CA2331559C - Magnetic filter and magnetic filtering assembly - Google Patents

Magnetic filter and magnetic filtering assembly Download PDF

Info

Publication number
CA2331559C
CA2331559C CA 2331559 CA2331559A CA2331559C CA 2331559 C CA2331559 C CA 2331559C CA 2331559 CA2331559 CA 2331559 CA 2331559 A CA2331559 A CA 2331559A CA 2331559 C CA2331559 C CA 2331559C
Authority
CA
Canada
Prior art keywords
magnetic
housing
reusable
fluid
end piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA 2331559
Other languages
French (fr)
Other versions
CA2331559A1 (en
Inventor
Roger M. Simonson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
1773048 Alberta Ltd
Original Assignee
Roger M. Simonson
1773048 Alberta Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roger M. Simonson, 1773048 Alberta Ltd. filed Critical Roger M. Simonson
Priority to CA 2331559 priority Critical patent/CA2331559C/en
Publication of CA2331559A1 publication Critical patent/CA2331559A1/en
Application granted granted Critical
Publication of CA2331559C publication Critical patent/CA2331559C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/12Magnetic separation acting directly on the substance being separated with cylindrical material carriers with magnets moving during operation; with movable pole pieces

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Filtration Of Liquid (AREA)

Abstract

A reusable magnetic device for the extraction of ferrous particles from a body of fluid, wherein the device comprises a plurality of magnets and soft ferrous metal spacers arranged in an alternating sequence to form a stack, adjacent magnets being arranged with like poles facing, a non-magnetic and non-ferrous end piece terminally disposed at a first end of the stack, and a non-magnetic housing that contains the magnets, the spacers and the end piece. The magnetic device can be installed in a vessel to provide a fluid filtering assembly.

Description

MAGNETIC FILTER AND MAGNETIC FILTERING ASSEMBLY
FIELD OF THE INVENTION
The invention relates to a magnetic device for extracting ferrous particles from a body of fluid. More particularly, the present invention is directed to a high strength magnetic device that is suitable for use within a housing, conduit or the like through which fluids flow. The invention also relates to an assembly utilizing the magnetic d.evice for the extraction of ferrous particles from a body of fluid.

BACKGROUND OF THE INVENTION

In industry, it is frequently necessary to remove ferrous particulate contaminants from liquids, such as, for example, lubricating oils, coolant fluids, water, fuels, pump fluids and hydraulic fluids. The use of magnets for this purpose has long been recognized. Attempts have been made to provide a device in which a rod-type magnetic assembly is placed within a cylindrical vessel through which fluid flows, including the devices disclosed in US Patent No.'s 4,026,805; 4,176,065, 4,450,075; and 4,883,591. These devices operate on the principle that ferrous particles adhere to the magnetic assembly by magnetic attraction and are thereby isolated from the body of fluid.

The devices indicated above, and other similar devices, however, collectively present a number of drawbacks. For example, they may utilize low strength magnets, may not offer ease of cleaning, or may be constructed of non-ferrous metal that may allow a dangerous electrical build-up and transfer. In addition, none of the previously disclosed devices are suitable for use with gearbox applications, as they generate a magnetic field around the entire magnetic device including one from the tip resulting in the magnetization of the ferrous gear or shaft and trapping of ferrous contaminants thereon.
Previous assemblies that employ magnetic rods for fluid treatment often include screens, baffles or rings so that there is a resultant restriction to fluid flow. These assemblies require complex bypass systems including pressure release valves. Furthermore, many previous devices result in essentially laminar flow of fluid along the length of the magnetic rod such
2 that filtration of the fluid is inefficient. Finally, some of the previously disclosed devices are designed for specific uses and as such are not adaptable to a variety of systems for which extraction of ferrous particulate contaminants is desired.

SUMMARY OF THE INVENTION

The present invention provides a reusable high strength magnetic device for the removal of ferrous particulate contaminants from a body of fluid. The device can be removably installed within the interior of a wide variety of fluid containing systems, such as, for example oil filters, fuel reservoirs, hydraulic pumps, gearboxes, and gas lines. The device is easy to clean and is resistant to corrosion. The magnetic device creates a rnagnetic field radially about it but does not generate a magnetic field about its long axis, beyond at least one end of the device.

Further, the invention provides a magnetic filter assembly that results in turbulent flow of fluid around the magnetic device such that the fluid is forced to come in full contact with the magnetic field resulting in full filtration of the ferrous contar.ninants. In one embodiment, the assembly generates a spiral fluid flow path. The spiral flow offers a reasonably long flow path in a compact device. In addition, the assembly has an iriternal cross sectional area that tends not to restrict the flow path of the fluid or require bypass systems including pressure release valves.

Accordingly, a broad aspect of the present invention provides a reusable magnetic device for the extraction of ferrous particles from a body of fluid, wherein the device comprises a plurality of magnets and soft ferrous metal spacers arranged in an alternating sequence to form a stack, adjacent magnets being arranged with like poles facing, a non-magnetic and non-ferrous end piece terminally disposed at a first end of the stack, and a non-magnetic housing that contains the magnets, the spacers and the end piece.

In accordance with another broad aspect of the invention there is provided a reusable magnetic device for the extraction of ferrous particles from a. body of fluid, wherein the device comprises a plurality of magnets and soft ferrous metal spacers arranged in an alternating sequence to form a stack, adjacent magnets being arranged with like poles facing, a non-magnetic and non-ferrous end piece terminally disposed at a first end of the stack and a
3 non-magnetic housing that contains the magnets, the spacers and the end piece, the end piece being selected such that a magnetic field is not present at the terminal tip of housing adjacent the end piece, and means for removeably attaching the rod inside a vessel containing the body of fluid on the housing at a second end opposite the first end.

In accordance with yet another broad aspect of the invention., there is provided a magnetic filter assembly for the extraction of ferrous particles from a body of fluid comprising a magnetic rod including a plurality of magnets and soft ferrous metal spacers arranged in an alternating sequence to form a stack, adjacent magnets being arranged with like poles facing, a non-magnetic and non-ferrous end piece terminally disposed at a first end of the stack, and a non-magnetic housing that contains the magnets, the spacers and the end piece, the end piece being selected such that a magnetic field is not present at the terminal tip of housing adjacent the end piece; and a cylindrical vessel within which the magnetic rod is removeably mounted, the vessel having fluid inlet adjacent its first end and a fluid outlet adjacent its second end.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described, by way of example only, reference being made to the accompanying drawings in which:

Figure 1 is a perspective view of a magnetic device according to the present invention with the housing partially cut away to expose the magnets.

Figure 2 is a sectional view along line 2-2 of Figure 1.

Figure 3 is a perspective view of a magnetic device according to the present invention wherein the device is in operative position within a fluid filter.

Figure 4 is a perspective view of a magnetic device according to the present invention wherein the device is in operative position within a fluid reservoir.

Figure 5 is a perspective view, partially in section of a magnetic filter assembly according to the present invention.
4 Figure 6 is a sectional view along line 6 - 6 of Figure 5.

Figure 7 is a sectional view through another magnetic filter assembly according to the present invention.

Figure 8 is a perspective view, partially cut away of another magnetic device according to the present invention.

DETAILED DESCRIPTION OF THE LNVENTION

Referring to Figures 1 and 2 there is illustrated a magnetic device 1 in accordance with an embodiment of the present invention wherein a relatively high magnetic field is obtained by utilizing a stack of strong disc magnets 2 and soft metal disc spacers 3. The stack of magnets and spacers are arranged in alternating positions along the length of the stack with a spacer positioned between each adjacent set of magnets in series. The magnets each are positioned with like poles facing each other through the intervening spacers. Preferably, a spacer is positioned at each end of the stack. The spacers can have approximately the same diameter as the magnets to facilitate stacking. In this arrangement, magnetic fields 4 generated from adjacent like poles confront each other at the middle of the intervening spacer thereby creating longitudinally compressed magnetic fields of increased penetration.
The stack may be comprised of any number of magnets and spacers.

While any type of magnet may be used, it is preferred that rare-earth magnets are used to maximize the magnetic force of the assembly. For most applications, a vibration resistant, high heat, rare-earth magnet is preferred such as, for example, a neodymium boron magnet.
It is required that the spacers are made, of ferrous materials in order that the spacer extends the magnetic field surface area and assists in redirecting the i.ields.
Although the spacers may be of a variety of soft ferrous metal constructions, the use of cold rolled iron is preferred.
Cold rolled iron provides low resistance to the magnetic fielci while also being highly magnetic.

While a cylindrical magnet/spacer shape is preferred for strength and ease of handling, it will be appreciated that shape of the spacers and magnets may vary from that described here. The use of components of solid construction, however, provides for the greatest field strength.
5 To substantially reduce the magnetic fields at an end of the device, a non-ferrous end-piece is attached at one end of the stack. In this manner, the device may be easily cleaned of adhering particles by simply wiping any particles magnetically attached thereto to the end of the device from which they will fall off. The end-piece can be of a variety of materials including wood, copper and plastic. Preferably, the end piece is shaped similarly to the magnets to facilitate assembly. If it is desirable that both ends be without magnetic field, an end-piece can be placed at both ends of the stack, as shown.

The stack of magnets 2, spacers 3 and end-piece 5 are contained within a housing 6. Housing
6 is formed of a non-magnetic material resistant to damage n the environment in which the magnetic device is to be used. A particularly useful material for forming the housing is stainless steel since it is resistant to both corrosion and impact damage in many environments. In addition, because of the strength of stainless steel the housing can be very thin-walled. Thereby reducing interference with the magnetic fields.

Housing 6 in the illustrated embodiment includes a sidewall 6a and a pair of end plugs 6b.
The sidewall is formed of, for example, stainless steel tubing; and the end plugs are welded into place. End plugs 6b can also be secured by other means such as adhesives or snap rings.
Of course, the housing can be constructed of other materials such as plastics, as previously noted.
Housing 6 can be any shape and size. Preferably, housing 6 closely surrounds the magnets.
It has been found that a cylindrical form is most useful as it works best with fluid flow therepast.

To reduce damage both to the housing and to the magnets by vibration, preferably the magnets 2, spacers 3 and end pieces 5 are secured together by adhesive. In addition, adhesive can be applied between the internal parts 2, 3 and 5 and housing 6.

As the device will be utilized within a fluid containing apparatus, attachment means for securing the device to such an apparatus is provided. The attachment means may vary depending on the application, and can include, for example, a threaded rod 7 for engagement into a threaded aperture or fastener or a magnet for magnetic attachment to apparatus constructed of ferrous materials. In any case, the attachment means is firmly attached to one end of the magnetic device, such as, for example, by welding, or adhesive attachment to housing 6.

Figures 3 and 4 exemplify the use of the magnetic device wit:hin different types of fluid containing apparatus. Figure 3 shows a magnetic device 1 a according to the present invention within the core of a fluid filter 8, such as an oil filter. In this case, device 1 a includes a magnetic base 10, including a strong magnet secured within a cavity, attached at one end of the housing to secure the device by magnetic attraction to the metal bottom 11 of the filter. In this example, fluid flows into the core of the filter from the top of the filter and out through the barrier filtration media 9. To maximize the efficiency of the magnetic filtration, the magnetic device is centrally located within the core. Because the magnetic filter removes ferrous contaminants before they encounter the barrier filter, the barrier filter does not become clogged with such contaminants and therefore the usefulness of the barrier filter is increased. Furthermore, while the barrier filter may not retain particles below a certain size, the magnetic filtration is not size-dependent. The overall efficiency of the filtration system is therefore greatly improved with use of the magnetic filter.

Having a magnetic attachment to the filter, magnetic device l a can be removed, cleaned and installed in another or same filter. Wiping accumulated debris to end 1' opposite magnetic base 10 cleans the device. End 1', having a copper end-piece therein, does not have a magnetic field associated therewith. At end 1' any debris caan be wiped off easily without having to overcome magnetic attractive forces.

Figure 4 demonstrates the placement of a magnetic device 1 according to the present invention within a fluid reservoir 13. In this case, device 1 is placed directly in front of the fluid outlet 14 of the reservoir so as to magnetically attract particles flowing past the device and into outlet 14. The device is secured, by threaded connection, to an elongate rod 15. The rod can be any desired length suitable to position device 1 in a selected location within a reservoir. Rod 15 and device 1 are inserted through a port in. the reservoir wall. A bolt 16 is
7 attached to a threaded portion 17 on the rod to secure the rod and the device within the reservoir. Of course, to avoid the use of an extension rod, magnetic device 1 could have been elongated. However, this would increase cost.

Referring to Figures 5 and 6 there is illustrated a magnetic filtering assembly. The assembly includes a cylindrical vessel 19 in which a magnetic rod lb, such as that described above, is positioned. The vessel can be formed of any material resistaant to damage by the fluids to be passed therethrough. Common materials are aluminum, stainless steel and plastics. The vessel has an inlet 20 and an outlet 21 connected to sidewall portions of the vessel and positioned to be offset from the central axis 19x of the vessel. The inlet is positioned near the bottom of the vessel and the outlet is positioned near the top of the vessel.
Fluid enters the vessel though the inlet and is deflected by the vessel sidewal:l and the magnetic rod to flow in a spiral fashion through the vessel. As the fluid travels upwards through the vessel towards the outlet, it continues to flow in a spiral around the rod until it leaves the vessel through the outlet. This circular flow of the fluid around the rod creates turbulence in the fluid flow and effectively increases the path length by which fluid is required to travel through the vessel and past the rod as compared to previous filtering assemblies. wherein laminar flow of fluid was common. Consequently, the efficiency of the magnetic filtration is increased.

Preferably, rod lb is positioned generally concentrically within the vessel.
To provide for easy removal and replacement of the rod for cleaning, the rod is secured to a removable cap 23. The cap can be secured to the vessel by threaded engagement or other means such as quick couplers. To remove the rod, the cap is removed and the rod being attached to the cap is removed with the cap. The rod is stabilized within the vessel by insertion into an indentation 24 in the lower end of the vessel.

In use, vessel 19 is connected into a fluid flow conduit between a supply pipe 25 and an exit pipe 26. To permit removal or opening of the vessel, valves 27 are provided in the supply pipe and the exit pipe to shut off the flow of fluid. To provicle for taking the vessel off line while the fluid continues to flow through the fluid flow conduit, preferably a bypass pipe 28 is installed between supply pipe 25 and exit pipe 26. Valve 29 controls the flow of fluid through bypass pipe 28.
8 Inlet 20 is selected to have a cross sectional area about equal to or greater than the cross sectional area of the supply pipe connected to the inlet, such that there is no restriction to fluid flow into the vessel. In addition, there is no restriction to flow through the vessel.
Preferably, outlet 21 has a cross sectional area about equal to or greater than the cross section area of the inlet.

Another magnetic filtering assembly according to the present invention is shown in Figure 7.
The assembly includes a vessel 30 and a magnetic rod 1 similar to that described in Figure 1.
The vessel includes an inlet 32 at its first end and an outlet 34 at its opposite end. Each of the inlet and outlet include a quick coupler for easy connection into a fluid flow conduit. A first baffle 36 is mounted within the vessel adjacent the inlet and a second baffle 38 is connected adjacent the outlet. Baffles 36, 38 are generally conical including apertures 39 formed therethough. Baffles 36, 38 tend to create turbulence in fluid flowing therepast and increases the amount of fluid passing through the strong magnetic field generated close to rod 1. The total open area of the apertures on each baffle are about equal to or greater than the cross sectional area of the inlet, such that no resistance to flow is created by passing through the baffle.

Baffle 36 includes a central threaded aperture 40 though which rod 1 is passed and engaged by threaded portion 41 on an end of the rod. Rod I is stabilized by insertion into an indentation 42 at the center of baffle 38.

To access rod I for cleaning vessel includes a threaded cap 43a at one end. To facilitate assembly, a cap 43b can form the opposite end of the vessel and be secured by welding, threaded engagement or other means. Magnetic filtering assemblies according to the present invention can be installed in-line for a variety of applications.

With reference to Figure 8, because of the strong magnets in a device 1 according to the present invention, the device can sometimes be magnetically attracted to various parts of a ferrous tank in which it is positioned. This can inhibit placement to and removal of the device from the tank. Therefore, in one embodiment, a spacing sleeve 44 is positioned around the device. The sleeve has large openings 46 to permit flow of fluid therethrough and into contact with device 1. However, sleeve 44 is formed of a rigid, non-magnetic material such as plastic or stainless steel and maintains spacing between surrounding surfaces and the device so that strong magnetic attraction therebetween cannot be established.
Sleeve 44 can
9 be secured to the rod in any desired way. In the illustrated ernbodiment, sleeve 44 includes an end wall 48 with a centrally located aperture 50 therethrough. Aperture 50 is inserted over threaded rod 7 prior to installation of the device in a fluid container.

Claims (29)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY
OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A reusable magnetic device for the extraction of ferrous particles from a body of fluid, wherein the device comprises: a plurality of magnets and soft ferrous metal spacers arranged in an alternating sequence to form a stack, adjacent magnets being arranged with like poles facing, a non-magnetic and non-ferrous end piece terminally disposed at a first end of the stack, and a non-magnetic housing that contains the magnets, the spacers and the end piece, the end piece being selected such that a magnetic field is not present at a terminal tip of the housing adjacent the end piece.
2. The reusable magnetic device as in claim 1, further comprising an attachment means connected to the housing for removeably installing the device within a body of fluid.
3. The reusable magnetic device as in claim 1, further comprising a spacing sleeve disposed about the housing and having openings therethrough.
4. A reusable magnetic device for the extraction of ferrous particles from a body of fluid, wherein the device comprises: a plurality of magnets and soft ferrous metal spacers arranged in an alternating sequence to form a stack, adjacent magnets being arranged with like poles facing, a non-magnetic and non-ferrous end piece terminally disposed at a first end of the stack and a non-magnetic housing that contains the magnets, the spacers and the end piece, the end piece being selected such that a magnetic field is not present at a terminal tip of the housing adjacent the end piece, and means for removeably attaching the rod inside a vessel containing the body of fluid on the housing at a second end opposite the first end.
5. The reusable magnetic device as in claim 4, further comprising a spacing sleeve disposed about the housing and having openings therethrough.
6. A magnetic filter assembly for the extraction of ferrous particles from a body of fluid comprising: a magnetic rod including a plurality of magnets and soft ferrous metal spacers arranged in an alternating sequence to form a stack, adjacent magnets being arranged with like poles facing, a non-magnetic and non-ferrous end piece terminally disposed at a first end of the stack, and a non-magnetic housing that contains the magnets, the spacers and the end piece, the end piece being selected such that a magnetic field is not present at a terminal tip of the housing adjacent the end piece; and a cylindrical vessel within which the magnetic rod is removeably mounted, the vessel having fluid inlet adjacent its first end and a fluid outlet adjacent its second end.
7. The magnetic filter assembly as in claim 6 wherein the magnetic rod is mounted to a removable cap on the vessel.
8. The magnetic filter assembly as in claim 6 wherein the fluid inlet is positioned lower than the fluid outlet on the cylindrical vessel.
9. The magnetic filter assembly as in claim 8 the cylindrical vessel having a long axis and a sidewall and wherein the fluid inlet is arranged such that fluid passing from the fluid inlet into the cylindrical vessel is directed away from the long axis and toward the sidewall.
10. The magnetic filter assembly as in claim 6 further comprising a baffle therein positioned between the fluid inlet and the fluid outlet such that fluid passing through the cylindrical vessel is acted upon by the baffle, the baffle including a plurality of apertures therethrough and the total cross sectional area of the apertures being about equal to or greater than the cross sectional area of the fluid inlet.
11. The magnetic filter assembly of claim 10 wherein the baffle includes an opening for accepting and engaging the magnetic rod.
12. The reusable magnetic device as in claim 1, wherein the housing is cylindrical and has a substantially uniform outer diameter along its entire length.
13. The reusable magnetic device as in claim 12, wherein the housing is formed as tubing and including end plugs installed in the inner diameter of the tubing.
14. The reusable magnetic device as in claim 1, wherein the housing is formed of stainless steel.
15. The reusable magnetic device as in claim 1 further comprising a second non-magnetic and non-ferrous end piece terminally disposed at an end opposite the first end of the stack.
16. The reusable magnetic device as in claim 2, wherein the attachment means includes a magnetic base for installation by magnetic connection, the magnetic base positioned at an end of the housing opposite the end piece.
17. The reusable magnetic device of claim 3 wherein the spacing sleeve is secured to the housing and moveable therewith.
18. The reusable magnetic device as in claim 4, wherein the housing is cylindrical and has a substantially uniform outer diameter along its entire length.
19. The reusable magnetic device as in claim 18, wherein the housing is formed as tubing and further comprising end plugs installed in the inner diameter of the tubing.
20. The reusable magnetic device as in claim 4, wherein the housing is formed of stainless steel.
21. The reusable magnetic device as in claim 4 further comprising a second non-magnetic and non-ferrous end piece terminally disposed at an end opposite the first end of the stack.
22. The reusable magnetic device as in claim 4, wherein the means for removeably attaching includes a magnetic base for installation by magnetic connection, the magnetic base positioned at an end of the housing opposite the end piece.
23. The reusable magnetic device of claim 5 wherein the spacing sleeve is secured to the housing and moveable therewith.
24. The magnetic filter assembly as in claim 6 wherein the housing of the magnetic rod is cylindrical and has a substantially uniform outer diameter along its entire length.
25. The magnetic filter assembly as in claim 6, wherein the housing is formed as tubing and further comprising end plugs installed in the inner diameter of the tubing.
26. The magnetic filter assembly as in claim 6, wherein the housing of the magnetic rod is formed of stainless steel.
27. The magnetic filter assembly as in claim 6 wherein the magnetic rod includes a second non-magnetic and non-ferrous end piece terminally disposed at an end opposite the first end of the stack.
28. The magnetic filter assembly as in claim 6 wherein the magnetic rod carries a spacing sleeve secured thereto and moveable therewith.
29. The magnetic filter assembly as in claim 6, wherein the magnetic rod further includes a magnetic base connected to the housing for removeably mounting the magnetic rod by magnetic attachment within the cylindrical vessel, the magnetic base positioned at an end of the housing opposite the end piece.
CA 2331559 2001-01-19 2001-01-19 Magnetic filter and magnetic filtering assembly Expired - Lifetime CA2331559C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA 2331559 CA2331559C (en) 2001-01-19 2001-01-19 Magnetic filter and magnetic filtering assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2331559 CA2331559C (en) 2001-01-19 2001-01-19 Magnetic filter and magnetic filtering assembly

Publications (2)

Publication Number Publication Date
CA2331559A1 CA2331559A1 (en) 2002-07-19
CA2331559C true CA2331559C (en) 2009-12-22

Family

ID=4168131

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2331559 Expired - Lifetime CA2331559C (en) 2001-01-19 2001-01-19 Magnetic filter and magnetic filtering assembly

Country Status (1)

Country Link
CA (1) CA2331559C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100294706A1 (en) * 2007-02-22 2010-11-25 Simonson Roger M Magnetic filter and magnetic filtering assembly
US8628668B2 (en) 2008-05-13 2014-01-14 Roger M. Simonson Pipeline magnetic separator system
CA2684317C (en) 2009-10-22 2014-06-17 Bay6 Solutions Inc. Filter elements
AU2013263714B2 (en) 2012-11-27 2017-12-14 Bay6 Solutions Inc. Magnetic filter for a fluid port
CN109847934A (en) * 2018-12-12 2019-06-07 浙江盾安智控科技股份有限公司 Magnetic filter and its Magnetic filtration device core assemble method
CN110479482A (en) * 2019-07-19 2019-11-22 惠州锂威新能源科技有限公司 It is a kind of can rapid cleaning adsorbent equipment and its assembly method
WO2023133620A1 (en) * 2022-01-12 2023-07-20 1773048 Alberta Ltd. Magnetic filter element and magnetic filtering assembly apparatus and method

Also Published As

Publication number Publication date
CA2331559A1 (en) 2002-07-19

Similar Documents

Publication Publication Date Title
US6706178B2 (en) Magnetic filter and magnetic filtering assembly
AU2008217488B2 (en) Magnetic filter and magnetic filtering assembly
US3834539A (en) Trap for removing solid particles from a liquid circulating system
US8443983B2 (en) Separator device
US6210572B1 (en) Filter and method for purifying liquids containing magnetic particles
US9821319B2 (en) Magnetic filter systems and methods
US20100155336A1 (en) Pipeline filter
CN109414709B (en) Magnetic filter for central heating system
AU2002367176C1 (en) Magnetic fluid filter
CA2331559C (en) Magnetic filter and magnetic filtering assembly
WO2008101351A1 (en) Combination screen/magnetic pipeline filter
US20230149949A1 (en) Filter Element With Magnetic Array
US8845893B2 (en) Filter elements
WO2001078863A1 (en) Magnetic filter
JP4402748B2 (en) Separation device for magnetic particles in transmission lubricant
WO1997009275A1 (en) Magnetic filter for use in a fluid lubrication system
WO2023133620A1 (en) Magnetic filter element and magnetic filtering assembly apparatus and method
CN212418316U (en) Magnetic filtering device
KR200161521Y1 (en) Sludge removing apparatus
WO2019102206A1 (en) Apparatus for and method of fluid treatment
JP2020116499A (en) Magnet filter
CA2692316A1 (en) Magnetic filter elements
WO1999065591A1 (en) Device for separating and retaining fluid-suspended magnetic particles

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20210119