CA2338454C - A novel formulation useful as a nitrification and urease inhibitor and a method of producing the same - Google Patents

A novel formulation useful as a nitrification and urease inhibitor and a method of producing the same Download PDF

Info

Publication number
CA2338454C
CA2338454C CA002338454A CA2338454A CA2338454C CA 2338454 C CA2338454 C CA 2338454C CA 002338454 A CA002338454 A CA 002338454A CA 2338454 A CA2338454 A CA 2338454A CA 2338454 C CA2338454 C CA 2338454C
Authority
CA
Canada
Prior art keywords
fertilizer
oil
urea
formulation
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002338454A
Other languages
French (fr)
Other versions
CA2338454A1 (en
Inventor
Dharani Dhar Patra
Usha Kiran
Mohammed Anwar
Sukhmal Chand
Sushil Kumar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council of Scientific and Industrial Research CSIR
Original Assignee
Council of Scientific and Industrial Research CSIR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council of Scientific and Industrial Research CSIR filed Critical Council of Scientific and Industrial Research CSIR
Publication of CA2338454A1 publication Critical patent/CA2338454A1/en
Application granted granted Critical
Publication of CA2338454C publication Critical patent/CA2338454C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C3/00Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
    • C05C3/005Post-treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C9/00Fertilisers containing urea or urea compounds
    • C05C9/005Post-treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/90Mixtures of one or more fertilisers with additives not having a specially fertilising activity for affecting the nitrification of ammonium compounds or urea in the soil
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/30Layered or coated, e.g. dust-preventing coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Soil Sciences (AREA)
  • Fertilizers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The invention relates to a novel formulation useful as a nitrification and urease inhibitor, said formulation comprising an effective amount of nitrogenous fertilizer, castor oil and oil derived from Artemisia annua, in an amount sufficient to enhance the nitrification activity of the formulation, a method for producing the formulation and method for applying the same to soil.

Description

A NOVEL FORMULATION USEFUL AS A NITRIFICATION AND UREASE
INHIBITOR AND A IvIETHOD OF PRODUCING THE SAME
Field of Invention The present invention relates to a novel formulation comprising nitrogenous fertilizers in combination with castor oil and oil derived from Artemisia annua useful as nitrification and urease inhibitor. More particularly, the invention relates to the development of a cheap, and potential urease/nitrification inhibitor from essential oil (Artemisia annua oil). The invention also provides a method for producing the novel formulation useful as nitrification inhibitor.
Background of the invention:
Among the agricultural inputs to augment food production, use of fertilizer, in particular urea plays a key role. It is estimated that the present global consumption of fertilizer N is in the order of 77 Tg annually which is estimated to be increased to 144 Tg by the beginning of next century. In India, the present consumption of fertilizer N
is about 9.5 m tons which is estimated to be increased to 14 m tons by 2001. Utilization efficiency of fertilizer N seldom exceeds 50%; it is yet low in paddy.
When applied to soil, urea hydrolyses by enzyme urease to from NHS and finally to N03 by some bacteria. The NH.; is subjected to loss by volatilization whereas N03 is prone to losses through leaching and dentrification. Apart from increasing the cost of cultivation in agriculture, N losses through leaching as well as in gaseous form have direct concern in environmental degradation. As a consequence of leaching N03 concentration in ground water has been increasing at an alarming rate. Any strategy that can restrict or retard these processes, would reduce the loss of N. The present invention deals with finding strategies for retarding urea transformation and nitrification for a higher fertilizer N
use efficiency.
Researchers have tried to reduce the losses of N (i) by applying N in small doses at different growth stages of crop, so that the plants use it before it is lost and (ii) by deep placement or incorporating the urea in soil. The ammonium produced can be retained for sometimes in the exchange complex of soil clay particles.
Some of the modern tools suggested are (i) use of unease inhibitors such as phenylphosphorodieamidate (PPD), hydroxamates and benzoqauinones (Gould, WD et al 1986, Adv. Agron. 40:209-238), which reduce the hydrolysis of urea and this can reduce ammonia volatilization losses, and (ii) use of nitrification inhibitors such as N serve or nitrapyrin (2-chloro-6(tricholoromethyl)-pyridine), DCD (Dicyandiamide), AM (2-amino-4-chloro-6-methylpyrimidine), KN3 (potassium azide) and thiourea (Sahrawat, 1989, Adv.
Agron 42:279-302, Prasad and Power, 1995, Adv. Agron 54:233-81).
These compounds have been successful in some parts of the world. However, because of cost and poor availability these could not be made commercially popular to common farmer. An interesting discovery was the nitrification inhibitory properties of neem seed cake (prasad et al, 1971, Adv. Agron 23:337-381) and neem cake coated urea and has found some favour among Indian farmers. Neem bittern/extracts such as NiminTM, NeemexTM, etc.
for treating urea are in Indian market. More recently a neem oil urea emulsion adduct has also been reported (Prasad et al, 1998, Curr. Sci. 75:15). Many of the fertilizer mixture, coated materials especially synthetic chemicals are put to limited use such as in turf or in high price agriculture such as commercial floriculture and that to in developed countries and have not reached the general farmers due to high costs.
Objects of the Invention The main object of the invention is to develop a novel unease and nitrification inhibitor from natural source, more particuarly the evaluation of unease and nitrification inhibiting properties in Artemisia oil.
Another object is to develop novel unease nitrification inhibitor formulation comprising urea and other nitrogenous fertilizers, castor oil and oil derived from Artemisia annua.
Yet another object is to develop cheap and eco-friendly unease and nitrification inhibitor which is easily decomposable and leave no adverse influence in the soil.
Still another object is to provide a method for producing nitrification inhibitor formulation.
Summary of the Invention The present invention comprises of development of unease and nitrification inhibitors from essential oil and its derivatives coated with urea/ammonium producing N
fertilizers (0.5-1.0%
on w/w basis of fertilizer). Nitrogenous fertilizer is initially coated with castor oil at 1% (w/w basis of fertilizer). The coating resulted in retarding of nitrification by 29-36% as against 31-42% with dicyandiamide (DCD), which is taken as the reference. This formulation was found superior to DCD with respect to inhibition of unease activity (retarded by 32-35% as compared to DCD; 5-15%). The activity of both the nitrifying organisms i.e.
Nirosomonus and Nitrobacter significantly decreased with this formulation. This natural product formulation augmented apparent N recovery to 56% against 37% with uncoated urea and 54%
with DCD.
Detailed Description of the Invention Accordingly, the present invention provides a novel formulation useful as a nitrification and unease inhibitor; said formulation comprising an effective amount of nitrogenous fertilizer, caster oil and oil derived from Artemisia annua, in an amount sufficient to enhance the nitrification inhibitory activity of the formulation.
In an embodiment of the invention, the amount of caster oil can be selected from 0.2 to 2%
(w/w basis of fertilizer), preferably 1.0% (w/w basis of fertilizer).
In another embodiment, the amount of oil used in the composition, which is derived from Artemisia annua may be in the range of about 0.5-5% (w/w basis of fertilizer).
In a further embodiment of the invention, the oil derived from Artemisia annua may be coated, mixed or doped with the nitrogenous fertilizer.
In another embodiment of the present invention, the nitrogen fertilizer may be selected from urea or ammonium sulphate and other ammonium producing fertilizer.
In yet another embodiment of the present invention, oil derived from Artemisia annua may be selected from Artemisia oil or its derivatives.
In another embodiment the invention provides a method for producing nitrification inhibitor formulation comprising the step of applying an effective amount of castor oil (1%) and oil obtained from Artemisia annua to nitrogenous fertilizer.
In an embodiment, the nitrogenous fertilizer may be coated, doped or even mixed with castor oil and oil obtained from Artemisia annua or its derivatives.
Yet another embodiment of the invention relates to a method of using Artemisia oil as urease and nitrification inhibitor which comprises of coating urea granules or any other ammonium forming fertilizer with castor oil 1.0% w/w/ basis of fertilizer as a primary coating (as fixative material) followed by coating with Artemisia oil in the range of 0.5%-5.0%
(w/w basis of the fertilizer).
Nitrogen is one of the most vital plant nutrients in agriculture. It is estimated that present global consumption of fertilizer N is of the order of 77 Tg annually which is likely to increase to 145 Tg by the beginning of the next century. India consumes about 9.5 million tones, which is estimated to be increased to about 14 million tones by 2005. Fertilizer urea comprises of more than 80% of the total consumption of nitrogenous fertilizers. Out of the total quantity of N applied to soil the recovery seldom exceeds 50%. It is further less in submerged conditions (rice). Fertilizer urea when applied to soil is hydrolysed by enzyme urease to form NII4 which is prone to losses through volatilization. The NH4 further oxidizes to NOz and finally to N03 by nitrification which are generally lost through leaching and denitrification. Any process that slows down these transformation processes can reduce loss of N to a great extent. Urease and nitrification inhibitors play a vital role in retarding these processes, thereby increasing the nitrogen use efficiency.
A series of chemicals have been reported as urease and nitrification inhibitors. However, use of many of these has been restricted to research level because of their high cost, low availability, chemical nature, phytotoxicity and environmental consequences.
Natural products like those from Karanj (Pongamia glabra), neem (Azadirachta indica) etc. are reported to have nitrification inhibitory properties. However, commercial exploitation of these materials had not been possible because of one reason or another.
The present invention relates to development of a urease and nitirification inhibitor from Artemisia oil. This is observed to be as effective as chemical inhibitors like DCD, cost effective, as required in very small quantity and ecofriendly (expected to have minimum residual effect).
Urea is the main source of nitrogen fertilizer used in the world due to its high N content, high solubility and non-polarity. However, it is suceptible to various N loss mechanisms, viz. ammonia volatilization, leaching and denitrification. Urease and nitrification inhibitors are used to resist fertilizer N losses by retarding urea hydrolysis and nitrification. A series of synthetic chemicals are used as urease and nitrification inhibitors to restrict urea hydrolysis and denitrification, respectively. These compounds are successful in some parts of the world. However, many of these synthetic chemicals have not been found to be commercially viable because of one reason or another. The present invention deals with the discovery of urease and nitrification inhibitory properties of Artemisia annua oil which being a natural product is ecofriendly and cheap as compared to synthetic products. A
series of laboratory and greenhouse experiments were conducted to workout the antimicrobial and N regulatory properties of the oil taking dicyandiamide (DCD) as the reference check. Artemisia oil has been found as effective as DCD as nitrification inhibitor.

This being a natural source and having both urease and nitrification retardation properties, would be very effective, cheap, safe (eco-friendly) doping material to regulate urea N
transformation in soil.
The invention is described in detail hereinbelow with reference to the following examples which should not be construed as limitations on the inventive concept proposed in the invention.
To evaluate the performance of the proposed natural product, incubation experiments were conducted to follow the changes in regulation of urea -N transfomation and the influence of the material on soil microbes and microbial activity. Subsequently, greenhouse experiments were conducted to evaluate the influence of the material on apparant N
recovery by plants.
The following examples are illustration in nature and should not be construed to limit the scope of invention Example 1. Incubation experiment A series of laboratory and greenhouse experiments were conducted to evaluate the efficacy of the proposed material as potent urease and nitrification inhibitor. Artemsia oil was used as the natural product which was compared with dicyandiamide (DCD) as the standard reference. Urea (46% N) was coated separately with the Artemisia oil and DCD
using castor (Ricinus communis) oil as the fixative material. For this, first coating of urea granules was done by physical mixing of castor oil (1%) followed by the natural product and DCD at 0.50% and 1.00% with urea (w/w basis). After 24 hours of the mixing is done, the coated urea was mixed with 500 g soil (sandy loam, pH 8.2, available N 65 mg kg's ) and was kept in plastic container. A control (with urea alone, no coating) was used as the reference check. The soils under all the treatments having four replications each were incubated at 25° C after maintaining at 60% of the maximum water holding capacity of soil. In one set of experiment, soils were analysed for urease activity and urea N after 24 hours of incubation following methods of Tabatabai and Bremner (1972, Soil.
Biol.
Biochem. 4 : 479-487).
Representative soil samples were analysed for different forms of N i.e. Urea N, NH4 and N03-N at regular intervals to asses the nitrification inhibitory properties of the materials in question following standard procedures (Douglas and Bremner, 1970, Soil Sci Soc. Am.
Proc. 34 : 859-862). Another set of experiment was conducted to assay the total bacterial, actinomycetes and nitrifying bacterial (Nirosomonus and Nitrobacter) population (Alexander and Clark, 1965, In Methods of Soil Analysis Part II (C.A. Black Ed.) Am.
Soc. Agron. Inc. Wisconsin, USA; KenKnight and Torariko, 1973, Agrokhimiya 7 :
3) 2. Greenhouse experiment To confirm the results of the incubation experiment, a pot culture experiment was conducted subsequently, taking Japanese mint (Mentha arvensis) as the test crop. Eight kg soil (2 mm) were taken in plastic container. The same coating materials and fertilizer (urea) as were in incubation experiment, were imposed, except that instead of two levels of coating materials, it was applied at 1.00% (w/w basis). The experiment was laid in a completely randomized design with four replications. The soils were analysed for different forms of N at regular intervals. In addition the plant materials were analysed for N
accumulation and apparent fertilizer N recovery.
N accumulation - N accumulation in treated pot(mg/kg) in control pot (mg/kg) (no fertilzer N) Apparent N recovery - x 100 Amount of N applied (mg/kg) IN/PA-98 g Influence of the Coating materials on N transformation (mineralization), urease activity, nitrification and fertilizer N recovery:
Results from the incubation experiment (Table 1 ) indicate that the natural product delayed the hydrolysis of urea as evidenced by ~a higher concentration of urea-N on day 1 after imposition of treatments. This effect persisted till day 2. Artemisia oil was as effective as DCD with respect to regulation of urea -N transformation to NH4 and N03. There was a significant retardation of N03 formation both in DCD and the natural products at both the level of coating. At day 1 N03 formation retarded by 19-31 % with DCD and 13-44% with Artemisia oil as compared to urea alone.
Comparing on the basis of mean N03 produced, the % retardation of nitrification at 0.5%
level of application were 31 and 29% with DCD and Artemisia oil, respectively . The corresponding retardation at 1.0% level of application were 42 and 36%, respectively.
DCD maintained a higher level of NHS as compared to Artemisia oil.
Accumulation of NH4 is undesirable as an excess of NH3 helps in increasing soil pH making the conditions in soil microsites congenial for NH3 volatilization.
Almost similar trend was observed with respect to transformation of urea N
(forms of N) in the greenhouse experiment when mineral N was assessed at weekly intervals (Table 2). As in incubation experiment, accumulation of NH4 was higher in DCD treated soil as compared to Artemisia oil treated soil. Total N03 production was estimated to be retarded by 60% and 50% over urea alone, with coating of urea with DCD and Artemisia oil, respectively.
The incubation experiment further indicates that like DCD, Artemisia oil influenced the counts of Nitrosomous and Nitro6acter reponsible for nitrification, as well as actinomycetes and total bacteria (Table 4). Nitrosomus population decreased by 9-14%
with DCD and 36-45% with Artemisia. Likewise, Nitrobacter population decreased to an IN/PA-98 g extent of 69-87% with DCD and 65-77% with Artemisia. The retardation increased with increasing the level of coating material.
Total actinomycetes population decreased with DCD at both the levels of application whereas Artemisia did not have any influence on actinomycetes population.
Finally, an account of the total bacterial population indicate a significant antibacterial properties of both the synthetic and natural products.
Influence of these materials on urease and nitrification inhibitory properties and regulation of urea-N transformation was reflected on the apparent N recovery, total N
accumulation by the plant and subsequently the herb yield of the test crop (Table 5). Herb yield of Japanese mint increased by 37%, 82% and 81% over control with urea alone applied at 100 mg kg'1 soil, and that applied with coating DCD and Artemisia, respectively. When compared with urea alone, the herb yield with DCD and Artemisia increased by 29 and 31%, respectively. Both the materials augmented the apparent N recovery. The N
recoveries were 54 and 55% with DCD and Artemisia respectively, as against 37%
with urea alone.
The present invention comprises of evaluation of urease and nitrification inhibitory properties in Artemisia oil. At 0.5% level of application Artemisia decreased formation to an extent of 29%. The corresponding value at 1.0% level of application was 36%. Artemisia oil was found superior to DCD with respect to retardation of urease activity. Urease activity decreased by 32-35% with Artemisia oil as compared to 5-15%
with DCD. This product inhibits the population of both Nitrosomus and Nitrobacter;
actinomycetes population was not affected by Artemisia oil. Coating of urea with Artemisia oil increased apparent N recovery to 56% as against 37% with urea alone and 54% with DCD.

' CA 02338454 2001-O1-23 Table 1. Influence of differrnt coating materials on N transformation at diflerrnt stages of incubation Trcatments~ Forms of N
Day l Day 2 Day 3 Day 7 Day 14 Mean Urea NH, NO~ Urea NH, NO~ Urea NH, NOs Urea, NH, NO~ Urea NH, NO~ Urea NH, NO~
Urea alone 4.5 42.5 99 - 6.2 218 - 16.5 16.9 - 10.5 136 - 6.9 155 - 16.5 156 (no coating materials) Urea +DCD
(0.50) 16.0 59.5 80 - 8.5 125 - 25.2 9.5 - 6.2 100 - 8.5 135 - 21.6 107 (1.00) 16.8 69.5 68 - 20.0 60 - 35.6 99 - 9.2 102 - 8.9 120 - 28.6 90 Urea+ Artemi.ria (0.50) 27.5 35.0 86 7.8 5.0 120 . 22.1 112 - 3.5 109 - 9.5 125 ~ 15.0 I10 (1.00) 32.5 56.5 55 9.2 8.9 92 - 24.2 118 - 3.9 101 - 10.5 128 - 20.8 99 LSD (P=0.05) 3.45 8.90 7.50 - 1.25 10.3 - 3.90 0.50 . - 6.50 - - 7.50 - 4.50 8.50 'Coating materials added at 0.50 and 1.0°,'o w/w basis; urea applied at 100 mg kg ~ soil.

Table 2 : Influence of different coating materials on N mineralization in soil cropped with menthol mint. (Mentha arvensis) Treatment Mineral-N
s (mgkg-soil) Week Week Week Week Week Total t II tII IV V

NH, NH, NH, NH, NH, NH, NO~ NO~ NO~ N03 NO~ N03 Control 6.5 6.4 - 4.8- 6.8 - 9.3 2.8 3.5 9.3 30.8 (no fertilizer and no coating material) Urea alone 20.0109 25.51208.0 45 - 34 10.218.963.8 324 (no coating maerials) Urea+DCD 45.039.050.025.012.014.010.520.06.5 12.512.4 110 Urea+Artemisia25.049.020.535.06.5 17.5- 22.85.9 11.258.0 135 LSD (P=0.05)3.8 5.2 2.9 5.42.5 5.0 - 6.5 1.9 2.8 6.9 13.5 Table 3. Influence of different coating materials on urease activity (in terms of ~g NH4-N
liberated/g soiUhour) Treatments* Urease activity Control (No fertilizer and 24.5 no coating materials) Urea alone (No coating materials)66.5 Urea+DCD (0.50) 56.7 (1.00) 45.1 Urea + Artemisia oil (0.50) 45.2 ( 1.00) 43.5 LSD(P=0.05) 8.23 * Urea applied @ 100mg kg's soil; coating materials applied @ 0.50 and 1.00%
(w/w basis) Table 4: Influence of coating materials on Nitrosomomus Nitrobacter, total actinomycetes and bacterial population in soil.
Treatment* Nitrosomonus Nitrobacter Actinomycetes Total X103 g-~ soil x 103 g-~ soil x 104 g-lsoil bacteria x 105 g-~ soil Control (no fertilizer and 1.10 2.50 6.50 2.00 no coating materials) Urea alone (no coating 3.30 14.00 5.60 4.00 materials) Urea+ DCD(0.50) 3.00 4.30 1.00 1.00 (1.00) 2.85 1.80 1.00 1.00 Urea + Artemisia oil (0.50) 2.10 4.90 6.00 3.50 ( 1.00) 1.80 3.20 6.00 2.50 LSD (P=0.05) 0.25 0.50 0.45 0.45 *Urea applied @ 100 mg kg ~ soil; coating materials @ 0.50 and 1.00 % (w/w basis) Table S: Influence of different coating materials on herb yield, total N
accumulation and apparent N recovery in menthol mint.
Treatment Herb yield N accumulation Apparent N

(g pot' (mg pot 1) recovery ) Level of Coating (%) urea-N (mg kg't)materials ( 1.00%) 0 (Control)Nil 32.5 170 -100 Nil 44.5 467 37.12 DCD 59.2 603 54.12 Artemisia 58.9 612 55.25 LSD (P=0.05) 5.20 11.8 Advantages of the inventions 1. This product is as effective as dicyandiamide (DCD) as nitrification inhibitor.
2. This product has higher urease inhibitory properties.
3. This product doesn't allow high accumulation of NH.~-N following hydrolysis of urea Higher accumulation of NH4-N helps in increasing soil pH and thereby causing volatilization of NH3.
4. This product being natural and having low persistence, is expected to leave no adverse effect in soil, on beneficial microflora and related transformation processes and environment.
5. This product is better than other essential oils and derivatives.
6. This product is cheaper than many synthetic inhibitors.

Claims (14)

Claims
1. A fertilizer formulation comprising an effective amount of nitrogenous fertilizer and, castor oil and oil derived from Artemisia annua in an amount sufficient to enhance the nitrification and urease inhibitory activity of the formulation.
2. A formulation as claimed in claim 1 wherein the oil derived from Artemisia annua is in the range of about 0.5-5% (w/w/ basis of fertilizer).
3. A formulation as claimed in claim 1 wherein castor oil is present in an amount of 0.2%
to 2.0% (w/w/ basis of fertilizer).
4. A formulation as claimed in claim 1 wherein the oil derived from Artemisia annua is coated, mixed or doped with the nitrogenous fertilizer.
5. A formulation as claimed in claim 1 wherein the nitrogen fertilizer is selected from urea, ammonium sulphate and ammonium producing fertilizer.
6. A formulation as claimed in claim 1 wherein the oil derived from Artemisia annua is selected from Artemisia oil and its derivatives.
7. A method for producing a nitrogenous fertilizer formulation, comprising the step of applying an effective amount of castor oil and oil obtained from Artemisia annua to a nitrogenous fertilizer to impart nitrification and urease inhibition property to the fertilizer.
8. A method as claimed in claim 7 wherein castor oil is present in an amount of 0.2% to 2.0% (w/w/ basis of fertilizer).
9. A method as claimed in claim 7 wherein the nitrogenous fertilizer is coated, doped or even mixed with castor oil and oil obtained from Artemisia annua and its derivatives.
10. A method as claimed in claim 7 wherein the nitrogen fertilizer is selected from urea, ammonium sulphate and ammonium producing fertilizer.
11. A method as claimed in claim 7 wherein the amount of oil derived from Artemisia annua is in the range of about 0.5-5% (w/w basis of the fertilizer).
12. A method of using Artemisia oil as urease and nitrification inhibitor which comprises coating granules selected from urea and ammonium forming fertilizer with castor oil on 1.0% w/w/ basis of fertilizer as a primary coating (as fixative material) followed by coating with Artemisia oil in the range of 0.5%-5.0% (w/w basis of the fertilizer).
13. A formulation as claimed in claim 1 wherein said castor oil is present in an amount of 1.0% (w/w basis of fertilizer).
14. A method as claimed in claim 7 wherein said castor oil is present in an amount of 1.0% (w/w basis of fertilizer).
CA002338454A 2000-03-28 2000-03-28 A novel formulation useful as a nitrification and urease inhibitor and a method of producing the same Expired - Fee Related CA2338454C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IN2000/000032 WO2001072665A1 (en) 2000-03-28 2000-03-28 Formulation useful as a nitrification and urease inhibitor and a method of producing the same

Publications (2)

Publication Number Publication Date
CA2338454A1 CA2338454A1 (en) 2001-09-28
CA2338454C true CA2338454C (en) 2004-12-14

Family

ID=11076233

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002338454A Expired - Fee Related CA2338454C (en) 2000-03-28 2000-03-28 A novel formulation useful as a nitrification and urease inhibitor and a method of producing the same

Country Status (4)

Country Link
CN (1) CN1248989C (en)
AU (1) AU779660B2 (en)
CA (1) CA2338454C (en)
WO (1) WO2001072665A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2264386B1 (en) * 2005-06-07 2007-11-16 Inabonos, S.A. NEW FORMULATIONS WITH THE CAPACITY OF INHIBITING UREASA ACTIVITY AND POTENTIAL AGRONOMIC USE.
FR2925826B1 (en) 2007-12-31 2010-01-29 Agrofinance Internationale UREASE AND NITRIFICATION INHIBITOR COMPOSITION
US10501383B2 (en) 2014-10-31 2019-12-10 Koch Agronomic Services, Llc Nitrification inhibitor compositions and methods of making thereof
NZ732464A (en) * 2014-12-11 2018-12-21 Dow Agrosciences Llc Nitrification inhibitor compositions and methods for preparing the same
EP3130578B1 (en) 2015-08-14 2019-03-13 Fertinagro Biotech, S.L. Fertilizing composition which includes an inhibitor of urease activity
CN107955619A (en) * 2017-11-20 2018-04-24 郑州搜趣信息技术有限公司 A kind of composite soil modifier and preparation method thereof
LT6961B (en) * 2021-05-06 2022-12-12 Akcinė bendrovė „ACHEMA“ Preparation used as an urease inhibitor, method for production thereof and urea fertilizer
WO2023135341A1 (en) 2022-01-12 2023-07-20 Fertinagro Biotech, S.L. Urease inhibiting composition and use of same
CN116621646B (en) * 2023-05-10 2024-02-06 中国科学院沈阳应用生态研究所 Cyclopentanone as an inhibitor for N reduction in soil 2 Application of O emission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1592593A1 (en) * 1966-06-28 1971-01-14 Baerlocher Chem Process for granulating fertilizers
FR2529195B1 (en) * 1982-06-29 1990-05-11 Clement Henri FERTILIZERS IN THE FORM OF STICKS
JPS62270485A (en) * 1986-05-19 1987-11-24 亀井 豊 Manufacture of herbicidal fertilizer composition
JPH0819595A (en) * 1994-07-05 1996-01-23 Maruzen Pharmaceut Co Ltd Agent for preventing generation of ammonia

Also Published As

Publication number Publication date
CN1248989C (en) 2006-04-05
AU779660B2 (en) 2005-02-03
CN1354736A (en) 2002-06-19
CA2338454A1 (en) 2001-09-28
WO2001072665A1 (en) 2001-10-04
AU5425000A (en) 2001-10-08

Similar Documents

Publication Publication Date Title
ME Trenkel Slow-and controlled-release and Stabilized Fertilizers: an option for enhancing nutrient use effiiency in agriculture
Kiran et al. Medicinal and aromatic plant materials as nitrification inhibitors for augmenting yield and nitrogen uptake of Japanese mint (Mentha arvensis L. Var. Piperascens)
Maqsood et al. Nitrogen management in calcareous soils: problems and solutions.
US8211200B2 (en) Controlled release nitrogeneous fertilizer composition system
US6315807B1 (en) Formulation useful as a nitrification and urease inhibitor and a method of producing the same
US10954171B2 (en) Method for producing stable fertilizer by nano-carbon sol
Ashraf et al. Evaluating organic materials coating on urea as potential nitrification inhibitors for enhanced nitrogen recovery and growth of maize (Zea mays).
CA2338454C (en) A novel formulation useful as a nitrification and urease inhibitor and a method of producing the same
Buresh et al. Effect of two urease inhibitors on floodwater ammonia following urea application to lowland rice
US5549728A (en) Urea-containing fertilizer with reduced rate of ammonia release
US6336949B1 (en) Slow release urea fertilizer composition and a process for the preparation of the said composition
Stevens et al. Soil properties related to the dynamics of ammonia volatilization from urea applied to the surface of acidic soils
Joseph et al. The effect of dicyandiamide and neem cake on the nitrification of urea-derived ammonium under field conditions
Kumar et al. A review on enhancing the fertilizers use efficiency to minimize environmental impacts
EP4045475A1 (en) Inhibitors of soil nitrification and processes to prevent same
Azam et al. Nitrification inhibition in soil and ecosystem functioning–an overview
Verstraete Nitrification in agricultural systems: call for control
CN108794185B (en) Application of rhamnolipid as nitrification inhibitor
Hayatsu et al. Effects of difference in fertilization treatments on nitrification activity in tea soils
Varadachari et al. Slow-release and controlled-release nitrogen fertilizers
Overdahl et al. Fertilizer urea
Sander et al. Comparative Toxicity of Nitrapyrin and 6‐Chloropicolinic Acid to Radish and Cucumber under Different N Nutrition Regimes 1
Lapushkin et al. The effect of slow-release coated fertilizers on the yield of spring wheat
RU2667159C1 (en) Organomineral fertiliser
KONWAR et al. A REVIEW ON USE OF NITRIFICATION INDICATORS FOR INCREASING NITROGEN USE EFFICIENCY

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20140328