

Publications (2)

Publication Number Publication Date
CA2341418A1 CA2341418A1 (en) 2000-03-02
CA2341418C true CA2341418C (en) 2008-05-20

Family

ID=45582095

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002341418A Expired - Fee Related CA2341418C (en) 1998-08-21 1999-08-20 No-spill drinking cup apparatus

Country Status (11)

Country Link
EP (2) EP1714592A1 (en)
JP (1) JP4455761B2 (en)
CN (2) CN1324226A (en)
AR (1) AR022980A1 (en)
AT (1) ATE325565T1 (en)
AU (1) AU5687499A (en)
BR (1) BR9906710A (en)
CA (1) CA2341418C (en)
DE (1) DE69931264T2 (en)
ES (1) ES2264825T3 (en)
WO (1) WO2000010434A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE353835T1 (en) 2000-06-01 2007-03-15 Enpros Internat B V CONTAINER FOR CARBONATED BEVERAGES WITH POURING SPOUT
US20030029876A1 (en) * 2000-07-17 2003-02-13 Jean-Pierre Giraud Dual wall insulated cup assembly and a method of manufacturing an insulated cup assembly
US10919672B2 (en) * 2008-03-31 2021-02-16 Angelcare Feeding Usa, Llc Seal indication mechanism for containers
GB0820978D0 (en) * 2008-11-17 2008-12-24 Reckitt & Colman Overseas A relief valve
DE102011112506A1 (en) * 2011-09-07 2013-03-07 Feldmann+Schultchen Design Studios Gmbh Drinking cup lid with drinking passage
CN105037253A (en) * 2015-05-27 2015-11-11 上海应用技术学院 Method for purifying compound through ultrasonic crystal precipitation
US9701456B2 (en) * 2015-09-30 2017-07-11 Dow Global Technologies Llc Flexible container with extendable spout
CN105686537B (en) * 2016-03-05 2017-06-30 中山市美满生活电器有限公司 A kind of intelligent kettle

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1191181A (en) * 1957-04-17 1959-10-16 Self-regulating valve particularly applicable to artificial and mixed breastfeeding
US3321114A (en) * 1966-03-04 1967-05-23 Rexall Drug Chemical Pop-up diaphragm closure
US3618825A (en) * 1969-12-15 1971-11-09 Robert E Clarke Closure for dispensing spout
FR2305361A1 (en) * 1975-03-24 1976-10-22 Astra Plastique Plastic closure for bottles or flagons - has hole in flexible end cover blocked by internally mounted hard plastic stud
DE2704164A1 (en) * 1977-02-02 1978-08-03 Bachmann Pressure operated tube sealing cap - has elastic membrane with hole lifted off sealing body by pressing tube
US4102476A (en) * 1977-02-22 1978-07-25 Ciba-Geigy Corporation Squeeze bottle dispenser with air check valve on cover
GB1593084A (en) * 1977-06-24 1981-07-15 Metal Box Co Ltd Dispensing closures
US4836404A (en) * 1988-02-05 1989-06-06 Peter Coy Valved container closure
DE4027539A1 (en) * 1990-08-31 1992-03-05 Kautex Werke Gmbh Squeeze bottle with inner bag
GB2258860A (en) * 1991-08-07 1993-02-24 Polytop Plastics Valved closure
US5542670A (en) * 1995-07-17 1996-08-06 Playtex Products, Inc. Flow control element and covered drinking cup
US5651471A (en) * 1995-11-03 1997-07-29 Green; Dennis E. Removable top for drinking bottles
US5702025A (en) * 1996-05-06 1997-12-30 Di Gregorio; Vito Leak free lid with closure and spout
US5706973A (en) * 1997-01-30 1998-01-13 E. S. Robbins Corporation Drinking cup and cover with flow control elements
NL1005120C2 (en) * 1997-01-29 1998-07-30 Ippc International Product Pro Drinking-cup with detachable cover
CN1107476C (en) * 1997-08-21 2003-05-07 努利·E·哈其姆 No-spill drinking cup apparatus

Also Published As

Publication number Publication date
EP1714592A1 (en) 2006-10-25
JP2003530271A (en) 2003-10-14
CN1515467A (en) 2004-07-28
WO2000010434A9 (en) 2005-03-17
AR022980A1 (en) 2002-09-04
CA2341418A1 (en) 2000-03-02
EP1104252A1 (en) 2001-06-06
BR9906710A (en) 2000-11-14
JP4455761B2 (en) 2010-04-21
WO2000010434A1 (en) 2000-03-02
EP1104252A4 (en) 2002-10-18
CN1332860C (en) 2007-08-22
ES2264825T3 (en) 2007-01-16
DE69931264D1 (en) 2006-06-14
DE69931264T2 (en) 2007-04-19
AU5687499A (en) 2000-03-14
EP1104252B1 (en) 2006-05-10
ATE325565T1 (en) 2006-06-15
CN1324226A (en) 2001-11-28

Similar Documents

Publication Publication Date Title
US7243814B2 (en) No-spill drinking cup apparatus
US8827107B2 (en) No-spill drinking cup apparatus
JP2002002751A (en) Improved elastomer valve for spill-proof feeding device
CA2341418C (en) No-spill drinking cup apparatus
AU2004200721B2 (en) No-spill Drinking Cup Apparatus
JP2003530271A6 (en) Leak-free drinking cup device
EP1880645A2 (en) No-spill drinking cup apparatus
AU2005209645A1 (en) No-spill drinking cup apparatus
JP3223969U (en) Cup cap
MXPA01001819A (en) No-spill drinking cup apparatus
MXPA00001795A (en) No-spill drinking cup apparatus
GB2432361A (en) Non-spill drink container

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20150820