CA2295616C - Use of phosphodiesterase inhibitors in the treatment of prostatic diseases - Google Patents

Use of phosphodiesterase inhibitors in the treatment of prostatic diseases Download PDF

Info

Publication number
CA2295616C
CA2295616C CA002295616A CA2295616A CA2295616C CA 2295616 C CA2295616 C CA 2295616C CA 002295616 A CA002295616 A CA 002295616A CA 2295616 A CA2295616 A CA 2295616A CA 2295616 C CA2295616 C CA 2295616C
Authority
CA
Canada
Prior art keywords
hydroxy
benzyl
quinazoline
pyrimidin
propyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002295616A
Other languages
French (fr)
Other versions
CA2295616A1 (en
Inventor
Christian Georg Stief
Michael Carsten Truss
Stefan Uckert
Udo Jonas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2295616A1 publication Critical patent/CA2295616A1/en
Application granted granted Critical
Publication of CA2295616C publication Critical patent/CA2295616C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention pertains to the use of inhibitors of phosphodiesterase I, IV and V for the prophylaxis and treatment of prostatic diseases, in particular the use of a) 2-(2-propoxy- phenyl)-8-azapurin-6-one (zaprinast); b) dipyridamole;
c) 1-(3-chloropheny-lamino)-4-phenylphthalazine (M5445); d) 2-(N-(4-carboxypiperidine-6-chloro-4-(3,4-(methylendioxy)benzyl)amino)quinazoline (E
4021, ER 21355); e) 2,3-dihydro-8- hydroxy-7-nitro-1, 4-benzodioxine-2-methanol, alpha-nitrate (E 4701); f) 4-((3,4-(methylendioxy) benzyl)amino)-6, 7,8-trimethoxy-quinazoline; g) 1-methyl-3-propyl-6- (5-(N-(4-methylmorpholino) sulfonyl)-2-ethoxyphenyl)pyrazole [4,5]pyrimidin-4(5H)one (sildenafil); i) 1-cyclopentyl-3-methyl-6- (4-pyridinyl)pyrazolo(3, 4-d)pyrimidin-4(5H)-one (WIN 58237);
j) 7-(3-(4-acetyl-3- hydroxy-2-propyl-phenoxy) -2-hydroxy-propoxy)-2-carboxy-2, 3-didehydro-chronan-4-one (FPL-557212); k) quinazolines and their trimethoxy derivatives; 1) Pyrazolopyrimidones; as well as pharmacologically compatible salts thereof, quinazolines and their trimethoxy derivatives, pyrazolopyrimidones or compatible salts thereof, in local and systemic administration.

Description

Use of Phosphodiesterase Inhibitors in the Treatment of Prostatic Diseases The prostate gland is an organ of about chest-nut size which in males surrounds the cervix of the vesical outlet. In 50t of the males in the age of above 50 years, a benign growth of the prostate gland occurs which may result in severe difficulties in the miction up to anuria and which is subject to treatment obligation. Most of the affected patients must be treated with surgical methods.

In the development of benign prostatic hyperplasia (BPH), the glandular portions of the prostate gland increase by double their volume, and the muscular and fibrous portions increase by four times their volume (Christmas and Kirby, W.J. Urol. 9= 36-40, 1991). Since these muscle cells account for a large portion of the total prostatic tissue (at least 35%), a distinct improvement of miction can be achieved by means of a pharmacologically induced relaxation of these muscle cells (Hedlund'and Andersson, J. Urol. 130: 275-278, 1983). The substances used to date mostly belong to the group of alpha-receptor blockers (Lepor et al., J.
Urol. 143: 267, 1990), or they interfered with the hormonal regulation of the prostate gland (Kirby and Christmas, W.J.
Urol., 9: 41-44, 1991); these medicament treatments were characterized by either a very low effectiveness, a slow onset of action, or significant side-effects, or a combination of such effects.
Therefore, we have examined a completely different pharmacologi-cal principle of action, namely the affection of a key enzyme within the smooth muscle cells of the prostate gland, phosphodie-sterase.

The physiological transmission of information for the relaxation of smooth muscle cells is effected by messengers of the blood (hormones) or the nerves (neurotransmitters). These messengers and neurotransmitters cause an increase in the levels of the cyclic nucleotides "cyclic adenosine monophosphate" (cAMP) and "cyclic guanosine monophosphate" (cGMP) in the smooth muscle cell, resulting in relaxation. cAMP and cGMP themselves are hydrolized by phosphodiesterases (PDEs). Inhibitors of the PDEs in turn reduce the digestion of cAMP and cGMP, resulting in an increase of these molecules within the cell and thus in a relax-ation of the smooth muscle cell. This mechanism of action has been described, for instance, by C.D.Nicholson, R.A. Challiss, and M. Shadid: Trends Pharmacol. Sci., 12 (1991), 19-27, C.D.
Nicholson and M. Shadid: Pulm. Pharmacol. 7 (1) (1994), 1-17, and T.J. Torphy et al.: J. Pharmacol. Exp. Ther. 265 (3) (1993), 1213-23.

From these publications as well as from W.J. Thompson: Pharmacol.
Ther. 51 (1991), 13-33, and J. Beavo in: J. Beavo and M.D.
Housley (eds.): Cyclic nucleotide phosphodiesterases: Structure, regulation and drug action, Chichester, New York-Brisbane-Toronto-Singapore, Wiley,.1990: 3-15, there is further known the distinction of a number of subesterases of PDE, the specific phosphodiesterases (sPDE). There is distinguished between five different sPDEs which are differently distributed in the individual organs and organ systems and exhibit different levels of effectiveness according to their distribution. In the publica-tions mentioned, there is also discussed the occurrence of the different isoenzymes in various tissues.
An interesting target for the use of PDE isoenzyme selective inhibitors is the lower urinary tract since the medicamental therapy of prostate dysfunctions with conventional substances is often little effective and full of side-effects. Therefore, a well-aimed affection of the prostatic muscles by inhibiting a functionally important sPDE isoenzyme appears to be superior to conventional therapy methods.

Surprisingly, it has now been found that sPDE I, sPDE IV and sPDE V are of particular importance in human prostatic muscles After performing Q-sepharose chromatography, there has been found a typical pattern of the human prostatic tissue showing the presence of the PDE isoforms I, IV and V (FIG. 1 +L) . A
well-aimed inhibition of these isoenzymes will result in relaxation of the prostatic muscles even when minute doses of a specific inhibitor are administered, with no appreciable effects in other organ strips, in particular vessels, being observed. Therefore, they have an excellent efficiency in the treatment of prostatic diseases.

Therefore, the subject matter of the invention is the use of specific inhibitors of sPDE I, sPDE IV and sPDE V in the prophylaxis and treatment of prostatic diseases, in particular benign prostatic hyperplasia, the so-called urge symptoms, pollacuria (frequent micturition), nycturia (nocturnal micturition), weakened urine jet, urge incontinence (involuntary discharge of urine), prostatism, instabilities of the bladder muscles, impotence, and the use of the inhibitors for the preparation of medicaments useful for this purpose as well as medicaments containing sPDE I, IV and V inhibitors for the objects mentioned.

In another aspect of the invention there is a pharmaceutical composition comprising sPDE I, IV and V inhibitors and a pharmaceutically acceptable carrier for the prophylaxis and treatment of the previously mentioned prostatic diseases.

Preferred selective inhibitors of PDE I, IV and V are:
a) 2-(2-propoxyphenyl)-8-azapurin-6-one (zaprinast);

H N N\ N

N N
H
O

b) dipyridamole;

N N
HOCH2CH2 N ~'CH2CH20H

N-- N N
I N

c) 1-(3-chlor.ophenylamino)-4-phenylphthalazine (MY5445);
I
\

N
~N
H N CI
d) 2-(N-(4-carboxypiperidine)-6-chloro-4-(3,4-(methylen-dioxy)benzyl)amino)quinazoline (E 4021, ER 21355);

HN
CI I >
N O

N N

COOH
e) 2,3-dihydro-8-hydroxy-7-nitro-1,4-benzodioxine-2-methanol, alpha-nitrate (E 4701);
f) 4-((3,4-(methylendioxy)benzyl)amino)-6,7,8-trimethoxy-quinazoline;

HN
Me0 >
N O
I
MeO N
OMe g) 1-methyl-3-propyl-6-(5-(N-(4-methylmorpholino)sulfo-nyl ) -2 -ethoxyphenyl ) pyrazole [4 , 5 ] pyrimidin-4 ( 5H) one (Sildenafil) O
,---~O H N N.
I /N
N

O /S"-,N
O
~N,,, h) 2-n-butyl-5-chloro-l-(2-chlorobenzyl)4-methylacetate-imidazole;

n-B u-~

CI
CI
i) 1-cyclopentyl-3-methyl-6-(4-pyridinyl)pyrazolo(3,4-d)pyrimidin-4(5H)-one (WIN 58237);

HN ' 1~ N
/ N N
N ( ~
j) 7-(3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)-2-hydroxy-propoxy)-2-carboxy-2,3-didehydro-chronan-4-one (FPL-55712);

OH
HOOC O O O OH
O O

k) quinazolines and their trimethoxy derivatives;
1) pyrazolopyrimidones;
as well as pharmacologically compatible salts thereof.

The pharmacologically compatible salts are obtained in a similar manner by neutralizing the bases with inorganic or organic acids.
As the inorganic acids, there may be used, for example, hydro-chloric acid, sulfuric acid, phosphoric acid or hydrobromic acid, and as the organic acids, for example, carboxylic, sulfo or sulfonic acids, such as acetic acid, tartaric acid, lactic acid, propionic acid, glycolic acid, malonic acid, maleinic acid, fumaric acid, tannic acid, succinic acid, alginic acid, benzoic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, cinnamic acid, mandelic acid, citric acid, malic acid, salicylic acid, 3-aminosalicylic acid, ascorbic acid, embonic acid, nicotinic acid, isonicotinic acid, oxalic acid, amino acids, methane-sulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methyl-benzenesulfonic acid, or naphthalene-2-sulfonic acid.

In the preparation of the medicaments for the treatment of the diseases mentioned, an effective amount of the inhibitors of sPDE
I, IV or V or of the salts thereof is used in addition to the usual excipients, vehicles and additives. The dosage depends on the species, body weight, age, individual condition, and kind of administration.

Possible dosage forms are oral, intravenous, transdermal, subcutaneous and intravesicular formulations. The latter are, in particular, those solutions and formulations which are also used for parenteral administration.

Formulations for parenteral administration will contain from 0.15 g to 1 mg, preferably from 5 to 500 g, of the compounds mentioned per unit dose and may be present in separate unit dose forms, such as ampoules or vials. Preferably, solutions of the active ingredient are used, more preferably aqueous solutions, and mainly isotonic solutions, but also suspensions. These injection forms may be provided as a ready preparation, or they may be formulated only immediately before use by admixing the active compound, for example, the lyophilizate, optionally together with other solid carriers, with the solvent or suspen-sion medium desired.

For oral administration, there are used the usual galenic preparations, such as tablets, coated tablets, capsules, dis-persible powders, granules, aqueous or oily suspensions, syrups, liquors or drops.
Solid preparations may contain inert excipients and vehicles, such as calcium carbonate, calcium phosphate, sodium phosphate, lactose, starch, mannitol, alginates, gelatin, guar gum, magnesium or aluminium stearate, methylcellulose, talcum, highly dispersed silicic acids, silicone oil, higher-molecular fatty acids (such as stearic acid), agar-agar, or vegetable or animal fats and oils, solid high-molecular polymers (such as polyethyle-ne glycol); formulations useful for oral administration may optionally contain additional flavoring and/or sweetening agents.
Liquid preparations may be sterilized and/or may optionally contain additives, such as preservatives, stabilizers, wetting agents, penetration agents, .emulsifiers, spreading agents, solubilizers, salts for adjusting the osmotic pressure or for buffering, and/or viscosity modifiers.

Such additives are, for instance, tartrate and citrate buffers, ethanol, complexing agents (such as ethylenediaminetetraacetic acid and its non-toxic salts). For adjusting the viscosity, there may be used high-molecular polymers, such as, for example, liquid polyethylene oxide, carboxymethylcelluloses, polyvinylpyrroli-dones, dextranes, or gelatin. Solid vehicles are, for instance, starch, lactose, mannitol, methylcellulose, talcum, highly dispersed silicic acids, higher-molecular fatty acids (such as stearic acid), gelatin, agar-agar, calcium phosphate, magnesium stearate, animal and vegetable fats, solid high-molecular polymers (such as polyethylene glycol).

Oily suspensions for parenteral or topical (in this case intra-vesicular) administrations may contain vegetable, synthetic or semisynthetic oils, such as, for instance, liquid fatty acid esters having from 8 to 22 carbon atoms in the fatty acid chains, for example, palmitic, lauric, tridecylic, margaric, stearic, arachic, myristic, behenic, pentadecylic, linolic, elaidic, brassidic, erucic or oleic acids, which may be esterified with monohydric to trihydric alcohols having from 1 to 6 carbon atoms, such as, for instance, methanol, ethanol, propanol, butanol, pentanol, or isomers thereof, glycol, or glycerol. Such fatty acid esters are, for instance, commercially available miglyols, isopropyl myristate, isopropyl palmitate, isopropyl stearate, PEG
6-caprylic acid, caprylates/caprates of saturated fatty alcohols, polyoxyethyleneglycerol trioleates, ethyl oleate, waxy fatty acid esters, such as synthetic duck uropygial fat, coconut oil fatty acid isopropyl ester, oleic acid oleyl ester, oleic acid decyl ester, lactic acid ethyl ester, dibutyl phthalate, adipic acid diisopropyl ester, polyol fatty acid ester, etc. Also useful are silicone oils of various viscosities or fatty alcohols, such as isotridecyl alcohol, 2-octyldodecanol, cetylstearyl alcohol or oleyl alcohol, fatty acids, such as oleic acid. Further, vegeta-ble oils, such as castor oil, almond oil, olive oil, sesame oil, cottonseed oil, peanut oil or soybean oil, may be used. The materials mentioned have the additional property of a spreading agent, i.e. there will be a particularly good spreading on the skin.

As solvents, gelling agents and solubilizers, there may be used water or water-miscible solvents. Useful are alcohols, for example, such as ethanol or isopropyl alcohol, benzyl alcohol, 2-octyldodecanol, polyethyleneglycols, phthalates, adipates, propylene glycol, glycerol, dipropylene or tripropylene glycol, waxes, methylcellosolve, cellosolve, esters, morpholines, dioxane, dimethylsulfoxide, dimethylformamide, tetrahydrofurane, cyclohexanone, etc.

As film-forming agents, there may be used cellulose ethers which can dissolve or swell both in water and in organic solvents and will form a kind of film after drying, such as hydroxypropyl-cellulose, methylcellulose, ethylcellulose, or soluble starches.
Mixed gelling and film-forming agents are also possible by all means. In this case, there are chiefly used ionic macromolecules, such as sodium carboxymethylcellulose, polyacrylic acid, poly-methacrylic acid, and salts thereof, sodium amylopectine semi-glycolate, alginic acid or propylene glycol alginate as the sodium salt, gum arabic, xanthan gum, guar gum or carrageen.
As additional formulation aids, there may be used: glycerol, paraffins having different viscosities, triethanolamine, collagen, allantoin, novantisolic acid, perfume oils.

The use of surfactants, emulsifiers or wetting agents may also be required for the formulation, such as, for example, sodium lauryl sulfate, fatty alcohol ether sulfates, disodium N-lauryl a-iminodipropionate, polyoxyethylated castor oil, or sorbitan monooleate, sorbitan monostearate, cetyl alcohol, lecithin, glycerol monostearate, polyoxyethylene stearate, alkylphenol polyglycol ether, cetyltrimethylammonium chloride, or monoalkyl/
dialkyl polyglycol ether ortho-phosphoric acid monoethanolamine salts.

Stabilizers, such as montmorillonites or colloidal silicic acids, for the stabilization of emulsions or for preventing decomposi-tion of active substances, such as antioxidants, for example, tocopherols or butylhydroxyanisol, or preservatives, such as p-hydroxybenzoic acid ester, may also be required for the prepara-tion of the formulations desired.

For promoting penetration, intravesicular formulations preferably contain highly compatible organic solvents, such as ethanol, methylpyrrolidone, polyethylene glycol, oleyl alcohol, octanol, linolic acid, triacetin, propylene glycol, glycerol, solketal, or dimethylsulfoxide.

The preparation, filling and sealing of the preparations is done under the usual antimicrobial and aseptic conditions. Also for topical or transdermal application, the preparations are preferably packed in separate unit doses for easy handling, and if required for stability reasons, as with parenteral forms, also by separately packing the active ingredients or their combina-tions as lyophilizates, optionally with solid carriers, and the solvents required etc.

Example 1 - Iniection Fifty milligrams of sildenafil is dissolved in distilled water together with 750 mg of NaCl, the pH is adjusted to 3.7 with 1 N
HC1, distilled water is added to give a total of 100 ml, and the solution is packed in 0.5 ml ampoules.

Example 2 - Solution for Topical Administration From 500 mg of sildenafil, 2 ml of isopropyl myristate and 10 ml of ethanol, a solution for topical administration is prepared and packed in unit doses of 2 ml each.

The effectiveness of the medicaments according to the teaching of the invention is demonstrated by the following pharmacological studies:

Human prostatic tissue freshly collected in the course of an operation is cut into small strips (about 3 x 3 x 6 mm) . The latter are then installed in a bath containing a nutrient solution ensuring survival of the organic strips. By coupling the organic strips to a measuring element, length and force changes of the organic strip can be recorded, and thus actions of medicaments added to the organ bath nutrient solution can be examined through the length and force changes (increase or decrease) of the organic strip. At the beginning of the experi-ment, the organic strips are contracted with an appropriate standard medicament (e.g., carbachol). After the contraction of the organic strips is completed, an inhibitor of a specific phosphodiesterase is now added in incremental dosage (10-e, 10-7, 10-6 etc. mol/1) to the organ bath solution, and the relaxation triggered thereby is measured. The results obtained are essen-tially applicable to the whole organism since human tissue had been used and the metabolic processes studied proceed faster in the whole organism and thus the medicaments will act still more quickly. In these studies, the inhibitors of PDE I, IV and V
proved to have the stongest prostatic tissue relaxing effect.
The proof of whether a compound is suitable for the purpose according to the invention, i.e. is an inhibitor of sPDE I, IV
or V, is furnished by known methods, such as described, e.g., by Galwan et al., Arch. Pharmacol. 1990, 342, 221-227; or Nicholson, Br. J. Pharmacol. 1989, 79, 889-897; for example, according to the following general procedure:

Fresh tissue obtained during an operation is homogenized and then ultracentrifuged. Next, the supernatant is filtered, pipetted off and chromatographed. The determination of sPDE is performed as described in M. Truss et al.: Urology 45(5): 893-901, 1995. The determination of the amount of radioactivity permits to calculate the enzyme activity in pmol/ml x min. A plot of the activity curve allows to identify fractions in which the phosphodiesterase activity is particularly high. The phosphodiesterase activity of each peak exhibits a different composition with respect to the activity of the different substrates. This special composition of the phosphodiesterase activity allows for the assignment to a specific phosphodiesterase (sPDE). A substance is considered an inhibitor of an sPDE if the concentration thereof which is necessary for inhibiting 50% of the substrate hydrolysis (IC50) is at least 20 times lower in the respective peak fraction containing the specific phosphodiesterase than in other peak fractions. For this purpose, enzyme preparations are again prepared, as described above. Now, however, the compound to be tested is added prior to the incubation of the enzyme mixtures according to peak fractions. Then, renewed determination and plotting of the enzyme activity allows to identify a substance as being an inhibitor of the specific phosphodiesterase according to the above-mentioned definition.

Claims (8)

CLAIMS:
1. Use of a component in the prophylaxis and treatment of prostatic diseases, the component selected from the group of consisting of a) 2-(2-propoxyphenyl)-8-azapurin-6-one (zaprinast);
b) dipyridamole;

c) 1-(3-chlorophenylamino)-4-phenylphthalazine (MY5445);

d) 2-(N-(4-carboxypiperidine)-6-chloro-4-(3,4-(methylen-dioxy)benzyl)amino)quinazoline (E 4021, ER 21355);

e) 2,3-dihydro-8-hydroxy-7-nitro-1,4-benzodioxine-2-methanol, alpha-nitrate (E 4701);

f) 4-((3,4-(methylendioxy)benzyl)amino)-6,7,8-trimethoxy-quinazoline;

g) 1-methyl-3-propyl-6-(5-(N-(4-methylmorpholino)sulfonyl)-2-ethoxyphenyl ) pyrazole [4,5] pyrimidin-4(5H) one (Sildenafil);

h) 2-n-butyl-5-chloro-l-(2-chlorobenzyl)4-methylacetate-imidazole;

i) 1-cyclopentyl-3-methyl-6-(4-pyridinyl)pyrazolo(3,4-d)pyrimidin-4(5H)-one (WIN 58237); and j) 7-(3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)-2-hydroxy-propoxy)-2-carboxy-2,3-didehydro-chronan-4-one (FPL-55712);

as well as pharmacologically compatible salts thereof.
2. The use of claim 1, wherein the prostatic disease is selected from the group consisting of benign prostatic hyperplasia, the so-called urge symptoms, pollacuria (frequent micturition), nycturia (nocturnal micturition), weakened urine jet, urge incontinence (involuntary discharge of urine), prostatism, and instabilities of the bladder muscles.
3. A medicament for the prophylaxis and treatment of prostatic diseases, the medicament containing a component selected from the group consisting of a) 2-(2-propoxyphenyl)-8-azapurin-6-one (zaprinast);
b) dipyridamole;

c) 1-(3-chlorophenylamino)-4-phenylphthalazine (MY5445);
d) 2-(N-(4-carboxypiperidine)-6-chloro-4-(3,4-(methylen-dioxy)benzyl)amino)quinazoline (E 4021, ER 21355);

e) 2,3-dihydro-8-hydroxy-7-nitro-1,4-benzodioxine-2-methanol, alpha-nitrate (E 4701);

f) 4-((3,4-(methylendioxy)benzyl)amino)-6,7,8-trimethoxy-quinazoline;

g) 1-methyl-3-propyl-6-(5-(N-(4-methylmorpholino)sulfonyl)-2-ethoxyphenyl) pyrazole [4,5] pyrimidin-4 (5H) one (Sildenafil);

h) 2-n-butyl-5-chloro-l-(2-chlorobenzyl)4-methylacetate-imidazole;

i) 1-cyclopentyl-3-methyl-6-(4-pyridinyl)pyrazolo(3,4-d)pyrimidin-4(5H)-one (WIN 58237); and j) 7-(3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)-2-hydroxy-propoxy)-2-carboxy-2,3-didehydro-chronan-4-one (FPL-55712);
as well as pharmacologically compatible salts thereof.
4. The medicament of claim 3, wherein the prostatic disease is selected from the group consisting of benign prostatic hyperplasia, the so-called urge symptoms, pollacuria (frequent micturition), nycturia (nocturnal micturition), weakened urine jet, urge incontinence (involuntary discharge of urine), prostatism, and instabilities of the bladder muscles.
5. Use of a component in the preparation of medicaments for the prophylaxis and treatment of prostatic diseases, the component selected for the group consisting of a) 2-(2-propoxyphenyl)-8-azapurin-6-one (zaprinast);

b) dipyridamole;

c) 1-(3-chlorophenylamino)-4-phenylphthalazine (MY5445);
d) 2-(N-(4-carboxypiperidine)-6-chloro-4-(3,4-(methylen-dioxy)benzyl)amino)quinazoline (E 4021, ER 21355);

e) 2,3-dihydro-8-hydroxy-7-nitro-1,4-benzodioxine-2-methanol, alpha-nitrate (E 4701);

f) 4-((3,4-(methylendioxy)benzyl)amino)-6, 7, 8-trimethoxy-quinazoline;

g) 1-methyl-3-propyl-6-(5-(N-(4-methylmorpholino)sulfonyl)-2-ethoxyphenyl)pyrazole[4,5]pyrimidin-4(5H) one (Sildenafil);

h) 2-n-butyl-5-chloro-1-(2-chlorobenzyl)4-methylacetate-imidazole;

i) 1-cyclopentyl-3-methyl-6-(4-pyridinyl)pyrazolo(3,4-d)pyrimidin-4(5H)-one (WIN 58237); and j) 7-(3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)-2-hydroxy-propoxy)-2-carboxy-2,3-didehydro-chronan-4-one (FPL-55712);
as well as pharmacologically compatible salts thereof.
6. The use of claim 5, wherein the prostatic disease is selected from the group consisting of benign prostatic hyperplasia, the so-called urge symptoms, pollacuria (frequent micturition), nycturia (nocturnal micturition), weakened urine jet, urge incontinence (involuntary discharge of urine), prostatism, and instabilities of the bladder muscles.
7. A pharmaceutical composition for the prophylaxis and treatment of prostatic disease comprising a compound selected from the group consisting of a) 2-(2-propoxyphenyl)-8-azapurin-6-one (zaprinast);
b) dipyridamole;

c) 1-(3-chlorophenylamino)-4-phenylphthalazine (MY5445);
d) 2-(N-(4-carboxypiperidine)-6-chloro-4-(3,4-(methylen-dioxy)benzyl)amino)quinazoline (E 4021, ER 21355);

e) 2,3-dihydro-8-hydroxy-7-nitro-1,4-benzodioxine-2-methanol, alpha-nitrate (E 4701);

f) 4-((3,4-(methylendioxy)benzyl)amino)-6,7,8-trimethoxy-quinazoline;

g) 1-methyl-3-propyl-6-(5-(N-(4-methylmorpholino)sulfonyl)-2-ethoxyphenyl) pyrazole [4,5] pyrimidin-4(5H)one (Sildenafil);

h) 2-n-butyl-5-chloro-1-(2-chlorobenzyl)4-methylacetate-imidazole;

i) 1-cyclopentyl-3-methyl-6-(4-pyridinyl)pyrazolo(3,4-d)pyrimidin-4(5H)-one (WIN 58237); and j) 7-(3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)-2-hydroxy-propoxy)-2-carboxy-2,3-didehydro-chronan-4-one (FPL-55712);
as well as pharmacologically compatible salts thereof and a pharmaceutically acceptable carrier.
8. The pharmaceutical composition of claim 7, wherein the prostatic disease is selected from the group consisting of benign prostatic hyperplasia, the so-called urge symptoms, pollacuria (frequent micturition), nycturia (nocturnal micturition), weakened urine jet, urge incontinence (involuntary discharge of urine), prostatism, and instabilities of the bladder muscles.
CA002295616A 1997-07-09 1997-07-09 Use of phosphodiesterase inhibitors in the treatment of prostatic diseases Expired - Lifetime CA2295616C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1997/003617 WO1999002161A1 (en) 1997-07-09 1997-07-09 Use of phosphordiesterase inhibitors in the treatment of prostatic diseases

Publications (2)

Publication Number Publication Date
CA2295616A1 CA2295616A1 (en) 1999-01-21
CA2295616C true CA2295616C (en) 2009-05-12

Family

ID=8166680

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002295616A Expired - Lifetime CA2295616C (en) 1997-07-09 1997-07-09 Use of phosphodiesterase inhibitors in the treatment of prostatic diseases

Country Status (3)

Country Link
AU (1) AU3621097A (en)
CA (1) CA2295616C (en)
WO (1) WO1999002161A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200591B1 (en) 1998-06-25 2001-03-13 Anwar A. Hussain Method of administration of sildenafil to produce instantaneous response for the treatment of erectile dysfunction
DE19834506A1 (en) * 1998-07-31 2000-02-03 Hexal Ag Transmucosal therapeutic system for the use of sildenafil
IL132406A0 (en) * 1998-10-21 2001-03-19 Pfizer Prod Inc Treatment of bph with cgmp elevators
IL130968A (en) 1999-07-15 2002-12-01 Shmuel Simon Pharmaceutical composition comprising sildenafil or its analogs, useful for the treatment of tinnitus and hearing loss
US6828473B2 (en) 2000-11-01 2004-12-07 Pfizer Inc. Modulation of PDE11A activity
JP2005513060A (en) * 2001-12-17 2005-05-12 アルタナ ファルマ アクチエンゲゼルシャフト New use of selective PDE5 inhibitors
FR2845993B1 (en) * 2002-10-16 2005-02-11 Univ Pasteur PHARMACEUTICAL COMPOUNDS INHIBITORS SPECIFIC OF SMOOTH MUSCLE PDE5, PHARMACEUTICAL COMPOSITIONS CONTAINING SAME, AND THERAPEUTIC USES
US20060035905A1 (en) * 2004-02-06 2006-02-16 Becton, Dickinson And Company Formulations of phosphodiesterase 5 inhibitors and methods of use
US20070093493A1 (en) * 2005-10-12 2007-04-26 Lilly Icos Llc Treatment of benign prostatic hypertrophy and lower urinary tract symptoms
RU2008120332A (en) * 2005-12-20 2010-01-27 Пфайзер Продактс Инк. (Us) PHARMACEUTICAL COMPOSITION FOR TREATMENT OF LUTS CONTAINING A PDE5 INHIBITOR AND MUSCARINE ANTAGONIST
AT512084A1 (en) 2011-10-20 2013-05-15 Univ Wien Tech DIAZABICYCLO AND DIAZASPIRO ALKAN DERIVATIVES AS PHOSPHODIESTERASE-5 INHIBITORS

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540642A1 (en) * 1995-11-01 1997-05-07 Stief Christian Georg Priv Doz Use of phosphodiesterase I, IV and V inhibitors

Also Published As

Publication number Publication date
CA2295616A1 (en) 1999-01-21
AU3621097A (en) 1999-02-08
WO1999002161A1 (en) 1999-01-21

Similar Documents

Publication Publication Date Title
US6391869B1 (en) Compositions and methods for the treatment of anorectal disorders
US6395736B1 (en) Compositions and methods for the treatment of anorectal disorders
US6627632B2 (en) Compositions and methods for the treatment of anorectal disorders
US6083483A (en) Inhibitors of phosphodiesterase IV for x-ray imaging
CA2295616C (en) Use of phosphodiesterase inhibitors in the treatment of prostatic diseases
US9555034B2 (en) Compositions and methods for treating skin cancer associated diseases
US6423719B1 (en) Method for treating benign prostate hyperplasia
WO2003075851A2 (en) Compositions and methods for the treatment of anorectal disorders
US8791124B2 (en) Use of phosphordiesterase inhibitors in the treatment of prostatic diseases
MX2008015266A (en) Use of allopurinol for the treatment of palmar plantar erythrodysesthesia.
Rogers et al. Bradykinin‐induced plasma exudation in guinea‐pig airways: involvement of platelet activating factor
ES2312588T3 (en) REGULATION OF THE PANCREATIC JUICE SECRETION UNDERSTANDING A LPA RECEIVER REGULATION AGENT.
Rotella Phosphodiesterase type 5 inhibitors: discovery and therapeutic utility
JPH11279080A (en) Composition for decreasing cicatrix
DE19540642A1 (en) Use of phosphodiesterase I, IV and V inhibitors
CA2228314A1 (en) Use of pde inhibitors in the manufacture of a medicament for the treatment of bladder diseases
WO1997005876A9 (en) Use of pde inhibitors in the manufacture of a medicament for the treatment of bladder diseases
KR100863758B1 (en) Compositions and methods for the treatment of anorectal disorders
US20080014258A1 (en) Use of fosfluridine tidoxil (FT) for the treatment of intraepithelial proliferative diseases
BRPI0711847A2 (en) uses of allopurinol for the treatment or prevention of plantar palm erythrodysesthesia, pharmaceutical composition for topical administration to the skin and method for the treatment or prevention of plantar palm erythrodysesthesia
CN1205634A (en) Use of PDE inhibitors in manufacture of medicament for treatment of bladder diseases
CA2009402A1 (en) Use of benzydamine and salts thereof for relief of pain associated with herpes viral infections and laser vaporization of condylomata
EP4232002A1 (en) Transdermal treatment for erectile dysfunction
MXPA01005733A (en) Compositions and methods for the treatment of anorectal disorders
ZA200104778B (en) Compositions and methods for the treatment of anorectal disorders.

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20170710