CA2290414C - Hypobarically-controlled, double-socket artificial limb with mechanical interlock - Google Patents
Hypobarically-controlled, double-socket artificial limb with mechanical interlock Download PDFInfo
- Publication number
- CA2290414C CA2290414C CA002290414A CA2290414A CA2290414C CA 2290414 C CA2290414 C CA 2290414C CA 002290414 A CA002290414 A CA 002290414A CA 2290414 A CA2290414 A CA 2290414A CA 2290414 C CA2290414 C CA 2290414C
- Authority
- CA
- Canada
- Prior art keywords
- socket
- vacuum
- hypobarically
- limb
- artificial limb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Prostheses (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
A hypobarically-controlled artificial limb for amputees includes as outer socket, a flexible, compressible inner socket within the outer socket with a cavity for receiving the residual limb, a space between the inner socket and the outer socket, a vacuum source connected to the cavity, a positive pressure source connected to the space, a regulator for controlling the vacuum source and positive pressure source, and a seal for making an airtight seal between the residual limb and the socket. Another embodiment includes a semi-compressible molding material in the space to mold to the contours of the residual limb under the influence of vacuum and/or positive pressure. Another embodiment includes a positive mechanical interlock between the inner socket and the outer socket.
Description
HYPOBARICALLY-CONTROLLED, DOUBLE-SOCKET
ARTIFICIAL LllVIB WITH MECHANICAL INTER1LOCK
BACKGROUND OF THE INVENTION
The present invention relates to prosthetic devices and more particularly to a hypobarically-controlled artificial limb for amputees.
An amputee is a person who has lost part of an extremity or limb such as a leg or arm which commonly may be termed as a residual limb. Residual limbs come in various sizes and shapes with respect to the stump. That is, most new amputations are either slightly bulbous or cylindrical in shape while older amputations that may have had a lot of atrophy are generally more conical in shape. Residual limbs may further be characterized by their various individual problems or configurations including the volume and shape'of a stump and possible scar, skin graft, bony prominence, uneven limb volume, neuroma, pain, edema or soft tissue configurations.
Referring to FIGS. l and 2, a below the knee residual limb 10 is shown and described as a leg 12 having been severed below the knee terminating in a stump 14. In this case, the residual limb 10 includes soft tissue as well as the femur 16, knee joint 18, and severed tibia 20 and fibula 22. Along these bone structures surrounded by soft tissue are nerve bundles and vascular routes which must be protected against external pressure to avoid neuromas, numbness and discomfort as well as other kinds of problems. A
below the knee residual limb 10 has its stump 14 generally characterized as being a more bony structure while an above the knee residual limb may be characterized as including more soft tissue as well as the vascular routes and nerve bundles.
Referring to FIG. 2, amputees who have lost a part of their arm 26, which terminates in a stump 28 also may be characterized as having vascular routes, nerve bundles as well as soft and bony tissues. The residual limb 10 includes the humerus bone 30 which extends from below the shoulder to the elbow from which the radius 34 and ulna 36 bones may pivotally extend to the point of severance. Along the humerus bone 30 are the biceps muscle 38 and the triceps muscle 40 which still yet may be connected to the radius 34 and the ulna 36, respectively.
In some respects, the residual limb amputee that has a severed arm 26 does not have the pressure bearing considerations for an artificial limb but rather is concerned with having an artificial limb that is articulable to offer functions typical of a full arm, such as bending at the elbow and grasping capabilities. An individual who has a paralyzed limb would also have similar considerations wherein he or she would desire the paralyzed limb to have some degree of mobility and thus functionality.
Historically, artificial limbs typically used by a leg amputee were for the most part all made out of wood such as an Upland Willow. The limbs were hand carved with sockets for receiving the stump 14 of the residual limb i0. Below the socket would be the shin portion with the foot below the shin. These wooden artificial limbs were covered with rawhide which often were painted. The sockets of most wood limbs were hollow as the limbs were typically supported in the artificial limb by the circumferential tissue adjacent the stump 14 rather than at the distal end of the stump 14.
Some artificial limbs in Europe were also made from forged pieces of metal that were hollow. Fiber artificial limbs were also used which were stretched around a mold after which they were permitted to dry and cure. Again, these artificial limbs were hollow and pretty much supported the residual limb about the circumferential tissue adjacent the stump 14.
All of these various artificial limbs have sockets to put the amputee's stump thereinto. There are generally two categories of sockets. There are hard sockets wherein the stump goes right into the socket actually touching the socket wall without any type of liner or stump sock. Another category of sockets is a socket that utilizes a liner or insert.
Both categories of sockets typically were opened ended sockets where they had a hollow chamber in the bottom and no portion of the socket touched the distal end of the stump 14.
ARTIFICIAL LllVIB WITH MECHANICAL INTER1LOCK
BACKGROUND OF THE INVENTION
The present invention relates to prosthetic devices and more particularly to a hypobarically-controlled artificial limb for amputees.
An amputee is a person who has lost part of an extremity or limb such as a leg or arm which commonly may be termed as a residual limb. Residual limbs come in various sizes and shapes with respect to the stump. That is, most new amputations are either slightly bulbous or cylindrical in shape while older amputations that may have had a lot of atrophy are generally more conical in shape. Residual limbs may further be characterized by their various individual problems or configurations including the volume and shape'of a stump and possible scar, skin graft, bony prominence, uneven limb volume, neuroma, pain, edema or soft tissue configurations.
Referring to FIGS. l and 2, a below the knee residual limb 10 is shown and described as a leg 12 having been severed below the knee terminating in a stump 14. In this case, the residual limb 10 includes soft tissue as well as the femur 16, knee joint 18, and severed tibia 20 and fibula 22. Along these bone structures surrounded by soft tissue are nerve bundles and vascular routes which must be protected against external pressure to avoid neuromas, numbness and discomfort as well as other kinds of problems. A
below the knee residual limb 10 has its stump 14 generally characterized as being a more bony structure while an above the knee residual limb may be characterized as including more soft tissue as well as the vascular routes and nerve bundles.
Referring to FIG. 2, amputees who have lost a part of their arm 26, which terminates in a stump 28 also may be characterized as having vascular routes, nerve bundles as well as soft and bony tissues. The residual limb 10 includes the humerus bone 30 which extends from below the shoulder to the elbow from which the radius 34 and ulna 36 bones may pivotally extend to the point of severance. Along the humerus bone 30 are the biceps muscle 38 and the triceps muscle 40 which still yet may be connected to the radius 34 and the ulna 36, respectively.
In some respects, the residual limb amputee that has a severed arm 26 does not have the pressure bearing considerations for an artificial limb but rather is concerned with having an artificial limb that is articulable to offer functions typical of a full arm, such as bending at the elbow and grasping capabilities. An individual who has a paralyzed limb would also have similar considerations wherein he or she would desire the paralyzed limb to have some degree of mobility and thus functionality.
Historically, artificial limbs typically used by a leg amputee were for the most part all made out of wood such as an Upland Willow. The limbs were hand carved with sockets for receiving the stump 14 of the residual limb i0. Below the socket would be the shin portion with the foot below the shin. These wooden artificial limbs were covered with rawhide which often were painted. The sockets of most wood limbs were hollow as the limbs were typically supported in the artificial limb by the circumferential tissue adjacent the stump 14 rather than at the distal end of the stump 14.
Some artificial limbs in Europe were also made from forged pieces of metal that were hollow. Fiber artificial limbs were also used which were stretched around a mold after which they were permitted to dry and cure. Again, these artificial limbs were hollow and pretty much supported the residual limb about the circumferential tissue adjacent the stump 14.
All of these various artificial limbs have sockets to put the amputee's stump thereinto. There are generally two categories of sockets. There are hard sockets wherein the stump goes right into the socket actually touching the socket wall without any type of liner or stump sock. Another category of sockets is a socket that utilizes a liner or insert.
Both categories of sockets typically were opened ended sockets where they had a hollow chamber in the bottom and no portion of the socket touched the distal end of the stump 14.
So, the stump was supported about its circumferential sides as it fits against the inside wall of the sockets.
These types of sockets caused a lot of shear force on the stump 14 as well as had pressure or restriction problems on the nerve bundles and vascular flow of fluid by way of the circumferential pressure effect of the socket on the limb. This pressure effect could cause a swelling into the ends of the socket where an amputee may develop severe edema and draining nodules at the end of their stump 14.
With time, prosthetists learned that by filling in the socket's hollow chamber and encouraging a more total contact with the stump and the socket, the swelling and edema problems could be eliminated. However, the problematic tissue configurations, such as bony prominences, required special consideration such as the addition of soft or pliable materials to be put into the socket.
Today, most artificial limbs are constructed from thermoset plastics such as polyester resins, acrylic resins, polypropylenes and polyethylenes, which are perhaps laminated over a nylon stockinette which also may be impregnated by the various resins.
In the past, most artificial limbs were suspended from the amputee's body by some form of pulley, belt or strap suspension often used with various harnesses and perhaps leather lacers or lacings. Another method of suspending artificial limbs is known as the wedge suspension wherein an actual wedge is built into the socket which is more closed at its top opening. The wedge in the socket cups the medial femoral condyle or knuckle at the abductor tubical. Yet another form of suspension is referred to as the shuttle system or a mechanical hookup or linkup wherein a thin suction liner is donned over the stump that has a docking device on the distal end which mechanically links up with its cooperative part in the bottom of the socket chamber. Sleeve suspensions were also used wherein the amputee may use a latex rubber tube which forms into a rubber-like sleeve which would be rolled on over both the top of the artificial limb and onto the amputee's thigh. The sleeve suspensions have been used in combination with other forms of suspensions techniques.
Both the use of a positive pressure system and the use of a negative pressure system (or hypobaric closed chamber) have been utilized in the field of prosthetics. At one time, for pressure systems "inflatable inner tubes" were used to fit into sockets.
Presently, there are pneumatic "bags" which are strategically placed over what people consider to be good weight-bearing areas to increase pressure to help accommodate for volume changes within the socket.
The problem with this is that it is a very specific pressure and creates atrophy and loss of tissue dramatically over these high pressure areas. None of these systems employs positive pressure distributed over the total contact area between the residual limb and the artificial limb socket to accommodate volume changes within the socket.
The negative pressure aspects have been utilized for a closed chamber in that a socket is donned by pulling in with a sock, pulling the sock out of the socket and then closing the opening with a valve. This creates a seal at the bottom and the stump is held into the socket by the hypobaric seal. However, there are no systems that employ a negative pressure produced by a vacuum pump to lock the residual limb to the artificial limb.
The older systems were initially started in Germany. They were an open-ended socket, meaning there was an air chamber in the bottom of the socket. This did not work particularly well because it would cause swelling of the residual limb into the chamber created by the negative draw of suspending the weight of the leg and being under a confined area. This would lead to significant edema which would be severe enough to cause stump breakdown and drainage.
It was later discovered in America that total contact was essential between the residual limb and the socket and once you had total contact the weight was distributed evenly or the suspension was distributed over the whole surface of the limb rather than j ust over the open chamber portion of the socket.
The human body as a whole is under approximately one atmosphere of pressure at sea level. It keeps and maintains a normal fluid system throughout the body.
When an amputee dons a prosthesis and begins taking the pressures of transmitting the weight of the body through the surface area of the residual limb to the bone, there is increased pressure on the residual limb equal to one atmosphere plus whatever additional pressures are created by weight bearing. This increased pressure causes the eventual loss of fluids within the residual limb to the larger portion of the body which is under less pressure.
This loss of fluids causes the volume of the residual limb to decrease during the day. It varies from amputee to amputee, but it is a constant among all amputees and the more "fleshy" and the softer the residual limb, the more volume fluctuation there will be. The greater the weight and the smaller the surface area, the greater the pressures will be and the more "swings" there will be in fluids. In the past, the amputee had to compensate for this volume decrease by removing the artificial limb and donning additional stump socks to make up for the decreased residual limb volume.
While some of these devices addressed some of the problems associated with prosthetics, none of the artificial limbs, liners and sockets, individually or in combination, offered a prosthesis that presented a total contact relationship with the residual limb;
absorbed and dissipated shear, shock and mechanical forces transmitted to the limb tissues by the artificial limb; controlled residual limb volume; used negative pressure as a locking device to hold the residual limb into the socket; and used positive pressure not for specific weight bearing, but to totally adjust and adapt the internal socket environment.
There is a need for an improved hypobarically-controlled artificial limb that will offer total contact relationship with the residual limb; absorb and dissipate shock, mechanical and shear forces typically associated with ambulation, twisting and turning and weight bearing with an artificial limb; control residual limb volume by way of even weight distribution; use negative pressure as a locking device to hold the residual limb into the socket; use positive pressure to totally adjust and adapt the internal socket environment to changes in residual limb volume; and control stump volume changes by cooperation between a negative pressure system and a positive pressure system. Ideally, the vacuum system and positive pressure system should be automatically regulated.
There is also a need for an improved hypobarically-controlled artificial limb with a positive mechanical interlock between an inner socket, which receives the residual limb, and an outer socket which attaches to the shin and foot of the artificial limb. Both the inner socket and the outer socket should have a rigid lower portion for weight-bearing and a substantially flexible upper portion to allow movement of the residual limb.
In the past, artificial limbs had to be custom-built for the amputee. The custom building process generally consisted of: placing a singly ply thin cotton casting sock over the residual limb; making a first negative mold of the residual limb by forming an orthopedic plaster wrap about the residual limb and casting sock; making a first positive model of the residual limb by filling the negative mold with plaster; forming a thermoplastic foam about the positive model to create a space for a liner;
adding additional thermoplastic foam to form a distal end cap as well as other areas which may require additional thicknesses due to tissue configurations; forming a second enlarged negative plaster mold about the foam; removing the foam; pouring a liquid and moldable liner into the space between the positive model and the second negative mold; allowing the liner to harden; removing the liner from the second negative mold; having the amputee don the liner over the residual limb; placing another single ply thin casting sock over the liner;
making a third plaster wrap or negative mold of the artificial limb socket about the residual limb and the liner; removing the liner from the third plaster wrap;
making a plaster cast or positive model of the socket from dental plaster; milling or shaving the positive model to create a reduced positive model to create weight bearing areas and compression of the liner against the residual limb and the socket; and making the socket from the reduced positive model.
_7_ This custom-building process is expensive, time-consuming, and requires the constant attention of a skilled prosthetist.
There is a need for a generic artificial limb socket which can be fitted to the contours of the residual limb without the need for a lengthy, expensive custom-molding process. The socket should contain a semi-compressible molding material which can be molded to the contours of the residual limb under vacuum and/or positive air pressure.
SZTMMARY OF THE INVENTION
A hypobarically-controlled artificial limb for amputees includes an outer socket, a flexible, compressible inner socket interlockable within the outer socket with a cavity for receiving the residual limb, a space between the inner socket and the outer socket, a vacuum source connected to the cavity, a positive pressure source connected to the space, a regulator for controlling the vacuum source and positive pressure source, and a seal for making an airtight seal between the residual limb and the socket. Another embodiment includes a semi-compressible molding material in the space to mold to the contours of the residual limb under the influence of vacuum and/or positive pressure. Another embodiment includes a positive mechanical interlock between the inner socket and the outer socket.
A principle object and advantage of the present invention is that it uses vacuum within the artificial limb socket to suspend the artificial limb from the residual limb.
Another object and advantage of the present invention is that it uses vacuum within the artificial limb socket to compensate for socket fit and volumetric changes within the socket.
Another object and advantage of the present invention is that it uses vacuum within the socket to lock the residual limb into the socket while preventing negative draw within the socket from causing swelling of the residual limb into the socket.
_8-Another object and advantage of the present invention is that it uses vacuum within the socket to oppose the loss of fluids from the residual limb caused by weight-bearing pressures.
Another object and advantage of the present invention is that it uses positive pressure within the socket to automatically reduce socket volume to compensate for fluid loss in the residual limb.
Another object and advantage of the present invention is that it uses both vacuum and positive pressure working together to lock the residual limb into the socket and reduce socket volume to compensate for fluid loss in the residual limb.
Another object and advantage of the present invention is that both the vacuum and the positive pressure may be created by a miniaturized pump with a motor drive.
Another object and advantage of the present invention is that it includes a digital computer system to control the miniaturized pump to regulate both negative pressure and positive pressure.
Another object and advantage of the present invention is that it includes a semi-compressible molding material between the outer socket and the inner socket which may be molded to the contours of the artificial limb under the influence or vacuum and/or positive pressure, thereby avoiding the need for a custom-building process.
Another object and advantage of the present invention is that the inner socket and outer socket are interlockable with each other to prevent relative movement.
The interlocking may be achieved by any of a variety of mechanisms, such as pins or detents.
The inner socket is removable from the outer socket.
. Another object and advantage of the present invention is that the vacuum pump and the vacuum regulator may be enclosed in the space between the outer socket and the inner . socket, thereby preventing damage to these components. The vacuum regulator may be controlled by an externally-accessible vacuum control.
Another object and advantage of the present invention is that both the inner socket and the outer socket nay be constructed of a lower, rigid portion and an upper substantially flexible portion. The lower rigid portion provides the necessary rigidity to support the person's weight, while the upper flexible portion accommodates movement of the residual limb.
Another object and advantage of the present invention is that includes an outer sheath between the inner socket and the suspension sleeve, to prevent abrasion of the suspension sleeve by the inner socket.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side elevational view of the tissue and skeletal structure of an amputee's residual limb;
FIG. 2 is a side elevational view of a residual limb in the form of an amputated arm showing the skeletal and muscular structure of the residual limb;
FIG. 3 is an exploded elevational view of the residual limb donning the polyurethane sleeve, stretchable nylon sleeve, liner, nylon sheath and socket of an artificial limb;
FIG. 4 is a cross-section of the artificial limb in FIG. 3, which is a first embodiment of the artificial limb.
FIG. 5 is a cross-section of the artificial limb similar to FIG. 4, showing a second embodiment of the artificial limb.
_ - 10-FIG. 6 is the same as FIG. 5, but showing compression of the inner socket under the influence of positive air pressure.
FIG. 7 is a cross-section of the artificial limb showing a third embodiment of the artificial limb.
FIG. 8 is a cross-section of the artificial limb showing a fourth embodiment of the artificial limb.
FIG. 9 is an elevational view of the polyurethane sleeve and second stretchable nylon sleeve rolled over the socket and residual limb with clothing shown in broken outline.
FIG. 10 is a cross-section of the artificial limb showing a fifth embodiment of the artificial limb.
FIG. 11 is a cross-section of the artificial limb showing a sixth embodiment of the artificial limb.
FIG. 12 is a detailed view of the vacuum mechanism in FIG. 11.
FIG. 13 is a cross-section of the artificial limb showing a seventh embodiment of the artificial limb.
FIG. 14 is a detailed view of the vacuum mechanism and suspension sleeve of FIG. 13.
FIG. 15 is a perspective view of the suspension sleeve of the seventh embodiment with detailed structure blown up.
FIG. 3 shows the hypobarically-controlled artificial limb 50 of the present invention. The hypobarically-controlled artificial limb 50 includes an outer socket 52, shin 54, and foot 56. The outer socket 52 has a volume and shape to receive a substantial portion of the residual limb 14 with a space 58 therebetween.
A first embodiment of the hypobarically-controlled artificial limb 50 is shown in FIG. 4. The hypobarically-controlled artificial limb 50 further includes a flexible inner socket 60 with a cavity 62 with a volume and shape for receiving a substantial portion of the residual limb 14 and fitting in the space 58 between the outer socket 52 and the residual limb 14. The inner socket 60 has an inner surface 64 opposing the residual limb 14 and an outer surface 66 opposing the outer socket 52.
A vacuum source 70 may conveniently be attached to the shin 54. The vacuum source 70 may preferably be a motor-driven pump 72. The vacuum source 70 is connected to a power source 83, which may be a battery.
A vacuum valve 74 is suitably connected to the vacuum source 70. The vacuum valve 74 may preferably be disposed on the outer socket 52. A vacuum tube 76 connects the vacuum valve 74 to the cavity 62. It will be seen that the vacuum source will cause the residual limb 14 to be drawn into firm contact with the inner surface 64 of the inner socket 60.
The hypobarically-controlled artificial limb 50 also includes a regulator means 80 for controlling the vacuum source 70. Preferably, the regulator means 80 may be a digital computer 82. Alternately, the regulator means may be a vacuum regulator. The regulator means 80 is connected to a power source 83, which may be a battery.
A seal means 84 makes an airtight seal between the residual limb 14 and the outer socket 52. Preferably, the seal means 84 is a nonfoamed, nonporous polyurethane suspension sleeve 86 which rolls over and covers the inner socket 60 and a portion of the residual limb 14. Alternatively, the seal means 84 may be any type of seal which is airtight.
The hypobarically-controlled artificial limb 50 may also include a thin sheath between the residual limb 14 and the inner surface 64 of the inner socket 60.
As vacuum is applied to the cavity 62, the sheath 90 will allow the vacuum to be evenly applied throughout the cavity 62. Without the sheath 90, the residual limb 14 might "tack up"
against the inner surface 64 and form a seal which might prevent even application of the vacuum to the cavity 62. The sheath 90 may also be used to assist the amputee into a smooth and easy fitting into the inner socket 60. The sheath 90 is preferably made of thin knitted nylon.
The hypobarically-controlled artificial limb 50 may also include a nonfoamed, nonporous polyurethane liner 92 receiving the residual limb 14 and disposed between the sheath 90 and the residual limb 14. The liner 92 provides a total-contact hypobaric suction, equal weight distribution socket liner. The liner 92 readily tacks up to the skin of the residual limb 14 and provides total contact with the limb 14. The liner 92 absorbs and dissipates shock, mechanical and shear forces typically associated with ambulation.
The hypobarically-controlled artificial limb 50 may also include a stretchable nylon second sleeve 94 for rolling over and covering the suspension sleeve 86 to prevent clothing from sticking to and catching the suspension sleeve 86.
Referring to FIG 3, the polyurethane tubular sleeve 86 may be appreciated alone and in combination with the urethane liner 92 together with the optional nylon sheath 90 and second stretchable nylon sleeve 94.
More specifically, the amputee takes the stretchable nylon second sleeve 94, suitably made of a spandex-like material and rolls it up over the stump 14 to the upper portions of the residual limb suitably as the thigh of a leg I2. Next, the polyurethane . sleeve 86 is also rolled upwardly over the residual limb 10. Thereafter, the liner 92 is optionally donned.
Next, the amputee may optionally utilize the nylon sheath 90 which is suitably of a non-stretching, thin, friction reducing nylon. As stated, this sheath 90 optionally may be used to assist the amputee into a smooth and easy fitting into the inner socket 60.
Alternatively, the sheath 90 may be avoided and the liner 92 simply inserted into the inner socket 60 of the artificial limb 50.
Next, the amputee simply grasps the rolled over portion of the polyurethane sleeve 86 and rolls it over a substantial portion of the outer socket 52. The sleeve 86 makes an airtight seal between the residual limb 14 and the outer socket 52.
As can be appreciated, the polyurethane sleeve 86 is tacky. Consequently, the stretchable nylon second sleeve 94 may be utilized and rolled over the polyurethane sleeve 86.
The amputee then sets the regulator means 80 to cause the vacuum source 70 to apply vacuum through the vacuum valve 74 and vacuum tube 76 to the cavity 62.
Enough vacuum is applied to cause the residual limb (with optional coverings) to be drawn firmly against the inner surface 64 of the inner socket 60, which is flexible. The vacuum source 70 may preferably maintain a vacuum in the range of 0 to 25 inches of mercury.
It will be seen that the vacuum within the inner socket 60 will cause the hypobarically-controlled artificial limb 50 to be suspended from the residual limb 14. The vacuum will lock the residual limb 14 into the inner socket 60 without causing swelling of the residual limb into the socket, because of the total contact of the residual limb 14 with the inner socket 60. That is, there is no open chamber between the residual limb 14 and the inner socket 60 which would draw on the residual limb.
As the volume of the residual limb 14 decreases during the day due to weight-bearing pressures, the regulator means 70 may appropriately adjust the vacuum source 70 to draw the residual limb 14 more firmly against the inner socket 60 and thus compensate for the loss of residual limb volume. The vacuum may also partially oppose the Ioss of fluids from the residual limb caused by weight-bearing pressures.
A second embodiment of the hypobarically-controlled artificial limb 50 is shown in FIGS. 5 and 6. The second embodiment of the hypobarically-controlled artificial limb 50 is as described above, with the exception that the inner socket 60A is compressible as well as being flexible. Instead of a vacuum source, the second embodiment has a positive air pressure source 100, which may preferably be a motor-driven pump 102. The regulator means 80, which may be a digital computer 82, controls the positive air pressure source 100. The regulator means and positive air pressure source 100 are connected to a power source 83, which may be a battery. A positive pressure valve 104 connects the space 58 to the positive air pressure source 100, for compressing the inner socket 60A
as the volume of the residual limb decreases.
It will be seen that as the volume of the residual limb 14 decreases during the day due to weight-bearing pressures, the regulator means 80 may control the positive air pressure source 100 to cause air pressure to compress the inner socket 60A to compensate for the decreased volume of the residual limb, as shown in FIG. 6.
A third embodiment of the hypobarically-controlled artificial limb 50 is shown in FIG. 7. The third embodiment is a combination of the first and second embodiments described above.
The motor-driven pump 72 may act as both the vacuum source 70 and the positive air pressure source 100. The regulator means 80, vacuum source 70 and positive air pressure source 100 are connected to a power source 83, which may be a battery.
The vacuum source 70, under control of the regulator means 80, will compensate for reduced residual limb volume up to a certain point. From that point on, the regulator means 80 will cause the positive air pressure source 100 to further compensate for reduced residual limb volume as described above. The third embodiment thus uses both vacuum and positive air pressure working together to lock the residual limb 14 into the inner socket 60 and reduce socket volume to compensate for fluid loss in the residual limb 14.
The exact point at which the changeover is made between vacuum compensation and positive air pressure compensation is controlled by the regulator means 80, which as described may be a digital computer appropriately programmed for the socket environment.
A fourth embodiment of the hypobarically-controlled artificial limb 50 is shown .fin FIG. 8. The fourth embodiment is like the first embodiment, but includes two vacuum valves: a first vacuum valve 106 and a second vacuum valve 110, both connected to the vacuum source 70. The first vacuum valve 106 connects the vacuum source 70 to the space 58. The space 58 contains a semi-compressible material 108, such as polystyrene beads, as disclosed in U.S. Patent No. 4,828,325.
To don the artificial limb 50, the amputee proceeds as described above. After inserting the residual limb 14 (with optional coverings) into the inner socket 60B, which is both compressible and expandable, and rolling the suspension sleeve 86 over the outer socket 52, the amputee activates the regulator means 80, causing the vacuum source 70 to apply a vacuum to the space 58. This causes the material 108 to lock mechanically together into a rigid mass, conforming to the shape of the residual limb 14.
The inner socket 60B may expand slightly under the weight of the residual limb 14 and under the influence of vacuum.
It will be seen that the semi-compressible molding material 108 can be molded to the contours of the residual limb 14 without using a custom-building process to produce a custom socket. The outer socket 52 may appropriately occur in standard sizes, such as small, medium, and large. The inner socket 60B may also occur in standard sizes such as small, medium, and large. Adaptation of the inner socket 60B to the contours of the residual limb 14 occurs through solidifying the material 108 under the influence of vacuum.
The second vacuum valve 110 connects the vacuum source 70 to the cavity 62 as previously described, for locking the residual limb 14 into the inner socket 60B.
The fourth embodiment may also include a positive air pressure source 100 as previously described, to adjust the size of the inner socket 60B to compensate for decreased residual limb volume.
1fie fourth embodiment may also include a thin sheath 90, liner 92, and second sleeve 94, as previously described.
The positive air pressure source 100 may also be used for shock absorption and a dynamic response in the ankle and foot sections of the artificial limb 50, by means of a connection 120.
A fifth embodiment of the hypobarically controlled artificial limb 50 is shown in FIG. 10. This embodiment is the same as the first embodiment shown in FIG. 4, with some changes. First, vacuum source ?1 may be a hand-operated vacuum pump 71 which may remove air from the cavity 62 down to 25 inches of mercury but more commonly down by three to six inches of mercury. A suitable hand-operated vacuum pump is marketed under the trademark MITY VAC II~ by Neward Enterprises, Inc. of Cucamonga, California.
The fifth embodiment also includes the seal means 84 which preferably consists of a non-foamed, nonporous polyurethane suspension sleeve 86 for rolling over and covering a portion of the residual limb 14. A portion of the seal means 86 is adapted to be disposed between the outer socket 52 and the inner socket 60. The sleeve may be made of any of a variety of air-impervious elastomers.
The fifth embodiment, shown in FIG. 10, also includes a mechanical interlock 67, 59 for interlocking the inner socket 62 with the outer socket 52. Preferably, the mechanical interlock consists of a first detent 67 in the inner socket 62 and a second detent 59 in the outer socket 52. The first detent 67 engages the second detent 59 to lock the inner socket 60 into the outer socket 52.
A sixth embodiment of the hypobarically-controlled artificial limb of the present invention is shown in FIGS. 1 i and i2. The sixth embodiment is like the first embodiment shown in FIG. 4, with some changes.
First, the inner socket is specifically intended to be removable from the outer socket. To provide a positive mechanical connection between the inner socket and outer socket and yet allow the inner socket to be easily removed, the sixth embodiment includes a mechanical interlock 103 engaging the inner socket 60 and the outer socket 52.
Preferably, the mechanical interlock may be an extension 104 which is attached to the inner socket 60 and a docking device 106 attached to the outer socket 52 and receiving the extension 104, and a locking mechanism 105 engaging the extension 104 and the docking device 106.
The extension may be any sort of protrusion from the inner socket, such as a bulge or tab. Preferably, the extension 104 comprises a shuttle pin 108.
The locking mechanism may be any sort of member which engages both the extension 104 and the docking device 106, such as a screw, wire, or pin.
Preferably, the locking mechanism 105 comprises a second pin 110 which extends outside the outer socket 52 as to be accessible.
Second, the sixth embodiment includes two thin sheaths, rather than one. A
first inner sheath 90 may preferably be disposed between the residual limb 14 and the inner surface 64 of the inner socket 60. As vacuum is applied to the cavity 62, the inner sheath 90 will allow the vacuum to be evenly applied throughout the cavity 62.
Without the inner sheath 90, the residual Iimb 14 might "tack up" against the inner surface 64 and form a seal which might prevent even application of the vacuum to the cavity 62. The inner sheath 90 may also be used to assist the amputee into a smooth and easy fitting into the inner socket 60.
An outer sheath 93 is preferably disposed between the suspension sleeve 86 and the inner socket 60, thereby preventing the suspension sleeve from tacking to the inner socket 60. Such tacking would cause friction between the inner socket b0 and the sleeve 86 which would cause the sleeve to wear out. Such tacking might also cause restrictions in the movement of the residual limb. The outer sheath 93 also protects the suspension sleeve 86 from being damaged by friction with the inner socket 60.
The sixth embodiment also preferably includes an adhesive pressure tape 95 adapted to cover the outer sheath 93, suspension sleeve 86, and the second sleeve 94 and sealing the outer sheath 93, suspension sleeve 86, and the second sleeve 94 to the inner socket 60. The tape 95 locks all of these layers to the inner socket so that they do not come loose during movement.
In the sixth embodiment, the suspension sleeve 86 goes between the inner socket 60 and the outer socket 52, so that the sleeve 86 is protected from damage.
In the sixth embodiment, the inner socket 60 has a rigid lower portion 98 and a substantially flexible upper portion 96. The rigid Iower portion assists in weight-bearing while the substantially flexible upper portion allows for movement of the residual limb 14.
As the knee is bent from fully straight to fully flexed, the width of the knee changes rather significantly and in a hard, non-flexible socket brim, there can be excessive pressure on the residual limb 14. The substantially flexible upper portion 96 makes the artificial limb 50 more comfortable and more adaptive to these changes. For the same reason, the outer socket 52 has a rigid lower portion 102 and a substantially flexible upper portion 100.
Preferably, the top edge of the inner socket 60 is below the top edge of the outer socket 52 so that the sleeve 86 is protected from impact. Preferably, the top edge of the inner socket 60 may be 3/16 inch below the top edge of the outer socket 52.
The sixth embodiment includes extensive modifications to the vacuum system.
First, a vacuum fitting 78 has been added to the inner socket 60 to attach the vacuum tube 76. The vacuum fitting 78 allows the attachment of a vacuum sensor adapted to sense the amount of vacuum in the cavity 62 and a sensor lead 81 is attached to the sensor 79 connecting the sensor 79 to the regulator means 80, thus conveying the sensed vacuum to the regulator means 80.
A vacuum valve 74 is placed between the cavity 62 and the vacuum source 70 to maintain vacuum in the cavity 62. Typically, the vacuum valve 74 is a one-way valve or non-return valve.
In the sixth embodiment, the vacuum source 70, vacuum tube 76, vacuum valve 74, regulator means 80, and power source 83 are all attached to the outer socket 52 in the space 58 between the outer socket 52 and inner socket 60. In this way, these delicate components are protected against being damaged by impact. Because of the placement of the regulator means 80 within the outer socket 52, a vacuum control 77 is provided extending outside the outer socket 52 to allow manual control of the regulator means 80.
The amputee dons the sixth embodiment in a manner similar to that earlier described, with some modifications. First, the outer sheath 93 is put on the residual limb 14 after rolling the suspension sleeve 86 upward over the residual limb and before donning the liner 92. After donning the inner sheath 90 over the liner 92, the amputee inserts the residual limb 14 into the inner socket 60. Next, the outer sheath 93, suspension sleeve 86, and second sleeve 94 are rolled down over the inner socket 60, and the adhesive pressure tape 95 is applied. Next, the wearer sets the regulator means 80 to an appropriate vacuum level by means of the vacuum control 77, and connects the vacuum _'7()_ tube 76 to the vacuum fitting 78. The inner socket 60 is then placed within the outer socket 52 so that the shuttle pin 108 engages the docking device 106 and the locking pin 110 is set to engage the shuttle pin 108 and the docking device L06, providing a positive mechanical interlock.
A seventh embodiment of the hypobarically-controlled artificial limb of the present invention is shown in FIG. 13. The seventh embodiment is similar to the sixth embodiment, with some changes.
First, the mechanical interlock l03 does not engage the inner socket 60.
Instead, the mechanical interlock engages the outer socket 52 and the suspension sleeve 86. To accomplish this, the suspension sleeve 86 covers the entire inner socket 60, and the suspension sleeve 86 has the extension lt)4 or shuttle pin embedded in the suspension sleeve at the distal end of the suspension sleeve, as shown in FIG. 14. Preferably, the extension 104 has a portion 104A embedded in the suspension sleeve. This portion 104A may be a disk or umbrella 104A. The extension 104 then engages the docking device 106 as previously described.
Second, the suspension sleeve 86 is modified to support the additional weight imposed on the suspension sleeve 86 due to the outer socket 52 and artificial limb. In particular, the suspension sleeve 86 is fabricated from a material which allows circumferential expansion but resists longitudinal stretching under the weight of the artificial limb. Such a material is described in United States Patent No. 5,571,208. FIG. 15 is a modified drawing from the 5,_571,208 patent showing details of construction of the suspension sleeve.
The sleeve 86 preferably contains fabric threads 250 which may be oriented circumferentially around the sleeve. The threads 250 preferably are comprised of double-knit polyurethane. The threads may also include nylon. The threads 250 permit the sleeve 86 to expand circumferentially so that the sleeve may be slipped onto the residual limb 14 and so that the lower portion 240 may be slipped over the inner socket 52.
The threads 250 are preferably connected together with cross-links 252, which also may be preferably comprised of polyurethane. The cross-links 252 and threads 250 form a matrix 254 which allows circumferential expansion but resists longitudinal stretching under the weight of the artificial limb. By example, the sleeve 86 may have a 4-to-1 ratio of circumferential stretch relative to longitudinal stretch.
The sleeve 86 may have a portion above the inner socket 52 which is manufactured of material which allows both vertical and horizontal stretching, to increase flexibility.
The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof, and it is therefore desired that the present embodiment be considered in all respects as illustrative and not restrictive, reference being made to the appended claims rather than to the foregoing description to indicate the scope of the invention.
These types of sockets caused a lot of shear force on the stump 14 as well as had pressure or restriction problems on the nerve bundles and vascular flow of fluid by way of the circumferential pressure effect of the socket on the limb. This pressure effect could cause a swelling into the ends of the socket where an amputee may develop severe edema and draining nodules at the end of their stump 14.
With time, prosthetists learned that by filling in the socket's hollow chamber and encouraging a more total contact with the stump and the socket, the swelling and edema problems could be eliminated. However, the problematic tissue configurations, such as bony prominences, required special consideration such as the addition of soft or pliable materials to be put into the socket.
Today, most artificial limbs are constructed from thermoset plastics such as polyester resins, acrylic resins, polypropylenes and polyethylenes, which are perhaps laminated over a nylon stockinette which also may be impregnated by the various resins.
In the past, most artificial limbs were suspended from the amputee's body by some form of pulley, belt or strap suspension often used with various harnesses and perhaps leather lacers or lacings. Another method of suspending artificial limbs is known as the wedge suspension wherein an actual wedge is built into the socket which is more closed at its top opening. The wedge in the socket cups the medial femoral condyle or knuckle at the abductor tubical. Yet another form of suspension is referred to as the shuttle system or a mechanical hookup or linkup wherein a thin suction liner is donned over the stump that has a docking device on the distal end which mechanically links up with its cooperative part in the bottom of the socket chamber. Sleeve suspensions were also used wherein the amputee may use a latex rubber tube which forms into a rubber-like sleeve which would be rolled on over both the top of the artificial limb and onto the amputee's thigh. The sleeve suspensions have been used in combination with other forms of suspensions techniques.
Both the use of a positive pressure system and the use of a negative pressure system (or hypobaric closed chamber) have been utilized in the field of prosthetics. At one time, for pressure systems "inflatable inner tubes" were used to fit into sockets.
Presently, there are pneumatic "bags" which are strategically placed over what people consider to be good weight-bearing areas to increase pressure to help accommodate for volume changes within the socket.
The problem with this is that it is a very specific pressure and creates atrophy and loss of tissue dramatically over these high pressure areas. None of these systems employs positive pressure distributed over the total contact area between the residual limb and the artificial limb socket to accommodate volume changes within the socket.
The negative pressure aspects have been utilized for a closed chamber in that a socket is donned by pulling in with a sock, pulling the sock out of the socket and then closing the opening with a valve. This creates a seal at the bottom and the stump is held into the socket by the hypobaric seal. However, there are no systems that employ a negative pressure produced by a vacuum pump to lock the residual limb to the artificial limb.
The older systems were initially started in Germany. They were an open-ended socket, meaning there was an air chamber in the bottom of the socket. This did not work particularly well because it would cause swelling of the residual limb into the chamber created by the negative draw of suspending the weight of the leg and being under a confined area. This would lead to significant edema which would be severe enough to cause stump breakdown and drainage.
It was later discovered in America that total contact was essential between the residual limb and the socket and once you had total contact the weight was distributed evenly or the suspension was distributed over the whole surface of the limb rather than j ust over the open chamber portion of the socket.
The human body as a whole is under approximately one atmosphere of pressure at sea level. It keeps and maintains a normal fluid system throughout the body.
When an amputee dons a prosthesis and begins taking the pressures of transmitting the weight of the body through the surface area of the residual limb to the bone, there is increased pressure on the residual limb equal to one atmosphere plus whatever additional pressures are created by weight bearing. This increased pressure causes the eventual loss of fluids within the residual limb to the larger portion of the body which is under less pressure.
This loss of fluids causes the volume of the residual limb to decrease during the day. It varies from amputee to amputee, but it is a constant among all amputees and the more "fleshy" and the softer the residual limb, the more volume fluctuation there will be. The greater the weight and the smaller the surface area, the greater the pressures will be and the more "swings" there will be in fluids. In the past, the amputee had to compensate for this volume decrease by removing the artificial limb and donning additional stump socks to make up for the decreased residual limb volume.
While some of these devices addressed some of the problems associated with prosthetics, none of the artificial limbs, liners and sockets, individually or in combination, offered a prosthesis that presented a total contact relationship with the residual limb;
absorbed and dissipated shear, shock and mechanical forces transmitted to the limb tissues by the artificial limb; controlled residual limb volume; used negative pressure as a locking device to hold the residual limb into the socket; and used positive pressure not for specific weight bearing, but to totally adjust and adapt the internal socket environment.
There is a need for an improved hypobarically-controlled artificial limb that will offer total contact relationship with the residual limb; absorb and dissipate shock, mechanical and shear forces typically associated with ambulation, twisting and turning and weight bearing with an artificial limb; control residual limb volume by way of even weight distribution; use negative pressure as a locking device to hold the residual limb into the socket; use positive pressure to totally adjust and adapt the internal socket environment to changes in residual limb volume; and control stump volume changes by cooperation between a negative pressure system and a positive pressure system. Ideally, the vacuum system and positive pressure system should be automatically regulated.
There is also a need for an improved hypobarically-controlled artificial limb with a positive mechanical interlock between an inner socket, which receives the residual limb, and an outer socket which attaches to the shin and foot of the artificial limb. Both the inner socket and the outer socket should have a rigid lower portion for weight-bearing and a substantially flexible upper portion to allow movement of the residual limb.
In the past, artificial limbs had to be custom-built for the amputee. The custom building process generally consisted of: placing a singly ply thin cotton casting sock over the residual limb; making a first negative mold of the residual limb by forming an orthopedic plaster wrap about the residual limb and casting sock; making a first positive model of the residual limb by filling the negative mold with plaster; forming a thermoplastic foam about the positive model to create a space for a liner;
adding additional thermoplastic foam to form a distal end cap as well as other areas which may require additional thicknesses due to tissue configurations; forming a second enlarged negative plaster mold about the foam; removing the foam; pouring a liquid and moldable liner into the space between the positive model and the second negative mold; allowing the liner to harden; removing the liner from the second negative mold; having the amputee don the liner over the residual limb; placing another single ply thin casting sock over the liner;
making a third plaster wrap or negative mold of the artificial limb socket about the residual limb and the liner; removing the liner from the third plaster wrap;
making a plaster cast or positive model of the socket from dental plaster; milling or shaving the positive model to create a reduced positive model to create weight bearing areas and compression of the liner against the residual limb and the socket; and making the socket from the reduced positive model.
_7_ This custom-building process is expensive, time-consuming, and requires the constant attention of a skilled prosthetist.
There is a need for a generic artificial limb socket which can be fitted to the contours of the residual limb without the need for a lengthy, expensive custom-molding process. The socket should contain a semi-compressible molding material which can be molded to the contours of the residual limb under vacuum and/or positive air pressure.
SZTMMARY OF THE INVENTION
A hypobarically-controlled artificial limb for amputees includes an outer socket, a flexible, compressible inner socket interlockable within the outer socket with a cavity for receiving the residual limb, a space between the inner socket and the outer socket, a vacuum source connected to the cavity, a positive pressure source connected to the space, a regulator for controlling the vacuum source and positive pressure source, and a seal for making an airtight seal between the residual limb and the socket. Another embodiment includes a semi-compressible molding material in the space to mold to the contours of the residual limb under the influence of vacuum and/or positive pressure. Another embodiment includes a positive mechanical interlock between the inner socket and the outer socket.
A principle object and advantage of the present invention is that it uses vacuum within the artificial limb socket to suspend the artificial limb from the residual limb.
Another object and advantage of the present invention is that it uses vacuum within the artificial limb socket to compensate for socket fit and volumetric changes within the socket.
Another object and advantage of the present invention is that it uses vacuum within the socket to lock the residual limb into the socket while preventing negative draw within the socket from causing swelling of the residual limb into the socket.
_8-Another object and advantage of the present invention is that it uses vacuum within the socket to oppose the loss of fluids from the residual limb caused by weight-bearing pressures.
Another object and advantage of the present invention is that it uses positive pressure within the socket to automatically reduce socket volume to compensate for fluid loss in the residual limb.
Another object and advantage of the present invention is that it uses both vacuum and positive pressure working together to lock the residual limb into the socket and reduce socket volume to compensate for fluid loss in the residual limb.
Another object and advantage of the present invention is that both the vacuum and the positive pressure may be created by a miniaturized pump with a motor drive.
Another object and advantage of the present invention is that it includes a digital computer system to control the miniaturized pump to regulate both negative pressure and positive pressure.
Another object and advantage of the present invention is that it includes a semi-compressible molding material between the outer socket and the inner socket which may be molded to the contours of the artificial limb under the influence or vacuum and/or positive pressure, thereby avoiding the need for a custom-building process.
Another object and advantage of the present invention is that the inner socket and outer socket are interlockable with each other to prevent relative movement.
The interlocking may be achieved by any of a variety of mechanisms, such as pins or detents.
The inner socket is removable from the outer socket.
. Another object and advantage of the present invention is that the vacuum pump and the vacuum regulator may be enclosed in the space between the outer socket and the inner . socket, thereby preventing damage to these components. The vacuum regulator may be controlled by an externally-accessible vacuum control.
Another object and advantage of the present invention is that both the inner socket and the outer socket nay be constructed of a lower, rigid portion and an upper substantially flexible portion. The lower rigid portion provides the necessary rigidity to support the person's weight, while the upper flexible portion accommodates movement of the residual limb.
Another object and advantage of the present invention is that includes an outer sheath between the inner socket and the suspension sleeve, to prevent abrasion of the suspension sleeve by the inner socket.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side elevational view of the tissue and skeletal structure of an amputee's residual limb;
FIG. 2 is a side elevational view of a residual limb in the form of an amputated arm showing the skeletal and muscular structure of the residual limb;
FIG. 3 is an exploded elevational view of the residual limb donning the polyurethane sleeve, stretchable nylon sleeve, liner, nylon sheath and socket of an artificial limb;
FIG. 4 is a cross-section of the artificial limb in FIG. 3, which is a first embodiment of the artificial limb.
FIG. 5 is a cross-section of the artificial limb similar to FIG. 4, showing a second embodiment of the artificial limb.
_ - 10-FIG. 6 is the same as FIG. 5, but showing compression of the inner socket under the influence of positive air pressure.
FIG. 7 is a cross-section of the artificial limb showing a third embodiment of the artificial limb.
FIG. 8 is a cross-section of the artificial limb showing a fourth embodiment of the artificial limb.
FIG. 9 is an elevational view of the polyurethane sleeve and second stretchable nylon sleeve rolled over the socket and residual limb with clothing shown in broken outline.
FIG. 10 is a cross-section of the artificial limb showing a fifth embodiment of the artificial limb.
FIG. 11 is a cross-section of the artificial limb showing a sixth embodiment of the artificial limb.
FIG. 12 is a detailed view of the vacuum mechanism in FIG. 11.
FIG. 13 is a cross-section of the artificial limb showing a seventh embodiment of the artificial limb.
FIG. 14 is a detailed view of the vacuum mechanism and suspension sleeve of FIG. 13.
FIG. 15 is a perspective view of the suspension sleeve of the seventh embodiment with detailed structure blown up.
FIG. 3 shows the hypobarically-controlled artificial limb 50 of the present invention. The hypobarically-controlled artificial limb 50 includes an outer socket 52, shin 54, and foot 56. The outer socket 52 has a volume and shape to receive a substantial portion of the residual limb 14 with a space 58 therebetween.
A first embodiment of the hypobarically-controlled artificial limb 50 is shown in FIG. 4. The hypobarically-controlled artificial limb 50 further includes a flexible inner socket 60 with a cavity 62 with a volume and shape for receiving a substantial portion of the residual limb 14 and fitting in the space 58 between the outer socket 52 and the residual limb 14. The inner socket 60 has an inner surface 64 opposing the residual limb 14 and an outer surface 66 opposing the outer socket 52.
A vacuum source 70 may conveniently be attached to the shin 54. The vacuum source 70 may preferably be a motor-driven pump 72. The vacuum source 70 is connected to a power source 83, which may be a battery.
A vacuum valve 74 is suitably connected to the vacuum source 70. The vacuum valve 74 may preferably be disposed on the outer socket 52. A vacuum tube 76 connects the vacuum valve 74 to the cavity 62. It will be seen that the vacuum source will cause the residual limb 14 to be drawn into firm contact with the inner surface 64 of the inner socket 60.
The hypobarically-controlled artificial limb 50 also includes a regulator means 80 for controlling the vacuum source 70. Preferably, the regulator means 80 may be a digital computer 82. Alternately, the regulator means may be a vacuum regulator. The regulator means 80 is connected to a power source 83, which may be a battery.
A seal means 84 makes an airtight seal between the residual limb 14 and the outer socket 52. Preferably, the seal means 84 is a nonfoamed, nonporous polyurethane suspension sleeve 86 which rolls over and covers the inner socket 60 and a portion of the residual limb 14. Alternatively, the seal means 84 may be any type of seal which is airtight.
The hypobarically-controlled artificial limb 50 may also include a thin sheath between the residual limb 14 and the inner surface 64 of the inner socket 60.
As vacuum is applied to the cavity 62, the sheath 90 will allow the vacuum to be evenly applied throughout the cavity 62. Without the sheath 90, the residual limb 14 might "tack up"
against the inner surface 64 and form a seal which might prevent even application of the vacuum to the cavity 62. The sheath 90 may also be used to assist the amputee into a smooth and easy fitting into the inner socket 60. The sheath 90 is preferably made of thin knitted nylon.
The hypobarically-controlled artificial limb 50 may also include a nonfoamed, nonporous polyurethane liner 92 receiving the residual limb 14 and disposed between the sheath 90 and the residual limb 14. The liner 92 provides a total-contact hypobaric suction, equal weight distribution socket liner. The liner 92 readily tacks up to the skin of the residual limb 14 and provides total contact with the limb 14. The liner 92 absorbs and dissipates shock, mechanical and shear forces typically associated with ambulation.
The hypobarically-controlled artificial limb 50 may also include a stretchable nylon second sleeve 94 for rolling over and covering the suspension sleeve 86 to prevent clothing from sticking to and catching the suspension sleeve 86.
Referring to FIG 3, the polyurethane tubular sleeve 86 may be appreciated alone and in combination with the urethane liner 92 together with the optional nylon sheath 90 and second stretchable nylon sleeve 94.
More specifically, the amputee takes the stretchable nylon second sleeve 94, suitably made of a spandex-like material and rolls it up over the stump 14 to the upper portions of the residual limb suitably as the thigh of a leg I2. Next, the polyurethane . sleeve 86 is also rolled upwardly over the residual limb 10. Thereafter, the liner 92 is optionally donned.
Next, the amputee may optionally utilize the nylon sheath 90 which is suitably of a non-stretching, thin, friction reducing nylon. As stated, this sheath 90 optionally may be used to assist the amputee into a smooth and easy fitting into the inner socket 60.
Alternatively, the sheath 90 may be avoided and the liner 92 simply inserted into the inner socket 60 of the artificial limb 50.
Next, the amputee simply grasps the rolled over portion of the polyurethane sleeve 86 and rolls it over a substantial portion of the outer socket 52. The sleeve 86 makes an airtight seal between the residual limb 14 and the outer socket 52.
As can be appreciated, the polyurethane sleeve 86 is tacky. Consequently, the stretchable nylon second sleeve 94 may be utilized and rolled over the polyurethane sleeve 86.
The amputee then sets the regulator means 80 to cause the vacuum source 70 to apply vacuum through the vacuum valve 74 and vacuum tube 76 to the cavity 62.
Enough vacuum is applied to cause the residual limb (with optional coverings) to be drawn firmly against the inner surface 64 of the inner socket 60, which is flexible. The vacuum source 70 may preferably maintain a vacuum in the range of 0 to 25 inches of mercury.
It will be seen that the vacuum within the inner socket 60 will cause the hypobarically-controlled artificial limb 50 to be suspended from the residual limb 14. The vacuum will lock the residual limb 14 into the inner socket 60 without causing swelling of the residual limb into the socket, because of the total contact of the residual limb 14 with the inner socket 60. That is, there is no open chamber between the residual limb 14 and the inner socket 60 which would draw on the residual limb.
As the volume of the residual limb 14 decreases during the day due to weight-bearing pressures, the regulator means 70 may appropriately adjust the vacuum source 70 to draw the residual limb 14 more firmly against the inner socket 60 and thus compensate for the loss of residual limb volume. The vacuum may also partially oppose the Ioss of fluids from the residual limb caused by weight-bearing pressures.
A second embodiment of the hypobarically-controlled artificial limb 50 is shown in FIGS. 5 and 6. The second embodiment of the hypobarically-controlled artificial limb 50 is as described above, with the exception that the inner socket 60A is compressible as well as being flexible. Instead of a vacuum source, the second embodiment has a positive air pressure source 100, which may preferably be a motor-driven pump 102. The regulator means 80, which may be a digital computer 82, controls the positive air pressure source 100. The regulator means and positive air pressure source 100 are connected to a power source 83, which may be a battery. A positive pressure valve 104 connects the space 58 to the positive air pressure source 100, for compressing the inner socket 60A
as the volume of the residual limb decreases.
It will be seen that as the volume of the residual limb 14 decreases during the day due to weight-bearing pressures, the regulator means 80 may control the positive air pressure source 100 to cause air pressure to compress the inner socket 60A to compensate for the decreased volume of the residual limb, as shown in FIG. 6.
A third embodiment of the hypobarically-controlled artificial limb 50 is shown in FIG. 7. The third embodiment is a combination of the first and second embodiments described above.
The motor-driven pump 72 may act as both the vacuum source 70 and the positive air pressure source 100. The regulator means 80, vacuum source 70 and positive air pressure source 100 are connected to a power source 83, which may be a battery.
The vacuum source 70, under control of the regulator means 80, will compensate for reduced residual limb volume up to a certain point. From that point on, the regulator means 80 will cause the positive air pressure source 100 to further compensate for reduced residual limb volume as described above. The third embodiment thus uses both vacuum and positive air pressure working together to lock the residual limb 14 into the inner socket 60 and reduce socket volume to compensate for fluid loss in the residual limb 14.
The exact point at which the changeover is made between vacuum compensation and positive air pressure compensation is controlled by the regulator means 80, which as described may be a digital computer appropriately programmed for the socket environment.
A fourth embodiment of the hypobarically-controlled artificial limb 50 is shown .fin FIG. 8. The fourth embodiment is like the first embodiment, but includes two vacuum valves: a first vacuum valve 106 and a second vacuum valve 110, both connected to the vacuum source 70. The first vacuum valve 106 connects the vacuum source 70 to the space 58. The space 58 contains a semi-compressible material 108, such as polystyrene beads, as disclosed in U.S. Patent No. 4,828,325.
To don the artificial limb 50, the amputee proceeds as described above. After inserting the residual limb 14 (with optional coverings) into the inner socket 60B, which is both compressible and expandable, and rolling the suspension sleeve 86 over the outer socket 52, the amputee activates the regulator means 80, causing the vacuum source 70 to apply a vacuum to the space 58. This causes the material 108 to lock mechanically together into a rigid mass, conforming to the shape of the residual limb 14.
The inner socket 60B may expand slightly under the weight of the residual limb 14 and under the influence of vacuum.
It will be seen that the semi-compressible molding material 108 can be molded to the contours of the residual limb 14 without using a custom-building process to produce a custom socket. The outer socket 52 may appropriately occur in standard sizes, such as small, medium, and large. The inner socket 60B may also occur in standard sizes such as small, medium, and large. Adaptation of the inner socket 60B to the contours of the residual limb 14 occurs through solidifying the material 108 under the influence of vacuum.
The second vacuum valve 110 connects the vacuum source 70 to the cavity 62 as previously described, for locking the residual limb 14 into the inner socket 60B.
The fourth embodiment may also include a positive air pressure source 100 as previously described, to adjust the size of the inner socket 60B to compensate for decreased residual limb volume.
1fie fourth embodiment may also include a thin sheath 90, liner 92, and second sleeve 94, as previously described.
The positive air pressure source 100 may also be used for shock absorption and a dynamic response in the ankle and foot sections of the artificial limb 50, by means of a connection 120.
A fifth embodiment of the hypobarically controlled artificial limb 50 is shown in FIG. 10. This embodiment is the same as the first embodiment shown in FIG. 4, with some changes. First, vacuum source ?1 may be a hand-operated vacuum pump 71 which may remove air from the cavity 62 down to 25 inches of mercury but more commonly down by three to six inches of mercury. A suitable hand-operated vacuum pump is marketed under the trademark MITY VAC II~ by Neward Enterprises, Inc. of Cucamonga, California.
The fifth embodiment also includes the seal means 84 which preferably consists of a non-foamed, nonporous polyurethane suspension sleeve 86 for rolling over and covering a portion of the residual limb 14. A portion of the seal means 86 is adapted to be disposed between the outer socket 52 and the inner socket 60. The sleeve may be made of any of a variety of air-impervious elastomers.
The fifth embodiment, shown in FIG. 10, also includes a mechanical interlock 67, 59 for interlocking the inner socket 62 with the outer socket 52. Preferably, the mechanical interlock consists of a first detent 67 in the inner socket 62 and a second detent 59 in the outer socket 52. The first detent 67 engages the second detent 59 to lock the inner socket 60 into the outer socket 52.
A sixth embodiment of the hypobarically-controlled artificial limb of the present invention is shown in FIGS. 1 i and i2. The sixth embodiment is like the first embodiment shown in FIG. 4, with some changes.
First, the inner socket is specifically intended to be removable from the outer socket. To provide a positive mechanical connection between the inner socket and outer socket and yet allow the inner socket to be easily removed, the sixth embodiment includes a mechanical interlock 103 engaging the inner socket 60 and the outer socket 52.
Preferably, the mechanical interlock may be an extension 104 which is attached to the inner socket 60 and a docking device 106 attached to the outer socket 52 and receiving the extension 104, and a locking mechanism 105 engaging the extension 104 and the docking device 106.
The extension may be any sort of protrusion from the inner socket, such as a bulge or tab. Preferably, the extension 104 comprises a shuttle pin 108.
The locking mechanism may be any sort of member which engages both the extension 104 and the docking device 106, such as a screw, wire, or pin.
Preferably, the locking mechanism 105 comprises a second pin 110 which extends outside the outer socket 52 as to be accessible.
Second, the sixth embodiment includes two thin sheaths, rather than one. A
first inner sheath 90 may preferably be disposed between the residual limb 14 and the inner surface 64 of the inner socket 60. As vacuum is applied to the cavity 62, the inner sheath 90 will allow the vacuum to be evenly applied throughout the cavity 62.
Without the inner sheath 90, the residual Iimb 14 might "tack up" against the inner surface 64 and form a seal which might prevent even application of the vacuum to the cavity 62. The inner sheath 90 may also be used to assist the amputee into a smooth and easy fitting into the inner socket 60.
An outer sheath 93 is preferably disposed between the suspension sleeve 86 and the inner socket 60, thereby preventing the suspension sleeve from tacking to the inner socket 60. Such tacking would cause friction between the inner socket b0 and the sleeve 86 which would cause the sleeve to wear out. Such tacking might also cause restrictions in the movement of the residual limb. The outer sheath 93 also protects the suspension sleeve 86 from being damaged by friction with the inner socket 60.
The sixth embodiment also preferably includes an adhesive pressure tape 95 adapted to cover the outer sheath 93, suspension sleeve 86, and the second sleeve 94 and sealing the outer sheath 93, suspension sleeve 86, and the second sleeve 94 to the inner socket 60. The tape 95 locks all of these layers to the inner socket so that they do not come loose during movement.
In the sixth embodiment, the suspension sleeve 86 goes between the inner socket 60 and the outer socket 52, so that the sleeve 86 is protected from damage.
In the sixth embodiment, the inner socket 60 has a rigid lower portion 98 and a substantially flexible upper portion 96. The rigid Iower portion assists in weight-bearing while the substantially flexible upper portion allows for movement of the residual limb 14.
As the knee is bent from fully straight to fully flexed, the width of the knee changes rather significantly and in a hard, non-flexible socket brim, there can be excessive pressure on the residual limb 14. The substantially flexible upper portion 96 makes the artificial limb 50 more comfortable and more adaptive to these changes. For the same reason, the outer socket 52 has a rigid lower portion 102 and a substantially flexible upper portion 100.
Preferably, the top edge of the inner socket 60 is below the top edge of the outer socket 52 so that the sleeve 86 is protected from impact. Preferably, the top edge of the inner socket 60 may be 3/16 inch below the top edge of the outer socket 52.
The sixth embodiment includes extensive modifications to the vacuum system.
First, a vacuum fitting 78 has been added to the inner socket 60 to attach the vacuum tube 76. The vacuum fitting 78 allows the attachment of a vacuum sensor adapted to sense the amount of vacuum in the cavity 62 and a sensor lead 81 is attached to the sensor 79 connecting the sensor 79 to the regulator means 80, thus conveying the sensed vacuum to the regulator means 80.
A vacuum valve 74 is placed between the cavity 62 and the vacuum source 70 to maintain vacuum in the cavity 62. Typically, the vacuum valve 74 is a one-way valve or non-return valve.
In the sixth embodiment, the vacuum source 70, vacuum tube 76, vacuum valve 74, regulator means 80, and power source 83 are all attached to the outer socket 52 in the space 58 between the outer socket 52 and inner socket 60. In this way, these delicate components are protected against being damaged by impact. Because of the placement of the regulator means 80 within the outer socket 52, a vacuum control 77 is provided extending outside the outer socket 52 to allow manual control of the regulator means 80.
The amputee dons the sixth embodiment in a manner similar to that earlier described, with some modifications. First, the outer sheath 93 is put on the residual limb 14 after rolling the suspension sleeve 86 upward over the residual limb and before donning the liner 92. After donning the inner sheath 90 over the liner 92, the amputee inserts the residual limb 14 into the inner socket 60. Next, the outer sheath 93, suspension sleeve 86, and second sleeve 94 are rolled down over the inner socket 60, and the adhesive pressure tape 95 is applied. Next, the wearer sets the regulator means 80 to an appropriate vacuum level by means of the vacuum control 77, and connects the vacuum _'7()_ tube 76 to the vacuum fitting 78. The inner socket 60 is then placed within the outer socket 52 so that the shuttle pin 108 engages the docking device 106 and the locking pin 110 is set to engage the shuttle pin 108 and the docking device L06, providing a positive mechanical interlock.
A seventh embodiment of the hypobarically-controlled artificial limb of the present invention is shown in FIG. 13. The seventh embodiment is similar to the sixth embodiment, with some changes.
First, the mechanical interlock l03 does not engage the inner socket 60.
Instead, the mechanical interlock engages the outer socket 52 and the suspension sleeve 86. To accomplish this, the suspension sleeve 86 covers the entire inner socket 60, and the suspension sleeve 86 has the extension lt)4 or shuttle pin embedded in the suspension sleeve at the distal end of the suspension sleeve, as shown in FIG. 14. Preferably, the extension 104 has a portion 104A embedded in the suspension sleeve. This portion 104A may be a disk or umbrella 104A. The extension 104 then engages the docking device 106 as previously described.
Second, the suspension sleeve 86 is modified to support the additional weight imposed on the suspension sleeve 86 due to the outer socket 52 and artificial limb. In particular, the suspension sleeve 86 is fabricated from a material which allows circumferential expansion but resists longitudinal stretching under the weight of the artificial limb. Such a material is described in United States Patent No. 5,571,208. FIG. 15 is a modified drawing from the 5,_571,208 patent showing details of construction of the suspension sleeve.
The sleeve 86 preferably contains fabric threads 250 which may be oriented circumferentially around the sleeve. The threads 250 preferably are comprised of double-knit polyurethane. The threads may also include nylon. The threads 250 permit the sleeve 86 to expand circumferentially so that the sleeve may be slipped onto the residual limb 14 and so that the lower portion 240 may be slipped over the inner socket 52.
The threads 250 are preferably connected together with cross-links 252, which also may be preferably comprised of polyurethane. The cross-links 252 and threads 250 form a matrix 254 which allows circumferential expansion but resists longitudinal stretching under the weight of the artificial limb. By example, the sleeve 86 may have a 4-to-1 ratio of circumferential stretch relative to longitudinal stretch.
The sleeve 86 may have a portion above the inner socket 52 which is manufactured of material which allows both vertical and horizontal stretching, to increase flexibility.
The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof, and it is therefore desired that the present embodiment be considered in all respects as illustrative and not restrictive, reference being made to the appended claims rather than to the foregoing description to indicate the scope of the invention.
Claims (61)
1. A hypobarically-controlled artificial limb for amputees who have a residual limb, the artificial limb comprising:
(a) an outer socket with a volume and shape to receive a substantial portion of the residual limb with a space therebetween;
(b) an inner socket removable from said outer socket with a cavity with a volume and shape for receiving a substantial portion of the residual limb and fitting in said space between said outer socket and the residual limb, said inner socket having an inner surface and an outer surface, said inner surface adapted to oppose the residual limb, said outer surface opposing said outer socket;
(c) a vacuum source;
(d) a vacuum tube connecting said vacuum source to said cavity and in flow communication with said cavity, thereby drawing the residual limb into firm contact with said inner surface of said inner socket, and a vacuum valve between said cavity and said vacuum source adapted to maintain vacuum in said cavity;
(e) a regulator means for controlling said vacuum source;
(f) a power source connected to said regulator means and said vacuum source;
(g) a seal means for making an airtight seal between the residual limb and said inner socket; and (h) a mechanical interlock holding said inner socket to said outer socket .
(a) an outer socket with a volume and shape to receive a substantial portion of the residual limb with a space therebetween;
(b) an inner socket removable from said outer socket with a cavity with a volume and shape for receiving a substantial portion of the residual limb and fitting in said space between said outer socket and the residual limb, said inner socket having an inner surface and an outer surface, said inner surface adapted to oppose the residual limb, said outer surface opposing said outer socket;
(c) a vacuum source;
(d) a vacuum tube connecting said vacuum source to said cavity and in flow communication with said cavity, thereby drawing the residual limb into firm contact with said inner surface of said inner socket, and a vacuum valve between said cavity and said vacuum source adapted to maintain vacuum in said cavity;
(e) a regulator means for controlling said vacuum source;
(f) a power source connected to said regulator means and said vacuum source;
(g) a seal means for making an airtight seal between the residual limb and said inner socket; and (h) a mechanical interlock holding said inner socket to said outer socket .
2. The hypobarically-controlled artificial limb of claim 1, further comprising an inner sheath to be disposed between the residual limb and said inner surface of said inner socket.
3. The hypobarically-controlled artificial limb of claim 2, further comprising a nonfoamed, nonporous polyurethane liner receiving the residual limb and to be disposed between said inner sheath and the residual limb.
4. The hypobarically-controlled artificial limb of claim 2, wherein said inner sheath is thin knitted nylon.
5. The hypobarically-controlled artificial limb of claim 1, wherein said vacuum source is a motor-driven vacuum pump.
6. The hypobarically-controlled artificial limb of claim 1, wherein said regulator means is a digital computer.
7. The hypobarically-controlled artificial limb of claim 1, wherein said seal means comprises a nonfoamed, nonporous polyurethane suspension sleeve for rolling over and covering said inner socket and a portion of the residual limb, thereby forming an airtight seal.
8. The hypobarically-controlled artificial limb of claim 7, further comprising a stretchable nylon second sleeve for rolling over and covering said suspension sleeve to prevent clothing from sticking to and catching said suspension sleeve.
9. The hypobarically-controlled artificial limb of claim 8, further comprising an outer sheath to be disposed between said suspension sleeve and said inner socket, thereby preventing said suspension sleeve from tacking to said inner socket.
10. The hypobarically-controlled artificial limb of claim 9, further comprising an adhesive tape adapted to cover said outer sheath, said suspension sleeve, and said second sleeve and sealing said outer sheath, said suspension sleeve, and said second sleeve to said inner socket.
11. The hypobarically-controlled artificial limb of claim 1, wherein said mechanical interlock further comprises an extension pin attached to the distal end of said inner socket, a docking device attached to said outer socket and receiving said extension, and a locking mechanism engaging said extension and said docking device.
12. The hypobarically-controlled artificial limb of claim 11, wherein said locking mechanism is a second pin.
13. The hypobarically-controlled artificial limb of claim 1, further comprising a vacuum fitting engaging said vacuum tube and said inner socket.
14. The hypobarically-controlled artificial limb of claim 13, further comprising a vacuum sensor attached to said vacuum fitting and adapted to sense the amount of vacuum in said cavity and a sensor lead connecting said vacuum sensor to said regulator means.
15. The hypobarically-controlled artificial limb of claim l, wherein said inner socket further comprises a rigid lower portion and a substantially flexible upper portion.
16. The hypobarically-controlled artificial limb of claim 1, wherein said outer socket further comprises a rigid lower portion and a substantially flexible upper portion.
17. The hypobarically-controlled artificial limb of claim 1, wherein the top edge of said inner socket is below the top edge of said outer socket.
18. The hypobarically-controlled artificial limb of claim 1, wherein said vacuum source, said vacuum tube, said vacuum valve, said regulator means, and said power source are attached to said outer socket in a space between said outer socket and said inner socket.
19. The hypobarically-controlled artificial limb of claim 18, further comprising a vacuum control adapted to manually control said regulator means and extending outside said outer socket.
20. The hypobarically-controlled artificial limb of claim 6, wherein said mechanical interlock further comprises an extension attached to said suspension sleeve, a docking device attached to said outer socket and receiving said extension, and a locking mechanism engaging said extension and said docking device.
21. The hypobarically-controlled artificial limb of claim 20, wherein said extension is a pin protruding from said suspension sleeve.
22. The hypobarically-controlled artificial limb of claim 21, wherein said locking mechanism is a second pin.
23. A hypobarically-controlled artificial limb for amputees who have a residual limb, the artificial limb comprising:
(a) an outer socket with a volume and shape to receive a substantial portion of the residual limb with a space therebetween, wherein said outer socket further comprises a rigid lower portion and a substantially flexible upper portion;
(b) an inner socket removable from said outer socket with a cavity with a volume and shape for receiving a substantial portion of the residual limb and fitting in said space between said outer socket and the residual limb, said inner socket having an inner surface and an outer surface, said inner surface adapted to oppose the residual limb, said outer surface opposing said outer socket, wherein said inner socket further comprises a rigid lower portion and a substantially flexible upper portion;
(c) a vacuum source;
(d) a vacuum tube connecting said vacuum source to said cavity and in flow communication with said cavity, thereby drawing the residual limb into firm contact with said inner surface of said inner socket, and a vacuum valve between said cavity and said vacuum source adapted to maintain vacuum in said cavity;
(e) a regulator means for controlling said vacuum source;
(f) a power source connected to said regulator means and said vacuum source;
(g) a seal means for making an airtight seal between the residual limb and said inner socket; and (h) a mechanical interlock holding said inner socket to said outer socket.
(a) an outer socket with a volume and shape to receive a substantial portion of the residual limb with a space therebetween, wherein said outer socket further comprises a rigid lower portion and a substantially flexible upper portion;
(b) an inner socket removable from said outer socket with a cavity with a volume and shape for receiving a substantial portion of the residual limb and fitting in said space between said outer socket and the residual limb, said inner socket having an inner surface and an outer surface, said inner surface adapted to oppose the residual limb, said outer surface opposing said outer socket, wherein said inner socket further comprises a rigid lower portion and a substantially flexible upper portion;
(c) a vacuum source;
(d) a vacuum tube connecting said vacuum source to said cavity and in flow communication with said cavity, thereby drawing the residual limb into firm contact with said inner surface of said inner socket, and a vacuum valve between said cavity and said vacuum source adapted to maintain vacuum in said cavity;
(e) a regulator means for controlling said vacuum source;
(f) a power source connected to said regulator means and said vacuum source;
(g) a seal means for making an airtight seal between the residual limb and said inner socket; and (h) a mechanical interlock holding said inner socket to said outer socket.
24. The hypobarically-controlled artificial limb of claim 23, further comprising an inner sheath to be disposed between the residual limb and said inner surface of said inner socket.
25. The hypobarically-controlled artificial limb of claim 24, further comprising a nonfoamed, nonporous polyurethane line for receiving the residual limb and to be disposed between said inner sheath and the residual limb.
26. The hypobarically-controlled artificial limb of claim 24, wherein said inner sheath is thin knitted nylon.
27. The hypobarically-controlled artificial limb of claim 23, wherein said vacuum source is a motor-driven vacuum pump.
28. The hypobarically-controlled artificial limb of claim 23, wherein said regulator means is a digital computer.
29. The hypobarically-controlled artificial limb of claim 23, wherein said seal means comprises a nonfoamed, nonporous polyurethane suspension sleeve for rolling over and covering said inner socket and a portion of the residual limb, thereby forming an airtight seal.
30. The hypobarically-controlled artificial limb of claim 29, further comprising a stretchable nylon second sleeve for rolling over and covering said suspension sleeve to prevent clothing from sticking to and catching said suspension sleeve.
31. The hypobarically-controlled artificial limb of claim 29, further comprising an outer sheath to be disposed between said suspension sleeve and said inner socket, thereby preventing said suspension sleeve from tacking to said inner socket.
32. The hypobarically-controlled artificial limb of claim 31, further comprising an adhesive tape adapted to cover said outer sheath, said suspension sleeve, and said second sleeve and sealing said outer sheath, said suspension sleeve, and said second sleeve to said inner socket.
33. The hypobarically-controlled artificial limb of claim 23, wherein said mechanical interlock further comprises an extension attached to said inner socket, a docking device attached to said outer socket and receiving said extension, and a locking mechanism engaging said extension and said docking device.
34. The hypobarically-controlled artificial limb of claim 33, wherein said extension is a pin protruding from said inner socket.
35. The hypobarically-controlled artificial limb of claim 33, wherein said locking mechanism is a second pin.
36. The hypobarically-controlled artificial limb of claim 23, further comprising a vacuum fitting engaging said vacuum tube and said inner socket.
37. The hypobarically-controlled artificial limb of claim 36, further comprising a vacuum sensor attached to said vacuum fitting and adapted to sense the amount of vacuum in said cavity and a sensor lead connecting said vacuum sensor to said regulator means.
38. The hypobarically-controlled artificial limb of claim 23, wherein said vacuum source, said vacuum tube, said vacuum valve, said regulator means, and said power source are attached to said outer socket in said space between said outer socket and said inner socket.
39. The hypobarically-controlled artificial limb of claim 38, further comprising a vacuum control adapted to manually control said regulator means and extending outside said outer socket.
40. The hypobarically-controlled artificial limb of claim 29, wherein said mechanical interlock further comprises an extension attached to said suspension sleeve, a docking device attached to said outer socket and receiving said extension, and a locking mechanism engaging said extension and said docking device.
41. The hypobarically-controlled artificial limb of claim 40, wherein said extension is a pin protruding from said suspension sleeve.
42. The hypobarically-controlled artificial limb of claim 40, wherein said locking mechanism is a second pin.
43. A hypobarically-controlled artificial limb for amputees who have a residual limb, the artificial limb comprising:
(a) an outer socket with a volume and shape to receive a substantial portion of the residual limb with a space therebetween, wherein said outer socket further comprises a rigid lower portion and a substantially flexible upper portion;
(b) an inner socket removable from said outer socket with a cavity with a volume and shape for receiving a substantial portion of the residual limb and fitting in said space between said outer socket and the residual limb, said inner socket having an inner surface and an outer surface, said inner surface adapted to oppose the residual limb, said outer surface opposing said outer socket, wherein said inner socket further comprises a rigid lower portion and a substantially flexible upper portion;
(c) a vacuum source, further comprising a motor-driven vacuum pump;
(d) a vacuum fitting attached to said inner socket and in flow communication with said cavity;
(e) a vacuum tube connecting said vacuum source to said vacuum fitting and in flow communication with said cavity, thereby drawing the residual limb into firm contact with said inner surface of said inner socket, and a vacuum valve between said cavity and said vacuum source adapted to maintain vacuum in said cavity;
(f) a regulator means for controlling said vacuum source;
(g) a vacuum sensor attached to said vacuum fitting and adapted to sense the amount of vacuum in said cavity and a sensor lead connecting said vacuum sensor to said regulator means;
(h) a power source connected to said regulator means and said vacuum source;
(i) a seal means for making an airtight seal between the residual limb and said inner socket, wherein said seal means comprises a nonfoamed, nonporous polyurethane suspension sleeve for rolling over and covering said inner socket and a portion of the residual limb, thereby forming an airtight seal; and (j) a mechanical interlock engaging said inner socket and said outer socket, wherein said mechanical interlock further comprises an extension attached to said inner socket, a docking device attached to said outer socket and receiving said extension, and a locking mechanism engaging said extension and said docking device wherein said vacuum source, said vacuum tube, said vacuum valve, said regulator means, and said power source are attached to said outer socket in said space between said outer socket and said inner socket and further comprising a vacuum control adapted to control said regulator means and extending outside said outer socket.
(a) an outer socket with a volume and shape to receive a substantial portion of the residual limb with a space therebetween, wherein said outer socket further comprises a rigid lower portion and a substantially flexible upper portion;
(b) an inner socket removable from said outer socket with a cavity with a volume and shape for receiving a substantial portion of the residual limb and fitting in said space between said outer socket and the residual limb, said inner socket having an inner surface and an outer surface, said inner surface adapted to oppose the residual limb, said outer surface opposing said outer socket, wherein said inner socket further comprises a rigid lower portion and a substantially flexible upper portion;
(c) a vacuum source, further comprising a motor-driven vacuum pump;
(d) a vacuum fitting attached to said inner socket and in flow communication with said cavity;
(e) a vacuum tube connecting said vacuum source to said vacuum fitting and in flow communication with said cavity, thereby drawing the residual limb into firm contact with said inner surface of said inner socket, and a vacuum valve between said cavity and said vacuum source adapted to maintain vacuum in said cavity;
(f) a regulator means for controlling said vacuum source;
(g) a vacuum sensor attached to said vacuum fitting and adapted to sense the amount of vacuum in said cavity and a sensor lead connecting said vacuum sensor to said regulator means;
(h) a power source connected to said regulator means and said vacuum source;
(i) a seal means for making an airtight seal between the residual limb and said inner socket, wherein said seal means comprises a nonfoamed, nonporous polyurethane suspension sleeve for rolling over and covering said inner socket and a portion of the residual limb, thereby forming an airtight seal; and (j) a mechanical interlock engaging said inner socket and said outer socket, wherein said mechanical interlock further comprises an extension attached to said inner socket, a docking device attached to said outer socket and receiving said extension, and a locking mechanism engaging said extension and said docking device wherein said vacuum source, said vacuum tube, said vacuum valve, said regulator means, and said power source are attached to said outer socket in said space between said outer socket and said inner socket and further comprising a vacuum control adapted to control said regulator means and extending outside said outer socket.
44. The hypobarically-controlled artificial limb of claim 43, further comprising an inner sheath to be disposed between the residual limb and said inner surface of said inner socket.
45. The hypobarically controlled artificial limb of claim 43, further comprising a nonfoamed, nonporous polyurethane liner configured to receive the residual limb and to be disposed between an inner sheath and the residual limb.
46. The hypobarically-controlled artificial limb of claim 43, wherein said regulator means is a digital computer.
47. The hypobarically-controlled artificial limb of claim 43, further comprising a stretchable nylon second sleeve for rolling over and covering said suspension sleeve to prevent clothing from sticking to and catching said suspension sleeve.
48. The hypobarically-controlled artificial limb of claim 47, further comprising an outer sheath to be disposed between said suspension sleeve and said inner socket, thereby preventing said suspension sleeve from tacking to said inner socket.
49. The hypobarically-controlled artificial limb of claim 48, further comprising an adhesive tape adapted to cover said outer sheath, said suspension sleeve, and said second sleeve and sealing said outer sheath, said suspension sleeve, and said second sleeve to said inner socket.
50. The hypobarically-controlled artificial limb of claim 43, wherein said extension is a pin protruding from said inner socket.
51. The hypobarically-controlled artificial limb of claim 43, wherein said locking mechanism is a second pin.
52. A hypobarically-controlled artificial limb for amputees who have a residual limb, the artificial limb comprising:
(a) an outer socket with a volume and shape to receive a substantial portion of the residual limb with a space therebetween, wherein said outer socket further comprises a rigid lower portion and a substantially flexible upper portion;
(b) an inner socket removable from said outer socket with a cavity with a volume and shape for receiving a substantial portion of the residual limb and fitting in said space between said outer socket and the residual limb, said inner socket having an inner surface and an outer surface, said inner surface adapted to oppose the residual limb, said outer surface opposing said outer socket, wherein said inner socket further comprises a rigid lower portion and a substantially flexible upper portion.
(c) a vacuum source, further comprising a motor-driven vacuum pump;
(d) a vacuum fitting attached to said inner socket and in flow communication with said cavity;
(e) a vacuum tube connecting said vacuum source to said vacuum fitting and in flow communication with said cavity, thereby drawing the residual limb into firm contact with said inner surface of said inner socket, and a vacuum valve between said cavity and said vacuum source adapted to maintain vacuum in said cavity;
(f) a regulator means for controlling said vacuum source;
(g) a vacuum sensor attached to said vacuum fitting and adapted to sense the amount of vacuum in said cavity and a sensor lead connecting said vacuum sensor to said regulator means;
(h) a power source connected to said regulator means and said vacuum source;
(i) a seal means for making an airtight seal between the residual limb and said inner socket, wherein said seal means comprises a nonfoamed, nonporous polyurethane suspension sleeve for rolling over and covering said inner socket and a portion of the residual limb, thereby forming an airtight seal; and (j) a mechanical interlock holding said inner socket to said outer socket, wherein said mechanical interlock further comprises an extension attached to said suspension sleeve, a docking device attached to said outer socket and receiving said extension, and a locking mechanism engaging said extension and said docking device wherein said vacuum source, said vacuum tube, said vacuum valve, said regulator means, and said power source are attached to said outer socket in said space between said outer socket and said inner socket and further comprising a vacuum control adapted to control said regulator means and extending outside said outer socket.
(a) an outer socket with a volume and shape to receive a substantial portion of the residual limb with a space therebetween, wherein said outer socket further comprises a rigid lower portion and a substantially flexible upper portion;
(b) an inner socket removable from said outer socket with a cavity with a volume and shape for receiving a substantial portion of the residual limb and fitting in said space between said outer socket and the residual limb, said inner socket having an inner surface and an outer surface, said inner surface adapted to oppose the residual limb, said outer surface opposing said outer socket, wherein said inner socket further comprises a rigid lower portion and a substantially flexible upper portion.
(c) a vacuum source, further comprising a motor-driven vacuum pump;
(d) a vacuum fitting attached to said inner socket and in flow communication with said cavity;
(e) a vacuum tube connecting said vacuum source to said vacuum fitting and in flow communication with said cavity, thereby drawing the residual limb into firm contact with said inner surface of said inner socket, and a vacuum valve between said cavity and said vacuum source adapted to maintain vacuum in said cavity;
(f) a regulator means for controlling said vacuum source;
(g) a vacuum sensor attached to said vacuum fitting and adapted to sense the amount of vacuum in said cavity and a sensor lead connecting said vacuum sensor to said regulator means;
(h) a power source connected to said regulator means and said vacuum source;
(i) a seal means for making an airtight seal between the residual limb and said inner socket, wherein said seal means comprises a nonfoamed, nonporous polyurethane suspension sleeve for rolling over and covering said inner socket and a portion of the residual limb, thereby forming an airtight seal; and (j) a mechanical interlock holding said inner socket to said outer socket, wherein said mechanical interlock further comprises an extension attached to said suspension sleeve, a docking device attached to said outer socket and receiving said extension, and a locking mechanism engaging said extension and said docking device wherein said vacuum source, said vacuum tube, said vacuum valve, said regulator means, and said power source are attached to said outer socket in said space between said outer socket and said inner socket and further comprising a vacuum control adapted to control said regulator means and extending outside said outer socket.
53. The hypobarically-controlled artificial limb of claim 52, further comprising an inner sheath to be disposed between the residual limb and said inner surface of said inner socket.
54. The hypobarically-controlled artificial limb of claim 52, further comprising a nonfoamed, nonporous polyurethane liner receiving the residual limb and to be disposed between an inner sheath and the residual limb.
55. The hypobarically-controlled artificial limb of claim 52, wherein said regulator means is a digital computer.
56. The hypobarically-controlled artificial limb of claim 52, further comprising a stretchable nylon second sleeve for rolling over and covering said suspension sleeve to prevent clothing from sticking to and catching said suspension sleeve.
57. The hypobarically-controlled artificial limb of claim 56, further comprising an outer sheath to be disposed between said suspension sleeve and said inner socket, thereby preventing said suspension sleeve from tacking to said inner socket.
58. The hypobarically-controlled artificial limb of claim 57, further comprising an adhesive tape adapted to cover said outer sheath, said suspension sleeve, and said second sleeve and sealing said outer sheath, said suspension sleeve, and said second sleeve to said inner socket.
59. The hypobarically-controlled artificial limb of claim 52, wherein said extension is a pin protruding from said suspension sleeve.
60. The hypobarically-controlled artificial limb of claim 52, wherein said locking mechanism is a second pin.
61. A hypobarically-controlled artificial limb for amputees who have a residual limb, the artificial limb comprising:
(a) a socket with a volume and shape to receive a substantial portion of the residual limb with a cavity therebetween;
(b) a vacuum source;
(c) a vacuum tube connecting said vacuum source to said cavity and in flow communication with said cavity, thereby drawing the residual limb into firm contact with said socket, and a vacuum valve between said cavity and said vacuum source adapted to maintain vacuum in said cavity;
(d) a regulator means for controlling said vacuum source;
(e) a power source connected to said regulator means and said vacuum source;
and (f) a seal means for making an airtight seal between the residual limb and said inner socket.
(a) a socket with a volume and shape to receive a substantial portion of the residual limb with a cavity therebetween;
(b) a vacuum source;
(c) a vacuum tube connecting said vacuum source to said cavity and in flow communication with said cavity, thereby drawing the residual limb into firm contact with said socket, and a vacuum valve between said cavity and said vacuum source adapted to maintain vacuum in said cavity;
(d) a regulator means for controlling said vacuum source;
(e) a power source connected to said regulator means and said vacuum source;
and (f) a seal means for making an airtight seal between the residual limb and said inner socket.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/867,294 US5904722A (en) | 1996-06-11 | 1997-06-02 | Hypobarically-controlled, double-socket artificial limb with mechanical interlock |
US08/867,294 | 1997-06-02 | ||
PCT/US1997/009768 WO1998055055A1 (en) | 1996-06-11 | 1997-06-10 | Hypobarically-controlled, double-socket artificial limb with mechanical interlock |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2290414A1 CA2290414A1 (en) | 1998-12-10 |
CA2290414C true CA2290414C (en) | 2004-08-31 |
Family
ID=29550510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002290414A Expired - Lifetime CA2290414C (en) | 1997-06-02 | 1997-06-10 | Hypobarically-controlled, double-socket artificial limb with mechanical interlock |
Country Status (2)
Country | Link |
---|---|
CA (1) | CA2290414C (en) |
DE (1) | DE69726021T2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10842653B2 (en) | 2007-09-19 | 2020-11-24 | Ability Dynamics, Llc | Vacuum system for a prosthetic foot |
-
1997
- 1997-06-10 CA CA002290414A patent/CA2290414C/en not_active Expired - Lifetime
- 1997-06-10 DE DE69726021T patent/DE69726021T2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10842653B2 (en) | 2007-09-19 | 2020-11-24 | Ability Dynamics, Llc | Vacuum system for a prosthetic foot |
Also Published As
Publication number | Publication date |
---|---|
DE69726021D1 (en) | 2003-12-11 |
DE69726021T2 (en) | 2004-08-26 |
CA2290414A1 (en) | 1998-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5904722A (en) | Hypobarically-controlled, double-socket artificial limb with mechanical interlock | |
US6508842B1 (en) | Socket liner for artificial limb | |
US6554868B1 (en) | Vacuum pump and shock absorber for artificial limb | |
US8758449B2 (en) | Socket liner for artificial limb | |
US6726726B2 (en) | Vacuum apparatus and method for managing residual limb volume in an artificial limb | |
US5549709A (en) | Hypobarically-Controlled artificial limb for amputees | |
US6926742B2 (en) | Plate/socket attachment for artificial limb vacuum pump | |
EP1361841B1 (en) | Vacuum pump and shock absorber for artificial limb | |
WO2000074611A2 (en) | Hypobarically-controlled socket for artificial limb | |
AU2002232424A1 (en) | Vacuum apparatus and method for managing residual limb volume in an artifical limb | |
AU2001252943A1 (en) | Vacuum pump and shock absorber for artificial limb | |
EP1509176B1 (en) | Pulsating pressure chamber in a prosthetic limb | |
AU2002230469A1 (en) | Vacuum pump and shock absorber for artificial limb | |
WO2002026158A2 (en) | Socket liner for artificial limb | |
US20040030411A1 (en) | Pulsating pressure chamber and method for fluid management | |
CA2290414C (en) | Hypobarically-controlled, double-socket artificial limb with mechanical interlock |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKEX | Expiry |
Effective date: 20170612 |