CA2339598A1 - Dna fragment having promoter function - Google Patents
Dna fragment having promoter function Download PDFInfo
- Publication number
- CA2339598A1 CA2339598A1 CA002339598A CA2339598A CA2339598A1 CA 2339598 A1 CA2339598 A1 CA 2339598A1 CA 002339598 A CA002339598 A CA 002339598A CA 2339598 A CA2339598 A CA 2339598A CA 2339598 A1 CA2339598 A1 CA 2339598A1
- Authority
- CA
- Canada
- Prior art keywords
- gene
- plant
- dna
- promoter
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1229—Phosphotransferases with a phosphate group as acceptor (2.7.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8222—Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8222—Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
- C12N15/8223—Vegetative tissue-specific promoters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8237—Externally regulated expression systems
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8237—Externally regulated expression systems
- C12N15/8238—Externally regulated expression systems chemically inducible, e.g. tetracycline
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
DNA derived from a gene encoding rice adenylate kinase which has a promoter function in a plant. A
vector containing the DNA having a promoter function. A
bacterium containing the vector, a plant cell transformed with the vector, and a plant regenerated from the plant cell and its seed.
The DNA having a promoter function can be ligated with a structural gene such as a reporter gene and integrated into a vector such as an expression vector.
When the DNA having a promoter function is ligated to a vector together with a structural gene encoding a protein and transformed into a host cell, the structural gene is expressed. Further, the expression of a desired gene can be regulated by ligating the desired gene under the control of the DNA fragment.
vector containing the DNA having a promoter function. A
bacterium containing the vector, a plant cell transformed with the vector, and a plant regenerated from the plant cell and its seed.
The DNA having a promoter function can be ligated with a structural gene such as a reporter gene and integrated into a vector such as an expression vector.
When the DNA having a promoter function is ligated to a vector together with a structural gene encoding a protein and transformed into a host cell, the structural gene is expressed. Further, the expression of a desired gene can be regulated by ligating the desired gene under the control of the DNA fragment.
Description
DESCRIPTION
DNA FRAGMENT HAVING PROMOTER FUNCTION
TECHNICAL FIELD
The present invention relates a novel DNA derived from a gene encoding rice adenylate kinase which has a promoter function in the plant body or plant cell and expression of a foreign gene and its regulation using the DNA.
BACKGROUND ART
It is generally known that regulation of a structural gene is associated with a region called a promoter which is located upstream of the structural gene. A promoter is a DNA sequence which is located upstream of a structural gene and contains a signal (the TATA box) which directs an RNA polymerase to initiate transcription toward subsequent protein synthesis.
A specific nucleotide sequence called a cis element which is located upstream of the TATA box is supposed to play an important role in regulation of the strength and 2o expression of the promoter.
For example, deletion studies and DNA-fusion studies on the promoter of a drought-inducible gene (rd29A) isolated from Arabidopsis thaliana [Koizumi et al., Gene 129:175-182(1993)] revealed that the cis element that regulates the drought-inducible gene rd29A is a 9-by sequence of TACCGACAT [Yamaguchi-Shiozaki et al., J.
Plant Res., 108:127-136(1995)], and that the above-mentioned 9-by cis element is essential to the drought-inducibility of the promoter.
On the other hand, the 35S promoter from cauliflower mosaic virus [Guilley et al., Cell 30:763-773(1982)] is one of the well-known promoters for plant transformation and regulates expression of foreign genes introduced into dicotyledonous plants and protoplasts [Fromm et al., Proc.
Natl. Acad. Sci., 82:5824-5828(1985)]. Analysis in tobacco [Morell et al., Nature 315:200-204(1985)] and 1o petunia [Sander, Nucl. Acid Res. 15:1543-1558(1987)]
demonstrated that the 35S promoter is more than 30 times as strong a promoter as the nopaline synthase promoter.
Because of its potent promoter activity in dicotyledons, the 35S promoter is often used for efficient expression i5 of plant-viable foreign structural genes introduced into dicotyledons.
However, the 35S promoter only shows relatively weak activity in agriculturally important gramineous monocotyledons [Hauptmann et al., Plant Cell Rep., 6:265-20 270(1987)].
In contrast, the promoter of the maize alcohol dehydrogenase (Adh) gene allows a very low level of expression in protoplasts of dicotyledonous Nicotiana plumbaginifolia [Ellis et al., EMBO J., 6:11-16(1987)].
25 Expression of the 35S promoter and the Adh promoter does not seem amenable to tissue-specific or chemical regulation.
DNA FRAGMENT HAVING PROMOTER FUNCTION
TECHNICAL FIELD
The present invention relates a novel DNA derived from a gene encoding rice adenylate kinase which has a promoter function in the plant body or plant cell and expression of a foreign gene and its regulation using the DNA.
BACKGROUND ART
It is generally known that regulation of a structural gene is associated with a region called a promoter which is located upstream of the structural gene. A promoter is a DNA sequence which is located upstream of a structural gene and contains a signal (the TATA box) which directs an RNA polymerase to initiate transcription toward subsequent protein synthesis.
A specific nucleotide sequence called a cis element which is located upstream of the TATA box is supposed to play an important role in regulation of the strength and 2o expression of the promoter.
For example, deletion studies and DNA-fusion studies on the promoter of a drought-inducible gene (rd29A) isolated from Arabidopsis thaliana [Koizumi et al., Gene 129:175-182(1993)] revealed that the cis element that regulates the drought-inducible gene rd29A is a 9-by sequence of TACCGACAT [Yamaguchi-Shiozaki et al., J.
Plant Res., 108:127-136(1995)], and that the above-mentioned 9-by cis element is essential to the drought-inducibility of the promoter.
On the other hand, the 35S promoter from cauliflower mosaic virus [Guilley et al., Cell 30:763-773(1982)] is one of the well-known promoters for plant transformation and regulates expression of foreign genes introduced into dicotyledonous plants and protoplasts [Fromm et al., Proc.
Natl. Acad. Sci., 82:5824-5828(1985)]. Analysis in tobacco [Morell et al., Nature 315:200-204(1985)] and 1o petunia [Sander, Nucl. Acid Res. 15:1543-1558(1987)]
demonstrated that the 35S promoter is more than 30 times as strong a promoter as the nopaline synthase promoter.
Because of its potent promoter activity in dicotyledons, the 35S promoter is often used for efficient expression i5 of plant-viable foreign structural genes introduced into dicotyledons.
However, the 35S promoter only shows relatively weak activity in agriculturally important gramineous monocotyledons [Hauptmann et al., Plant Cell Rep., 6:265-20 270(1987)].
In contrast, the promoter of the maize alcohol dehydrogenase (Adh) gene allows a very low level of expression in protoplasts of dicotyledonous Nicotiana plumbaginifolia [Ellis et al., EMBO J., 6:11-16(1987)].
25 Expression of the 35S promoter and the Adh promoter does not seem amenable to tissue-specific or chemical regulation.
Techniques for efficient expression of foreign structural genes and for regulation of their expression are important to create new practically useful varieties of a wide range of plants by gene recombination in the future.
Hence, there is a demand for a promoter that shows promoter activity in monocotyledons as well as in dicotyledons and is easy to regulate tissue- or site-specifically or by harmless chemicals.
so On the other hand, it is known that adenylate kinase (AK) is involved in the energy system in animals, microorganisms and plants [Noda et al., The Enzymes., Academic Press, New York:279-305(1973)].
With respect to plants, induction of adenylate kinase by sucrose in rice [Kawai et al., Ikushugakuzasshi, suppl.
1:253(1994)] and localization of the enzyme in vascular bundles [Kawai et al., J. Plant Physiol. 146:239-242(1995); Kawai et al., Plant Molecular Biology 27:943-951(1995)] have been disclosed.
Two cDNA species encoding rice AK (AK-a and AK-b) have been isolated [Kawai et al., The Plant Journal 2(6):845-854(1992)]. However, the genomic DNA
corresponding to them have not been obtained, and the nucleotide sequence of their promoter region remains unknown.
DISCLOSURE OF THE INVENTION
The object of the present invention is to obtain and provide a novel DNA fragment having a promoter function which enables expression of a fused structural gene in a plant body or plant cells and regulation of the expression by a harml.e;~s chemical substance or tissue- or site-specifically.
As a result of their extensive research to solve the above-mentioned problems, the present inventors isolated a promoter region of the rice AK-a gene and found that the promoter region functions as a promoter in other to plants to express a foreign ~~ene and regulate its expression. The prese=_r..t invention was accomplished on the basis of the discovery.
The present invention provides a promoter of a gene encoding rice adenylate kina:~e described below, or a DNA
fragment having a promoter function which consists of at least part of the nucleotide sequence shown in SEQ ID
N0:1 in the Sequence :fisting wherein one or more bases may be deleted, added or replaced as long as the fragment having a function to regulate expression of a structural 2o gene viable in a plant, for example, a DNA of 1443 by shown in SEQ ID N0:2. The present invention also provides a vector conta.i.ning the DNA fragment having a promoter function, a :,aa.cterium containing the vector and a plant transformed with the vector or the bacterium.
The present invention still further provides a method for expression of regulat.in.g a recombinant DNA which comprises fusing the DNA fragment having a promoter function to another DNA sequence and introducing the resulting recombinant DNA into a plant.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 illustrates the structure of p21. NOS-Pro is the nopaline synthase promoter gene, NPT-II denotes the kanamycin-resistant gene, NOS-Ter denotes the nopaline synthase terminator gene, and AK-a-Pro denotes the AK-a promoter gene.
BEST MODE FOR CARRYING OUT THE INVENTION
1o For the conventional recombinant DNA techniques mentioned hereinafter, reference can be made to Molecular Cloning, Fristch et al., Cold Spring Harbour Press (1989) unless otherwise noted.
The DNA fragment having a promoter function of the z5 present invention can be isolated from a plant genomic library by plaque hybridization using rice AK cDNA as the probe as described below.
The genomic library is obtainable by extracting genomic DNA from a plant such as rice, partially 2o digesting the isolated genomic DNA with an appropriate restriction enzyme such as Sau3A and separating long 9 to 23-by DNA fragments by sucrose gradient centrifugation or agarose gel electrophoresis, introducing and packaging the DNA fragments in an appropriate vector such as ~
25 phage and incubating Escherichia coli such as XL-1 Blue strain infected with the recombinant phage on a culture plate such as an LB plate (1% Bacto tryptone, 0.5% yeast-extract, 1% NaCl, 1.3% agarose). As the vector, 1~ phage or a cosmid vector is preferable for their ability to accommodate longer inserts though a plasmid is available too.
A membranes such as a nylon membrane is placed on the above-mentioned culture plate, soaked in a denaturing solution, then a neutralizing solution and washed with a washing solution so that the recombinant DNA is adsorbed on the membranes in the form of single strands.
1o As the probe, a synthetic oligo DNA identical to part of the AK structural gene or part of AK cDNA amplified by PCR using AK cDNA as the template may be used after labeled with [a-32P]dCTP, DIG (Digoxigenin), biotin or the like.
The labeled probe is hybridized with the single-stranded DNA on the membrane.
After hybridization with the labeled probe, the clones strongly hybridized with the probe are detected by autoradiography of the membrane and isolated as positive 2o clones .
The DNA from the isolated positive clones is subcloned into an appropriate cloning vector such as pBluescript II after treatment with an appropriate restriction enzyme such as EcoRI, and the nucleotide sequence is determined by the Maxam-Gilbert method or the dideoxy method. Commercial kits are available for the sequencing, and an autosequencer or the like is also available to automate the sequencing.
From the nucleotide sequence of the cloned DNA, the 5' untranslated region of the AK gene and the promoter region which lies upstream of the untranslated region can be identified.
A structural gene such as a reporter gene, an insecticidal protein gene, a herbicide resistant gene, an antibacterial gene, a flowering-inducing gene, a plant growth regulatory gene, a plant morphogenetic gene, a 1o stress resistant gene, a flower pigmenting gene, a phototoxicity resistant gene, a harvest enhancing gene or the like can be ligated downstream of the promoter region.
The reporter gene may be a a-glucuronidase (GUS) gene, a luciferase gene, a chloramphenicol acetyltransferase s5 (CAT) gene or the like. The insecticidal gene may be a crystalline protein gene from Bacillus thuringiensis, a protease inhibitor gene or the like. The herbicide resistant gene may be a glyphosate resistant gene, a glufosinate resistant gene, a sulfonylurea herbicide 2o resistant gene or the like. The antibacterial gene may be a chitinase gene, a glucanase gene, a lysozyme gene, a secropine gene or the like. The flowering inducing gene may be a florigene-producing gene or the like. The plant growth regulatory gene may be a polygalacturonase gene or 25 the like. The plant morphogenetic gene may be the rolC
gene or the like. The stress resistant gene may be the fatty acid-unsaturating-enzyme gene (FAD3) or the like.
The flower pigmenting-associated gene may be a chalcone synthase gene, a phenylalanine ammonia lyase gene or the like. The phototoxicity resistant gene may be a glutamine synthase gene or the like, and the harvest enhancing gene may be a modified seed storage protein gene, a sucrose phosphate synthase gene or the like.
The recombinant DNA having a structural gene such as a reporter gene downstream of the promoter may be introduced into a plant indirectly or directly.
1o For indirect introduction, use of Agrobacterium may be mentioned.
For direct introduction, the electroporation method, the particle gun method, the PEG method, the microinjection method, the silicon carbide whisker method, etc. are available.
The plant as the host of the gene may be a cereal plant, a vegetable, a fruiter, a feed crop, a fruiter or an ornamental plant. For example, rice, maize, wheat, barley, grass, sugarcane, asparagus, beet, potato, sweet 2o potato, cyclamen, statice, snapdragon, tobacco, arabidpsis, etc. may be mentioned. The plant may be a monocotyledon or a dicotyledon and may be any species.
Insertion of a drug resistant gene such as the kanamycin or hygromycin resistant gene into the transducing vector or simultaneous introduction of a vector having a drug resistant gene into the plant makes it possible to screen plants for transfer of the promoter and the structural gene by using a drug such as kanamycin or hygromycin. Further, it is possible to identify the intended transgenic plant by analysis of the transgene by PCR or southern hybridization or enzymatic or Western analysis of the protein produced by translation of the introduced structural gene in leaf extract.
The transgenic plant may be bred for seed or may be regenerated from tissues such as leaves or roots through cell differentiation.
The amenability of the AK gene to regulation by sucrose makes it possible to regulate expression of the introduced structural gene fused downstream of the promoter region in the transgenic plant by treating the transgenic plant with sucrose as described below.
When the transgenic plant is a complete plant, the inducer may be applied to the foliage by spraying or to soil or a water culture medium for hydroponics. It is possible to allow a piece of a leaf to redifferentiate in a redifferentiation medium supplemented with sucrose.
2o Seeds of the transgenic plant may be grown in sucrose solution until they develop shoots and roots.
Cells of the transgenic plant, for example, in the form of a callus, may be cultured in a liquid or solid medium containing sucrose or may be directly supplemented with sucrose solution.
Induction of the promoter introduced in the plant by sucrose can be confirmed by quantitative change in the foreign structural gene fused to it and/or its translation product.
For example, when the structural gene is the GUS gene, induction by sucrose can be confirmed by comparing the GUS activities of a sucrose-treated transgenic plant and an untreated transgenic plant obtained by measuring the fluorescence from 4MU produced by hydrolysis of 4MUG by GUS under ultraviolet light (365 nm).
When the crystalline protein gene from Bacillus 1o thuringiensis is used as the structural gene, induction by sucrose can be confirmed by comparing the insecticidal activities of a sucrose-treated transgenic plant and an untreated transgenic plant.
Because the AK gene is localized in vascular bundles, s5 it is possible to regulate the site of expression of the fused foreign gene downstream of the promoter region in the transgenic plant carrying it.
Site-specific expression of the foreign structural gene fused with the promoter can be confirmed by locating 2o the structural gene and/or its translation product in the plant.
For example, when the structural gene is the GUS gene, localization of GUS protein in the transgenic plant can be confirmed by histochemical GUS assay.
25 In other words, localization of GUS protein can be confirmed by microscopic examination of tissues for the blue color of indigotin hydrolytically produced from 5-bromo-4-chloro-3-indolyl-~-D-glucuronic acid by GUS
protein.
Application of the above-mentioned procedure to analysis of expression of a reporter gene fused with various mutant promoters having mutations such as deletions or substitution introduced into the promoter region in a plant makes it possible to identify the regions that govern the sucrose-inducibility and vascular bundle-specificity of the expression. Mutations can be 1o introduced to the promoter region, for example, by preparing deletion mutants of the DNA fragment having a promoter function or by cleaving the DNA fragment having a promoter function with an appropriate restriction enzyme and ligating it after partial deletion.
Further, ligation of the regions that govern the sucrose-inducibility and/or tissue- or site-specificity of the expression makes expression of conventional promoters such as the 35S promoter to be controllable.
Now, the present invention will be described in 2o further detail with reference to Examples, but it should be understood that the present invention is by no means restricted thereto.
EXAMPLE 1: Construction of a rice genomic library The genomic DNA was extracted and isolated from leaves of 2-week-old rice foliage (Nihonbare) for use in construction of a rice genomic library. The isolated genomic DNA was partially digested with Mbo I. The lysate was extracted with phenol-chloroform, and the resulting aqueous layer afforded the Mbo I fragments of the genomic DNA after ethanol precipitation followed by dissolution in TE buffer.
The resulting Mbo I fragments of the genomic DNA were introduced to the Xho I site in a phage vector ~-GEM12 and packaged into phage particles. The recombinant phage was plated on a NZYM (1% NZ amine, 0.5% Yeast Extract, 0.5% NaCl, 0.2% MgS04~7H20 and 1.3% agarose) plate 1o together with top agar containing Escherichia coli (KW251) and incubated overnight at 37°C to form plaques.
Example 2: Screening of the rice genomic library (a) Preparation of a membrane The NZYM plate having plaques on it was refrigerated, and a membrane (Hybond N+, Amersham) with pencil marks was placed on the plate for 2 minutes and detached after the plate was needled through the membrane for marking.
The membrane was denatured in 1.5M NaCl, 0.5M NaOH for 2 minutes, neutralized in 1.5 M Tris-HC1 (pH 7.5), 2xSSC
2o for 5 minutes, rinsed in 0.2 M Tris-HC1 (pH 7.5), 2xSSC
for 30 seconds and dried on a filter paper to immobilize the recombinant DNA from the NZYM plate in the form of single strands.
(b) Preparation of a probe A probe was prepared from AK-a cDNA isolated in accordance with Kawai et al., [Kawai et al., The Plant Journal 2(6):845-854(1992)] as follows by using a Random Primer DNA Labeling Kit Ver. 2.0 (TaKaRa) for labeling of the DNA. 1 ~g of AK-a cDNA and 2 ~~ of Random Primer were put in a tube, and sterilized water was added to a total volume of 14 ~~. The resulting solution was mixed with 2.5 ~~ of lOxBuffer, 2.5 ~~ of dNTP Mixture and 5 u~
of [a-32P]dCTP (1.85 MBq) and then with 1 u~ of Exo-free Klenow Fragment, maintained at 37°C for 10 minutes and then heated at 65°C to give a probe.
(c) Hybridization 1o The above-mentioned membrane carrying single-stranded DNA was put into a hybribag, and a hybridization buffer (5xSSC, 5xDenhard's solution, 0.5% SDS) in an amount of 5 m~ per 100 cm2 of the membrane and previously sonicated, heated and quenched salmon sperm DNA at a final z5 concentration of 0.1 mg/m~ were added. Then, the above-mentioned labeled probe was added at 105 to 106 cpm per 1 m~ of the hybridization buffer after heating and quenching. The bag was sealed and maintained at 65°C
overnight for hybridization. After the hybridization, 2o the membrane was washed in washing solution A (0.1% SDS, 2xSSC) at room temperature for 10 minutes with shaking, then in washing solution B (0.1% SDS, lxSSC) at 65°C for 30 minutes with shaking and again in fresh washing solution B at 65°C for 30 minutes with shaking and then 25 air-dried.
(d) Autoradiography The air-dried membrane was wrapped with plastic film and subjected to autoradiography to obtain an autoradiogram. The marks on the membrane projected on the autoradiogram were fitted to the marks in the agar plate to spot firmly hybridized phage clones as positive from the positive signals on the autoradiogram, and 11 out of about 2 million phage clones were isolated as positive clones.
EXAMPLE 3: Determination of the nucleotide sequence (a) Preparation of positive phage DNA
1o DNA was prepared from the isolated 11 positive phage clones as follows. Each phage clone was suspended in 100 of SM buffer (0.58% NaCl, 0.2% MgS04~H20, 0.01%
gelatine, 0.05% Tris-HCl) and left to stand at room temperature for 1 hour. 20 u~ of Excherichia coli (KW251) was added, then maintained at 37°C for 15 minutes and incubated at 37°C overnight in 5 m~ of NZYM medium.
After the incubation, the cultures were shaken with 100 ~ of chloroform and centrifuged. To the resulting supernatants containing the phage were incubated together 2o with 5 ug/m~ of RNase A and DNase I at 37°C for 30 minutes, then mixed with the equal volume of 20 PEG6000-2.5 NaCl and left to stand in ice and centrifuged.
The resulting pellets were suspended in 500 u~ of SM
buffer, then maintained at 65°C for 15 minutes together with EDTA (at a final concentration of 10 mM) and SDS (at a final concentration of 0.1%) and extracted with phenol, phenol-chloroform and chloroform. The resulting aqueous layer was mixed with the equal volume of isopropanol, left to stand at -80°C for 10 minutes and centrifuged.
The resulting pellets were rinsed with 70% ethanol, centrifuged again and dissolved in 50 u~ of TE buffer to give phage DNA solution.
(b) Determination of the nucleotide sequence of the positive phage DNA
The DNA from each phage clone thus obtained was treated with several restriction enzymes including Sac I, 1o Xba I and Pst I and fractionated by agarose gel electrophoresis. After Southern analysis using the entire AK-a cDNA as the probe, the Sac I fragment (1500 bp) from 4-1 and the Xba I fragment (about 2000 bp) from 4-1 were recovered from the agarose gel by using centrifugal filter tubes for DNA recovery (SUPREC-01, TaKaRa) as putative fragments containing regions homologous to AK-a cDNA. The recovered DNA fragments were ligated separately into the restriction sites (Sac I
and Xba I) of pBluescript II (STRATAGENE) with DNA
2o Ligation Kit (TaKaRa) and transformed into Escherichia coli (XL1-Blue) to obtain two clones: clone p3-2-1 containing the Sac I fragment from 4-1, and clone p-4-2-1 containing the Xba I fragment from 4-1. The nucleotide sequences of both clones were determined by the dideoxy method by using a sequencing kit (Bca BEST Dideoxy Sequencing Kit, TaKaRa). The results indicated not only inclusion of a region homological to AK-a cDNA but also the absence of the desired region upstream from the translation initiation site.
Then, the 11 positive phage clones were screened by Southern analysis using the two DNA fragments obtained by Sac I reaction of the insert in above-mentioned p4-2-1 as the probes after restriction reaction with Sac I followed by agarose gel electrophoresis to identify a positive phage clone (4-1) as putatively containing the upstream region of Ak-a cDNA, which was subjected to Southern 1o analysis using the two DNA fragments obtained by Sac I
reaction of the insert in above-mentioned p4-2-1 as the probes after reaction with combinations of Sac I with other twelve restriction enzymes including Sac I-Pst I, Sac I-BamH I and Sac I-Sal I and agarose gel z5 electrophoresis. The Pst I fragment from 4-1, which was presumed to contain the region of AK-a upstream of the translation initiation site from these Southern analyses, was recovered from the agarose gel by using a centrifugal filter tubes for DNA recovery (SUPREC-01, TaKaRa). The 2o recovered DNA fragment was ligated into the restriction site (Pst I) of pBluescript II (STRATAGENE) with DNA
Ligation Kit (TaKaRa) and transformed into Escherichia coli (XL1-Blue) for subcloning to obtain a clone (p50) containing the Pst I fragment from 4-1. The nucleotide 25 sequences of p50 thus obtained and several deletion mutant clones having deletions of different lengths obtained from p50 by using Deletion Kit for Kilo-Sequence (TaKaRa) were determined by the didE:oxy method with a sequencing kit (Sequencing High--Cycle-, TOYOBO).
(c) Analysis of them sequf~ncv..ng results Analysis of the nuc:leotic~e sequences of p3-2-1, p4-2-1 and p50 thus determined with genetic information analysis software (GENETYX-M;4C Ver. 8, Software Development Co., Ltd.) revea.Led the nucleotide sequence of about 4.3 Kb shown ~n SEQ ID N0:1 emerged. The bases 1340-1580, 2859-3004, ;3092-3:211, 3332-3499 and 4139-4228 1o in the nucleotide sequE=_nce SEQ ID N0:1 agreed with the previously reported nucleotide sequence of AK cDNA [Kawai et al., The Plant Journal 2(6):845-854(1992)]. Analysis of AK cDNA spotted the trans.Lation initiation codon (ATG) at bases 1478-1480 in SEQ ID NO.-1 in the Sequence Listing.
Promoter analysis using genetic information analysis software (GENETYX-MAC '~r~~r. 8, Software Development Co., Ltd.) spotted TA'rA bo:x sequences at bases 946-953 (8 bp) and bases 952-957 (6 bp) in :3EQ ID N0:1.
EXAMPLE 4: Assay of promoter activity (a) Gene transfer .i_nto a plant p50 from Example :3 was reacted with Sal I and separated by agarose gel electrophoresis, and the DNA
fragment containing 14~t3 by (SEQ ID N0:2 in the Sequence Listing) upstream from the t~_anslation initiation site (bases 1478-1480 in S:EC) ID N0:1) was recovered from the agarose gel by using a centr:i.fugal filter tube for DNA
recovery (SUPREC-01, 'T'~iKaRa) . r('he DNA fragment was inserted into the Sal I site of a transducing vector for a plant having the kanamycin resistant gene (pBI101, CLONTECH), and the resulting vector shown in Fig. 1 was designated as p21. p21 was introduced into Agrobacterium (LBA4404 strain) as follows.
Agrobacterium was grown in liquid YEP medium (congainin 1% Bacto-peptone, 1% Bacto-yeast extract and 0.5% NaCl) at 28°C until the absorbance at 600 nm reached about 1.0 and cooled on ice and centrifuged. The cell 1o pellet was suspended in 1 m~ of 20 mM CaCl2, frozen in liquid nitrogen, then thawed at 37°C for 5 minutes together with 1 ug of p21 DNA and incubated in 1 m~ of liquid YEP medium at 28°C for 4 hours with gentle shaking.
The culture was centrifuged, and the resulting cell i5 pellet was suspended in 0.1 m~ of liquid YEP medium and plated on a YEP plate (containing 1.3% agarose, 25 ug/m~
kanamycin, 300 ug/m~ streptomycin and 100 ~g/m~
rifampicin) and incubated at 28°C for 3 days to obtain transformed Agrobacterium.
2o The following procedure was followed to achieve gene transfer into tobacco.
The transformed Agrobacterium was grown in liquid YEP
medium at 28°C overnight. Infection was carried out by soaking a 1 cm x 1 cm piece of an aseptically grown 25 tobacco leaf in the transformed Agrobacterium culture for 5 minutes. After the infection, the excessive culture medium was removed by sterilized filter paper, and the tobacco leaf was grown on an MS-NB plate under light of about 3000 lux. 5 days later, the leaf was transferred onto an MS-NB plate containing 500 ug/m~ claforan to remove the transformed Agrobacterium and cultured. 7 days later, the culture was transferred onto an MS-NB
plate (1650 mg/~ NH4N03, 1900 mg/1~ KN03, 440 mg/~
CaCl2~ 2H20, 370 mg/~ MgS04' 7H20, 170 mg/~ KHzP04, 6.2 mg/~
NH3B03, 22 . 3 mg/~ MnS04 ~ 4H20, 8 . 6 mg/~ ZnS04 ~ 7H20, 0 . 83 mg/~ KI, 0 . 25 mg/L~ Na2Mo04' 2H20, 0 . 025 mg/~ CuS04 ~ 5H20, 0.025 mg/2 CoCl2~ 6Hz0, 37.3 mg/I~ Na2-EDTA, 27.8 mg/~
FeS04~7H20, 10 mg/~ thiamin hydrochloride, 5 mg/~
nicotinic acid, 10 mg/~ pyridoxine chloride, 100 mg/~
myo-inositol, 2 mg/~ glycine, 30000 mg/.~ sucrose, 0.1 mg/~ a-Naphthaleneacetic Acid, 1.0 mg/~ 6-Benzyladenine) containing 100 ug/m~ kanamycin and 500 ug/m~ claforan and grown into a kanamycin resistant culture. When the culture had differentiated into a large kanamycin resistant foliage 10 days later, it was transferred onto a hormone-free MS plate (1650 mg/.~ NH4N03, 1900 mg/~ KN03, 440 mg/~ CaC12~2H20, 370 mg/~ MgS04'7H20, 170 mg/~ KHzP04, 6.2 mg/~ NH3B03, 22.3 mg/~ MnS04~4H20, 8.6 mg/~ ZnS04~7H20, 0.83 mg/~ KI, 0.25 mg/~ NazMo04~2H20, 0.025 mg/1L CuS04~5Hz0, 0. 025 mg/~ CoCl2~ 6H20, 37.3 mg/L~ Naz-EDTA, 27 .8 mg/L~
FeS04~7Hz0, 10 mg/~ thiamin hydrochloride, 5 mg/.~
nicotinic acid, 10 mg/~ pyridoxine chloride, 100 mg/~
myo-inositol, 2 mg/L~ glycine, 30000 mg/l~ sucrose, 3000 mg/~ Gellan gum) and grown to obtain transgenic tobacco.
(b) Confirmation of the transgene The presence of the transgene in the transgenic tobacco thus obtained was confirmed by PCR amplification of the genomic DNA extracted by the CTAB method from the transgenic tobacco as the template across the region between the promoter gene and the GUS gene using primers shown in SEQ ID N0:3 and SEQ ID N0:4 followed by agarose electrophoresis. The composition of the reaction solution used in the PCR reaction was as follows. The thermostable DNA polymerase used was TaKaRa EX Taq (TaKaRa).
Tris-HC1 pH 8.3 10 mM
KCl 50 mM
MgCl2 1.5 mM
Each dNPT 0.2 mM
Thermostable DNA polymerase 1 U
Genomic DNA 0.1 ug Each primer 20 pmol The total volume was adjusted to 50 u~ with sterilized water.
The PCR reaction conditions were as follows.
5 minutes at 95°C
cycles of 1 minute at 95°C, 2 minutes at 55°C and 2 minutes at 72°C
25 7 minutes at 72°C
2% agarose gel electrophoresis of the PCR reaction solution demonstrated the transduction of the AK promoter region and the GUS gene.
(c) Assay of the promoter activity The promoter activity assay was done by measuring the enzymatic activity of the translation product of the reporter gene linked downstream of the promoter (the GUS
activity) as follows.
(c-1) Fluorometric assay About 100 mg of leaves and roots from the transgenic plant was ground with 100 ~~ of an extraction buffer (50 1o mM phosphate buffer (pH 7.0), 10 mM EDTA, 0.1% Triton X
100, 0.1% N-Lauroylsarcosine Sodium Salt, 1 mM ~-mercaptoethanol) in a microtube (1.5 m~) on ice and centrifuged to give about 100 u~ of a supernatant, which was used for GUS assay and protein assay.
For the GUS assay, 80 ~~ of the supernatant diluted with 170 u~ of the buffer was used as the extracted solution. 250 ~~ of 4-methyl-umbelliferyl-~-D-glucuronide (4MUG) solution (1mM 4MUG/extraction buffer) as the substrate was added to the extracted solution, and 2o the reaction was initiated at 37°C. 10 minutes and 40 minutes after the initiation of the reaction, portions (100 u~) of the reaction solution were withdrawn, and 2 m~ of a reaction terminative solution (0.2 M sodium carbonate) was added to terminate the reaction. A
mixture of 2 m~ of the reaction terminative solution and 100 ~~ of the extracted solution was used as the blank, and mixtures of 2 m~ of the reaction terminative solution with 50 u~ or 100 u~ of 1 ~M 4-methyl-umbelliferone (4MU) solution were used as controls. The fluorescence from these solutions was measured with a spectrofluorometer (excitation wavelength = 365 nm, emission wavelength =
455 nm).
Protein assay was carried out by the Bradford method by using Bio-Rad Protein Assay Kit (BIO-RAD).
The 4MU production per unit time and per unit amount of protein was calculated in pmol/min/mg from the so measured values.
AK-GUS Non-transformant GUS activity 98.51 14.49 Standard error 15.61 4.37 (c-2) Histochemical assay A piece of leaf or root tissue was cut from the plant, soaked in a fixing solution (0.3% formamide, 10 mM MES, 0.3 M mannitol) sucked with a vacuum pump and left at room temperature for about 1 hour. The tissue was washed with a buffer (50 mM sodium phosphate pH 7.0), soaked in 5-bromo-4-chloro-3-indolyl-~i-D-glucuronic acid (X-Gluc) solution, sucked with a vacuum pump and left at 37°C for at least 2 hours. The blue color of indigotin was 2o recognized microscopically in the tissue.
(c-3) Analysis of the second-generation transgenic plant Seeds were harvested from the first-generation AK-GUS
tobacco showing GUS activity. The seeds were sown and :? 3 grown into second-generation AK--~:~tIS tobacco .
Histochemical examination by staining demonstrated that the AK promoter was fi:mctional ;mn the second generation transformant and expressed strongly E=_specially at growing points and vascular bundles.
EXAMPLE 5: Creation of.: a herbic~.de resistant plant (a) Gene transfer into a plant p50 from Example ~~ ras reacted with Sal I and separated by agarose gel electrophoresis, and the DNA
1o fragment containing 19:43 by ( SEQ TD LJO : 2 1 n the Sequence Listing) upstream from the translation initiation site (bases 1478-1480 in S~:Q ID N0:1was recovered from the agarose gel by using ~;~ centrifugal filter tube for DNA
recovery ( SUPREC-01 , '.°.~~aKaRa ) . Tree Dl~fA f ragment was ligated with a herbic~..de resistant, gene, PPT-acetyltransferase (PAS') gene, and the 3SS terminator gene, and inserted into a trwansducing vector for Agrobacterium to give pNC/AK-PAT. pN(~/AK-PAT was introduced into Agrobacterium (LBA4404 and EHA101) by the same method as 2o in Example 3 and transferred into tobacco and rice.
(b) Confirmation r.:>f the transgene The presence of the transgene in the AK-PAT tobacco and rice thus obtainecwas confirmed by PCR amplification of the region between the promoter gene and the GUS gene using primers shown ire SEQ ID N0:3 and SEQ ID N0:5 followed by agarose e=1_ectrophoresis :in. accordance with the CTAB method. Detection of a band of the expected size indicated the presence of the transgene.
(c) Herbicide resistant test The created AK-PAT tobacco and rice were tested for herbicide resistance by application of glufosinate to the foliage. The non-transformants withered to death, while the AK-PAT tobacco and rice were herbicide-resistant and remained viable.
(d) Herbicide resistant test of the second generation transductants Seeds were harvested from the first-generation AK-PAT
tobacco and rice expressing herbicide resistance. The seeds could germinate in a glufocinate solution normally.
The resulting second-generation AK-PAT tobacco expressed herbicide resistance against glufocinate applied to the z5 foliage.
INDUSTRIAL APPLICABILITY
The promoter of the present invention can induce expression of a useful gene when introduced into a plant or plant cell after ligated with the useful gene. The 2o promoter gene of the present invention is useful as a promoter which makes expression of the introduced useful gene sucrose-inducible because it is the promoter of the sucrose-inducible AK gene. Further, because of localization of AK in vascular bundles, it is possible 25 express the introduced gene in limited tissues or sites.
SEQUENCE LISTING
(1) GENERAL INFORMATION:
(i) APPLICANT: NISSAN CHEMICAL INDUSTRIES, LTD
(ii) TITLE OF INVENTION: DNA FRAGMENT HAVING PROMOTER FUNCTION
(iii) NUMBER OF SEQUENCES: 5 (iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE : SM.?~RT & BIGGAR
10 (B) STREET: P.O. B(>X 2999, STATION D
(C) CITY: OTTAWA
( D ) STATE : O:NT
( E ) COUNTRY : CANAD;~1 (F) ZIP: K1P 5Y6 (v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Poppy disk (B) COMPUTER: IBM :f?C compatible (C) OPERATING SYSTF;M: PC-DOS/MS-DOS
(D) SOFTWARE: ASC:'I (text) 20 (vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER: CA 2,339,598 (B) FILING DATE: 1!:i~-MAR--2001 (C) CLASSIFICATION:
(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER:
(B) FILING DATE:
(viii) ATTORNEY/AGENT INFO RMATION:
(A) NAME: SMART ~t BIGGAR
(B) REGISTRATION Nf.JMBER:
(C) REFERENCE/DOCK1~,T NUMBER: 71416-203 ( ix) TELECOMMUNICATION IUJFORMATION
(A) TELEPHONE: (613)-232-2486 (B) TELEFAX: (613)--232-8440 (2) INFORMATION FOR SEQ ID N!7.: 1:
(i) SEQUENCE CHARACTERISTICS
(A) LENGTH: 4354 (B) TYPE: nucleic acid (C) STRANDEDNESS:
(D) TOPOLOGY:
(ii) MOLECULE TYPE: DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Oryza sativ.:a L.cv.Ni;pponbare (xi) SEQUENCE DESCRIPTION: ~:>EQ ID NO.: 1:
CTGCAGGAAG ATTAATTAGG TGGACA~".ACC AAACCCTGTG GTTGGTGACG CCCTGTTGTT 60 AATCAACTGG GGTGTTCGTT GGACAT~::~G'T'T TTTGCAG(~AA AA'TTAAGCAA GAAAATTAAG 120 AAGAATGCTC AAGCTGACAT GAGAAA.~jCG'T AATCCAA'IGG AAGCGAATTT CAAGTCGTTC 180 TCTTGTACTA CCATGTTTAG AATACA':f'AAG ACAG'TGCCAA CGGTTTGATG GCTCCTATTG 240 5 0 GCTCGTGTGA TACTGACTTG 'rGTCAC.?=~AAG CATC.AAA'CTG CT'TCTTGGAG TATCTTTATT 3 ACCGAAAACC CCAAAGATTA 'rTCTAT':fC'.CA CCTC.AGGGTA ATTGTGCTGA ACTATGCAAT 360 GAATACAAAT TCGCAAAATA 'rCATGG'J'TAT CTAT~TTt3CT CAAATTGAAA TTTGAGTCCA 420 ACTGAGACTG CAATACGATT TTTCTT':CTCA AAAAGAAATT ATTAATTTTT TTTTCATGAA 480 ACGCAATTCA ACCGTTCGAG AAATAT~:~CTG TCAT.?~AA'TAA GTAGTCTAGT GCAGAAACAA 540 AATTAATATC ACATAAAAAA GAAGGT':CGT'T AATT.~1CAAAC CA'TGTTTCGT ACTACAACTC 600 TAATTTGTAA ATTCTTATTT CAGTCA(~AAA ATTCCAA'rTT CCAATTAAGA AAAATAAACG 660 TAGACGGCTA AGCCCACCCA TCTAAGi~CTA AGTT~GA~:~AG GTGAAGTACG CACGAAAAAT 720 ATGATGGTTT ATTAATATGA 'L'TTTTT'I'TAA ATAACTT"CCA CA'TAAATTTC TTTAGGAAAC 7 8 0 ATATCATTTA ATGGTTTGAA AAACGT~_~C.'AC". ATAG.~AAALT AGAACGATGA GTTGGGAAAC 89:0 60 AAGAGAAAAA CACAGCCTTA AGGCTTC:'.TTG ATCC'TCTAGT TGGAGGTTGA TTTTCAAACG 900 CATGATAAACGAGAAAGCTCATTAGC.AC'ATTATTACTTAGATATTTATAATTATAAACTT960 GAAAAAAATATTTATTTGAATTTTTT.AF.ACAATGTATGCATAAATTATTTTTTAAAAACA1020 CACCAATTTAACCCTTTAAAAAGCATCC'TAATAGGAAACGA(~GAAGTTAAAGATTCACCG1080 AAGGTGTGTTTGGATAATGAAAA.ATG~:~GGTGGGA.TTAGAATTGGTAAATGAATCAGGGTT1140 AGGATTAAATATTAAAATGAAAGAGGGP.GAATGAATGGT'rAGAGTTTAAATGTGTCTTTT1200 TGGTGGGTAGAAAATTATTTGCCATACPCTCCCCGAGAGC'.GGTGCGTGCTTGCGTGGGCA1260 GAAGCGTCTTTTTCGTTGGAAAAAAA.~-'1ACTGCTTAAA.PAGGAAACAGAAAGAGCCCAGCT13'?0 TTGGTTGTCACCGTCTCACCAGAAAC~;~AAACAAAAAGC'CCCACCACCTAAACCTCCTCGA1380 TCCGACCGAGACTCCTCCATTTCAGC(3GCGCACGCGGAGAGCACGCGACGCGAGTTCGTC1440 GACGAACAAGGCTAGTGCAGTAGTTG'TT'GCTGCGGAGATGGCGGCGAACCTGGAGGACGT1500 GCCGTCGATGGAGCTGATGACGGAGC':CGCTCCGCCGCATGAAG'rGCAGCTCCAAGCCCGA1560 CGGGAGATGGGGAAAGATTGCTGTGGCTTGCTGGGGA'TGTTGCGTTAGATCCGTGCAAAG1740 CTGTCTCCCTTTCTTTTTTTGGGTCA;?~ATCTGGGTTTCTTCTTCCGCTCTCCTCGTGGTT1800 TTTTGCAAACAAAAATGTTTGGCTTCc:;AGGGAAATCTTGTAAAATTTACTTGTTGTTTCC1860 ACCTTTGGAAACTGCGGCAATTT'rTG~?~,TGGTCAAATTGCGTTTGTTCTTGCAACTTGCGA1920 AAGAAATATTTATATGATCGGTGTTCGACGCA.TAATA~~GAATT'TCAGGCGTTTAAGGTAT2040 AGAATTTATTCGTATTCAGTAGTATG'CGTTGAAATTGGAGGTTGCATTTTTTGTTCTCAC2100 ACATGTTATTTTAAATTTGTCATGTGc:3CATGTGTTGAGGATUAGCAGAAAACAACAGGGC2160 ACTTTATATGTATCGATAAAGGT'rTGc:3AAATGTCACTCGGAATAAAAACAAAGAGATAGA2280 CGTATTACTCCTTTGTTTCAATA'rTCACTAGTAAACCAAATCGATCTGTATGGTTATGTA2340 P.ACTGTGTGACACAACAAAT'PTCAAA'rAAACTTGTTC'rGTTC~CGCAATGCTCTGCTTCAG2400 CAATGCACTACTCTAATTTACTGGTCATCAAA.CAAATCATTATGGAAGGTTTATTCTATT2460 GTTCTTTTACTTCATGAAGTATAGCTt'~ATTTACAAACACTCT.GCACTACCTAATTTAAGT2520 GGACCGAATCTAGTCATCGTCTGCTC'rTAGCTATCTCCAAATTGATGGCTTGTTCTAATT2580 CATGCATGTGTCACTGAGACACTGGTc.~TTGTTAACAGCATTGTAAGAATGCCAGTTACAC2640 CCTAATATGTTATTGAGGATAGGATA::~TGTTGACAACTTC~ATA'rCCATAGAGGCAAAGTG2700 ATGTCAAATTTTGATGCTTT'CATGGATAGTTTAATAGGCATCTGGGCAGAAAGCTTGAAT27Ei0 ATTGATGTTCTAGAATGGTAAGACAA:PC:TCTGCGTGTTC7.'AAP,AAAAAAAAAGGTAAGAC2820 ATACAATTTTGACATCCCTT'CATTTT~'~C:TAAATTTTAGG"'CC ACCTGGCTGCGGAAAGGG2880 AACACAGTCACCGCTGATTAAGGATG.aATTTTGCTTGTGCCA'TTTAGCCACTGGTGATAT2940 GTTGAGGGCTGCAGTGGCTGCTAAAAC'TCCACTTGGGATTAAGGC'rAAAGAAGCTATGGA3000 CAAGGTAGTTTTTAAGAAACATATAGC.."AACAGAAATTATAACCAGCAGGAATGGGTTTCT3060 TGATTCTTTTGTTTCTTTCCTTATCT:I.'C'.TAGGGAGAGCTTGTTTCTGATGACTTGGTTGT312 TGGGATTATTGATGAAGCCATGAAGA~aAACTTCATGCCAGAAAGGTTTTATCCTTGATGG3180 TTTCCCTAGAACTGTTGTTCAAGCACAGAAGGTGAGG'TCCTTGGTCAATATGCACCGCTA3240 TATAAAAGAGCTCCTT7.'TTG'TTATTA:3AGC'rGTCTATATAAA'TGGACAGTTTCTATCATT3300 GTATCACTTTTCTTACTAAAAAATGG'7'GCAGCTT~ATS~AAAT~~TTGGCCAAACAAGGTAC3360 TAAGATTGACAAGGTTCTAAATTTTG:AATTGAT3ATGCAAT.ACTGGAAGAACGAATTAC3420 CGGTCGTTGGATCCACCCATCAAGTG~:~TAGATCTTATCATAC.AAAATTTGCTCCTCCTAA3480 GACTCCTGGACTTGATGATGTAAGTC~1TACCAGATTA."TTGCTCTCGCTTGCATTTGTCA3540 GATACTCAGATTTTTACCATTTTCAT':CATTTCTATTAGATTTGGTACATATATTGTTTGA3600 TGCTTGCAGCATATGCGCCT'rTACCA'7.'AATTTCCCTGTCTCA'rCA'PCGATCATCGTAGTA3660 CTCTGCTTACTTGTTTTTTAAGAACA?iAACATGAGCCATCAT'rCTTTCAAAATAAAAAAG3720 GTTCATTGAGTACCTTCTTC'TTGCCA~.'.TGTTTATrTA~~TTTG~~TTCCCAAATAGTTAAAT3780 AGGTAGTGTGATTATGGATATATTTT':CCTTGTTTTGGTTGTT'rCTCGTACGAAGAGTAAA3840 ATGCACCTTTTGTTGACAAGAAATGA':CAGGCAGTGTT'CGC:ATGACACACTTTTGCTTCCT3900 TTTCTGACAATTATGCCTGTTTAAGTGTCCATAAATAGATAC.A'CCGACATGTTTTTGTAG3960 CAGGAGATTGTATATTGTTTCTATTGi:.'TTCCATT..~1AAAGC'AT.?~TTCTTCTTTAGCAATGA4020 TTTCATGTGGGACATATTTG'rGCTGC':L'ATTAAGT.AAA'rTTGT'TTGATATCATATATATCT4080 TTTAATTGGTAATATTATGT(.3CACTT~~.:T:~CTCCC'TGATTGCT'rTG~PCTTTTCACAAAGGT414 TACTGGAGAACCCTTAATTCAAAGGA,i~?,3ATGAC.~1CAGCTGC,~GTATTGAAGTCAAGGCT4200 TGAAGCCTTCCACGTACAAA(;TAAGC~_'.TJTATGT'rTCCTTTAGCAACTACGTTTTTAAAT4260 ATTCAGATATTCTTTTAGGATGTAGT~::.'GTACTTC.?~GT'CAAGGCGGATTCCTTCAGTTGCA4320 TTACAGTGTTTCCTGTATATCTTTCA':f'T'3'rTTTT 4 (2) INFORMATION FOR SEQ ID NO.: 2:
(i) SEQUENCE CHARACTERISTICS
(A) LENGTH: 1443 (B) TYPE: nucleic acid (C) STRANDEDNESS:
(D) TOPOLOGY:
(ii) MOLECULE TYPE: DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Oryza sativa L.cv.Nipponbare (xi) SEQUENCE DESCRIPTION: SE;Q ID NC.: 2:
CTGCAGGAAG ATTAATTAGG TGGACACP.CC AAACCCTGTG GTTGGTGACG CCCTGTTGTT 60 AATCAACTGG GGTGTTCGTT GGACATGCTT TTTGCAGGAA AA.TTAAGCAA GAAAATTAAG 120 AAGAATGCTC AAGCTGACAT GAGAAA.AC'GT AATCCARTGG AA.GCGAATTT CAAGTCGTTC 180 TCTTGTACTA CCATGTTTAG ,~ATACA'CPAG ACAGTGCCAA CGGTTTGATG GCTCCTATTG 240 GCTCGTGTGA TACTGACTTG TGTCAC.AAAG CATCAAAT'T(i CTTCTTGGAG TATCTTTATT 300 ACCGAAAACC CCAAAGATTA TTCTAT'1'C'CA CCTCAGGGTA A'PTGTGCTGA ACTATGCAAT 3 6 0 GAATACAAAT TCGCAAAATA 'ICATGG'CTAT CTATCTT'GCT CAAATTGAAA TTTGAGTCCA 420 ACTGAGACTG CAATACGATT 'rTTCTT'-CTCA AAAAGAAATT ATTAATTTTT TTTTCATGAA 480 ACGCAATTCA ACCGTTCGAG AAATATGC'TG TCATAAAT'AA G'I'AGTCTAGT GCAGAAACAA 540 AATTAATATC ACATAAAAAA GAAGGT'rCTT AATTACAPAC CATGTTTCGT ACTACAACTC 600 TAATTTGTAA ATTCTTATTT CAGTCA~~AAA ATTCCAAT'TT CCAATTAAGA AAAATAAACG 660 TAGACGGCTA AGCCCACCCA TCTAAG(3CTA AGTTCGAGAG GTGAAGTACG CACGAAAAAT 720 ATGATGGTTT ATTAATATGA 'rTTTTT'TTAA ATAACTTT'CA CATAAATTTC TTTAGGAAAC 780 CATGATAAAC GAGAAAGCTC ATTAGC;?~CAT TATTACTTAG ATATTTATAA TTATAAACTT 960 GAAAAAAATA TTTATTTGAA TTTTTT;?~AAC AATGTATGCA TAAATTATTT TTTAAAAACA 1020 CACCAATTTA ACCCTTTAAA AAGCATCCTA A'I"AGGAAACG AGGAAGTTAA AGATTCACCG 1080 AAGGTGTGTT TGGATAATGA AAAATG(3GGT GGGATTAGAA TTGGTAAATG AATCAGGGTT 1140 AGGATTAAAT ATTAAAATGA AAGAGGGAGA ATGAATGGT'n AGAGTTTAAA TGTGTCTTTT 1200 TGGTGGGTAG AAAATTATTT GCCATA(~ACT CCCCGAGAGC GGTGCGTGCT TGCGTGGGCA 1260 TTGGTTGTCA CCGTCTCACC AGAAACC,AAA CAAAP.AGCCC CACCACCTAA ACCTCCTCGA 1380 TCCGACCGAG ACTCCTCCAT 'rTCAGCGGCG CACGCGGAGA GCACGCGACG CGAGTTCGTC 1440 ( 2 ) INFORMATION FOR SEQ ID Nc:) . : 3 (i) SEQUENCE CHARACTERISTIC;?
(A) LENGTH: 22 (B) TYPE: nucleic acid (C) STRANDEDNESS:
(D) TOPOLOGY:
(ii) MOLECULE TYPE: DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Oryza sativa L.cv.Nipponbare, Artifical Sequence, or Unknown (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 3 .
(2) INFORMATION FOR SEQ ID NO.: 4:
(i) SEQUENCE CHARACTERISTICS
(A) LENGTH: 22 (B) TYPE: nucleic acid (C) STRANDEDNESS:
(D) TOPOLOGY:
(ii) MOLECULE TYPE: DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Oryza saliva L.cv.Nipponbare, Artifical Sequence, or. Unknown (xi) SEQUENCE DESCRIPTION: SE:Q ID NO.: 4:
CCCGGCTTTC TTGTAACGCG CT ~2 (2) INFORMATION FOR SEQ ID NO.: S:
(i) SEQUENCE CHARACTERISTICS
(A) LENGTH: 23 (B) TYPE: nucleic acid (C) STRANDEDNESS:
(D) TOPOLOGY:
(ii) MOLECULE TYPE: DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Oryza sativa L.cv.Nipponbare, Artifical Sequence, or Unknown (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 5:
Hence, there is a demand for a promoter that shows promoter activity in monocotyledons as well as in dicotyledons and is easy to regulate tissue- or site-specifically or by harmless chemicals.
so On the other hand, it is known that adenylate kinase (AK) is involved in the energy system in animals, microorganisms and plants [Noda et al., The Enzymes., Academic Press, New York:279-305(1973)].
With respect to plants, induction of adenylate kinase by sucrose in rice [Kawai et al., Ikushugakuzasshi, suppl.
1:253(1994)] and localization of the enzyme in vascular bundles [Kawai et al., J. Plant Physiol. 146:239-242(1995); Kawai et al., Plant Molecular Biology 27:943-951(1995)] have been disclosed.
Two cDNA species encoding rice AK (AK-a and AK-b) have been isolated [Kawai et al., The Plant Journal 2(6):845-854(1992)]. However, the genomic DNA
corresponding to them have not been obtained, and the nucleotide sequence of their promoter region remains unknown.
DISCLOSURE OF THE INVENTION
The object of the present invention is to obtain and provide a novel DNA fragment having a promoter function which enables expression of a fused structural gene in a plant body or plant cells and regulation of the expression by a harml.e;~s chemical substance or tissue- or site-specifically.
As a result of their extensive research to solve the above-mentioned problems, the present inventors isolated a promoter region of the rice AK-a gene and found that the promoter region functions as a promoter in other to plants to express a foreign ~~ene and regulate its expression. The prese=_r..t invention was accomplished on the basis of the discovery.
The present invention provides a promoter of a gene encoding rice adenylate kina:~e described below, or a DNA
fragment having a promoter function which consists of at least part of the nucleotide sequence shown in SEQ ID
N0:1 in the Sequence :fisting wherein one or more bases may be deleted, added or replaced as long as the fragment having a function to regulate expression of a structural 2o gene viable in a plant, for example, a DNA of 1443 by shown in SEQ ID N0:2. The present invention also provides a vector conta.i.ning the DNA fragment having a promoter function, a :,aa.cterium containing the vector and a plant transformed with the vector or the bacterium.
The present invention still further provides a method for expression of regulat.in.g a recombinant DNA which comprises fusing the DNA fragment having a promoter function to another DNA sequence and introducing the resulting recombinant DNA into a plant.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 illustrates the structure of p21. NOS-Pro is the nopaline synthase promoter gene, NPT-II denotes the kanamycin-resistant gene, NOS-Ter denotes the nopaline synthase terminator gene, and AK-a-Pro denotes the AK-a promoter gene.
BEST MODE FOR CARRYING OUT THE INVENTION
1o For the conventional recombinant DNA techniques mentioned hereinafter, reference can be made to Molecular Cloning, Fristch et al., Cold Spring Harbour Press (1989) unless otherwise noted.
The DNA fragment having a promoter function of the z5 present invention can be isolated from a plant genomic library by plaque hybridization using rice AK cDNA as the probe as described below.
The genomic library is obtainable by extracting genomic DNA from a plant such as rice, partially 2o digesting the isolated genomic DNA with an appropriate restriction enzyme such as Sau3A and separating long 9 to 23-by DNA fragments by sucrose gradient centrifugation or agarose gel electrophoresis, introducing and packaging the DNA fragments in an appropriate vector such as ~
25 phage and incubating Escherichia coli such as XL-1 Blue strain infected with the recombinant phage on a culture plate such as an LB plate (1% Bacto tryptone, 0.5% yeast-extract, 1% NaCl, 1.3% agarose). As the vector, 1~ phage or a cosmid vector is preferable for their ability to accommodate longer inserts though a plasmid is available too.
A membranes such as a nylon membrane is placed on the above-mentioned culture plate, soaked in a denaturing solution, then a neutralizing solution and washed with a washing solution so that the recombinant DNA is adsorbed on the membranes in the form of single strands.
1o As the probe, a synthetic oligo DNA identical to part of the AK structural gene or part of AK cDNA amplified by PCR using AK cDNA as the template may be used after labeled with [a-32P]dCTP, DIG (Digoxigenin), biotin or the like.
The labeled probe is hybridized with the single-stranded DNA on the membrane.
After hybridization with the labeled probe, the clones strongly hybridized with the probe are detected by autoradiography of the membrane and isolated as positive 2o clones .
The DNA from the isolated positive clones is subcloned into an appropriate cloning vector such as pBluescript II after treatment with an appropriate restriction enzyme such as EcoRI, and the nucleotide sequence is determined by the Maxam-Gilbert method or the dideoxy method. Commercial kits are available for the sequencing, and an autosequencer or the like is also available to automate the sequencing.
From the nucleotide sequence of the cloned DNA, the 5' untranslated region of the AK gene and the promoter region which lies upstream of the untranslated region can be identified.
A structural gene such as a reporter gene, an insecticidal protein gene, a herbicide resistant gene, an antibacterial gene, a flowering-inducing gene, a plant growth regulatory gene, a plant morphogenetic gene, a 1o stress resistant gene, a flower pigmenting gene, a phototoxicity resistant gene, a harvest enhancing gene or the like can be ligated downstream of the promoter region.
The reporter gene may be a a-glucuronidase (GUS) gene, a luciferase gene, a chloramphenicol acetyltransferase s5 (CAT) gene or the like. The insecticidal gene may be a crystalline protein gene from Bacillus thuringiensis, a protease inhibitor gene or the like. The herbicide resistant gene may be a glyphosate resistant gene, a glufosinate resistant gene, a sulfonylurea herbicide 2o resistant gene or the like. The antibacterial gene may be a chitinase gene, a glucanase gene, a lysozyme gene, a secropine gene or the like. The flowering inducing gene may be a florigene-producing gene or the like. The plant growth regulatory gene may be a polygalacturonase gene or 25 the like. The plant morphogenetic gene may be the rolC
gene or the like. The stress resistant gene may be the fatty acid-unsaturating-enzyme gene (FAD3) or the like.
The flower pigmenting-associated gene may be a chalcone synthase gene, a phenylalanine ammonia lyase gene or the like. The phototoxicity resistant gene may be a glutamine synthase gene or the like, and the harvest enhancing gene may be a modified seed storage protein gene, a sucrose phosphate synthase gene or the like.
The recombinant DNA having a structural gene such as a reporter gene downstream of the promoter may be introduced into a plant indirectly or directly.
1o For indirect introduction, use of Agrobacterium may be mentioned.
For direct introduction, the electroporation method, the particle gun method, the PEG method, the microinjection method, the silicon carbide whisker method, etc. are available.
The plant as the host of the gene may be a cereal plant, a vegetable, a fruiter, a feed crop, a fruiter or an ornamental plant. For example, rice, maize, wheat, barley, grass, sugarcane, asparagus, beet, potato, sweet 2o potato, cyclamen, statice, snapdragon, tobacco, arabidpsis, etc. may be mentioned. The plant may be a monocotyledon or a dicotyledon and may be any species.
Insertion of a drug resistant gene such as the kanamycin or hygromycin resistant gene into the transducing vector or simultaneous introduction of a vector having a drug resistant gene into the plant makes it possible to screen plants for transfer of the promoter and the structural gene by using a drug such as kanamycin or hygromycin. Further, it is possible to identify the intended transgenic plant by analysis of the transgene by PCR or southern hybridization or enzymatic or Western analysis of the protein produced by translation of the introduced structural gene in leaf extract.
The transgenic plant may be bred for seed or may be regenerated from tissues such as leaves or roots through cell differentiation.
The amenability of the AK gene to regulation by sucrose makes it possible to regulate expression of the introduced structural gene fused downstream of the promoter region in the transgenic plant by treating the transgenic plant with sucrose as described below.
When the transgenic plant is a complete plant, the inducer may be applied to the foliage by spraying or to soil or a water culture medium for hydroponics. It is possible to allow a piece of a leaf to redifferentiate in a redifferentiation medium supplemented with sucrose.
2o Seeds of the transgenic plant may be grown in sucrose solution until they develop shoots and roots.
Cells of the transgenic plant, for example, in the form of a callus, may be cultured in a liquid or solid medium containing sucrose or may be directly supplemented with sucrose solution.
Induction of the promoter introduced in the plant by sucrose can be confirmed by quantitative change in the foreign structural gene fused to it and/or its translation product.
For example, when the structural gene is the GUS gene, induction by sucrose can be confirmed by comparing the GUS activities of a sucrose-treated transgenic plant and an untreated transgenic plant obtained by measuring the fluorescence from 4MU produced by hydrolysis of 4MUG by GUS under ultraviolet light (365 nm).
When the crystalline protein gene from Bacillus 1o thuringiensis is used as the structural gene, induction by sucrose can be confirmed by comparing the insecticidal activities of a sucrose-treated transgenic plant and an untreated transgenic plant.
Because the AK gene is localized in vascular bundles, s5 it is possible to regulate the site of expression of the fused foreign gene downstream of the promoter region in the transgenic plant carrying it.
Site-specific expression of the foreign structural gene fused with the promoter can be confirmed by locating 2o the structural gene and/or its translation product in the plant.
For example, when the structural gene is the GUS gene, localization of GUS protein in the transgenic plant can be confirmed by histochemical GUS assay.
25 In other words, localization of GUS protein can be confirmed by microscopic examination of tissues for the blue color of indigotin hydrolytically produced from 5-bromo-4-chloro-3-indolyl-~-D-glucuronic acid by GUS
protein.
Application of the above-mentioned procedure to analysis of expression of a reporter gene fused with various mutant promoters having mutations such as deletions or substitution introduced into the promoter region in a plant makes it possible to identify the regions that govern the sucrose-inducibility and vascular bundle-specificity of the expression. Mutations can be 1o introduced to the promoter region, for example, by preparing deletion mutants of the DNA fragment having a promoter function or by cleaving the DNA fragment having a promoter function with an appropriate restriction enzyme and ligating it after partial deletion.
Further, ligation of the regions that govern the sucrose-inducibility and/or tissue- or site-specificity of the expression makes expression of conventional promoters such as the 35S promoter to be controllable.
Now, the present invention will be described in 2o further detail with reference to Examples, but it should be understood that the present invention is by no means restricted thereto.
EXAMPLE 1: Construction of a rice genomic library The genomic DNA was extracted and isolated from leaves of 2-week-old rice foliage (Nihonbare) for use in construction of a rice genomic library. The isolated genomic DNA was partially digested with Mbo I. The lysate was extracted with phenol-chloroform, and the resulting aqueous layer afforded the Mbo I fragments of the genomic DNA after ethanol precipitation followed by dissolution in TE buffer.
The resulting Mbo I fragments of the genomic DNA were introduced to the Xho I site in a phage vector ~-GEM12 and packaged into phage particles. The recombinant phage was plated on a NZYM (1% NZ amine, 0.5% Yeast Extract, 0.5% NaCl, 0.2% MgS04~7H20 and 1.3% agarose) plate 1o together with top agar containing Escherichia coli (KW251) and incubated overnight at 37°C to form plaques.
Example 2: Screening of the rice genomic library (a) Preparation of a membrane The NZYM plate having plaques on it was refrigerated, and a membrane (Hybond N+, Amersham) with pencil marks was placed on the plate for 2 minutes and detached after the plate was needled through the membrane for marking.
The membrane was denatured in 1.5M NaCl, 0.5M NaOH for 2 minutes, neutralized in 1.5 M Tris-HC1 (pH 7.5), 2xSSC
2o for 5 minutes, rinsed in 0.2 M Tris-HC1 (pH 7.5), 2xSSC
for 30 seconds and dried on a filter paper to immobilize the recombinant DNA from the NZYM plate in the form of single strands.
(b) Preparation of a probe A probe was prepared from AK-a cDNA isolated in accordance with Kawai et al., [Kawai et al., The Plant Journal 2(6):845-854(1992)] as follows by using a Random Primer DNA Labeling Kit Ver. 2.0 (TaKaRa) for labeling of the DNA. 1 ~g of AK-a cDNA and 2 ~~ of Random Primer were put in a tube, and sterilized water was added to a total volume of 14 ~~. The resulting solution was mixed with 2.5 ~~ of lOxBuffer, 2.5 ~~ of dNTP Mixture and 5 u~
of [a-32P]dCTP (1.85 MBq) and then with 1 u~ of Exo-free Klenow Fragment, maintained at 37°C for 10 minutes and then heated at 65°C to give a probe.
(c) Hybridization 1o The above-mentioned membrane carrying single-stranded DNA was put into a hybribag, and a hybridization buffer (5xSSC, 5xDenhard's solution, 0.5% SDS) in an amount of 5 m~ per 100 cm2 of the membrane and previously sonicated, heated and quenched salmon sperm DNA at a final z5 concentration of 0.1 mg/m~ were added. Then, the above-mentioned labeled probe was added at 105 to 106 cpm per 1 m~ of the hybridization buffer after heating and quenching. The bag was sealed and maintained at 65°C
overnight for hybridization. After the hybridization, 2o the membrane was washed in washing solution A (0.1% SDS, 2xSSC) at room temperature for 10 minutes with shaking, then in washing solution B (0.1% SDS, lxSSC) at 65°C for 30 minutes with shaking and again in fresh washing solution B at 65°C for 30 minutes with shaking and then 25 air-dried.
(d) Autoradiography The air-dried membrane was wrapped with plastic film and subjected to autoradiography to obtain an autoradiogram. The marks on the membrane projected on the autoradiogram were fitted to the marks in the agar plate to spot firmly hybridized phage clones as positive from the positive signals on the autoradiogram, and 11 out of about 2 million phage clones were isolated as positive clones.
EXAMPLE 3: Determination of the nucleotide sequence (a) Preparation of positive phage DNA
1o DNA was prepared from the isolated 11 positive phage clones as follows. Each phage clone was suspended in 100 of SM buffer (0.58% NaCl, 0.2% MgS04~H20, 0.01%
gelatine, 0.05% Tris-HCl) and left to stand at room temperature for 1 hour. 20 u~ of Excherichia coli (KW251) was added, then maintained at 37°C for 15 minutes and incubated at 37°C overnight in 5 m~ of NZYM medium.
After the incubation, the cultures were shaken with 100 ~ of chloroform and centrifuged. To the resulting supernatants containing the phage were incubated together 2o with 5 ug/m~ of RNase A and DNase I at 37°C for 30 minutes, then mixed with the equal volume of 20 PEG6000-2.5 NaCl and left to stand in ice and centrifuged.
The resulting pellets were suspended in 500 u~ of SM
buffer, then maintained at 65°C for 15 minutes together with EDTA (at a final concentration of 10 mM) and SDS (at a final concentration of 0.1%) and extracted with phenol, phenol-chloroform and chloroform. The resulting aqueous layer was mixed with the equal volume of isopropanol, left to stand at -80°C for 10 minutes and centrifuged.
The resulting pellets were rinsed with 70% ethanol, centrifuged again and dissolved in 50 u~ of TE buffer to give phage DNA solution.
(b) Determination of the nucleotide sequence of the positive phage DNA
The DNA from each phage clone thus obtained was treated with several restriction enzymes including Sac I, 1o Xba I and Pst I and fractionated by agarose gel electrophoresis. After Southern analysis using the entire AK-a cDNA as the probe, the Sac I fragment (1500 bp) from 4-1 and the Xba I fragment (about 2000 bp) from 4-1 were recovered from the agarose gel by using centrifugal filter tubes for DNA recovery (SUPREC-01, TaKaRa) as putative fragments containing regions homologous to AK-a cDNA. The recovered DNA fragments were ligated separately into the restriction sites (Sac I
and Xba I) of pBluescript II (STRATAGENE) with DNA
2o Ligation Kit (TaKaRa) and transformed into Escherichia coli (XL1-Blue) to obtain two clones: clone p3-2-1 containing the Sac I fragment from 4-1, and clone p-4-2-1 containing the Xba I fragment from 4-1. The nucleotide sequences of both clones were determined by the dideoxy method by using a sequencing kit (Bca BEST Dideoxy Sequencing Kit, TaKaRa). The results indicated not only inclusion of a region homological to AK-a cDNA but also the absence of the desired region upstream from the translation initiation site.
Then, the 11 positive phage clones were screened by Southern analysis using the two DNA fragments obtained by Sac I reaction of the insert in above-mentioned p4-2-1 as the probes after restriction reaction with Sac I followed by agarose gel electrophoresis to identify a positive phage clone (4-1) as putatively containing the upstream region of Ak-a cDNA, which was subjected to Southern 1o analysis using the two DNA fragments obtained by Sac I
reaction of the insert in above-mentioned p4-2-1 as the probes after reaction with combinations of Sac I with other twelve restriction enzymes including Sac I-Pst I, Sac I-BamH I and Sac I-Sal I and agarose gel z5 electrophoresis. The Pst I fragment from 4-1, which was presumed to contain the region of AK-a upstream of the translation initiation site from these Southern analyses, was recovered from the agarose gel by using a centrifugal filter tubes for DNA recovery (SUPREC-01, TaKaRa). The 2o recovered DNA fragment was ligated into the restriction site (Pst I) of pBluescript II (STRATAGENE) with DNA
Ligation Kit (TaKaRa) and transformed into Escherichia coli (XL1-Blue) for subcloning to obtain a clone (p50) containing the Pst I fragment from 4-1. The nucleotide 25 sequences of p50 thus obtained and several deletion mutant clones having deletions of different lengths obtained from p50 by using Deletion Kit for Kilo-Sequence (TaKaRa) were determined by the didE:oxy method with a sequencing kit (Sequencing High--Cycle-, TOYOBO).
(c) Analysis of them sequf~ncv..ng results Analysis of the nuc:leotic~e sequences of p3-2-1, p4-2-1 and p50 thus determined with genetic information analysis software (GENETYX-M;4C Ver. 8, Software Development Co., Ltd.) revea.Led the nucleotide sequence of about 4.3 Kb shown ~n SEQ ID N0:1 emerged. The bases 1340-1580, 2859-3004, ;3092-3:211, 3332-3499 and 4139-4228 1o in the nucleotide sequE=_nce SEQ ID N0:1 agreed with the previously reported nucleotide sequence of AK cDNA [Kawai et al., The Plant Journal 2(6):845-854(1992)]. Analysis of AK cDNA spotted the trans.Lation initiation codon (ATG) at bases 1478-1480 in SEQ ID NO.-1 in the Sequence Listing.
Promoter analysis using genetic information analysis software (GENETYX-MAC '~r~~r. 8, Software Development Co., Ltd.) spotted TA'rA bo:x sequences at bases 946-953 (8 bp) and bases 952-957 (6 bp) in :3EQ ID N0:1.
EXAMPLE 4: Assay of promoter activity (a) Gene transfer .i_nto a plant p50 from Example :3 was reacted with Sal I and separated by agarose gel electrophoresis, and the DNA
fragment containing 14~t3 by (SEQ ID N0:2 in the Sequence Listing) upstream from the t~_anslation initiation site (bases 1478-1480 in S:EC) ID N0:1) was recovered from the agarose gel by using a centr:i.fugal filter tube for DNA
recovery (SUPREC-01, 'T'~iKaRa) . r('he DNA fragment was inserted into the Sal I site of a transducing vector for a plant having the kanamycin resistant gene (pBI101, CLONTECH), and the resulting vector shown in Fig. 1 was designated as p21. p21 was introduced into Agrobacterium (LBA4404 strain) as follows.
Agrobacterium was grown in liquid YEP medium (congainin 1% Bacto-peptone, 1% Bacto-yeast extract and 0.5% NaCl) at 28°C until the absorbance at 600 nm reached about 1.0 and cooled on ice and centrifuged. The cell 1o pellet was suspended in 1 m~ of 20 mM CaCl2, frozen in liquid nitrogen, then thawed at 37°C for 5 minutes together with 1 ug of p21 DNA and incubated in 1 m~ of liquid YEP medium at 28°C for 4 hours with gentle shaking.
The culture was centrifuged, and the resulting cell i5 pellet was suspended in 0.1 m~ of liquid YEP medium and plated on a YEP plate (containing 1.3% agarose, 25 ug/m~
kanamycin, 300 ug/m~ streptomycin and 100 ~g/m~
rifampicin) and incubated at 28°C for 3 days to obtain transformed Agrobacterium.
2o The following procedure was followed to achieve gene transfer into tobacco.
The transformed Agrobacterium was grown in liquid YEP
medium at 28°C overnight. Infection was carried out by soaking a 1 cm x 1 cm piece of an aseptically grown 25 tobacco leaf in the transformed Agrobacterium culture for 5 minutes. After the infection, the excessive culture medium was removed by sterilized filter paper, and the tobacco leaf was grown on an MS-NB plate under light of about 3000 lux. 5 days later, the leaf was transferred onto an MS-NB plate containing 500 ug/m~ claforan to remove the transformed Agrobacterium and cultured. 7 days later, the culture was transferred onto an MS-NB
plate (1650 mg/~ NH4N03, 1900 mg/1~ KN03, 440 mg/~
CaCl2~ 2H20, 370 mg/~ MgS04' 7H20, 170 mg/~ KHzP04, 6.2 mg/~
NH3B03, 22 . 3 mg/~ MnS04 ~ 4H20, 8 . 6 mg/~ ZnS04 ~ 7H20, 0 . 83 mg/~ KI, 0 . 25 mg/L~ Na2Mo04' 2H20, 0 . 025 mg/~ CuS04 ~ 5H20, 0.025 mg/2 CoCl2~ 6Hz0, 37.3 mg/I~ Na2-EDTA, 27.8 mg/~
FeS04~7H20, 10 mg/~ thiamin hydrochloride, 5 mg/~
nicotinic acid, 10 mg/~ pyridoxine chloride, 100 mg/~
myo-inositol, 2 mg/~ glycine, 30000 mg/.~ sucrose, 0.1 mg/~ a-Naphthaleneacetic Acid, 1.0 mg/~ 6-Benzyladenine) containing 100 ug/m~ kanamycin and 500 ug/m~ claforan and grown into a kanamycin resistant culture. When the culture had differentiated into a large kanamycin resistant foliage 10 days later, it was transferred onto a hormone-free MS plate (1650 mg/.~ NH4N03, 1900 mg/~ KN03, 440 mg/~ CaC12~2H20, 370 mg/~ MgS04'7H20, 170 mg/~ KHzP04, 6.2 mg/~ NH3B03, 22.3 mg/~ MnS04~4H20, 8.6 mg/~ ZnS04~7H20, 0.83 mg/~ KI, 0.25 mg/~ NazMo04~2H20, 0.025 mg/1L CuS04~5Hz0, 0. 025 mg/~ CoCl2~ 6H20, 37.3 mg/L~ Naz-EDTA, 27 .8 mg/L~
FeS04~7Hz0, 10 mg/~ thiamin hydrochloride, 5 mg/.~
nicotinic acid, 10 mg/~ pyridoxine chloride, 100 mg/~
myo-inositol, 2 mg/L~ glycine, 30000 mg/l~ sucrose, 3000 mg/~ Gellan gum) and grown to obtain transgenic tobacco.
(b) Confirmation of the transgene The presence of the transgene in the transgenic tobacco thus obtained was confirmed by PCR amplification of the genomic DNA extracted by the CTAB method from the transgenic tobacco as the template across the region between the promoter gene and the GUS gene using primers shown in SEQ ID N0:3 and SEQ ID N0:4 followed by agarose electrophoresis. The composition of the reaction solution used in the PCR reaction was as follows. The thermostable DNA polymerase used was TaKaRa EX Taq (TaKaRa).
Tris-HC1 pH 8.3 10 mM
KCl 50 mM
MgCl2 1.5 mM
Each dNPT 0.2 mM
Thermostable DNA polymerase 1 U
Genomic DNA 0.1 ug Each primer 20 pmol The total volume was adjusted to 50 u~ with sterilized water.
The PCR reaction conditions were as follows.
5 minutes at 95°C
cycles of 1 minute at 95°C, 2 minutes at 55°C and 2 minutes at 72°C
25 7 minutes at 72°C
2% agarose gel electrophoresis of the PCR reaction solution demonstrated the transduction of the AK promoter region and the GUS gene.
(c) Assay of the promoter activity The promoter activity assay was done by measuring the enzymatic activity of the translation product of the reporter gene linked downstream of the promoter (the GUS
activity) as follows.
(c-1) Fluorometric assay About 100 mg of leaves and roots from the transgenic plant was ground with 100 ~~ of an extraction buffer (50 1o mM phosphate buffer (pH 7.0), 10 mM EDTA, 0.1% Triton X
100, 0.1% N-Lauroylsarcosine Sodium Salt, 1 mM ~-mercaptoethanol) in a microtube (1.5 m~) on ice and centrifuged to give about 100 u~ of a supernatant, which was used for GUS assay and protein assay.
For the GUS assay, 80 ~~ of the supernatant diluted with 170 u~ of the buffer was used as the extracted solution. 250 ~~ of 4-methyl-umbelliferyl-~-D-glucuronide (4MUG) solution (1mM 4MUG/extraction buffer) as the substrate was added to the extracted solution, and 2o the reaction was initiated at 37°C. 10 minutes and 40 minutes after the initiation of the reaction, portions (100 u~) of the reaction solution were withdrawn, and 2 m~ of a reaction terminative solution (0.2 M sodium carbonate) was added to terminate the reaction. A
mixture of 2 m~ of the reaction terminative solution and 100 ~~ of the extracted solution was used as the blank, and mixtures of 2 m~ of the reaction terminative solution with 50 u~ or 100 u~ of 1 ~M 4-methyl-umbelliferone (4MU) solution were used as controls. The fluorescence from these solutions was measured with a spectrofluorometer (excitation wavelength = 365 nm, emission wavelength =
455 nm).
Protein assay was carried out by the Bradford method by using Bio-Rad Protein Assay Kit (BIO-RAD).
The 4MU production per unit time and per unit amount of protein was calculated in pmol/min/mg from the so measured values.
AK-GUS Non-transformant GUS activity 98.51 14.49 Standard error 15.61 4.37 (c-2) Histochemical assay A piece of leaf or root tissue was cut from the plant, soaked in a fixing solution (0.3% formamide, 10 mM MES, 0.3 M mannitol) sucked with a vacuum pump and left at room temperature for about 1 hour. The tissue was washed with a buffer (50 mM sodium phosphate pH 7.0), soaked in 5-bromo-4-chloro-3-indolyl-~i-D-glucuronic acid (X-Gluc) solution, sucked with a vacuum pump and left at 37°C for at least 2 hours. The blue color of indigotin was 2o recognized microscopically in the tissue.
(c-3) Analysis of the second-generation transgenic plant Seeds were harvested from the first-generation AK-GUS
tobacco showing GUS activity. The seeds were sown and :? 3 grown into second-generation AK--~:~tIS tobacco .
Histochemical examination by staining demonstrated that the AK promoter was fi:mctional ;mn the second generation transformant and expressed strongly E=_specially at growing points and vascular bundles.
EXAMPLE 5: Creation of.: a herbic~.de resistant plant (a) Gene transfer into a plant p50 from Example ~~ ras reacted with Sal I and separated by agarose gel electrophoresis, and the DNA
1o fragment containing 19:43 by ( SEQ TD LJO : 2 1 n the Sequence Listing) upstream from the translation initiation site (bases 1478-1480 in S~:Q ID N0:1was recovered from the agarose gel by using ~;~ centrifugal filter tube for DNA
recovery ( SUPREC-01 , '.°.~~aKaRa ) . Tree Dl~fA f ragment was ligated with a herbic~..de resistant, gene, PPT-acetyltransferase (PAS') gene, and the 3SS terminator gene, and inserted into a trwansducing vector for Agrobacterium to give pNC/AK-PAT. pN(~/AK-PAT was introduced into Agrobacterium (LBA4404 and EHA101) by the same method as 2o in Example 3 and transferred into tobacco and rice.
(b) Confirmation r.:>f the transgene The presence of the transgene in the AK-PAT tobacco and rice thus obtainecwas confirmed by PCR amplification of the region between the promoter gene and the GUS gene using primers shown ire SEQ ID N0:3 and SEQ ID N0:5 followed by agarose e=1_ectrophoresis :in. accordance with the CTAB method. Detection of a band of the expected size indicated the presence of the transgene.
(c) Herbicide resistant test The created AK-PAT tobacco and rice were tested for herbicide resistance by application of glufosinate to the foliage. The non-transformants withered to death, while the AK-PAT tobacco and rice were herbicide-resistant and remained viable.
(d) Herbicide resistant test of the second generation transductants Seeds were harvested from the first-generation AK-PAT
tobacco and rice expressing herbicide resistance. The seeds could germinate in a glufocinate solution normally.
The resulting second-generation AK-PAT tobacco expressed herbicide resistance against glufocinate applied to the z5 foliage.
INDUSTRIAL APPLICABILITY
The promoter of the present invention can induce expression of a useful gene when introduced into a plant or plant cell after ligated with the useful gene. The 2o promoter gene of the present invention is useful as a promoter which makes expression of the introduced useful gene sucrose-inducible because it is the promoter of the sucrose-inducible AK gene. Further, because of localization of AK in vascular bundles, it is possible 25 express the introduced gene in limited tissues or sites.
SEQUENCE LISTING
(1) GENERAL INFORMATION:
(i) APPLICANT: NISSAN CHEMICAL INDUSTRIES, LTD
(ii) TITLE OF INVENTION: DNA FRAGMENT HAVING PROMOTER FUNCTION
(iii) NUMBER OF SEQUENCES: 5 (iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE : SM.?~RT & BIGGAR
10 (B) STREET: P.O. B(>X 2999, STATION D
(C) CITY: OTTAWA
( D ) STATE : O:NT
( E ) COUNTRY : CANAD;~1 (F) ZIP: K1P 5Y6 (v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Poppy disk (B) COMPUTER: IBM :f?C compatible (C) OPERATING SYSTF;M: PC-DOS/MS-DOS
(D) SOFTWARE: ASC:'I (text) 20 (vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER: CA 2,339,598 (B) FILING DATE: 1!:i~-MAR--2001 (C) CLASSIFICATION:
(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER:
(B) FILING DATE:
(viii) ATTORNEY/AGENT INFO RMATION:
(A) NAME: SMART ~t BIGGAR
(B) REGISTRATION Nf.JMBER:
(C) REFERENCE/DOCK1~,T NUMBER: 71416-203 ( ix) TELECOMMUNICATION IUJFORMATION
(A) TELEPHONE: (613)-232-2486 (B) TELEFAX: (613)--232-8440 (2) INFORMATION FOR SEQ ID N!7.: 1:
(i) SEQUENCE CHARACTERISTICS
(A) LENGTH: 4354 (B) TYPE: nucleic acid (C) STRANDEDNESS:
(D) TOPOLOGY:
(ii) MOLECULE TYPE: DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Oryza sativ.:a L.cv.Ni;pponbare (xi) SEQUENCE DESCRIPTION: ~:>EQ ID NO.: 1:
CTGCAGGAAG ATTAATTAGG TGGACA~".ACC AAACCCTGTG GTTGGTGACG CCCTGTTGTT 60 AATCAACTGG GGTGTTCGTT GGACAT~::~G'T'T TTTGCAG(~AA AA'TTAAGCAA GAAAATTAAG 120 AAGAATGCTC AAGCTGACAT GAGAAA.~jCG'T AATCCAA'IGG AAGCGAATTT CAAGTCGTTC 180 TCTTGTACTA CCATGTTTAG AATACA':f'AAG ACAG'TGCCAA CGGTTTGATG GCTCCTATTG 240 5 0 GCTCGTGTGA TACTGACTTG 'rGTCAC.?=~AAG CATC.AAA'CTG CT'TCTTGGAG TATCTTTATT 3 ACCGAAAACC CCAAAGATTA 'rTCTAT':fC'.CA CCTC.AGGGTA ATTGTGCTGA ACTATGCAAT 360 GAATACAAAT TCGCAAAATA 'rCATGG'J'TAT CTAT~TTt3CT CAAATTGAAA TTTGAGTCCA 420 ACTGAGACTG CAATACGATT TTTCTT':CTCA AAAAGAAATT ATTAATTTTT TTTTCATGAA 480 ACGCAATTCA ACCGTTCGAG AAATAT~:~CTG TCAT.?~AA'TAA GTAGTCTAGT GCAGAAACAA 540 AATTAATATC ACATAAAAAA GAAGGT':CGT'T AATT.~1CAAAC CA'TGTTTCGT ACTACAACTC 600 TAATTTGTAA ATTCTTATTT CAGTCA(~AAA ATTCCAA'rTT CCAATTAAGA AAAATAAACG 660 TAGACGGCTA AGCCCACCCA TCTAAGi~CTA AGTT~GA~:~AG GTGAAGTACG CACGAAAAAT 720 ATGATGGTTT ATTAATATGA 'L'TTTTT'I'TAA ATAACTT"CCA CA'TAAATTTC TTTAGGAAAC 7 8 0 ATATCATTTA ATGGTTTGAA AAACGT~_~C.'AC". ATAG.~AAALT AGAACGATGA GTTGGGAAAC 89:0 60 AAGAGAAAAA CACAGCCTTA AGGCTTC:'.TTG ATCC'TCTAGT TGGAGGTTGA TTTTCAAACG 900 CATGATAAACGAGAAAGCTCATTAGC.AC'ATTATTACTTAGATATTTATAATTATAAACTT960 GAAAAAAATATTTATTTGAATTTTTT.AF.ACAATGTATGCATAAATTATTTTTTAAAAACA1020 CACCAATTTAACCCTTTAAAAAGCATCC'TAATAGGAAACGA(~GAAGTTAAAGATTCACCG1080 AAGGTGTGTTTGGATAATGAAAA.ATG~:~GGTGGGA.TTAGAATTGGTAAATGAATCAGGGTT1140 AGGATTAAATATTAAAATGAAAGAGGGP.GAATGAATGGT'rAGAGTTTAAATGTGTCTTTT1200 TGGTGGGTAGAAAATTATTTGCCATACPCTCCCCGAGAGC'.GGTGCGTGCTTGCGTGGGCA1260 GAAGCGTCTTTTTCGTTGGAAAAAAA.~-'1ACTGCTTAAA.PAGGAAACAGAAAGAGCCCAGCT13'?0 TTGGTTGTCACCGTCTCACCAGAAAC~;~AAACAAAAAGC'CCCACCACCTAAACCTCCTCGA1380 TCCGACCGAGACTCCTCCATTTCAGC(3GCGCACGCGGAGAGCACGCGACGCGAGTTCGTC1440 GACGAACAAGGCTAGTGCAGTAGTTG'TT'GCTGCGGAGATGGCGGCGAACCTGGAGGACGT1500 GCCGTCGATGGAGCTGATGACGGAGC':CGCTCCGCCGCATGAAG'rGCAGCTCCAAGCCCGA1560 CGGGAGATGGGGAAAGATTGCTGTGGCTTGCTGGGGA'TGTTGCGTTAGATCCGTGCAAAG1740 CTGTCTCCCTTTCTTTTTTTGGGTCA;?~ATCTGGGTTTCTTCTTCCGCTCTCCTCGTGGTT1800 TTTTGCAAACAAAAATGTTTGGCTTCc:;AGGGAAATCTTGTAAAATTTACTTGTTGTTTCC1860 ACCTTTGGAAACTGCGGCAATTT'rTG~?~,TGGTCAAATTGCGTTTGTTCTTGCAACTTGCGA1920 AAGAAATATTTATATGATCGGTGTTCGACGCA.TAATA~~GAATT'TCAGGCGTTTAAGGTAT2040 AGAATTTATTCGTATTCAGTAGTATG'CGTTGAAATTGGAGGTTGCATTTTTTGTTCTCAC2100 ACATGTTATTTTAAATTTGTCATGTGc:3CATGTGTTGAGGATUAGCAGAAAACAACAGGGC2160 ACTTTATATGTATCGATAAAGGT'rTGc:3AAATGTCACTCGGAATAAAAACAAAGAGATAGA2280 CGTATTACTCCTTTGTTTCAATA'rTCACTAGTAAACCAAATCGATCTGTATGGTTATGTA2340 P.ACTGTGTGACACAACAAAT'PTCAAA'rAAACTTGTTC'rGTTC~CGCAATGCTCTGCTTCAG2400 CAATGCACTACTCTAATTTACTGGTCATCAAA.CAAATCATTATGGAAGGTTTATTCTATT2460 GTTCTTTTACTTCATGAAGTATAGCTt'~ATTTACAAACACTCT.GCACTACCTAATTTAAGT2520 GGACCGAATCTAGTCATCGTCTGCTC'rTAGCTATCTCCAAATTGATGGCTTGTTCTAATT2580 CATGCATGTGTCACTGAGACACTGGTc.~TTGTTAACAGCATTGTAAGAATGCCAGTTACAC2640 CCTAATATGTTATTGAGGATAGGATA::~TGTTGACAACTTC~ATA'rCCATAGAGGCAAAGTG2700 ATGTCAAATTTTGATGCTTT'CATGGATAGTTTAATAGGCATCTGGGCAGAAAGCTTGAAT27Ei0 ATTGATGTTCTAGAATGGTAAGACAA:PC:TCTGCGTGTTC7.'AAP,AAAAAAAAAGGTAAGAC2820 ATACAATTTTGACATCCCTT'CATTTT~'~C:TAAATTTTAGG"'CC ACCTGGCTGCGGAAAGGG2880 AACACAGTCACCGCTGATTAAGGATG.aATTTTGCTTGTGCCA'TTTAGCCACTGGTGATAT2940 GTTGAGGGCTGCAGTGGCTGCTAAAAC'TCCACTTGGGATTAAGGC'rAAAGAAGCTATGGA3000 CAAGGTAGTTTTTAAGAAACATATAGC.."AACAGAAATTATAACCAGCAGGAATGGGTTTCT3060 TGATTCTTTTGTTTCTTTCCTTATCT:I.'C'.TAGGGAGAGCTTGTTTCTGATGACTTGGTTGT312 TGGGATTATTGATGAAGCCATGAAGA~aAACTTCATGCCAGAAAGGTTTTATCCTTGATGG3180 TTTCCCTAGAACTGTTGTTCAAGCACAGAAGGTGAGG'TCCTTGGTCAATATGCACCGCTA3240 TATAAAAGAGCTCCTT7.'TTG'TTATTA:3AGC'rGTCTATATAAA'TGGACAGTTTCTATCATT3300 GTATCACTTTTCTTACTAAAAAATGG'7'GCAGCTT~ATS~AAAT~~TTGGCCAAACAAGGTAC3360 TAAGATTGACAAGGTTCTAAATTTTG:AATTGAT3ATGCAAT.ACTGGAAGAACGAATTAC3420 CGGTCGTTGGATCCACCCATCAAGTG~:~TAGATCTTATCATAC.AAAATTTGCTCCTCCTAA3480 GACTCCTGGACTTGATGATGTAAGTC~1TACCAGATTA."TTGCTCTCGCTTGCATTTGTCA3540 GATACTCAGATTTTTACCATTTTCAT':CATTTCTATTAGATTTGGTACATATATTGTTTGA3600 TGCTTGCAGCATATGCGCCT'rTACCA'7.'AATTTCCCTGTCTCA'rCA'PCGATCATCGTAGTA3660 CTCTGCTTACTTGTTTTTTAAGAACA?iAACATGAGCCATCAT'rCTTTCAAAATAAAAAAG3720 GTTCATTGAGTACCTTCTTC'TTGCCA~.'.TGTTTATrTA~~TTTG~~TTCCCAAATAGTTAAAT3780 AGGTAGTGTGATTATGGATATATTTT':CCTTGTTTTGGTTGTT'rCTCGTACGAAGAGTAAA3840 ATGCACCTTTTGTTGACAAGAAATGA':CAGGCAGTGTT'CGC:ATGACACACTTTTGCTTCCT3900 TTTCTGACAATTATGCCTGTTTAAGTGTCCATAAATAGATAC.A'CCGACATGTTTTTGTAG3960 CAGGAGATTGTATATTGTTTCTATTGi:.'TTCCATT..~1AAAGC'AT.?~TTCTTCTTTAGCAATGA4020 TTTCATGTGGGACATATTTG'rGCTGC':L'ATTAAGT.AAA'rTTGT'TTGATATCATATATATCT4080 TTTAATTGGTAATATTATGT(.3CACTT~~.:T:~CTCCC'TGATTGCT'rTG~PCTTTTCACAAAGGT414 TACTGGAGAACCCTTAATTCAAAGGA,i~?,3ATGAC.~1CAGCTGC,~GTATTGAAGTCAAGGCT4200 TGAAGCCTTCCACGTACAAA(;TAAGC~_'.TJTATGT'rTCCTTTAGCAACTACGTTTTTAAAT4260 ATTCAGATATTCTTTTAGGATGTAGT~::.'GTACTTC.?~GT'CAAGGCGGATTCCTTCAGTTGCA4320 TTACAGTGTTTCCTGTATATCTTTCA':f'T'3'rTTTT 4 (2) INFORMATION FOR SEQ ID NO.: 2:
(i) SEQUENCE CHARACTERISTICS
(A) LENGTH: 1443 (B) TYPE: nucleic acid (C) STRANDEDNESS:
(D) TOPOLOGY:
(ii) MOLECULE TYPE: DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Oryza sativa L.cv.Nipponbare (xi) SEQUENCE DESCRIPTION: SE;Q ID NC.: 2:
CTGCAGGAAG ATTAATTAGG TGGACACP.CC AAACCCTGTG GTTGGTGACG CCCTGTTGTT 60 AATCAACTGG GGTGTTCGTT GGACATGCTT TTTGCAGGAA AA.TTAAGCAA GAAAATTAAG 120 AAGAATGCTC AAGCTGACAT GAGAAA.AC'GT AATCCARTGG AA.GCGAATTT CAAGTCGTTC 180 TCTTGTACTA CCATGTTTAG ,~ATACA'CPAG ACAGTGCCAA CGGTTTGATG GCTCCTATTG 240 GCTCGTGTGA TACTGACTTG TGTCAC.AAAG CATCAAAT'T(i CTTCTTGGAG TATCTTTATT 300 ACCGAAAACC CCAAAGATTA TTCTAT'1'C'CA CCTCAGGGTA A'PTGTGCTGA ACTATGCAAT 3 6 0 GAATACAAAT TCGCAAAATA 'ICATGG'CTAT CTATCTT'GCT CAAATTGAAA TTTGAGTCCA 420 ACTGAGACTG CAATACGATT 'rTTCTT'-CTCA AAAAGAAATT ATTAATTTTT TTTTCATGAA 480 ACGCAATTCA ACCGTTCGAG AAATATGC'TG TCATAAAT'AA G'I'AGTCTAGT GCAGAAACAA 540 AATTAATATC ACATAAAAAA GAAGGT'rCTT AATTACAPAC CATGTTTCGT ACTACAACTC 600 TAATTTGTAA ATTCTTATTT CAGTCA~~AAA ATTCCAAT'TT CCAATTAAGA AAAATAAACG 660 TAGACGGCTA AGCCCACCCA TCTAAG(3CTA AGTTCGAGAG GTGAAGTACG CACGAAAAAT 720 ATGATGGTTT ATTAATATGA 'rTTTTT'TTAA ATAACTTT'CA CATAAATTTC TTTAGGAAAC 780 CATGATAAAC GAGAAAGCTC ATTAGC;?~CAT TATTACTTAG ATATTTATAA TTATAAACTT 960 GAAAAAAATA TTTATTTGAA TTTTTT;?~AAC AATGTATGCA TAAATTATTT TTTAAAAACA 1020 CACCAATTTA ACCCTTTAAA AAGCATCCTA A'I"AGGAAACG AGGAAGTTAA AGATTCACCG 1080 AAGGTGTGTT TGGATAATGA AAAATG(3GGT GGGATTAGAA TTGGTAAATG AATCAGGGTT 1140 AGGATTAAAT ATTAAAATGA AAGAGGGAGA ATGAATGGT'n AGAGTTTAAA TGTGTCTTTT 1200 TGGTGGGTAG AAAATTATTT GCCATA(~ACT CCCCGAGAGC GGTGCGTGCT TGCGTGGGCA 1260 TTGGTTGTCA CCGTCTCACC AGAAACC,AAA CAAAP.AGCCC CACCACCTAA ACCTCCTCGA 1380 TCCGACCGAG ACTCCTCCAT 'rTCAGCGGCG CACGCGGAGA GCACGCGACG CGAGTTCGTC 1440 ( 2 ) INFORMATION FOR SEQ ID Nc:) . : 3 (i) SEQUENCE CHARACTERISTIC;?
(A) LENGTH: 22 (B) TYPE: nucleic acid (C) STRANDEDNESS:
(D) TOPOLOGY:
(ii) MOLECULE TYPE: DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Oryza sativa L.cv.Nipponbare, Artifical Sequence, or Unknown (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 3 .
(2) INFORMATION FOR SEQ ID NO.: 4:
(i) SEQUENCE CHARACTERISTICS
(A) LENGTH: 22 (B) TYPE: nucleic acid (C) STRANDEDNESS:
(D) TOPOLOGY:
(ii) MOLECULE TYPE: DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Oryza saliva L.cv.Nipponbare, Artifical Sequence, or. Unknown (xi) SEQUENCE DESCRIPTION: SE:Q ID NO.: 4:
CCCGGCTTTC TTGTAACGCG CT ~2 (2) INFORMATION FOR SEQ ID NO.: S:
(i) SEQUENCE CHARACTERISTICS
(A) LENGTH: 23 (B) TYPE: nucleic acid (C) STRANDEDNESS:
(D) TOPOLOGY:
(ii) MOLECULE TYPE: DNA
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Oryza sativa L.cv.Nipponbare, Artifical Sequence, or Unknown (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 5:
Claims (18)
1. A DNA fragment consisting of all or part of the nucleotide sequence shown in SEQ ID NO:1 in the Sequence Listing wherein one or more bases may be deleted, added or replaced as long as the fragment functions to regulate expression of a structural gene viable in a plant or plant cell.
2. A vector containing the DNA fragment as defined in Claim 1.
3. A host bacterium transformed with the vector as defined in Claim 2.
4. A plant cell transformed with the vector as defined in Claim 2.
5. A plant regenerated from the plant cell as defined in Claim 4.
6. A seed obtained from the plant as defined in Claim 5.
7. A plant cell transformed with the host bacterium as defined in Claim 3.
8. A plant regenerated from the plant cell as defined in Claim 7.
9. A seed obtained from the plant as defined in Claim 8.
10. The DNA fragment according to Claim 1, which consist of all or part of the nucleotide sequence shown in SEQ ID
NO:2 in the Sequence Listing wherein one or more bases may be deleted, added or replaced as long as the fragment functions to regulate expression of a structural gene viable in a plant or plant cell.
NO:2 in the Sequence Listing wherein one or more bases may be deleted, added or replaced as long as the fragment functions to regulate expression of a structural gene viable in a plant or plant cell.
11. A vector containing the DNA fragment as defined in Claim 10.
12. A host bacterium transformed with the vector as defined in Claim 11.
13. A plant cell transformed with the vector as defined in Claim 11.
14. A plant regenerated from the plant cell as defined in Claim 13.
15. A seed obtained from the plant as defined in Claim 14.
16. A plant cell transformed with the host bacterium as defined in Claim 12.
17. A plant regenerated from the plant cell as defined in Claim 16.
18. A seed obtained from the plant as defined in Claim 17.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1999/004847 WO2000015812A1 (en) | 1998-09-10 | 1999-09-08 | Dna fragment having promoter function |
AU56469/99A AU5646999A (en) | 1998-09-10 | 1999-09-08 | Dna fragment having promoter function |
EP99943200A EP1113075A4 (en) | 1998-09-10 | 1999-09-08 | Dna fragment having promoter function |
US09/802,937 US6812381B2 (en) | 1998-09-10 | 2001-03-12 | DNA fragment having promoter function |
CA002339598A CA2339598A1 (en) | 1988-04-19 | 2001-03-15 | Dna fragment having promoter function |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63098040A JPS63282895A (en) | 1987-04-22 | 1988-04-19 | Optical code reader and code arrangement |
CA002339598A CA2339598A1 (en) | 1988-04-19 | 2001-03-15 | Dna fragment having promoter function |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2339598A1 true CA2339598A1 (en) | 2002-09-15 |
Family
ID=25682432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002339598A Abandoned CA2339598A1 (en) | 1988-04-19 | 2001-03-15 | Dna fragment having promoter function |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2339598A1 (en) |
-
2001
- 2001-03-15 CA CA002339598A patent/CA2339598A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MXPA02003456A (en) | Method for regulating transcription of foreign genes in the presence of nitrogen. | |
NO323171B1 (en) | Isolated nucleotide sequence comprising an acetohydroxy acid synthase promoter, use thereof, transformation vector, plant cell and plant comprising said nucleotide sequence, nucleic acid construction comprising the sequence and methods of uses thereof. | |
CA2078229A1 (en) | Plant promoter | |
JP2000516806A (en) | Shoot meristem-specific promoter sequence | |
JP3444191B2 (en) | Transcription factors that regulate the phenylpropanoid biosynthetic pathway | |
CA2089072A1 (en) | Process for the gene manipulation of plant cells, recombinant plasmids, recombinant bacteria, plants | |
CN101532015B (en) | Anther tapetum and pollen specific efficient promoter as well as application thereof | |
JPH05276951A (en) | New plant promoter | |
JP3791059B2 (en) | Plant promoters and their use | |
MX2008008765A (en) | Gene promoters that can be used in plants. | |
JP6202832B2 (en) | Environmental stress-tolerant plant having high seed yield and its production method | |
CN101880664B (en) | Monocotyledon promoter as well as preparation method and application thereof | |
US6812381B2 (en) | DNA fragment having promoter function | |
JP2003511049A (en) | Method for increasing crop yield or biomass using protoporphyrinogen oxidase gene | |
US20040191912A1 (en) | New constitutive plant promoter | |
CN102146410B (en) | BgIosP526 promoter, preparation method and application of BgIosP526 promoter | |
CA2339598A1 (en) | Dna fragment having promoter function | |
KR101437606B1 (en) | Promoter from brassica and plant transformed with the same | |
CN116606855B (en) | Rice green tissue specific promoter pOsRBBI3 and application thereof | |
CN116606856B (en) | Rice green tissue specific promoter pOsPTHR and application thereof | |
JP4010356B2 (en) | Plant virus-derived promoter | |
RU2149187C1 (en) | Vector for insertion of required gene in plant (variants), method of transgenic plant producing and method of insertion of at least two required genes in plant | |
JP3882952B2 (en) | Plant promoter | |
WO2001040470A1 (en) | Dna fragment having promoter function | |
WO2000015811A1 (en) | Dna fragment having promoter function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |