CA2313874A1 - Metal catalysts - Google Patents

Metal catalysts Download PDF

Info

Publication number
CA2313874A1
CA2313874A1 CA002313874A CA2313874A CA2313874A1 CA 2313874 A1 CA2313874 A1 CA 2313874A1 CA 002313874 A CA002313874 A CA 002313874A CA 2313874 A CA2313874 A CA 2313874A CA 2313874 A1 CA2313874 A1 CA 2313874A1
Authority
CA
Canada
Prior art keywords
metal catalysts
metal
alloy
catalyst
catalysts according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002313874A
Other languages
French (fr)
Inventor
Daniel Ostgard
Peter Panster
Claus Rehren
Monika Berweiler
Gunter Stephani
Lothar Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Evonik Operations GmbH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Degussa Huels AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Degussa Huels AG filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of CA2313874A1 publication Critical patent/CA2313874A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • B01J25/02Raney nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • B22F1/0655Hollow particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Metal catalysts comprising hallow forms or spheres are made of metal alloy and optionally activated.
The metal catalysts can be used for the hydrogenation, dehydrogenation, isomerisation reductive alkylation, reductive amination, and/or hydration reaction of organic compounds.

Description

Metal Catalysts The present invention relates metal catalysts Activated metal catalysts are known in the field of chemical engineering as Raney catalysts. They are used, largely in powder form, for a large number of hydrogenation, dehydrogenation, isomerization and hydration reactions of organic compounds. These powdered catalysts are prepared from an alloy of a catalytically-active metal, also referred to herein as a catalyst metal, with a further alloying component which is soluble in alkalis. Mainly nickel, cobalt, copper, or iron are used as catalyst metals. Aluminum is generally used as the alloying component which is~soluble in alkalis, but other components may also be used, in particular zinc and silicon or mixtures of these with aluminum.
These so-called Raney alloys are generally prepared by the ingot casting process. In that process a mixture of the catalyst metal and, for example, aluminum are first melted and casted into ingots. Typical alloy batches on a production scale amount to about ten to one hundred kg per ingot. According to DE 21 59 736 cooling times~of up to two hours were obtained. This corresponds to an average _rate of cooling of about 0. 2 /s. In contrast to this, rates of 102 to 106 K/s are achieved in processes where rapid cooling is applied (for example an atomizing process). The rate of cooling is affected in particular by the particle size and the cooling medium (see Materials Science and Technology edited by R. W. Chan, P. Haasen, E. J. Kramer, Vol. 15, Processing of Metals and Alloys, 1991, VCH-Verlag Weinheim, pages 57 to 110). A process of this type is used in EP 0 437 788 B 1 in order to prepare a Raney alloy powder. In that process the molten alloy at a temperature of 50 to 500°C above its melting point is atomized and cooled using water and/or a gas.
To prepare a catalyst, the Raney alloy is first finely milled if it has not been produced in the desired powder form during preparation. Then the aluminum is entirely or partly removed by extraction with alkalis such as, for example, caustic soda solution. This activates the alloy powder. Following extraction of the aluminum the alloy power has a high specific surface area (BET), between 20 and 100 m2/g, and is rich in active hydrogen. The activated catalyst powder is pyrophoric and stored under water or organic solvents or is embedded in organic compounds which are solid at room temperature.
Powdered catalysts have the disadvantage that they can be used only in a batch process and, after the catalytic reaction, have to be separated from the reaction medium by costly sedimentation and/or filtration. Therefore a variety of processes for preparing moulded items which lead to activated metal fixed-bed catalysts after extraction of the aluminum have been disclosed. Thus, for example, coarse particulate Raney alloys, i.e., Raney alloys which have only been coarsely milled, are obtainable and these can be activated by a treatment with caustic soda solution.
Extraction and activation then occurs only in a surface layer the thickness of which can be adjusted by the conditions used during extraction.
A substantial disadvantage of catalysts prepared by these prior methods are the poor mechanical stability of the activated outer layer. Since only this outer layer of the catalysts the catalytically active, abrasion leads to rapid deactivation and renewed activation of deeper lying layers of alloy using caustic soda solution then leads at best to partial reactivation.
Patent application EP 0 648 534 B1 describes shaped, activated Raney metal fixed-bed catalysts and their preparation. These catalysts avoid the disadvantages described above, e.g., the poor mechanical stability resulting from activating an outer layer. To prepare these catalysts, a mixture of powers of a catalyst alloy and a binder are used, where in the catalyst alloys each contain at least one catalytically active catalyst metal and an extractable alloying component. The pure catalyst metals or mixtures thereof which do not contain extractable components are used as binder. The use of the binder in an amount of 0. 5 to 20 weight percent with respect to the catalyst alloy, is essential in order to achieve sufficient mechanical stability after activation. After shaping the catalyst alloy and the binder with conventional shaping aids and pore producers, the freshly prepared items which are obtained are calcined at temperatures below 850°C. As a result of sintering processes in the finely divided binder, this produces solid compounds between the individual granules of the catalysts alloy. These compounds, in contrast to catalyst alloys, are non-extractable or only extractable to a small extent so that a mechanical stable structure is obtained even after activation. However, the added binder has the disadvantage that it is substantially catalytically inactive and thus the number of active centers in the activated layer is reduced. In addition, the absolutely essential use of a binder means that only restricted range of amounts of pore producers can be used without endangering the stregnth of the shaped item:'- For this reason, the bulk density of these catalysts cannot be reduced to a value of less than 1. 9 kg per liter without incurring loss of strength. This leads to a considerable economic disadvantage when using these catalysts in industrial processes. In particular when using more expensive catalysts alloys, for example cobalt alloys, the high bulk density leads to a high investment per reactor bed, which is, however partly compensated for by the high activity and long-term stability of these catalyst. In certain cases, the high bulk density of the catalyst also requires a mechanically reinforced reactor structure.
An object of the present invention is therefore to provide activated base metal catalysts from hallow metallic forms which largely avoids the disadvantages of the above known fixed-bed catalysts.
The above and other objects of the invention are achieved by producing hallow forms out of the desired alloys and activating it in order to make the catalyst. The major advantages of this invention are its low bulk density and its high activity these materials exhibit per gram of metal.
One object of the invention is metal catalysts comprising hallow forms. Preferably the hallow forms are hallow spheres. These spheres can show a diameter of 0,5 to 20 mm and a wall thickness of 0,1 to 5 mm. The shell of the spheres can be unpermeable or it can show an open porosity up to 80 ~. The shell of the spheres can consist of different layers and/or the metal can be graduated.
The metal catalysts comprising hallow forms can be activated.
Another object of the invention is a process for the for the production of the metal catalysts comprising spraying of metal powders, obtionally together with a binder on to forms consisting of a burnable material i.e. styrofoam, burning out the materal to receive the hallow form.
In another object of the invention in the process for the production of the metal catalysts where one of the metal powders consists of a rapidly cooled alloy. The rapidly cooled alloy can be made according to commonly used methods such spray drying in vanous atmospheres as rapidly cooling in liquids such as water. The hallow form consisting of the alloy and optionally a binder can then be activated with an alkali solutions such as agueous NaOH, to form the activated catalyst.

One of the metal powders can consist of a slowly cooled alloy. The hallow form consisting of the aloy and optionally a binder can then be activated with an alkalisolution, such as an aqueous NaOH solution , to form 5 the activated catalyst.
In the process for the production of the metal catalysts the alloy can consist of one or more catalytic metal such as nickel, iron, copper, palladium, ruthenium, and cobalt;
an alkali soluble component such as aluminium, zinc, and silica: and optionally one or more promoter elements such as Cr, Fe, Ti, V, Ta, Mo, Mg, Co, and/or W.
The hallow spheres according to this invention can be prepared according to Andersen, Schneider, and Stephani (See, "Neue Hochporbse Metallische Werkstoffe", Ingenieur-Werkstoffe, 4, 1998, pages 36-38). In this method, a mixture of the desired alloy, an organic binder, and optionally an inorganic binder were sprayed uniformly through a fluidized bed of Styrofoam balls where it coats the Styrofoam. The coated balls are then calciried at optionally temperatures ranging from 450 to 1000°C to burn out the Styrofoam followed by a higher calcination temperature to sinter the metal together in order to make the hallow form more stable. After calcination, the catalyst is then activated by a caustic soda solution to produce the activated base metal catalyst. An added benefit to this catalyst system is that one can easy control the thickness of the hollow form's walls from the coating conditions and the porosity of this wall by the particle size and composition of the original powdermixture.
The bulk density of the resulting fixed bed catalyst is very important for highly active catalysts. While the known standard fixed bed activated base metal catalysts have bulk densities ranging from 2.4 to 1.8 kg/1, bulk densities similar to other fixed bed applications such as 0.3 to 1.0 kg/1 are highly desirable to keep the cost to fill a commercial reactor at a minimum.
The ratio by weight of catalyst metal to extractable alloying component in the catalyst alloy is, as is conventional with Raney alloys, in the range from 20:80 to 80:20. Catalysts according to the invention may also be doped with other metals in order to have an effective on the catalytic properties. The purpose of this type of doping, is for example, to improve the selectivity in a specific reaction. Doping metals are frequently also called promoters. The doping or promoting of Raney catalyst is described for example in U.S. patent 4,153, 578 and DE-AS 21 O1 856 in DE-OS 21 00 373 and in the DE-AS 2053799.
In principle, any known metal alloys such as nickel-aluminium, cobalt-aluminium, copper-aluminium, nickel-chrom-iron-aluminium can be used. This means any Raney-type alloys that involved the combination of leachable materals such as zinc, silicon and/or aluminium in combination with catalytic materials such as nickel, cobalt, copper, and/or iron can be used.
The alloys can contain doping materials like chrom, iron, titanium, vanadium, tantalum with extractable elements such as aluminum zinc and silicon maybe used for the present invention. Suitable promoters are transition elements in groups of 3B to 7B and 8 and group 1B of the Periodic Table of Elements and also the rare-earth metals. They are also used in an amount of up to 20 wt$, with respect of the total weight of catalyst. Chromium, manganese, iron, cobalt, vanadium, tantalum, titanium, tungsten, and/or molybdenum and metals from platinum group are preferably used as promoters. They are expediently added as alloying constituents in the catalyst alloy. In addition, promoters with a different extractable metal alloy, in the form of a separable metal powder, may be used, or the promoters may be applied later to the catalyst's material. Later application of promoters may be performed either after calcination or after activation. Optimum adjustment of the catalyst properties to the particular catalyst process is thus possible.
The Raney type catalyst precursors resulting from calcination are also very important with regard the economic viability of invention. They are not pyrophoric and can be handled and transported without difficulty.
Activation can be performed by the user shortly before use.
Storage under water or organic solvents or embedding in organic compounds is not required for the catalyst precursors.
The metal catalysts of the invention can be used for the hydrogenation, dehydrogenation, isomerisation and/or hydration reaction of organic compounds.
Comparison Example 1 A free-flowing, pelletable catalyst mixture was prepared in accordance with the instructions in EP 0 648 534 A1 for a comparison catalyst consisting of 1000 g of 53$Ni and 47~A1 alloy powder, 150 g of pure nickel powder(99$Ni, and d50 =
21 um), and 25 g of ethylene bis-stearoylamide whilst adding about 150 g of water. Tablets with the diameter of 4 mm and a thickness of 4 mm were compressed from this mixture. The shaped items were calcined for 2 h at 700°C.
The tablets were activated in 20~ strength caustic soda solution for 2 hours at 80°C after calcination. Under the conditions of application example, this catalyst started to hydrogenate nitrobenzene at 120°C and the activity was 1,36 ml of consummed hydrogen per gram of catalyst per minute.
Example 1 A coating solution was prepared by suspending 600 grams of a rapidly cooled SOgNi/50~A1 alloy in a 800 ml aqueous solution containing 5 wt~ polyvinylalcohol and 1.25 wt~
glycerin. This suspension was then sprayed onto 1500 ml of Styrofoam balls ranging from 4 to 5 mm while they were suspended in an upward air steam. After coating the styrofoam balls with the above mentioned solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C (higher temperatures can also be used). These dried coated styrofoam spheres had a bulk density of 0.45 g/ml and half of these spheres were further coated with an alloy solution so as to demonstrate the flexibility of this process. The solution for the second layer consisted of 700 grams of a rapidly cooled 50$Ni/50$A1 alloy that was suspended in a 800 ml aqueous solution containing 5 wt~ polyvinylalcohol and 1.25 wt~
glycerin. This suspension was then sprayed onto 750 ml of the Ni/A1 precoated and dried Styrofoam balls mentioned above while they were suspended in an upward air steam.
After coating the styrofoam balls with the above mentioned solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C (higher temperatures can also be used). Although the solution for the second layer was similar to the first, this technique clearly demonstrates the ability of this process to make layered hallow spheres.
The dried coated spheres were then heated in a controlled nitrogen/air stream at 830°C for 1 hour to burn out the Styrofoam and to sinter together the alloy particles, The hallow spheres were then activated in a 20 wt~ NaOH
solution for 1.5 hours at 80°C. The resulting activated hallow spheres had diameters ranging from 5 to 6 mm, a shell thickness range of 700-1000u, a crush strength of 90 N, and the bulk density of 0.62 g/ml. Under the conditions of application example 1, this catalyst started to hydrogenate nitrobenzene at 110-120°C and the catalyst's nitrobenzene activity was 1.54 ml of consummed hydrogen per gram of catalyst per minute.
Example 2 A coating solution was prepared by suspending 500 grams of a rapidly cooled 50%Ni/50%A1 alloy and 37.5 grams of nickel powder in a 750 ml aqueous solution containing 5 wt%
polyvinylalcohol and 1.25 wt% glycerin. This suspension was then sprayed onto 1000 ml of styrofoam balls ranging from 4 to 5 mm while they were suspended in an upward air steam.
After coating the Styrofoam balls with the above mentioned solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C (higher temperatures can also be used). The dried coated spheres were then heated in a controlled nitrogen/air stream at 840°C for 1 hour to burn out the styrofoam and to sinter together the nickel and alloy particles. The hallow spheres were then activated in a 20 wt% NaOH solution for 1.5 hours at 80°C. The resulting activated hallow spheres had diameters ranging from 5 to 6 mm, an average shell thickness of 500 p, and the bulk density of 0.34 g/ml. Under the conditions of application example 1, this catalyst started to hydrogenate nitrobenzene at 110-120°C and the catalyst's nitrobenzene activity was 1.82 ml of consummed hydrogen per gram of catalyst per minute.
Example 3 A coating solution was prepared by suspending 800 grams of a 50%Co/50%A1 alloy in a 1000 ml aqueous solution '-containing 5 wt% polyvinylalcohol and 1.25 wt% glycerin.
This suspension was then sprayed onto 2000 ml of Styrofoam balls ranging from 4 to 5 mm while they were suspended in an upward air steam. After coating the Styrofoam balls with the above mentioned solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C (higher temperatures can also be used). These dried coated Styrofoam spheres had a bulk density of 0.35 g/ml and half of these spheres were further coated with an alloy solution. The solution for the second layer consisted of 800 grams of a 50%Co/50%A1 alloy that was suspended in a 1000 ml aqueous solution containing 5 wt% polyvinylalcohol and 1.25 wt~ glycerin. This suspension was then sprayed onto 1000 ml of the Co/A1 precoated and dried styrofoam balls mentioned above while they were suspended in an upward air steam. After coating the Styrofoam balls with 5 the above mentioned solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C (higher temperatures can also be used). The dried coated spheres were then heated in a controlled nitrogen/air stream at 700°C to burn out the styrofoam and to sinter together the 10 alloy particles. The hallow spheres were then activated in a 20 wt~ NaOH solution for 1.5 hours at 80°C. The resulting activated hallow spheres had diameters ranging from 5 to 6 mm, a shell thickness of 700 u, a crush strength of 71 N, and the bulk density of 0.50 g/ml. As could be visually seen from the evolution of hydrogen bubbles, the catalyst had a large reservoir of active hydrogen.
Example 4 A coating solution was prepared by suspending 800 grams of a 50~Cu/50$A1 alloy and 104 grams of copper powder in a 1000 ml aqueous solution containing 5 wt$ polyvinylalcohol and 1.25 wt~ glycerin. This suspension was then sprayed onto 2000 ml of styrofoam balls ranging from 4 to 5 mm while they were suspended in an upward air steam. After coating the Styrofoam balls with the above mentioned~
solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C (higher temperatures can also be used). These dried coated styrofoam spheres had a bulk density of 0.26 g/ml and half of these spheres were further coated with an alloy solution. The solution for the second layer consisted of 800 grams of a 50$Cu/50~A1 alloy and 104 grams of copper powder that were suspended in a 1000 ml aqueous solution containing 5 wt~ polyvinylalcohol and 1.25 wt$ glycerin. This suspension was then sprayed onto 1000 ml of the Cu/A1 precoated and dried Styrofoam balls mentioned above while they were suspended in an upward air steam. After coating the styrofoam balls with the above mentioned solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C (higher temperatures can also be used). The dried coated spheres were then heated in a controlled nitrogen/air stream at 550°C to burn out the styrofoam and to sinter together the copper and alloy particles. The hallow spheres were then activated in a 20 wto NaOH solution for 1.5 hours at 80°C. The resulting activated hallow spheres had an average diameter 6 mm, a shell thickness ranging from 600 to 700 u, and the bulk density of 0.60 g/ml. As could be visually seen from the evolution of hydrogen bubbles, the catalyst had a large reservoir of active hydrogen.
Example 5 A coating solution was prepared by suspending 800 grams of a slowly cooled 50$Ni / 0.5$Fe / 1.2$Cr / 48.3~A1 alloy and 60 grams of nickel powder in a 1000 ml aqueous solution containing 5 wt$ polyvinylalcohol and 1.25 wt~ glycerin.
This suspension was then sprayed onto 2000 ml of ~styrofoam balls ranging from 4 to 5 mm while they were suspended in an upward air steam. After coating the Styrofoam balls with the above mentioned solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C (higher temperatures can also be used). These dried coated Styrofoam spheres had a bulk density of 0.30 g/ml and half of these spheres were further coated with an alloy solution. The solution for the second layer consisted of 800 grams of a slowly cooled 50$Ni / 0.5$Fe / 1.2$Cr /
48.3~A1 alloy and 60 grams of nickel powder that were suspended in a 1000 ml aqueous solution containing 5 wt$
polyvinylalcohol and 1.25 wt$ glycerin. This suspension was then sprayed onto 1000 ml of the Ni/Fe/Cr/Al precoated and dried Styrofoam balls mentioned above while they were suspended in an upward air steam. After coating the styrofoam balls with the above mentioned solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C (higher temperatures can also be used). The dried coated spheres were then heated in a controlled nitrogen/air stream at 700°C to burn out the Styrofoam and to sinter together the nickel and alloy particles. The hallow spheres were then activated in a 20 wt~ NaOH solution for 1.5 hours at 80°C. The resulting activated hallow spheres had an average diameter 5.9 mm, a shell thickness of 700 u, the crush strength of 85 N, and the bulk density of 0.55 g/ml. Under the conditions of application example 1, this catalyst started to hydrogenate nitrobenzene at 110°C and the catalyst's nitrobenzene activity was 2.40 ml of consummed hydrogen per gram of catalyst per minute.
Example 6 A coating solution was prepared by suspending 1000 grams of a rapidly cooled 50%Ni/50$A1 alloy and 75 grams of nickel powder in a 1000 ml aqueous solution containing 5 wt$
polyvinylalcohol and 1.25 wt$ glycerin. This suspension was then sprayed onto 2000 ml of Styrofoam balls ranging from 2 to 3 mm while they were suspended in an upward air steam.
After coating the Styrofoam balls with the above mentioned solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C (higher temperatures can also be used). These dried coated styrofoam spheres had a bulk density of 0.33 g/ml and half of these spheres were further coated with an alloy solution. The solution for the second layer consisted of 1000 grams of a rapidly cooled 50~Ni/50gA1 alloy and 75 grams of nickel powder that were suspended in a 1000 ml aqueous solution containing 5 wt$
polyvinylalcohol and 1.25 wt~ glycerin. This suspension was then sprayed onto 1000 ml of the Ni/A1 precoated and dried styrofoam balls mentioned above while they were suspended in an upward air steam. After coating the styrofoam balls with the above mentioned solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C
(higher temperatures can also be used). These dried double coated Styrofoam spheres had a bulk density of 0.75 g/ml and half of these spheres were once again coated further with a third addition of the alloy solution. The solution for the third layer consisted of 1000 grams of a rapidly cooled 50$Ni/50~A1 alloy and 75 grams of nickel powder that were suspended in a 1000 ml aqueous solution containing 5 wt~ polyvinylalcohol and 1.25 wt~ glycerin. This suspension was then sprayed onto 500 ml of the Ni/Al double-precoated and dried styrofoam balls mentioned above while they were suspended in an upward air steam. After coating the Styrofoam balls with the above mentioned solution, the balls were then dried in upwardly flowing air at temperatures upto 80°C (higher temperatures can also be used). The dried triple-coated spheres were then heated in a controlled nitrogen/air stream at 700°C to burn out the styrofoam and to sinter together the nickel and alloy particles. The hallow spheres were then activated in a 20 wt$ NaOH solution for 1.5 hours at 80°C. The resulting activated hallow spheres had an average diameter 4.5 mm, a shell thickness of 600 to 700 u, and the bulk density of 0.85 g/ml. Under the conditions of application example 1, this catalyst started to hydrogenate nitrobenzene at 78°C
and the catalyst's nitrobenzene activity was 3.46 ml of consummed hydrogen per gram of catalyst per minute.
Application example 1 The catalytic activity of the catalyst from comparison examples 1 and 2 and from examples 1 to 5 were compared during the hydrogenation of nitrobenzene. For this purpose, 100 g of nitrobenzene and 100 g of ethanol were placed in a stirred autoclave with a capacity of 0.5 1, fitted with a gas stirrer. 10 g of the catalyst being investigated were suspended each time in the stirred autoclave using a catalyst basket so that the catalyst material was thoroughly washed by the reactant/solvent mixture, and hydrogen was introduced. Hydrogenation was performed at a hydrogen pressure of 40 bar and a temperature of 150°C. The initiation temperature and the rate of hydrogen consumption were determined. The results are given in table 1. As a check, samples were withdrawn after 1, 2, 3, 4, and 5 h and analyzed using gas chromatography.

G +~

O rd U

O G

1~-a O
4.a O

~1' N O l0 x L1 ~, M m 00 H H H N M

O u1 O O \

U N

N

f~ N

O O

N N

rti U 'n ~""~ ~ o O

N I I .-1 ~-I O O H

H H

G ~ H H

H N

N

.SC ~ r-I N ~T' tn 117 -1 ~"~ l0 l \

. ' M t17 Op r 1~7 G .k N O O O O

O
La f-1 f-1 Sa N

'i~ O 1 O O O

Q ~ ~ I ~ ~r ~1r ~

_ .,..I .,i .,.i.,.I

z z z z z a~

W

I I I I

. O I 1 I ~ 1 ~-' c~ w b~

O

' r-I
' t:3 J
b z z z z z N ~C

H

U

tp ~., 00 ~ f-1 '~ f-I N tn l0 ~ U W W W W

O ,.s~

01 rtf t~

Claims (12)

1. Metal catalysts comprising hallow forms.
2. Metal catalysts according to claim 1 comprising hallow spheres.
3. Metal catalysts according to claim 2 comprising a diameter of 0,5 to 20 mm and a wallthickness of 0,1 to mm.
4. Metal catalysts according to claim 2 comprising a shell which is unpermeable.
5. Metal catalysts according to claim 2 comprising a shell which shows an open porosity of maximum of about 80 %.
6. Metal catalysts according to claim 2 comprising a shell which consists of different layers.
7. Metal catalysts according to claim 2 comprising a shell which is graduated.
8. Process for the production of the metal catalysts according to claim 1, comprising spraying of metal powders, obtionally together with a binder on to forms consisting of a burnable material i.e. styrofoam, burning out the materal to receive the hallow form.
9. Process for the production of the metal catalysts according to claim 5 and 8 where one of the metal powders consists of a rapidly cooled alloy.
10. Process for the production of the metal catalysts according to claims 1 and 8 where one of the metal powders consists of a slowly cooled alloy.
11. Process for the production of the metal catalysts accroding to claim 9 and 10 where the alloy consist of one or more catalytic metal such as nickel, iron, copper, palladium, ruthenium, and cobalt; an alkaly soluble component such as aluminium, zinc, and silica;
and optionally one or more promoter elements such as Cr, Fe, Ti, V, Ta, Mo, Mg, Co, and/or W.
12. Use of the metal catalysts according to claim 1 for the hydrogenation, dehydrogenation, isomerisation and/or hydration reaction of organic compounds.
CA002313874A 1999-07-16 2000-07-13 Metal catalysts Abandoned CA2313874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19933450.1 1999-07-16
DE19933450A DE19933450A1 (en) 1999-07-16 1999-07-16 Metal catalysts

Publications (1)

Publication Number Publication Date
CA2313874A1 true CA2313874A1 (en) 2001-01-16

Family

ID=7915061

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002313874A Abandoned CA2313874A1 (en) 1999-07-16 2000-07-13 Metal catalysts

Country Status (15)

Country Link
EP (1) EP1068900B1 (en)
JP (1) JP2001054735A (en)
KR (1) KR20010061920A (en)
AT (1) ATE243073T1 (en)
BR (1) BR0002920A (en)
CA (1) CA2313874A1 (en)
DE (2) DE19933450A1 (en)
DK (1) DK1068900T3 (en)
ES (1) ES2198246T3 (en)
HU (1) HUP0002632A3 (en)
ID (1) ID26548A (en)
MX (1) MXPA00006944A (en)
NO (1) NO20003618L (en)
PL (1) PL341469A1 (en)
ZA (1) ZA200003524B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1125634B1 (en) * 2000-02-18 2010-12-08 Evonik Degussa GmbH Shaped fixed bed Raney-Cu catalyst
US6486366B1 (en) * 2000-12-23 2002-11-26 Degussa Ag Method for producing alcohols by hydrogenation of carbonyl compounds
JP2004516308A (en) * 2000-12-23 2004-06-03 デグサ アクチエンゲゼルシャフト Method for producing primary and secondary amines by hydrogenation of nitriles and imines
DE10065030A1 (en) * 2000-12-23 2002-07-04 Degussa Process for the preparation of 3-aminomethyl-3,5,5-trimethylcyclohexylamine
DE10101646A1 (en) * 2001-01-16 2002-07-18 Degussa Process for the production of saturated organic compounds
DE10355298B4 (en) * 2003-11-21 2006-10-26 Glatt Systemtechnik Gmbh Precursor for and process for producing green bodies for sintered lightweight components
DE102005040599B4 (en) * 2005-08-19 2007-07-05 Glatt Systemtechnik Gmbh A method for the production of hollow bodies with a spherical curved surface, hollow bodies produced by the process and their use
EP1922146A1 (en) 2005-09-08 2008-05-21 Evonik Degussa GmbH The production and use of supported activated base metal catalysts for organic transformation
DE102007009981A1 (en) * 2007-03-01 2008-09-04 Evonik Degussa Gmbh Hollow form mixed oxide catalyst for catalysis of gaseous phase oxidation of olefins, has general formula
DE102007011483A1 (en) 2007-03-07 2008-09-18 Evonik Degussa Gmbh Process for the preparation of 3-aminomethyl-3,5,5-trimethylcyclohexylamine
DE102007011484A1 (en) 2007-03-07 2008-09-11 Evonik Degussa Gmbh Process for the preparation of trimethylhexamethylenediamine
JP5818244B2 (en) * 2011-03-25 2015-11-18 国立研究開発法人物質・材料研究機構 Metal catalyst structure and method for producing the same
KR101403157B1 (en) * 2012-08-30 2014-06-27 한국에너지기술연구원 Method for producing ceramic honeycomb structure
EP3216522A1 (en) 2013-02-06 2017-09-13 Alantum Europe GmbH Surface modified metallic foam body, process for its production and use thereof
EP3075721A1 (en) 2015-03-30 2016-10-05 Evonik Degussa GmbH Method for the preparation of 3-aminomethyl-3,5,5-trimethylcyclohexylamine
CN104888794B (en) * 2015-05-21 2017-05-24 浙江新和成股份有限公司 Metal composition catalyst, preparation method thereof and application thereof in preparation of D, L-menthol
EP3162790A1 (en) 2015-10-30 2017-05-03 Evonik Degussa GmbH Method for producing isophorone amino alcohol (ipaa)
SG11201901336RA (en) 2016-09-23 2019-04-29 Basf Se Method for providing a fixed catalyst bed containing a doped structured shaped catalyst body
EP3515593A1 (en) 2016-09-23 2019-07-31 Basf Se Method for activating a fixed catalyst bed which contains monolithic shaped catalyst bodies or consists of monolithic shaped catalyst bodies
EP3515597A1 (en) 2016-09-23 2019-07-31 Basf Se Method for the hydrogenation of organic compounds in the presence of co and a fixed catalyst bed which contains monolithic shaped catalyst body
SG11201901571RA (en) 2016-09-23 2019-04-29 Basf Se Process for providing a catalytically active fixed bed for the hydrogenation of organic compounds
EP3300799A1 (en) * 2016-09-30 2018-04-04 Evonik Degussa GmbH Method and catalyst for producing 1,4-butanediol
US11173479B2 (en) 2017-09-20 2021-11-16 Basf Se Method for producing a shaped catalyst body
CN115945684B (en) * 2022-12-02 2024-09-03 中国核动力研究设计院 Tungsten alloy hollow sphere and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2172755A1 (en) * 1972-02-21 1973-10-05 Norton Co Catalyst support - for gaseous reactions, comprising hollow refractory spheres
DE2353631A1 (en) * 1973-10-26 1975-05-07 Hoechst Ag Process for the production of a material consisting of stable hollow spheres
US4039480A (en) * 1975-03-21 1977-08-02 Reynolds Metals Company Hollow ceramic balls as automotive catalysts supports
US4576926A (en) * 1984-04-23 1986-03-18 California Institute Of Technology Catalytic hollow spheres
US4804796A (en) * 1984-04-23 1989-02-14 California Institute Of Technology Catalytic, hollow, refractory spheres, conversions with them
DE3535483A1 (en) * 1985-10-04 1987-04-09 Hoechst Ag METHOD FOR PRODUCING HYDROXYCARBONYL COMPOUNDS FROM 1.2-DIOLES
DE3724156A1 (en) * 1987-07-22 1989-02-02 Norddeutsche Affinerie METHOD FOR PRODUCING METALLIC OR CERAMIC HOLLOW BALLS
US4826799A (en) * 1988-04-14 1989-05-02 W. R. Grace & Co.-Conn. Shaped catalyst and process for making it
DE19721897A1 (en) * 1997-05-26 1998-12-03 Degussa Molded metal fixed bed catalyst, process for its production and its use

Also Published As

Publication number Publication date
HU0002632D0 (en) 2000-09-28
ID26548A (en) 2001-01-18
NO20003618L (en) 2001-01-17
ES2198246T3 (en) 2004-02-01
HUP0002632A2 (en) 2001-12-28
HUP0002632A3 (en) 2002-01-28
ZA200003524B (en) 2001-02-06
KR20010061920A (en) 2001-07-07
DE50002574D1 (en) 2003-07-24
MXPA00006944A (en) 2002-04-24
PL341469A1 (en) 2001-01-29
NO20003618D0 (en) 2000-07-14
DE19933450A1 (en) 2001-01-18
DK1068900T3 (en) 2003-09-15
BR0002920A (en) 2001-04-03
EP1068900A1 (en) 2001-01-17
JP2001054735A (en) 2001-02-27
ATE243073T1 (en) 2003-07-15
EP1068900B1 (en) 2003-06-18

Similar Documents

Publication Publication Date Title
US6573213B1 (en) Metal catalysts
CA2313874A1 (en) Metal catalysts
US20090018366A1 (en) Production and use of supported activated base metal catalysts for organic transformation
JP6185604B2 (en) Method for producing surface-modified metal foam and use thereof
KR100218200B1 (en) Activated raney metal fixed-bed catalyst and process for its preparation
JP5562235B2 (en) Activated base metal catalyst
US3664970A (en) Ethylene oxide catalyst
US8809588B2 (en) Method for producing aromatic amines
CA2248817A1 (en) Process for preparing a shell-type catalyst
JP2001524378A (en) Raney nickel catalyst, process for producing raney nickel catalyst and its use for hydrogenation of organic compounds
JP4320062B2 (en) Shaped activated metal fixed bed catalyst
CA2314690A1 (en) Fixed bed catalysts
WO2005039766A1 (en) The use of ir, near ir, visable and uv radiation for the preparation of catalysts
US20030120116A1 (en) Fixed-bed Raney-type catalysts
CN101721998A (en) Preparation and usage of load type active common metal catalyst used for organic transformation
CA2313660A1 (en) Fixed-bed raney-type catalysts
WO2005042153A1 (en) The use of activated granulates of base metals for organic transformations
CN101722054A (en) Metal catalyst
CZ20002581A3 (en) Metal catalyst, process of its preparation and use
CZ20002506A3 (en) Fixedly mounted catalysts of Raney type

Legal Events

Date Code Title Description
FZDE Discontinued