CA2332726A1 - Protection of subscriber line interface circuits (slics) without degradation in longitudinal balance - Google Patents

Protection of subscriber line interface circuits (slics) without degradation in longitudinal balance Download PDF

Info

Publication number
CA2332726A1
CA2332726A1 CA 2332726 CA2332726A CA2332726A1 CA 2332726 A1 CA2332726 A1 CA 2332726A1 CA 2332726 CA2332726 CA 2332726 CA 2332726 A CA2332726 A CA 2332726A CA 2332726 A1 CA2332726 A1 CA 2332726A1
Authority
CA
Canada
Prior art keywords
current limiting
line interface
impedance
interface circuit
subscriber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2332726
Other languages
French (fr)
Inventor
Mark Ayoub
Joe Lung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitel Networks Corp
Original Assignee
Mitel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitel Corp filed Critical Mitel Corp
Priority to CA 2332726 priority Critical patent/CA2332726A1/en
Publication of CA2332726A1 publication Critical patent/CA2332726A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/18Automatic or semi-automatic exchanges with means for reducing interference or noise; with means for reducing effects due to line faults with means for protecting lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/005Interface circuits for subscriber lines

Abstract

A subscriber line interface circuit has first and second line drivers for connection to respective tip and ring lines of a subscriber loop. Each of said line drivers is in a feedback loop. A current limiting device is included in each feedback loop for providing protection against excessive current. In this way the effective impedance of the current limiting devices is small relative to their actual impedance and as a result any impedance mismatch between the current limiting devices has a negligible effect on the longitudinal balance of the subscriber loop.

Description

PROTECTION OF SUBSCRIBER LINE INTERFACE CIRCUITS (SLICS) WITHOUT DEGRADATION IN LONGITUDINAL BALANCE
BACKGROUND OF THE INVENTION
Field of the Invention This invention disclosure describes a method and apparatus for protecting subscriber line interface circuits in telecommunication systems without degradation in longitudinal balance.
Brief Descripton of the Prior Art In typical telecommunication systems, telecom line cards are connected to subscriber equipment by a pair of wires called tip 100 and ring 101 lines.
These lines are highly susceptible to electrical overstresses and network hazards, which cause telecom line card to be subjected to high levels of overcurrents and overvoltages. A major source of electrical overstress that can occur in telecommunication systems is due to lightning surges, which may directly strike a 15 telecom line. Another major source of electrical overstress is due to power cross surges that occur when fallen live AC power lines come in direct contact with a telecom line since very often telecom lines are strung on the same poles as power distribution lines. These hazardous conditions pose a serious threat to line cards deployed at the central office and in remote switching locations. To 2o minimize the threat of damage, and potential cost and downtime associated with equipment failure, adequate levels of protection must be designed at the line card interface to ensure reliable operation and regulatory compliance.
Telecom lines are also susceptible to noise induction due to their close proximity to power lines and other sources of interference. The primary sources of noise 25 are 60/50 Hz power lines, cable cross talk, and radio frequency (RF) transmissions. These noise sources induce longitudinal currents to flow in the line. One of the functions of a SLIC is to distinguish between these longitudinal noise signals and the transversal signals, and reject the unwanted longitudinal components. This is a measure of the SLIC's longitudinal balance. Longitudinal 3o balance is a measure of how closely the impedances from the tip lead to ground and the ring lead to ground are matched. Higher values of balance indicate better matching of the tip-ground and ring-ground impedances, and result in better longitudinal noise rejection. Any event that causes an impedance imbalance in the line will degrade the SLIC's longitudinal balance.
Figure 1 is a simplified model of a conventional subscriber loop driven by a SLIC
with protection devices connected. To protect against overvoltage conditions, overvoltage protection 104 is installed in parallel with the SLIC to switch rapidly from a high impedance state to a low impedance state in response to an overvoltage condition. In normal operation, overvoltage protection devices do not ~o interfere with regular telephone service. To protect against overcurrent conditions, overcurrent protection devices 102, 103 are installed in series with the SLIC to interrupt the flow of current by switching from a low impedance state to a high impedance state in response to an overcurrent condition.
A typical example of an overcurrent protection device that is widely used is a ~ 5 PTC (positive temperature coefficient). Generally, the PTC has a resistance that is much less than the remainder of the circuit, and has little influence on the normal operation of the circuit. In response to an overcurrent condition, the PTC's temperature will rise causing its resistance to rapidly increases (i.e.
trips);
reducing the current in the circuit to a safe value, and therefore protecting SLIC
2o from sustaining permanent damage. The PTC will reset and revert back to a low impedance state once its temperature decreases to a value below its tripping value.
The voltage clamping devices VCD 105, 106 are used to prevent the SLIC 120 from being exposed to voltages in excess of its design limits. In normal operation, 25 the voltage clamping devices allow voltages up to the designed clamping level to pass through. If a voltage outside the clamping level appears at the VCD
terminals, the VCD will remain at the clamping voltage, and switch to a low impedance to divert the fault current away from the SLIC. A typical example of a VCD is a diode clamper as shown in Figure 2. The clamping levels in Figure 2 3o are the central ofi:lce battery voltage (typically -48 volts) and ground.
A good longitudinal balance requires very close matching of the impedances from the tip 100 to ground and the ring 101 to ground. Since both tip and ring are connected in series with current limiting devices 102, 103, it is important that these current limiting devices are very well matched to each other. When current limiting devices such as PTCs are first installed, the manufacturer can guarantee that they are closely matched to each other to within a certain tolerance and good longitudinal balance can be achieved. When an overcurrent fault occurs, the PTC will quickly trip and change from a low impedance state to a high impedance state, thereby reducing the flow of current and protecting the SLIC.
After the trip event and the PTC resets, the PTC will revert back to a low impedance state. However, the PTC's post-trip impedance ZZ will be greater than it's original impedance Z~ up to a maximum impedance ZmaX (see Figure 3.) Z~ < Z2 <= Zmax ( 1 ) The fact that the post-trip impedance of the tip side PTC is not necessarily the ~5 same as the post-trip impedance of the ring side PTC creates a problem.
This mismatch in impedances will cause an imbalance between the tip to ground impedance and the ring to ground impedance and therefore have a negative impact on the longitudinal balance of the system during normal use.
SUMMARY OF THE INVENTION
2o The present invention offers a simple, yet effective, solution to the problem of protecting line cards without a degradation in longitudinal balance after the occurrence of an electrical overstress on the line.
In accordance with the invention the PTCs are placed within the feedback loop of the tip and ring line drivers. This reduces the sensitivity of the longitudinal 2s balance to any mismatch in PTC impedances. This is accomplished by using the large loop gain of the tip and ring line drivers to minimize the impedance of the PTCs and thus any mismatch between the 2 PTCs will be even smaller.
Accordingly the present invention provides a subscriber line interface circuit, comprising first and second line drivers for connection to respective tip and ring so lines of a subscriber loop, a feedback loop for each of said line drivers, and a current limiting device included in each said feedback loop for providing protection against excessive current, whereby the effective impedance of said current limiting devices is small relative to its actual impedance so that any impedance mismatch between said current limiting devices has a negligible effect on the longitudinal balance of the subscriber loop.
The current limiting devices are typically positive temperature coefficient devices, preferably in series with voltage clamping devices.
The invention thus provides a method of protecting SLICs and line cards from electrical overstresses and network hazards without degradation in longitudinal balance once the line fault is removed. In particular, it can reduce the impact of current limiting device impedance mismatch on the longitudinal balance of the SLIC in a communication system providing, but not limited to, voice, data, and DSL transmissions.
The invention can also provide a means of coping with the continuous changing ~5 of the mismatches of the current limiting device due to, but not limited to, multiple tripping, humidity, temperature and aging in maintaining good longitudinal balance.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described in more detail, by way of example, only with 2o reference to the accompanying drawings, in which:-Figure 1 shows a prior art protection scheme for a central office end of a subscriber loop;
Figure 2 shows a typical prior art voltage clamping device;
Figure 3 shows the typical operating curve of a PTC device;
25 Figure 4 is a block diagram of a circuit in accordance with one embodiment of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The circuit shown in Figure 4 differs from Figure 1 that the current limiting devices 102, 103 and voltage clamping devices 105, 106 are included in the feedback loops 109, 110 of the SLIC. The voltage clamping devices VCD 105, 106 serve two purposes. Firstly, the voltage clamping device 105, 106 will only allow voltages up to the designed clamping level to pass; in this case voltages between the central office battery voltage and ground. This will prevent the line drivers 107, 108 from being exposed to voltages in excess of their design maximums. Secondly, since most modern SLICs provide some measure of current limiting that is usually set at a lower current value than the tripping current of the PTC, the voltage clamping device will have to be able to go into a low impedance state in the presence of overvoltage. This will effectively shunt all of the fault current away from the SLIC as well as provide the necessary current needed to trip the PTC 102, 103. Without the voltage clamping device becoming very low impedance and drawing a large current, the PTC might never trip and would not protect the SLIC.
Figure 5 shows the general structure of a feedback amplifier driving a load.
This will be used as a representation of the tip and ring line driver interfacing the line.
The effective impedance Zeff looking into the feedback system from the line will be very small for any given impedance of Zs (impedance of a PTC.) From Figure 5, it will be seen that 1~ - Is + IB
2o Where I~ is the load current, Is is the current through the driver amplifier, and I~ is the current through the feedback circuit. Since the impedance of the ~3 path is over 1000 times larger then the impedance of the Zs path, then Is »1p and therefore:
I~ - Is (2) 25 From Equation 2, solving for the voltage Vo gives:
Vo - vL*ZS~(ZS +zL) + VX * Zu(Zs + Zy (3) From the feedback loop, solving for VX gives:
VX - _Vo*A*b (4) Combining Equations 3 and 4 and solving for Vo gives:
Vo = VL*ZS /(ZS +ZL+ A*b*ZL) (5) Using nodal voltage analysis to solve for IL gives:
IL= (VL ' Vo)/ ZL (6) Substituting Equation 6 into Equation 5 gives:
IL= (ZL+ A*(~*ZL) / (Zs +ZL+ A*b*ZL) * Vo / ZL ( Now the effective impedance Zeff can be solved from Equation 5 and Equation 7 since:
Zeff=Vo/IL
which can be reduced to:
Zeff = ZS * ZL / (ZL+ A*b*ZL) (8) Since the amplifier open-loop gain A is large, A » 1, then from Equation 8 it follows that:
Zeff . Zs / A*~ (9) In a typical line card application, common values of ZS, A and ~3 would be 25 ohms, 1000, and 0.5 respectively. These values result in a Zeff value of 0.05 ohms. Thus it can be seen that the present invention provides a unique method of making any mismatches in the impedance of the PTCs virtually negligible in determining the longitudinal balance of the line. The present invention comprises a simple, inexpensive, yet effective, solution for protecting SLICs without degradation in longitudinal balance after a fault condition.

Claims (16)

1. A subscriber line interface circuit, comprising first and second line drivers for connection to respective tip and ring lines of a subscriber loop, a feedback loop for each of said line drivers, and a current limiting device included in each said feedback loop for providing protection against excessive current, whereby the effective impedance of said current limiting devices is small relative to their actual impedance so that any impedance mismatch between said current limiting devices has a negligible effect on the longitudinal balance of the subscriber loop.
2. A subscriber line interface circuit as claimed in claim 1, wherein each said current limiting device is a positive temperature coefficient (PTC) device.
3. A subscriber line interface circuit as claimed in claim 1, wherein in each feedback loop said current limiting device is in series with a voltage clamping device.
4. A subscriber line interface circuit as claimed in claim 3, wherein said voltage clamping device is a diode clamper.
5. A subscriber line interface circuit as claimed in claim 4, wherein said diode clamper comprises a pair of diodes in series.
6. A subscriber line interface circuit as claimed in claim 4, further comprising an overvoltage protection device outside said feedback loops for connection between said tip and ring lines.
7. A subscriber line interface circuit as claimed in claim 1, wherein each said current limiting device has an effective impedance Z eff.ident.Z s/A*.beta., wherein Z s is the actual impedance of the current limiting device, A is the gain of the associated line driver, and .beta. is the feedback factor.
8. A method of protecting a subscriber line interface circuit without degradation in longitudinal balance of a subscriber loop, said subscriber line interface circuit comprising a pair of line drivers for connection to tip and ring lines of said subscriber loop, said line drivers being included in respective feedback loops, comprising placing respective current limiting devices in said feedback loops so as to reduce their effective impedance to the tip and ring lines.
9 A method as claimed in claim 8, wherein said current limiting devices are positive temperature coefficient devices.
10. A method as claimed in claim 8, further comprising placing a voltage clamping device in series with each current limiting device in its respective feedback loop.
11. A method as claimed in claim 10, wherein said voltage clamping devices go into a low impedance state in the presence of an overvoltage and shunt current away from the associated line driver.
12. A method as claimed in claim 11, wherein said shunt current trips the series-connected current limiting device.
13. A method as claimed in claim 8, wherein said current limiting device has an effective impedance Z eff = Z s/A*.beta., wherein Z s is the actual impedance of the current limiting device, A is the gain of the associated line driver, and .beta. is the feedback factor.
14. A method as claimed in claim 13, wherein Z s, A, and .beta., are respectively about 25 ohms, 1000 ohms, and 0.5.
15. A method as claimed in claim 8, wherein said voltage clamping devices only allow voltages up to a predetermined clamping level to pass.
16. A method as claimed in claim 15, wherein said clamping devices only allow voltages between a central office battery voltage and ground to pass.
CA 2332726 2001-01-29 2001-01-29 Protection of subscriber line interface circuits (slics) without degradation in longitudinal balance Abandoned CA2332726A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA 2332726 CA2332726A1 (en) 2001-01-29 2001-01-29 Protection of subscriber line interface circuits (slics) without degradation in longitudinal balance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2332726 CA2332726A1 (en) 2001-01-29 2001-01-29 Protection of subscriber line interface circuits (slics) without degradation in longitudinal balance

Publications (1)

Publication Number Publication Date
CA2332726A1 true CA2332726A1 (en) 2002-07-29

Family

ID=4168210

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2332726 Abandoned CA2332726A1 (en) 2001-01-29 2001-01-29 Protection of subscriber line interface circuits (slics) without degradation in longitudinal balance

Country Status (1)

Country Link
CA (1) CA2332726A1 (en)

Similar Documents

Publication Publication Date Title
US5774316A (en) Ground fault detector for line-powered telephone network
US6385030B1 (en) Reduced signal loss surge protection circuit
US5392188A (en) Power surge transient voltage protection and filtering circuit having current controlling characteristics
EP0456624A1 (en) Overvoltage and overcurrent protective circuit
US9190829B2 (en) Surge protector
CA2148418C (en) Protection circuit and method for telecommunication equipment
US6882514B2 (en) Overcurrent and overvoltage protection method and architecture for a tip and ring subscriber line interface circuit
US6680839B2 (en) Apparatus and method for reducing and balancing the capacitance of overvoltage protector in high frequency transmissions
US20020101980A1 (en) Protection of subscriber line interface circuits (SLICS) without degradation in longitudinal balance
US5077630A (en) Integrated services digital network terminating resistor with line fault protector
US7602596B1 (en) Various methods and apparatuses for a surge protection scheme
US5631797A (en) Overvoltage protector
US7106573B2 (en) Protection circuit for a digital subscriber line device
CN1134619A (en) Lightning protected maintenance termination unit
US8488747B1 (en) Modified protector module with an integrated splitter
CA1097731A (en) Hazardous voltage protector for telephone line
KR200435646Y1 (en) Surge protector
US9455567B2 (en) Surge protector
CA2332726A1 (en) Protection of subscriber line interface circuits (slics) without degradation in longitudinal balance
US6992874B2 (en) Dual stage current limiting surge protector system
US20070070570A1 (en) Surge protection methods and apparatus
US7746618B2 (en) Protection of a communication line
US6115226A (en) Apparatus for lightning strike survivability and post-strike operability
EP0827316A2 (en) A device for protecting a telecommunications apparatus
US8855293B2 (en) Frame injected DSL via face fed protector module

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead