CA2297194A1 - Portable system for inventory identification and control - Google Patents

Portable system for inventory identification and control Download PDF

Info

Publication number
CA2297194A1
CA2297194A1 CA002297194A CA2297194A CA2297194A1 CA 2297194 A1 CA2297194 A1 CA 2297194A1 CA 002297194 A CA002297194 A CA 002297194A CA 2297194 A CA2297194 A CA 2297194A CA 2297194 A1 CA2297194 A1 CA 2297194A1
Authority
CA
Canada
Prior art keywords
unit
units
lumber
information
location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002297194A
Other languages
French (fr)
Inventor
William R. Haller
James A. Aman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BETHLEHEM TECHNOLOGIES Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2297194A1 publication Critical patent/CA2297194A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders

Landscapes

  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Engineering & Computer Science (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Finance (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Accounting & Taxation (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Portable device (100) may be carried about by an operator within a prescribed area which contains one or more inventoried objects such as units of lumber (10). Within this area, the current location of both the units of lumber (10) and device (100) are constantly monitored by tracking computer system (80). As device (100) is carried about within the prescribed area, at any time it may be pointed at any unit (10) which is of interest to the operator. Device (100) will then employ distance measurement unit (108) to determine the distance between observation point (120) and projected spot (121). Once calculated, the location of spot (121) is then compared to the last known location of all surfaces of lumber units to determine which unit is currently being "spotted". All information is then communicated by device (100) via antenna (107) to stacking system (80).

Description

PORTABLE SYSTEM FOR INVENTORY IDENTIFICATION AND CONTROL
Field of the Invention The present invention relates to portable systems for providing informaiion regarding inventoried objects.
Related Applications Automated End Tally System - U.S. Patent 5,307,294 Automated Lumber Unit Tracking System - Application Serial No. 08/263,090.
Description of the Prior Art Lumber is most often transferred from primary manufacturer, to wholesaler and finally to retailer in bundled units. These units typically consist of lumber which is always of the same thickness but may vary in width and length. Units are constructed by stacking several layers of uniform width, called courses, on top of each other. Each course consists of several boards laid side by side. Typically, these units are constructed to be approximately four feet high by four feet wide by six to twenty feet long. These dimensions ensure that the unit may easily be transported by fork lift and other road vehicles. The lumber mill and especially the wholesaler may inventory hundreds of these lumber units at any given time. This requires that they maintain open yards where these units are segregated into like groups for easier location tracking and inventory control.
Aay given unit of lumber may differ from any other given unit in several ways.
First, it may be of a different specie, for example oak versus pine, or a different grade, for example "C" versus "C & better" or "B". 1n addition to these features, the boards within the units may also differ by width and length. Some lumber units may be green while others are dw. The boards in a given unit may all be rough, surfaced one side, two sides or on all four sides. Their ends may or may not be trimmed and they may or may not have surface patterns.
Furthermore, lumber with the same specie, grade and thickness may be purchased from different mills and therefore may differ slightly in quality. These slight variations may be of importance to the wholesaler's customers. Lumber units are also received on different days and typically vary in age. Since all lumber tends to loose quality over time, it is important to the wholesaler to be able to identify the age of each unit. Because of all of these types of variations and more, lumber wholesalers have developed the practice of marking each unit. They will either write with a marker on the side of one of the exposed boards for easy viewing and/or they will also create a paper tag to be attached to the unit. Unfortunately, each of these two methods has significant drawbacks.
First, the outer surfaces of most boards do not make ideal writing surfaces and hence the markings which are alt hand made may become illegible. It is also not practical to write a great amount of information, such as the original mill, received date or tally count of boards in the unit, on the side of one single board. Typically the information may SUBSTITUTE SHEET (RULE 26) ° include specie, grade and perhaps thickness. Second, the use of paper tags, while they are not a poor writing surface, do present their own problems. For instance, tags may fade over time and / or they may fall off. Being made of special weather resistant paper, they do add additional material cost, not to mention the labor costs of writing up the tags. When units of lumber are opened and mixed with lumber from other units to create new units, they often must be re-tagged thereby taking additional time and paper costs. Both methods, whether writing on the unit or tagging have the additional problem of not always being in a convenient location on the unit for later identification.
For example, lumber units are often stacked four or five units high, several rows deeps, either in an open air yard or preferably in a shed of some sort. In these cases, the marking or tag on these units may not be easy to find and / or nod.
The very nature of the aforementioned problem makes it difficult to maintain a computer based inventory control system which can accurately track the detailed characteristics of all units.
Additionally, the constant movement of units makes it cost prohibitive to manually track the exact locations of each and every unit in the lumber yard at all times. There have traditionally been no methods of tracking this type of detail regarding individual units along with their current locations. The present inventors have previously submitted a patent application referred to as an Automated Lumber Unit Tracking System, serial number 08/263,090. This system follows the movements of individual fork lifts as they engage, transport and disengage units throughout a yard. By doing this, an automated information system is established to track and record the exact location of each and every unit in a lumber yard and its sheds at arty given instant This information may then be associated with the characteristics of each unit thereby maintaining a complete database which is constantly available for operator inquiry. However, the current state of the art would require that the operator either enter some identifying indicia to the computer system or have the unit engaged by a fork lift in order to retrieve the desiral unit information.
Rather than relying upon either of these two methods, the present inventors propose allowing the yard man to use a hand held device to remotely identify units based upon their location, after which all related unit information is provided on an LCD screen. It is further proposed that the present invention allow a yard man to classify a unit which has not yet had its location identified to a lzaclang system. This would be done by capturing the units image along with its current location and sending this to the remote tracking system for storage in its tracking database. At this same time, the operator could also enter arty identifying indicia flat may be on the unit by either using the keyboard or microphone.
Summary of ire Invention The present invention utilizes a similarly constructed omni-dit~ctional signal tracking system as disclosed in the aforementioned Automated Lumber Unit Tracking System patent application incorporated herewith along with a portable hand held device. The hand held device is in constant communication with a data base containing the location of each lumber unit within the yard along with the corresponding lumber characteristics. The traclang system determines the location of the portable device at all times. The device comprises an LCD screen and small keyboard as well as electronic orientation and range finding devices. The device further comprises a visible laser pointer. A particular lumber unit is selectively identified by shinning the visible laser beam onto arty surface of the desired unit thereby creating a visible spot on the chosen unit The exact position of the spot based upon the known coordinates and orientation of the hand hcld device as well as the distance to the spot is then calculated. This information would then be passed to the computer system which is used to track each individual unit The current unit could then be identified and all known information would then be transmitted back to the hand held for display on the LCD screen for review by the yard man. Such information could include all of the above mentioned specifications including specie, grade, thickness, width, length, dryness, surfacing etc. and could also include mill, received date, current tally, out of kiln date, moisture content, as well as who last transported the unit to this particular location. This system, if combined with order processing offce computer software, could also tell the yard man if any of his customers are looking for such a unit Such a device would eliminate the need to mark or tag any unit thereby saving both material and labor costs. If the yard man can see a unit, he will be able to project a spot on the unit and therefore will have the ability to easily identify it if the tally changes during repacking, there is no need to re-tag.
Furthermore, it is anticipated that such a device may also be used to help find a desired unit by using the LCD screen to direct the yard man to the trait Additionally, in the normal course of business, stacks of lumber units may fall to the ground. The bands arotmd the tutus may then also break such that the boards of several fallen units mix together. In this case, there is no unique Itrmber trait to identify. To resolve this problem, the operator will place the present invention within the "space" that was occupied by any one of the fallen units and then initiate the inquiry sequence without first doing a range find operation. Hence, the associated unit tracking system would then feed back the last known unit to oa;upy the current location of the portable device, rather than the location of the projected spot The system also determines that the device was effectively within the interior of the "space" of the last known unit Knowing this, the system assumes that the unit has fallen and also reports on any units which may have occupied the "space" above the current unit Such simplicity is also useful for units which have not fallen The device operator could point at a single unit, get its identity from the tracking system, and then use an up or down arrow key on the device key pad to request the identity of the unit above or below the present unit.
Finally, in those cases where a particular unit has not yet been "located" by the use of a system such as fork lift tracking, the present invention will allow the operator to easily classify the unit This would be accomplished by using the portable device to place a spot on one of the unit's exposed surFaces while at the same time either entering or speaking a command to direct the device to capture the current image. The operator would then also either enter or speak into the portable device the uniquely identifying code (if these is one) for the unit in question All of this information would then be passed to the tracking computer system which would then be able to calculate the location of the spot as well as the size of the unit's surface. This location information would then be associated with the entered unit code so that any pertinent information contained on the companion office computer system could then be related to the newly located tag.
The present inventors are not aware of any other portable devices, of any kind, capable of working with a tracking system to identify and or classify individual units. Nor are the present inventors aware of any device capable of remotely identifying a unit simply based upon its location.
Objects and Advantages Accordingly, the objects and advantages of the present invention are:
1. To provide a portable device which can be carried about by an operator and used to recall information regarding arty desired object within a group of inventoried objects;
2. to provide a system where the operator may simply point at the desired object in order to identify it to the system;
3. to provide a system for identifying objects within a group, where the objects are not required to bear any indieia;
4. to provide a system where the operator may hold the portable device in an area once occupied by an object, as in the case where it has fallen or has been displaced, in order to identify it to the system;
5. to pnwide a system which can capture the current location, image and uniquely identifying code (if one exists) of a unit which has not yet been tracked so that it may then be tracked and classified by the accompanying computer systems; and 6. to provide a system where the operator has a minimum number of commands that need to be entered via keyboard for identifying inventoried objects and retrieving related information Further objects and advantages are to provide a system with a minimum of moving parts capable of withstanding a large variation of environmental conditions. Still further objects and advantages of the present irnention will become appanertt from the consideration of the drawings and ensuing description.
Description of trie Drawings hid 1 is a perspective diagram of the present invention showing the proposed portable device being used W spot and identify a specific lumber unit from amongst several units stacked in rows.
Fib 2 is a block diagram of the present invention showing its electronic circuit.
Fib 3 is a perspective diagram of the present invention alternatively being used to measure the diameter and length of a log, from which it may then calculate the log's scale and classify the log.
Specification Referring to Fip~ 1 there is shown a perspective drawing of the present invention of the portable observation point device 100 along with several stacked rows of lumber units similar to 10. It is presumed that the units such as 10, have been tracked to their current msting positions by a system similar to the Automated Lumber Unit Tracking System, serial number 08/263,090, as previously disclosed by the present inventors. Comprising such a system, and also incorporated into the present invention, is office computer system 84, which stores pertinent information related to each unit such as 10 as may have been previously input by human effort or gathered by devices similar to the Automated End Tally System, patent number 5,307,294, as previously disclosed by the present inventors. Computer system 84 is capable of bi-directional communications with unit tracking computer system 80 via data link 82.
Tracking computer system 80 further connects with two or more stationary elevated locating modules such as 74a and 74b, via wires 78a and 78b respectively. Modules 74a and 74b are constantly emitting tracking and information signals 76a and 76b which one then capable of being received by tracking antenna 107 on device 100. Antenna 107 itself is also capable of emitting tracidng and information signal 107a which is then capable of being received by modules 74a and 74b.
Portable device 100 also comprises distance to spot measurement unit 108 as well as gravity directed ultrasonic vertical distance to ground measurement unit 109 mounted in a conventional girnbal. Distance measurement unit 108 is capable of emitting visible focused energy beam 108a which, when directed at a lumber unit such as 10, is capable of creating projected spot 121 on the surface of units such as 10 and of measuring the distance to spot 121. Distance rr~easurement devices, such as laser range finders, are well known in the ari.
Vertical distance measurement unit 109 uses a conventional gimbal to al3ow omni~iractional rotation under the force of gravity to direct its uktrasonic signal WO 98!57120 PCT/US97/09839 emitter in the downward direction Unit 109 further emits ultrasonic signal 109a towards the ground from which it then receives back signal 109a's reflections. Unit 109 uses ultrasonic signal 109a and its reflection to calculate the distance from observation point 120, within device 100, to the nearest ground point directly beneath device 100.
Device 100 additionally comprises image capture unit 110, such as a conventional CCD camera. Unit 110 is capable of capturing images of objects such as unit 10, which are currently in the line of site as marked by projected spot 121.
Finally, device 100 further comprises housing 102 which holds keyboard 103, microphone 104, speaker 105 and LCD 106.
Referring now to Fyg. 2, there is shown a block diagram of the electronic circuit of device 100. Controller 100e receives input from keyboard 103 and microphone 104 and communicates to the operator through speaker 105 and LCD lOG. Distance measurement unit 108 passes obtaineri distance inforniation to encoder 100e which also receives rotation information from rotation measurement unit 100f and tilt infomvation from azimuth measurement unit 100g.
Units 108, 100f and 100g determine the polar coordinates of the projected spot with respect to observation point 120 within device 100. Image capture unit 110 also passes captured images to encoder 100e. Encoder 100e then passes translated information to transmitter 100t which further communicates this information as signal 107a via tracking antenna 107 to locating modules 74a and 74b. These signals are then communicated to unit tracking computer system 80, which in turn communicates them over wire 82 to office computer system 84. Computer systems 80 and 84 are also capable of transmitting information as represented by signals 76a and 76b via modules 74a and 74b to receiver 100r via antenna 107. kteoeiver 100r then passes this information to, and receive oomrnands from, controller 100c. Controller 100c also outputs commands to transmitter 100t, distance measurement unit 108, rotation measurement unit IOOf and azimuth measurement unit 100g.
W st Operation The present invention is intended to work in conjunction with an object tracidng system such as that descn'bed try the present inventors in their application for an Automated Lumber Unit Tracking System In this invention, it was shown that the location of objects such as units of lumber could be uniquely tracked within a prescribed area as they were transported about by a vehicle such as a fork lift. Hence, a unit trading computer system such as 80 and an oboe computer system such as 84, as depicted in Fig.'s 1 and 2, can be employed to trade the current locations of units of lumber such as 10 and to associate with these current coordinates selected meaningful information about unit 10. As will be described in the ensuing text, the operation of the present invention will allow the yard man to recall selected pertinent information regarding desired units of lumber by simply "spoting" them with the present irnention which itself is being tracked by a system similar to that which is employed to track the lumber units.
Referring to )~& 1, the unit tracking computer system 80 automatically tracks and records the exact location of each and every unit, such as 10, being transported by a fork lift about a lumber yard or within arty of its sheds. This posidonal information, when combined with the known physical size of each individual unit, includes the entire area taken up by the unit's volume. The physical size can be determined by using a device similar to the Automated End Tally System, as patented by the present inventors. This device is not only capable of determining the actual tally count of boards within a given unit, but it cart also determine the actual size of the unit itself based upon the unit's scanned end topologies. The unit tracking computer system 80 extrapolates the actual coordinates of the corners of the rectangular volume of each unit from the exact position of the forks when the unit was disengaged and the known size of the unit Referring to Fig.'s 1 and 2, operation of the portable device 100 commences when a yard man enters the pre-scn'bed area covered by the unit tracking computer system 80 and its network of locating modules similar w 74a and 74b. Once within this area, device 100 is itself constantly tracked in a means similar to that descn'bed by the Automated Lumber Unit Tracking System patent for tracking fork lifts. Hence, at arty given moment, at least the exact relative X-Y location of observation point 120 within device 10(1 is known by tracking computer system 80.
Although a modified triangulation tracking system could be relied upon to also calculate the current Z coordinate of device 100, the present invention will rely upon gravity directed ultrasonic vertical distance measurement unit 109 to emit signal 109a directly towards the ground below device 100. Unit 109 will then receive back the reflections of signal 109x, thereby calculating the distance between observation point 120 and the ground.
Eventually, it is anticipated that the yard man will point device 100, and therefore distance measurement unit 108, at a lumber unit such as 10. As he points device 100, it will be rotated and tilted about observation point 120. As is well known in the art, a conventional electronic compass may be employed within the rotation measurement tutit 100f to ascertain device 100's exact rotation about the reference north-south vertical plane. Furthermore, a conventional electronic level may be employed within azimuth measurement unit 100g to ascertain device 100's exact tilt off the reference horizontal plane. Also well known within the art, a conventional laser range finder may be employed by measurement unit 108 to project a visible beam 108a upon the desired unit such as 10. Once projected, beam 108a will then create a visible spot 121 on the desired unit and distance measurement unit 108 automatically calculates the distance to spot 121. The operator will then either speak a command into microphone 104 or enter a command into keyboard 103 which will then be electronically translated and passed to controller 100c. This oomrrrand will direct controller 100c to identify the presently "spotted" unit in which case controller 100c will then pass signals to distance measurement unit I08, rotation measurement unit 100f, and aarrtuth measurement unit 1008 instnrcting each of them to transmit their current readings to encoder 100e. At this time controller 100c will also direct vertical distance measurement unit 109 to emit ultrasonic signal 109a for the purposes of measuring the current distance from observation point 120 to ground This measurement will then also automatically be passed finm unit 109 to encoder 100e. Encoder 100e then translates these separate measurements into a defined information protocol and transmits them to transmitter 100t. Under the direction of controller 100c, transmitter 100t then communicates to unit tracking computer system 80 via signal 107a the exact location of observation point 120 with respect to device 100 and the relative measurement information just captured from observation point 120 to projected spot 121.
Traddng computer system 80 then uses this information to extrapolate the relative X-Y-Z location of projected spot 12I. Computer 80 then correlates this extrapolated position with the last known locations of all previously inventoried and tracked units, such as 10. These locations are stored as the separate X-Y-Z coordinates of each of the eight corners of any given lumber unit. The X-Y-Z coordinate of spot 121 will be found to substantially lie within one of the four to five exposed surfaces of the desired unit. Hence, each exposed surface, such as the two sides or ends of unit 10, form a plane defined by the coordinates of its corner points.
Computer system 80 will expand the plane defined by the comers of a given side into a larger rectangular volume to encompasses more space than occupied by the unit's side itself: By checking its database for the proximity of other units similar to 10, known to be neighbors of the surface under consideration, computer 10 can selectively inecease or decrease the expanded volume as needed to help uniquely identify the unit surface. Using these calculations, computer 80 will attempt to place projected spot 121 within an expanded surface as defined by the coordinates of the four corners plus an expansion factor. If computer 80 is unable to do this, it will then transmit back to device 100, via signals 76a and 76b, insuuchons to be output via speaker 105 and / or LCD 106, directing the operator to move the spot either left, right, up or down upon the desired surface after which an second spot reading may be taken. This process can be repeated as necessary until the coordinates of spot 121 are conclusively placed within one of the expanded surfaces of a single unit similar to 10.
Once tracking computer 80 has identified the desired unit such as 10, it then communicates a unique electronic specification for the unit to oboe computer system 84. System 84 then feeds back to computer 80 all known and pertinent information about the identified unit such as specie, grade, thickness, width, length, dryness, surfacing, mill, received date, and other inventory related information. Computer 80 then transmits this information to device I00 via modules 74a and 74b. Antenna 107 inputs the transmitted inventory information and outputs this information to receiver 100r. Receiver 100r then demodulates and outputs the data to controller 100c. Controller 100c subsequently outputs the information via either or both speaker 105 and LCD 106 to the yard man, depending upon his preference. It is anticipated that the yard man may subsequently desire additional information concerning the identified unit, or may wish to update the unit's information base within office computer system 84. In either case, it is well known to anyone skilled in the art that information either spoken or entered on the keyboard by the operator may then be transmitted to office computer 84 via established communication links as pnyviously described after which further responses from computer 84 may be received by device 100 and output to the yard man.
As discussed earlier in the background section, an additional function of portable device 100, is to help direct the yard man to a desired unit. It is anticipated that the yard man w111 either speak or enter using the keyboard, selection criteria indicating the desired unit(s). For example he may enter a specie code for red oak, a thicirness code for 4/4 and a glade code of "FAS". Once this information is input, controller 100c will then direct the communication of this selection criteria to office computer system 84 via the previously specified communication links. Once neoeived, computer system 84 may then suggest one or more units fitting the desired criteria. System 84 then communicates the unique elecuonic specification for the possible units to unit tracking computer system 80 which then inquires into its database of current unit locations for each of the possible units. Based upon the current position of device 100, tracking computer 80 may then direct the yard man left, right, forward and /
or backwards, with either or both spoken or displayed directions, until the yard man has rrached the nearest unit matching the desired criteria. It is anticipated that the operator may then use device 100 to project spot 121 upon what he perceives to be matching units based upon the oommuni~ ittstnictions, after which the aforementioned system will either confirm or reject the spotted unit.
Often enough, one or more units in a stack may tip and fall over to the ground. When this happens the banding on the units may break and the boards may mix with other fallen units. In this case, the portable observation point device 100 may operate in a slightly different mode to help identify the fallen units. To do this, the yard man would simply hold device 100 somewhere within the "space" of where one of the fallen units was suspected to have been. At this point a slightly different procedure is executed when the yard man either enters the appropriate key sequerwe or speaks the appn7priate command. Controller 100c then follows a similar process as discussed above except that it disables measurement units 108, 100f and 100g from providing input to encoder 100e. Hence, the currently known coordinates of observation point 120 are used instead of those of projected spot 121 for the purposes of the identification of the fallen unit Encoder 100e will also transmit a special code indicating that the spatial matching algorittuns should now presume that spot 121 is within a unit. rather than on one of its outer surfaces. All other fiutctionality is identical to that previously described. It should be noted that in any case, once a unit such as 10 is identified, the yard man may then simply move firm unit to unit to view its pertinent information by looking at LCD
106 and moving the right, left, up and down arrows keys on keyboard 103. In such ~ the unit tracking computer system 80 is working in conjunaron with the office computer system 84 to provide visual information as to what has been tracked to be on either side as well as above and below the currently identified unit Hence, this visual display may then be navigated by the yard man using the arrow keys or spoken commands rather than having to point at each unit in question.
In the cases where a particular unit such as 10 has not yet been tracked by computer system 80, the present invention may optionally be used to classify such units. This is accomplished when the yard man uses device 100 in a manner similar to that described above to project spot 121 on the desired unit after which tracking system 80 feeds back to the operator that unit 10's identity is not known and that nothing else has been determined to occupy that unit's measured location. The operator may then either enter a command using keyboard 103 or microphone 104 to direct image capture unit 110 to capture the current image as sensed by the CCD camera. The yard man may then also use either keyboard 103 or microphone 104 to enter a uniquely identifying indicia, if there is one, for this particular unit 10. This unique indicia as well as the captured image and the units location, are then transmitted by antenna 107 to tracking system 80 for classification in its database. Hence, computer system 80 is now tracidng previously unknown unit 10 and may then communicate this same location and identity information to office computer system 84. Office computer 84 may have additional information associated with the units indicia such as unit 10's current size as last determined when the unit was end tallied using a device similar to the Automated End Tally System This unit size Information is then passed back to tracking system 80 which may in turn use it to complete the location infomtation with respect to unit 10's other surfaces for which an image was not captured. At this point, unit 10 is now available for identification by device 100 in the same way as a!1 other units are that have beau tracked by a Automated Lumber Unit Tracking System similar to that proposed by the present inventors.
AllSemai~e Second Open~on of the present invention Background The primary manufacturers of lumber are sawmills who purchase their lumber in log form. When the logger brings in a truck load of logs to a mill, each log must be evaluated so that a price may be set This evaluation typically consists of determining the specie and grade of each log as well as the logs rough total board footage, referred to as its scale. To calculate scale, the mill operator measures the average diameter of the smaller end of the log and multiplies this times the log's length In the current state of the art, this is a manual process that is both time consuming and somewhat inaccurate. The present invention as specified is capable of automatically scaling logs for the mill operator thereby saving time while also increasing accuracy.
After a load of logs have been graded and scaled, the mill operator will then typically scare all of the logs from the same purchase together in segregated rows. Eventually, the operator will then mill some or all of the logs from a given purchase into individual boards which are then graded, tallied, packaged and sent to a wholesaler. During this milling process, the mill operator is desirous of knowing what the yield of boards ended up to be from any given purchase load of logs. This is not always easy to determine because very often logs firm different purchase lots end up being mixed together to help maximize the efficiencies of the mill. What is needed is an easy method to uniquely identify each log as it is about to be milled which would then allow for a yield analysis down to the actual log. The present invention offers the additional benefit of uniquely classifying each and every log based upon the image that is captured of the given logs smaller end when it is automatically scaled. Using this image database of all log ends, it is then possible to use a camera to capture the images of logs about to be milled and to match this image with the existing images previously captured by the present invention. The mills computer system would then be aware of all pertinent information concerning each log about to be milled, such as the logger and received date. This information would then be joined up with the yield of the log which is determined after milling.
Atnemafe Specification The construction and circuitry of the present invention as already specified is capable of providing the rieoessary functions to automatically scale and classify logs. Referring to Fig. 3, there is shown a perspective drawing of log il firm which device 100 is being used by the operator to take two separate measurements. The first measurement is firm observation point 120a to projected spot 121a, while the second measurement is from observation point 120b to projected spot I2lb. Also depicted is office computer system 84 which is capable of bi-directional communications with unit tracidrig computer system 80 via data link 82. Tracking computer system 80 further connects with two or more stationary elevated locating modules such as 74a and 74b, via wires 78a and 78b respectively. Modules 74a and 74b are constantly emitting tracking and information signals 76a and 76b which are then capable of being received by device 100 as previously described. Device I00 itself is also capable of emitting tr~cldng and information signal 107a which is then capable of being received by modules 74a and 74b. In all ways device 100 is exactly similar in construction as previously described in the specification of the preferred embodiment Alt~emate Second Operation Referring to F ig,.'s 2 and 3, the alternate operation begins when the operator points device 100 at the smaller end of log 11 such that spot I2la is visible somewhere on the log's end surface.
The operator then initiates the classification function by either using device 100's keyboard or microphone.
In this function, controller 100c directs unit 110 to capture the current image from the CCD camera and to pass that image to encoder 100e. This information is then combined with the location information determined by distance measurement unit 108, rotation measurement unit 100f and azimuth measurement unit 1008 and passed from encoder 100e to transmitter 100t.
Under the direction of controller 100c, tlus information is then transmitted via antenna 107 as signal 10?a to be naceived by modules 74a and 74b. The infor;nation is then passed to tracking computer 80 which calculates the location of spot 121a in a manner exactly similar as previously described in the first operation In addition, tracidng computer 80 will now also calculate the average diameter of the log end using standard image analysis techniques which are well known to those who are skilled in the ari. Computer 80 then transmits the log end's location, average diameter and image to once computer system 84 via Link 82. Office system 84 then adds the pmsent log il to its database and assigns it a new tracking code which it then passes back to computer 80 and ultimately to device 100 for display on its screen to the operator.
The operator will then move to a position off to the side of log 11 so that a second set of measurements may be taken as represented by point 120b and spot 1216. For this measurement, the operator will use a command that does not direct device 100 to capture an image but rather to simply calculate the coordinates of spot 121b as previously de~scn'bed in the first operation Ultimately, this second location of spot l2lb will be used by tracking computer 84 in combination with the first measurement of spot 121x, to calculate the length of log il. This length information is then transmitted to o>iioe computer 84 which then updates its relevant database and calculates the log's scale as equal to its average diameter times its length.
Note that at this point log 11 has been both mead for scale and uniquely classified for later reference. Hence, if the saw mill were to be outfitted with recognition cameras at the infeed to its saws, log 11 could be identified just prior to being cut into boards. This would fiuiher allow the mill operator to track the yield of his p~u~chased lumber down to the individual log.

Conclusion, Ramifications, and Scope of Invention In conclusion, it can be seen that the present invention has many advantages.
For instance, it is capable of working with an existing unit tracking and office computer system to easily provide information conceiving airy given unit without requiring the operator to enter any indicia identifying the unit in question. The device is portable and by projecting a viseble beam is able to identify "spotted" units which are odifficult for the operator to reach. It may optionally be used to request infomeation about units which have fallen and no longer occupy their last known location. It may also be used to lead the operator to a desired unit.
The operator may give spoken commands rather than leaving to depress keys thereby increasing ease of use. And finally, with the ability to capture images, the present invention is capable of both analyzing the dimensions of and classifying units of lumber or logs which as of yet have not been identified to the companion tracking computer system It is evident from the description of the Portable System for Inventory Identification and Classification, that it has applicability beyond that of identifying tracked units of lumber. For example, lumber yards also handle plywood, large timbers and engineered wood product beams which are also moved via fork lift and may have their current locations constantly tracked There are other industries, such as paper and metal, which handle large products which must be transported by fork lifts about geographical areas. Rolls of paper, metal I-beams, bundles of extruded bars, bundles of sheet metal, coils of steel, plates, etc. are all examples of such products. It is therefore considered that the Portable System for Inventory Identification and Classification is in general capable of working with airy existing object tracking system In fact, the objects do not have to be large enough to only be transported by fork lift and may, for example, be smaller pieces of steel wleich have been moved about by human hands which are either wearing special tracking gloves or wristbands.
It is also evident that there are other uses for the classification functions of the present invention. For example, the vahee of a particular plot of forest to a logger or mill is based upon the amount of lumber they anticipate that the forest will yield. Before purchasing a new plot, the logger or mill will first attempt to inspect roughly two to three penoerit of the trees on the land. During this inspection they will use large calipers to help meas<ine each trees average diameter and they will use range finders to determine the height of a tree at the point at which its top will be cut off to form the log. This current process is very time coreseuniieg. The pi~ertt invention in its current form could be used to automatically measure this same information in a much more efficient and accurate way. This would be done by first setting up a portable traclareg system and then using the hand held device to first point to the base of the tree and then the point of the tree where the top will be cut off. This will allow the ps~esent invention to not only automatically scale each tree but also to record its visual image and exact location And since this same information can be gathered more efficiently than with crurent methods, more of the same plot of forest can be measured in the same amount of time. This increased measurement should help the logger or mill operator to better estimate the true yield of the land and therefore to provide a better bid Furthermore, it is also evident that the novelty of the present invention is not dependent upon the particular embodiments of its parts. For instance, instead of using a ground based triangulation approach to >racldng, a oortventional Global Positioning Satellite (GPS) system could be employed. In such a case, the GPS system at its firllest aoeruacy would be capable of deterznining the X Y-Z coordinates of the portable device's observation point without needing the separate ultrasonic vertical distance measurement unit to measure the Z distance of the device off of the ground below. What is important is that the X-Y-Z coordinate is first deterntined for the observation point so that it may then be used as a basis for extrapolating to the coordinates of the spot The particulars of how this is determined should not be construed as limitations on the present invention.
Also, while the present state of the art in electronic compasses and tilt measurement devices have been employed in the present invention, these particular components may evolve.
Thus the reader will see that the Portable System for Inventory Identification and Classification embodies the following five basic capabilities:
1. The ability to establish the current three dimensional coordinates of an observation point within a portable device with respect to a fixed coordinate system;
2. the ability to project a visible spot from the observation point device to an object of interest under the control of an operator, 3. the ability to determine the coordinates of the projected spot relative to the location of the observation point within the portable device;
4. the ability to extrapolate from the coordinates of the observation point to those of the projected spot and then to inquire upon a tracking system to determine which object was known to last exist at these extrapolated coordinates; and 5. the ability to capture an image of the object centered around the projected spot, the image and location of which may then be used to both analyze and classify the object.
Note that the first three capabilities of the present invention have many uses by themselves without the need to have the portable observation point device work in oonjuxrction with an object tracldrtg system For example, when multiple spot locations am measured on the same object, the present invention could begin to construct a surface image of the inquired upon object This could be especially useful for emergency workers who are attempting to ascertain information about collapsed structures. If the device was further equipped with the ability to generate different frequencies to be used for distar~oe measurement, it could in effect "see through" selected materials which visually block emergency workers from seeing pertinent swcdual supports or impediments.
Alternatively, the device could also be of use to mountain climbers who need to judge the relative distances and shapes of portions of cliff they will soon be attempting to scale. Again, by using different fraluencies, the unit can effectively "see through" such materials as snow and ice which may appear to be solid but in fact would not support a person's weight Hence, the device could take the place of manual prodding sticks used to poke at the snow in front of a climber to help them avoid dangerous pockets. As can be seen by those skilled in the art, the Portable System for Inventory Identification and Classification may either interact with an object tracking system to help locate, identify and / or classify objects by location, or it may act alone to measure randomly surfaced objects, such surfaces having one or more layers with oNy the outer layer being visible to the human eye.
Other uses are apparent Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but rather by the appended claims and their legal equivalents.

Claims (4)

    Claims
  1. Claim 1. An automatic means for determining the location of a spot on a remote object, comprising;
    means for determining the location of an observation point, and means responsive to said location of said observation point for determining said location of said spot.
  2. Claim 2. An automatic means for identifying any object from within a group of objects, comprising:
    means for remotely determining the location of said object, and means responsive to said location for identifying said object.
  3. Claim 3. An automatic means for providing information regarding any object from within a group of objects, where the objects are not required to bear any identifying indicia, comprising:
    means for remotely identifying said object, and means responsive to said identity of said object for providing information.
  4. Claim 4. An automatic means for classifying objects, where the objects are not required to bear any identifying indicia, comprising:
    means for remotely identifying said object, and means responsive to said identity of said object for classifying said object.
CA002297194A 1997-06-09 1997-06-09 Portable system for inventory identification and control Abandoned CA2297194A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1997/009839 WO1998057120A1 (en) 1997-06-09 1997-06-09 Portable system for inventory identification and control

Publications (1)

Publication Number Publication Date
CA2297194A1 true CA2297194A1 (en) 1998-12-17

Family

ID=22261036

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002297194A Abandoned CA2297194A1 (en) 1997-06-09 1997-06-09 Portable system for inventory identification and control

Country Status (4)

Country Link
EP (1) EP1007903A4 (en)
AU (1) AU747325B2 (en)
CA (1) CA2297194A1 (en)
WO (1) WO1998057120A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1532421T3 (en) * 2002-08-27 2014-01-20 Dralle As Method and system for automatic measurement and tracking of logs, industrial wood and boards
SE533721C2 (en) * 2009-05-25 2010-12-14 Valutec Ab Method and apparatus for controlling dimensional change of wood dried in a drying device
US20120262292A1 (en) * 2011-04-14 2012-10-18 Martin Moser Portable device inventory tracking

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168372A (en) * 1988-12-22 1990-06-28 Toshiba Corp Bundle number detector
JPH05288516A (en) * 1992-04-07 1993-11-02 Honda Motor Co Ltd Noncontact type position detecting device
US5307294A (en) * 1992-12-22 1994-04-26 Aman James A Automated end tally system
GB2285550B (en) * 1994-01-05 1997-09-17 Creo Products Inc Optical coordinate measuring system for large objects

Also Published As

Publication number Publication date
EP1007903A1 (en) 2000-06-14
AU747325B2 (en) 2002-05-16
WO1998057120A1 (en) 1998-12-17
EP1007903A4 (en) 2001-11-07
AU3304197A (en) 1998-12-30

Similar Documents

Publication Publication Date Title
US5960413A (en) Portable system for inventory identification and classification
EP0866981B1 (en) Automated lumber unit tracking system
US8565913B2 (en) Apparatus and method for asset tracking
EP1317172B1 (en) A method and a system for handling pieces of wood
US8022812B2 (en) Information collection system and information collection robot
US7307710B2 (en) Surveying methods and apparatus
US8561897B2 (en) Load tracking utilizing load identifying indicia and spatial discrimination
US20120191272A1 (en) Inferential load tracking
US7218975B2 (en) Integrated mill
EP2972084B1 (en) System and method for positioning a tool in a work space
WO2008057504A2 (en) Load tracking system based on self- tracking forklift
EP0754290B1 (en) Automated end tally system and method
US20060092403A1 (en) Method and a system for automatic measurement and tracking of logs, industrial wood and boards
US20230237430A1 (en) Drone-based inventory management methods and systems
US5808912A (en) Method for dimensional weighing utilizing point determination
US11609340B2 (en) System and method for GPS based automatic initiation of sensor calibration
US11635313B2 (en) System and method for simultaneously multiple sensor calibration and transformation matrix computation
Brunner et al. Rapid detection of stand density, tree positions, and tree diameter with a 2D terrestrial laser scanner
JP2012137304A (en) Automatic measurement device for goods distribution system
AU747325B2 (en) Portable system for inventory identification and control
KR101916248B1 (en) Data collection system in shipyard
Caldas et al. Integration of automated data collection technologies for real-time field materials management
WO2000062089A1 (en) Portable system for inventory control classification
WO2002071832A1 (en) Method of assessing standing trees
CN114360274B (en) Distribution vehicle navigation method, system, computer equipment and storage medium

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued