CA2311403C - Bracket assembly having a plurality of plates for a dynamoelectric machine - Google Patents

Bracket assembly having a plurality of plates for a dynamoelectric machine Download PDF

Info

Publication number
CA2311403C
CA2311403C CA 2311403 CA2311403A CA2311403C CA 2311403 C CA2311403 C CA 2311403C CA 2311403 CA2311403 CA 2311403 CA 2311403 A CA2311403 A CA 2311403A CA 2311403 C CA2311403 C CA 2311403C
Authority
CA
Canada
Prior art keywords
plate
support
extending
accordance
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 2311403
Other languages
French (fr)
Other versions
CA2311403A1 (en
Inventor
W. R. Hugh Fife
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Canada Co
Original Assignee
General Electric Canada Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Canada Co filed Critical General Electric Canada Co
Priority to CA 2311403 priority Critical patent/CA2311403C/en
Publication of CA2311403A1 publication Critical patent/CA2311403A1/en
Application granted granted Critical
Publication of CA2311403C publication Critical patent/CA2311403C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/15Mounting arrangements for bearing-shields or end plates

Abstract

A bracket assembly for a dynamoelectric machine includes a base plate and a bracket support assembly. The bracket support assembly includes a first end plate, a second end plate and a support member connected to at least one support plate. The bracket support assembly reinforces the bracket assembly and provides a configuration effectively achieving a desired natural frequency which is unlikely to be excited in use.

Description

BRACKET ASSEMBLY FOR A
DYNAMOELECTRIC MACHINE

BACKGROUND OF THE INVENTION

This invention relates generally to dynamoelectric machines, and more particularly, to support brackets for bearing assemblies in dynamoelectric machines.
Dynamoelectric machines typically include a stator and a rotor positioned within a bore of the stator. In certain dynamoelectric machines, energization of the stator causes the rotor to rotate with respect to the stator. In other dynamoelectric machines, rotation of the rotor with respect to the stator causes an electric current to be generated. The rotor typically includes an extended rotor shaft rotatably mounted upon bearings. These bearings are generally mounted to a machine housing via bearing support brackets.

Bearing support brackets are subject to static and dynamic stresses from supporting the dynamoelectric machine rotor and associated components coupled to the rotor shaft. In use, a varying degree of vibration is experienced by the bearing support brackets due to varying loads and operating conditions.
Typically, bearing support brackets are specifically designed for use with a particular dynamoelectric machine to avoid possible excitation of the brackets at their natural frequencies. These brackets, however, become excessively heavy and costly as the dynamoelectric machine size increases.

Accordingly, it would be desirable to provide a low cost bracket having a stiffness sufficient to avoid excitation thereof at selected undesirable frequencies.
BRIEF SUMMARY OF THE INVENTION

In an exemplary embodiment, a dynamoelectric machine includes a bearing support bracket assembly including a base plate and a bracket support assembly connected thereto. The bracket support assembly includes a curved support member contacting a first end plate and a second end plate. At least one support plate GECAN 3194, extends from the support member and contacts the first end plate and the second end plate. In addition, the bracket support assembly includes a side plate opposite the support member that extends between the base plate and the support plate. The support plate is separated from the base plate by a distance and contacts the support member, the end plates and the side plate.

Attachment of the bracket support assembly to the base plate reinforces the bearing support bracket assembly and provides a configuration effectively achieving the desired natural frequency which is unlikely to be excited in use.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a perspective view of a known dynamoelectric machine;

Figure 2 is a perspective view of a bearing support bracket attached to a dynamoelectric machine;

Figure 3 is a perspective view of the bearing support bracket shown in Figure 2;

Figure 4 is a front view of the bearing support bracket shown in Figure 3 without support plates;

Figure 5 is a front view of the bearing support bracket shown in Figure 4 with support plates; and Figure 6 is a top view of the bearing support bracket shown in Figure 5.
DETAILED DESCRIPTION OF THE INVENTION

Figure 1 illustrates a known dynamoelectric machine 10, the construction and operation of which is well known, and with which the present invention may be practiced. It is contemplated, however, that the present invention is equally applicable to other types of dynamoelectric machines, and the description of machine 10 is therefore provided for illustrative purposes only rather than by way of limitation.
Machine 10 includes a frame 12, a first bearing support bracket assembly 14 coupled to frame 12 at a first end 16, and a second bearing support bracket assembly (not shown) coupled to frame 12 at a second end 18.

GECAN 3194~

Motor assembly 10 also includes a stator 20 and a rotor 22. Rotor 22 includes a rotor core (not shown) and a rotor shaft 24 extending through the rotor core. Stator 20 is mounted in frame 12 and includes a bore (not shown) extending therethrough.
Rotor 22 is rotatably mounted in frame 12 with the rotor core extending -2a-GECAN 3194=

through the stator bore and rotor shaft 24 rotatably supported by a bearing assembly 26. Bearing assembly 26 is supported by first bearing support bracket assembly 14.
Figure 2 illustrates an exemplary frame 30, such as for dynamoelectric machine 10 (shown in Figure 1), with which the invention may be practiced. A
bearing support bracket assembly 32 is mounted, coupled, or otherwise attached to frame 30 and supports a bearing assembly 34. Bearing assembly 34 includes a bore 36 which receives, and allows rotation of, a rotor shaft, such as rotor shaft 24 (shown in Figure 1). It is contemplated that the present invention may be practiced with a variety of bearing assemblies similar or dissimilar to bearing assembly 34. Therefore, bearing assembly 34 is illustrated for exemplary purposes only and is not intended to limit the invention to any particular type of bearing assembly. It is further contemplated that other frames may be used to receive bearing support bracket assembly 32 within the scope of the present invention.

Figure 3 illustrates bracket assembly 32 including a base plate 40 having a bearing mounting surface 42. Bracket assembly 32 also, includes a bracket support assembly 44 including a support member 46, a first end plate 48 and a second end plate 50. Support member 46 is a semi-annular ring extending between first end plate 48 and second end plate 50. In an alternative embodiment, support member 46 is fabricated from a plurality of members to form a curved section that extends between first end plate 48 and second end plate 50. End plates 48 and 50 extend substantially perpendicularly from a base plate outer surface 52. In one embodiment, plates 48 and 50 are substantially flat and contact support member 46.

In one embodiment, a first support plate 54 extends from first end plate 48 and support member 46 and is spaced a distance (not shown) from base plate 40. A
first intermediate end plate 56 and a first side plate 58 extend from base plate 40 to first support plate 54. A first enclosure 60 is formed by base plate 40, first support plate 54, first end plate 48, first intermediate end plate 56 and first side plate 58. First enclosure 60 has a hollow space therein. A second support plate 62 extends from second end plate 50 and support member 46 and is spaced a distance (not shown) from base plate 40. A second intermediate end plate 64 and a second side plate extend from base plate 40 to second support plate 62. A second enclosure 68 is formed by base plate 40, second support plate 62, second end plate 50, second intermediate end plate 64 and second side plate 66. Second enclosure 68 has a hollow space therein. Support member 46 defines an inner edge of first support plate 54 and second support plate 62.

First support plate 54 and second support plate 62 are separated by a base plate intermediate region or arc segment 70. Enclosures 60 and 68 reinforce bracket assembly 32 and provide a configuration effectively achieving the desired natural frequency which is unlikely to be excited in use. In one embodiment, first and second intermediate end plates 56 and 64 are substantially flat and extend substantially radially from support member 46. In addition, first side plate 58 and second side plate 66 are substantially flat. In alternative embodiments, plates 48, 50, 56, 58, 64 and 66 are not substantially flat.

A base plate intermediate region 70 is substantially centered, or positioned equidistant from first end plate 48 and second end plate 50. In one embodiment, support plates 54 and 62 and base plate 40 are substantially planar and base plate 40 is substantially parallel to support plates 54 and 62. In an altelnative embodiment, a third support plate extends across base plate intermediate region 70 and forms a third enclosure. In a further alternative embodiment, a single support plate extends from first end plate 48 to second end plate 50. In still further alternative embodiments, any number of support plates can be utilized to extend wholly or partially between first end plate 48 and second end plate 50.

The stiffness of bracket assembly 32 is altered by altering the size of enclosures 60 and 68. Bracket assembly 32 is stiffened by positioning support plates 54 and 62 further from base plate 40. In addition, the stiffness of bracket assembly 32 is altered by altering the thickness of plates 40, 48, 50, 54, 56, 58, 62, 64 and 66 and support member 46.

Bracket assembly 32 is fabricated by connecting support member 46, end plate 48, intermediate end plate 56, and side plate 58 to base plate 40 and support plate 54 by welding. Similarly, support member 46, end plate 50, intermediate end plate 64, and side plate 66 are connected to base plate 40 and support plate 62 by welding. Alternatively, the connections are other than by welding.

In an alternative embodiment, bracket assembly 32 is fabricated by casting a single plate having a substantially flat portion and an incorporated stiffening portion. The plate is thinner at the bottom and becomes thicker towards the top. In one embodiment, the transition between the flat portion and the stiffening portion is gradual. In an altelnative embodiment, the transition between the flat portion and the stiffening portion is substantially immediate.

While one exemplary embodiment has been described, it is contemplated that other shapes of bracket support assembly 44 and relative positioning of base intermediate region 70 are used in alternative embodiments while achieving the benefits of the present invention.

In practice, bracket assembly 32 is subject to static and dynamic stresses from supporting a dynamoelectric machine rotor structure and associated components coupled to the machine. A varying degree of vibration is experienced by bracket assembly 32 due to varying loads and operating conditions. Bracket support assembly 44 adds stiffness to bracket assembly 32 and reinforces bracket assembly 32. Because of the reinforcement, bracket assembly 32 provides a configuration effectively achieving the desired natural frequency which is unlikely to be excited in use.

While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.

Claims (21)

1. A bracket assembly for a dynamoelectric machine comprising:
a base plate; and a bracket support assembly extending from said base plate, said bracket support assembly comprising:

a first end plate extending from said base plate, a second end plate extending from said base plate, a support member extending from said base plate and between said first end plate and said second end plate, a first intermediate plate extending from said base plate, and a second intermediate plate extending from said base plate;

a first support plate extending from said first end plate, said support members, said first intermediate plate, and a first side plate such that said first support plate forms a first enclosure, said first side plate extending from said base plate to said first support plate;

a second support plate extending from said second end plate and an intermediate region extending between said first and second support plates, said intermediate region comprises an arc segment.
2. A bracket assembly in accordance with claim 1 wherein said base plate is substantially planar.
3. A bracket assembly in accordance with claim 1 wherein said first and second support plates are substantially planar, said second support plate extending from said support member, said second intermediate plate, and a second side plate such that said second support plate forms a second enclosure, said second side plate extending from said base plate to said second support plate.
4. A bracket assembly in accordance with claim 1 wherein said first and second support plates are parallel to said base plate.
5. A bracket assembly in accordance with claim 1 wherein said first and second intermediate end plates are located between said first end plate and said second end plate.
6. A bracket assembly in accordance with claim 5 wherein said first and second intermediate end plates are connected to said first and second support plates.
7. A bracket assembly in accordance with claim 1 wherein said support member is curved, said first and second intermediate end plates extend radially from said support member.
8. A bracket assembly in accordance with claim 1 wherein said first and second support plates comprises semi-annular plates.
9. A bracket assembly in accordance with claim 1 further comprising a plurality of support plates including said first and second support plates.
10. A bracket assembly in accordance with claim 1 wherein said bracket is symmetrical.
11. A bracket assembly in accordance with claim 1 wherein each said first and second enclosure includes a hollow space.
12. A dynamoelectric machine comprising:
a frame;

a stator disposed in said frame and comprising a stator bore;
a rotor within said stator bore and comprising a rotor shaft;

a bearing assembly for supporting said rotor shaft and facilitating rotational movement thereof; and a bracket assembly coupled to said frame and receiving said rotor shaft, said bracket assembly comprising a base plate and a bracket support assembly extending therefrom, said bracket support assembly comprising:

a first end plate extending from said base plate, a second end plate extending from said base plate, a support member extending from said base plate and between said first end plate and said second end plate, a first intermediate plate extending from said base plate, and a second intermediate plate extending from said base plate;

a first support plate extending from said first end plate, said support member, said first intermediate plate, and a first side plate such that said first support plate forms a first enclosure, said first side plate extending from said base plate to said first support plate;

a second support plate extending from said second end plate and an intermediate region extending between said first and second support plates, said intermediate region comprises an arc segment.
13. A dynamoelectric machine in accordance with claim 12 wherein said base plate is substantially planar.
14. A dynamoelectric machine in accordance with claim 12 wherein said first and second support plates are substantially planar, said second support plate extending from support member, said second intermediate plate, and a second side plate such that said second support plate forms a second enclosure, said second side plate extending from said base plate to said second support plate.
15. A dynamoelectric machine in accordance with claim 12 wherein said base plate is substantially parallel to said first and second support plates.
16. A dynamoelectric machine in accordance with claim 12 wherein said first and second intermediate end plates are located between said first end plate and said second end plate.
17. A dynamoelectric machine in accordance with claim 12 wherein said bracket is symmetrical.
18. A dynamoelectric machine in accordance with claim 16 wherein said support member is curved, said first and second intermediate end plates extend radially from said support member.
19. A dynamoelectric machine in accordance with claim 12 wherein said first and second support plates comprise semi-annular plates.
20. A dynamoelectric machine in accordance with claim 12 further comprising a plurality of support plates including said first and second support plates.
21. A dynamoelectric machine in accordance with claim 12 wherein each said first and second enclosure includes a hollow space.
CA 2311403 2000-06-13 2000-06-13 Bracket assembly having a plurality of plates for a dynamoelectric machine Expired - Fee Related CA2311403C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA 2311403 CA2311403C (en) 2000-06-13 2000-06-13 Bracket assembly having a plurality of plates for a dynamoelectric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2311403 CA2311403C (en) 2000-06-13 2000-06-13 Bracket assembly having a plurality of plates for a dynamoelectric machine

Publications (2)

Publication Number Publication Date
CA2311403A1 CA2311403A1 (en) 2001-12-13
CA2311403C true CA2311403C (en) 2008-04-08

Family

ID=4166471

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2311403 Expired - Fee Related CA2311403C (en) 2000-06-13 2000-06-13 Bracket assembly having a plurality of plates for a dynamoelectric machine

Country Status (1)

Country Link
CA (1) CA2311403C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944654B1 (en) * 2009-04-21 2011-05-13 Converteam Technology Ltd CARCASE FOR SUPPORTING A STATOR OF A ROTATING ELECTRIC MACHINE AND ROTATING ELECTRIC MACHINE COMPRISING SUCH A CARCASS

Also Published As

Publication number Publication date
CA2311403A1 (en) 2001-12-13

Similar Documents

Publication Publication Date Title
CA1300214C (en) Minimum height motor assembly using aluminum endshields
KR20120052322A (en) Arrangement for acoustic decoupling of a stator of an electric motor
JP5551252B2 (en) End shield for electrical machines
US6906440B1 (en) Bracket assembly having a plurality of plates for a dynamoelectric machine
EP1640491A2 (en) Washing machine
CA2311403C (en) Bracket assembly having a plurality of plates for a dynamoelectric machine
RU2305358C2 (en) Stator core supporting device
JP2006042594A (en) Spindle motor equipped with deep drawn base plate
KR960039554A (en) Stepping motor
US20010040412A1 (en) Radial gap, rotary yoke type brushless vibration motor
US5949163A (en) Reinforced motor having reduced operational vibration amplitude
KR100321829B1 (en) An electromotor
JP3267419B2 (en) Rotating electric machine
KR100518022B1 (en) Fixing structure of holder ring for end bracket for motor
JP2519432Y2 (en) Hermetic compressor
JP2001065497A (en) Direct current brushless fan motor
KR20240001205A (en) Housing for electric machines with reinforcing elements
CN213547242U (en) Motor casing and special motor for pulping machine with same
JPH0736586U (en) Bearing device for brushless motor
JP3809704B2 (en) Squirrel-cage induction motor
KR20020043824A (en) Fan motor
JPH08182246A (en) Electric rotating machine
KR20080004887A (en) Motor with compensation for loss-in-weight and drum type washing machine having the same
JP3709304B2 (en) Brushless motor
KR20000019052A (en) Balancer structure of compressor

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20170613