CA2262619C - Multiple-phase electric machine with a space-optimised turn-to-turn winding - Google Patents

Multiple-phase electric machine with a space-optimised turn-to-turn winding Download PDF

Info

Publication number
CA2262619C
CA2262619C CA002262619A CA2262619A CA2262619C CA 2262619 C CA2262619 C CA 2262619C CA 002262619 A CA002262619 A CA 002262619A CA 2262619 A CA2262619 A CA 2262619A CA 2262619 C CA2262619 C CA 2262619C
Authority
CA
Canada
Prior art keywords
conductor
winding
layers
multiple phase
lanes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002262619A
Other languages
French (fr)
Other versions
CA2262619A1 (en
Inventor
Wolfgang Hill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2262619A1 publication Critical patent/CA2262619A1/en
Application granted granted Critical
Publication of CA2262619C publication Critical patent/CA2262619C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

Known turn-to-turn windings with overlapping, sinuous conductor strands either only insufficiently use the slot space or are difficult to produce. In addition, no uniform distribution of the current intensity is achieved in the winding head space. The disclosed multiple-phase conductor layers are made of identical conductor strands located in the slot space at the same distance from the air gap surface. The conductor layers superimposed in the slots supplement each other in the use of the winding head space in that they lead the current in opposite directions across the width of the slot. A uniform distribution of the current intensity and a high space utilisation are achieved in that the layered winding heads are offset relative to the layers in the slot in the direction of the slot depth by half the height of a layer. Each conductor strand occupies two winding head layers when crossing the winding heads, the layers being exchanged at about the centre of the connection section at the outside of the winding heads. Alternating second conductor layers in succession are directly interconnected. Engines and generators equipped with space-optimised turn-to-turn windings are characterised by a high effectiveness and power density.

Description

Wolfgang Hill PCT/DE97/01667 TITLE
MULTIPLE PHASE ELECTRIC MACHINE
WITH A SPACE-OPTIMIZED TURN-TO-TURN WINDING
OF THE INVENTION
1. Field of the Invention The invention concerns a multiple phase electric machine with a turn-to-turn winding as well as a process for the production of such machines.
2. Description of the Prior Art Good space utilization in the winding overhangs due to short connection paths and large conductor cross sections create favorable conditions for an increase in power density and efficiency.
Although it is possible to achieve high groove space factors by means of turn-to-turn windings consisting of conductor layers of rectangular cross section which are stacked in direction of the groove depth, their production remains a problem.
In the three-layer winding described in DE-AS
1,005,611 all three layers are bent at different angles towards the shaft.
From DE-AS 1,025,058 a single-layer rotor winding with groove bars is known in which the intersection problem is solved by bending the groove bar only on one side by the full height of the layer towards the shaft and always designing adjacent groove bar ends differently.
Furthermore, turn-to-turn windings made of prefabricated conductor parts that are free of bending radii are known. For instance, in DE 41 25 044 C2 multi-phase conductor layers are described in which the conductor cross section in the winding overhangs varies. The number of different conductor designs corresponds to the number of phases resulting in uniform distribution of current density in the winding overhang space.
In DE 42 34 145 C1 turn-to-turn windings are described whose conductor lanes of different phases yield to each other in the winding overhang in direction of the groove depth and thereby utilize the space in front of the yoke. The length of the conductor is therefore dependent on the groove depth and conductor lanes of different phases are of different designs.
From DE 43 21 236 C1 a turn-to-turn winding is known that is characterized by intertwined conductor lanes.
Conductor lanes of a double layer can not be produced independently of each other. The conductor layers consist of many individual parts that have to be positioned into their final location prior to joining them.
The objective of the present invention is to advance a multiple phase electric machine with overlapping conductor lanes in such a manner that short connection paths and complete and uniform space utilization in the winding overhangs is achieved at the lowest possible production cost.
SUI~IARY OF THE INVENTION
In accordance with the invention, this objective is achieved by the characteristics of claims 1 and 8. In accordance with the invention, all conductor lanes of a conductor layer are identical. In the winding overhangs, sections of the conductor lanes are aligned concurrently in direction of the groove length and the groove width. Each pass through a winding overhang consists of two such sections that lie in different layers of the winding overhang and these layers of the winding overhang, in relation to the layers in the grooves, are set off by one half the conductor height in direction of the groove depth.
The transition from a layer in the groove to one in the winding overhang occurs preferably in a continuous transition retaining the height of the conductor. In the middle of each pass through the winding overhang the conductor lane changes over into another layer of the winding overhang. Following the second diagonal section a second transition returns the conductor lane, again by one half the height of the layer, back into the original groove layer. Thus, the two transition zones compensate the distance covered during the change of the layer in direction of the groove depth.
On the other hand, if the change of a layer on the outside of the winding overhang is a change of a conductor layer, then the change of the layer and also the second transition of this pass through the winding overhang occur in the same direction of the groove depth as the first transition . Here, not adjacent layers but always the conductor layers once removed are switched in series. Conductor layers stacked in the grooves conduct the current in the winding overhangs in opposition directions with reference to the groove width. They belong to the same phase and can be switched parallel as well as in series outside the winding overhangs.
Because the conductor configuration does not require variations in the conductor cross section, the conductor lanes can also be produced by deformation of profile wire. The identical meander-shaped conductor parts can also be produced in one piece and free of bending radii as sintered or cast part. For larger conductor cross sections, the conductor parts are preferably assembled from a multitude of identical conductor elements that have been prefabricated to exact dimensions by, e.g.
drop forging. Joining the conductor layers is accomplished by, e.g. electron or laser beam, prior to the application of insulation.
According to one aspect, the invention provides a multiple phase electric machine with at least one soft magnetic body with grooves, the grooves having a length, a width, and a depth, and the grooves interrupting a groove surface of the soft magnetic body. Within the grooves is arranged a part of a layered winding, and other parts of the layered winding are arranged outside the soft magnetic body in winding overhangs.
The layered winding consists of conductor lanes of different phases, the conductor lanes in the grooves possessing groove layers with surfaces that are approximately parallel to the groove surface of the soft magnetic body, distance between the surfaces of the conductor lanes which are parallel to the grooved surface corresponding to a height of the conductor lanes in direction of the groove depth, sections of the conductor lanes of different phases that are arranged in the grooves and that possess the same distance to the groove surface of the soft magnetic body comprising together a multiple phase conductor layer. The conductor lanes of different phases within the multiple phase conductor layer are overlapping in the winding overhangs by being aligned concurrently in direction of said groove length and in direction of the groove width. A change-over in comparison to the groove layers, between winding overhang layers stacked in the winding overhangs occurrs in each pass of the conductor lanes through the winding overhangs, wherein each conductor lane within the winding overhangs is arranged in winding overhang layers with surfaces parallel to the groove surface, and the winding overhang layers are offset in relation to the said groove layers by a fraction (=value smaller than 1 ) of the height of the conductor lanes in direction of the groove depth.
According to another aspect, the invention provides a multiple phase electric machine with a layered winding, the layered winding consisting of at least two 3a multiple-phase conductor layers, each of the multiple-phase conductor layers having a thickness and meander-shaped conductor lanes of different phases, the conductor lanes overlapping in two winding overhangs of the multiple phase conductor layers.
Between the two winding overhangs the meander-shaped conductor lanes having middle sections, the middle sections having a height in direction of the thickness of the multiple phase conductor layers. The thickness of the multiple phase conductor layer corresponds between the winding overhangs to the height of the middle sections, in the winding overhangs of one multiple phase conductor layer using two winding overhang layers, the two winding overhang layers being offset against the middle sections of the conductor lanes, between the middle sections and sections of the conductor lanes in the winding overhangs being transition sections of the conductor lanes which realize the offset, and the conductor lanes of at least two multiple phase conductor layers stacked between the winding overhangs being offset perpendicularly to the direction of the conductor height and using in the winding overhangs partially the same winding overhang layer.
Advantageous embodiments of the invention are displayed in the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows a conductor element that corresponds to 3b the conductor configuration for one pole pitch.
Fig. 2 shows two conductor elements joined together.
Fig. 3 shows a linearized cutout of two stacked three-phase conductor layers.
Fig. 4 shows in three cutouts the insertion of a three-phase, four-layer turn-to-turn winding into a grooved soft magnetic body of a linear motor.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
In Figure 1 the conductor element (1) shown in linearized form corresponds to the smallest subdivision of a conductor lane into identical conductor elements. Each of the two ends (2) and (9) are a part of the outer surface of the winding overhangs. This typical configuration can be divided into seven subdivisions where the middle section (5 - 6) is arranged within a groove. After leaving the groove, the conductor lane continues in so-called transition zones (4 - 5) and (5 - 6) in direction of the groove length and also concurrently in direction of the groove depth, each transitional section covering on its respective side of the middle section a distance in opposite directions of the groove depth that corresponds to one half of the height of the conductor. Sections (3 - 4) and (7 - 8) are, therefore, arranged in winding overhang layers at a different distance to the air gap surface. They are progressing concurrently in -direction of the groove length and the groove width. At the ends of the conductor element (1) extensions (2 - 3) and (8 -9) in direction of the groove length are provided in order to avoid a narrowing of the conductor cross section when changing over to another layer.
As shown in Figure 2, this change-over occurs when the conductor ends of two identical conductor elements (10a, b) are stacked in direction of the groove depth at the outsides of the winding overhang. The distance covered in direction of the groove depth at the change-over location (11) is compensated within a conductor layer by the two transition zones (12a, b). The sections in the grooves (13a, b) _ connected in this manner show the same distance to the air gap surface. In the winding overhangs the diagonal sections (14a, b) and (15a, b) respectively are also arranged in layers parallel to the air gap. A conductor layer is, therefore, always composed of two winding overhang layers that are stacked and one groove layer wherein the winding overhang layers are set off in relation to the groove layer by one half of the height of a layer.
While a conductor layer occupies its groove layer alone, it shares each of its two winding overhang layers with one of the adjacent conductor layers. This layer design is illustrated in Figure 3 by a cutout comprising four pole pitches of two stacked three-phase conductor layers (20, 21).
The two conductor layers utilize together three winding overhang layers (22a - c) jointly completely filling the middle winding overhang layer (22b). Furthermore, the conductor layers (20, 21) stacked in the grooves conduct the current in the winding overhangs (23a, b) in opposite directions in relation to the groove width. Each conductor layer consists of identical conductor lanes (24 - 29) the number of which corresponds to the number of phases and which are differently densely hatched.
In Figure 4 the insertion of a four-layer winding (30) into the grooved soft magnetic body (35) of a linear motor is shown in three successive work steps. While in Fig.
4a the two lower conductor layers (31, 32), analogous to Fig.
3, form a compact package, a third conductor layer (33) is added in Fig. 4b and the uppermost conductor layer (34) is added in Fig. 4c. The conductor lanes of each layer can, therefore, be inserted individually or as a ready-to-function package into the grooved soft magnetic body (35). The open grooves (36) are closed by partially soft magnetic retainer keys (not shown).

By bending around various axes the illustrated linear design can be adapted to axial and/or radial flux machines.
5a

Claims (9)

CLAIMS:
1. Multiple phase electric machine with at least one soft magnetic body with grooves, said grooves having a length, a width, and a depth, and said grooves interrupting a groove surface of said soft magnetic body, within said grooves being arranged a part of a layered winding, and other parts of said layered winding being arranged outside said soft magnetic body in winding overhangs, said layered winding consisting of conductor lanes of different phases, said conductor lanes in said grooves possessing groove layers with surfaces that are approximately parallel to said groove surface of said soft magnetic body, distance between said surfaces of said conductor lanes, which are parallel to the grooved surface, corresponding to a height of said conductor lanes in direction of said groove depth, sections of said conductor lanes of different phases that are arranged in said grooves and that possess the same distance to said groove surface of said soft magnetic body comprising together a multiple phase conductor layer, said conductor lanes of different phases within said multiple phase conductor layer are overlapping in said winding overhangs by being aligned concurrently in direction of said groove length and in direction of said groove width, and a change-over in comparison to the groove layers, between winding overhang layers stacked in said winding overhangs occurring in each pass of said conductor lanes through said winding overhangs, wherein each said conductor lane within said winding overhangs is arranged in winding overhang layers with surfaces parallel to the groove surface and said winding overhang layers are offset in relation to the said groove layers by a fraction (=value smaller than 1) of said height of said conductor lanes in direction of said groove depth.
2. Multiple phase electric machine in accordance with claim 1, wherein said winding overhangs have outsides in which said change-over between winding overhang layers is arranged, between said outsides of said winding overhangs said conductor lane possesses at least three sections parallel to said groove surface, said three sections being connected by two transitional sections, and said conductor lane covering a distance in direction of said groove depth in said transitional sections.
3. Multiple phase electric machine in accordance with claim 1, wherein said conductor lanes between said change-over of layers possess a constant conductor height in direction of said groove depth.
4. Multiple phase electric machine .in accordance with claim 1, wherein said conductor lanes are composed of identical conductor elements that correspond to a portion of said conductor lanes between two successive said change-overs between winding layers.
5. Multiple phase electric machine in accordance with claim 1, wherein the conductor cross section of said conductor lanes at the transition from said groove to said winding overhang is enlarged in direction of said groove width and said conductor elements at their two respective ends are elongated in direction of said groove length.
6. Multiple phase electric machine in accordance with claim 1, wherein in linear machines and in machines divided into sectors said conductor layers terminate in end sections that correspond to middle sections, said middle sections being arranged between the winding overhangs, said end sections having end surfaces facing in direction of said groove width and said end sections of said conductor layers are connected in pairs at said end surfaces.
7. Multiple phase electric machine in accordance with claim 1, wherein the entire mass of a conductor lane of one of said phases in one multiple phase conductor layer is a unitary conductor part, said unitary conductor part is provided with electrical insulation, identical said unitary conductor pads forming a multiple phase conductor layer of said layered winding, said unitary conductor parts are in the area of said groove separated by a multiple phase conductor layer that is set off by one pole pitch, and in a layered winding with at least two multiple phase conductor layers said unitary conductor parts of one phase are joined electrically conductive at the outside of said winding overhangs.
8. Multiple phase electric machine in accordance with claim 1, wherein a conductor lane of one of said phases in one multiple phase conductor layer having a meander-shaped configuration, said meander-shaped configuration having in direction of said groove depth a height and rim ranges, where said change-over of said winding overhang layers occurs, said meander-shaped configuration possessing at its rim ranges twice the height in relation to the sections between said rim ranges, and said meander-shaped configuration is a prefabricated conductor part with an insulation layer on its surface, a number of identical said conductor parts corresponding to said number of phases of said electric machine forming a multiple phase conductor layer comprising several pole pitches by pushing together identical said conductor parts, said multiple phase conductor layer having a height that is corresponding to said height of said configuration.
9. Multiple phase electric machine with a layered winding, said layered winding consisting of at least two multiple-phase conductor layers, each of said multiple-phase conductor layers having a thickness and meander-shaped conductor lanes of different phases, said conductor lanes overlapping in two winding overhangs of said multiple phase conductor layers, between said two winding overhangs said meander-shaped conductor lanes having middle sections, said middle sections having a height in direction of said thickness of said multiple phase conductor layers, said thickness of said multiple phase conductor layer corresponding between said winding overhangs to said height of said middle sections, in said winding overhangs of one multiple phase conductor layer using two winding overhang layers, said two winding overhang layers being offset against said middle sections of said conductor lanes, between said middle sections and sections of said conductor lanes in said winding overhangs being transition sections of said conductor lanes which realize said offset, and said conductor lanes of said at least two multiple phase conductor layers stacked between said winding overhangs being offset perpendicularly to said direction of said conductor height and using in said winding overhangs partially the same winding overhang layer.
CA002262619A 1996-08-01 1997-08-01 Multiple-phase electric machine with a space-optimised turn-to-turn winding Expired - Fee Related CA2262619C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19632390.8 1996-08-01
DE1996132390 DE19632390C2 (en) 1996-08-01 1996-08-01 Multi-phase electrical machine with a space-optimized layer winding
PCT/DE1997/001667 WO1998006160A1 (en) 1996-08-01 1997-08-01 Multiple-phase electric machine with a space-optimised turn-to-turn winding

Publications (2)

Publication Number Publication Date
CA2262619A1 CA2262619A1 (en) 1998-02-12
CA2262619C true CA2262619C (en) 2005-01-04

Family

ID=7802369

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002262619A Expired - Fee Related CA2262619C (en) 1996-08-01 1997-08-01 Multiple-phase electric machine with a space-optimised turn-to-turn winding

Country Status (6)

Country Link
EP (1) EP0916177B1 (en)
JP (1) JP2000515360A (en)
CN (1) CN1227009A (en)
CA (1) CA2262619C (en)
DE (1) DE19632390C2 (en)
WO (1) WO1998006160A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12113414B2 (en) 2020-04-27 2024-10-08 Mitsubishi Electric Corporation Stator coil and rotating electric machine stator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145286A (en) 1999-11-12 2001-05-25 Mitsubishi Electric Corp Stator of rotating electric machine and method of manufacturing the same
US6870294B2 (en) 2000-06-08 2005-03-22 Continental Isad Electronic Systems Gmbh & Co. Ohg Winding with moulded parts, method and set of moulded parts for electrical machines

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD57636A (en) *
GB741369A (en) * 1952-10-22 1955-11-30 British Thomson Houston Co Ltd Improvements in and relating to thermionic cathodes
DE1005611B (en) * 1954-05-13 1957-04-04 Siemens Ag AC winding for electrical machines
DE1025058B (en) * 1954-12-20 1958-02-27 Licentia Gmbh Single-layer runner bar winding for electrical machines, provided with cropping
US3634708A (en) * 1970-05-04 1972-01-11 Ibm Improved low inertia armature winding formed of a continuous wire
GB1329205A (en) * 1971-04-08 1973-09-05 Morris Ltd Herbert Linear induction motors
SU624807A1 (en) * 1976-07-12 1978-09-25 Физико-Энергетический Институт Академии Наук Латвийской Сср Route device for high-speed ground-supported transportation means with electrodynamic suspension and synchronous linear motor
DE3704780A1 (en) * 1987-02-16 1988-11-10 Wolfram Wittenborn System of improvements for electrical machines having an air-cored bell-type armature
DE4125044A1 (en) * 1991-07-29 1993-02-04 Wolfgang Hill ELECTRIC MOTOR DESIGNED AS A DISC RUNNER WITH RADIAL AND RADIAL PACKAGE ARRANGED TO THE ROTATIONAL AXIS
DE4234145C1 (en) * 1992-10-09 1994-02-03 Wolfgang Hill Multi-phase electrical machines with prefabricated conductor strands and processes for their manufacture
DE4321236C1 (en) * 1993-06-25 1994-08-25 Wolfgang Hill Multiphase electrical machine having a winding made of flat moulded conductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12113414B2 (en) 2020-04-27 2024-10-08 Mitsubishi Electric Corporation Stator coil and rotating electric machine stator

Also Published As

Publication number Publication date
CN1227009A (en) 1999-08-25
WO1998006160A1 (en) 1998-02-12
CA2262619A1 (en) 1998-02-12
EP0916177A1 (en) 1999-05-19
EP0916177B1 (en) 2002-04-10
DE19632390A1 (en) 1998-02-05
JP2000515360A (en) 2000-11-14
DE19632390C2 (en) 2000-03-16

Similar Documents

Publication Publication Date Title
US6281614B1 (en) Multiple phase electric machine with a space-optimized turn-to-turn winding
US6806612B2 (en) Armature coil for slotless rotary electric machinery
US7126247B2 (en) Concentrated winding stator coil for an electric rotary machine
US6870294B2 (en) Winding with moulded parts, method and set of moulded parts for electrical machines
CN101507083B (en) Stator for an electric drive motor
US20050212372A1 (en) Stator of electric rotating machine
US7923885B2 (en) Stator for rotary electric machine, and rotary electric machine using the stator
JP4839840B2 (en) Rotating electric machine
CN104426257A (en) Distributed cascade winding for an electric machine
JP6707860B2 (en) Rotary electric machine and method of manufacturing the same
US5804902A (en) Multi-phase electric machine with joined conductor lanes
US20220224182A1 (en) Stator winding arrangement having multiple parallel paths
CA2165558C (en) Multiphase electric machine with a winding made of flat-shaped structural conductor parts
US7911106B2 (en) Rotary electric machine
US20220329116A1 (en) Diamond Coil Stator with Parallel Paths and Balanced Winding Arrangement
CA2187208C (en) Multi-phase electric machine with joined conductor lanes
KR20060105619A (en) Induction motor and method for manufacturing the same
CA2262619C (en) Multiple-phase electric machine with a space-optimised turn-to-turn winding
CN112531933A (en) Motor stator and motor
Raziee et al. Design of single-layer fractional-slot distributed windings
WO2017110949A1 (en) Rotating electrical machine and method of manufacturing same
CN216252307U (en) Motor stator winding, motor stator and motor
CN117373729A (en) Multi-strand conductor, stator winding, stator and motor
CN213585304U (en) Motor stator and motor
US20220069652A1 (en) Distributed Double Litz Wire Winding in Open Slots

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20140801