CA2259058C - Automated small volume production of instrument face - Google Patents

Automated small volume production of instrument face Download PDF

Info

Publication number
CA2259058C
CA2259058C CA002259058A CA2259058A CA2259058C CA 2259058 C CA2259058 C CA 2259058C CA 002259058 A CA002259058 A CA 002259058A CA 2259058 A CA2259058 A CA 2259058A CA 2259058 C CA2259058 C CA 2259058C
Authority
CA
Canada
Prior art keywords
instrument
face
paper
functional
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002259058A
Other languages
French (fr)
Inventor
Brendon G. Nunes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trintec Industries Inc
Original Assignee
Trintec Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/071,008 external-priority patent/US5818717A/en
Application filed by Trintec Industries Inc filed Critical Trintec Industries Inc
Application granted granted Critical
Publication of CA2259058C publication Critical patent/CA2259058C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/06Dials
    • G04B19/10Ornamental shape of the graduations or the surface of the dial; Attachment of the graduations to the dial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/10Applying flat materials, e.g. leaflets, pieces of fabrics

Abstract

A method of producing an instrument face having functional indicia thereon (such as a clock face dial, thermometer face, etc.), allows high quality, multicolor instrument faces to be produced in a cost effective manner even for small runs (e.g. 1-500 units). The instrument face is created in a computer in electronic format, and the computer transmits electronic signals to a color photocopier, to control it to print the instrument face on a sheet of paper. Thesheet of paper may be laminated to a more rigid sheet, e.g. styrene, cardboard, acrylic or plexiglass, and then an instrument face of the appropriate geometric shape and size is cut from the sheet material. The face is assembled with other functional components to produce an operable instrument. The cutting is preferably practiced automatically utilizing a laser cutter under the control of the computer. A scanner or CD ROM may be utilized for inputting data into the computer. A simplified version may be practiced by overlaying a transparency with instrument dial indicia on a color photograph, and color photocopying it, then laminating, cutting, and assembling it into an instrument.

Description

CA 022~90~8 1999-01-29 Title: AUTOMATED SMALL VOLUME PRODUCTION OF
INSTRUMENT FACES
BACKGROUND AND SUMMARY OF THE INVENTION

There are many organizations and individuals who want small quantities of specially faced instruments, such as clocks, thermometers, air speed indicators, barometers, and the like. However there presently does not exist a cost effective technique for producing small volumes of customized instrument faces in a quick and high quality manner, especially if a multicolor face is desired. Attempts have been made to produce instrument faces electronically using a high quality color printer. While clock faces produced in that manner have impressive aesthetics, a slow print speed and ink fading when exposed to sunlight made such a method of producing custom clock dials impractical. Also, it was difficult to quickly and conveniently cut out the clock dial, utilizing a knife.
Traditional methods of producing high quality multicolored instrument faces are not applicable to small volumes (e.g. between 1 and 500 units) because of the large set up costs. Using traditional screen printing methods, a screen must be made to print each color. After printing the instrument faces have to be die cut on a large press using a steel rule die, having large set up costs and usually involving significant amounts of waste.
According to the present invention, a method and apparatus are provided which allow the cost effective production of multicolor instrument faces of high quality, and in small runs. While the invention is particularly applicable to the production of functional multicolor instrument faces, having numerical and other indicia thereon, it is also applicable to the production of other functional multicolor elements, which can be used to produce a functioning object. All of the apparatus necessary for practicing the invention is off the shelf equipment, but it is configured in a unique manner according to the present invention to solve a long standing problem in the art.
According to one aspect of the present invention apparatus for producing multicolor instrument faces is provided. The apparatus CA 022~90~8 1999-01-29 comprises the following elements: A computer. A color photocopier or like color printer. Interface means for controlling the color photocopier with the computer to effect printing of a multicolor instrument face on a sheet of paper from electronic signals transmitted to the color 5 photocopier from the computer. And automatic cutting means operatively connected to the computer for cutting an instrument face shape from a sheet of paper on which it has been printed by the color photocopier. The automatic cutting means preferably comprises a laser cutter. Also, there preferably is provided a laminator for laminating a 10 sheet of paper on which an instrument face is printed to a sheet of more rigid material. A scanner or CD ROM may also be provided for inputting data into the computer.
Utilizing the apparatus described above, a method producing an instrument face having functional indicia thereon is provided. The 15 method comprises the following steps: (a) Creating the instrument face with functional indicia thereon in the computer in electronic format. (b) Under the control of the computer, transmitting electronic signals from the computer to the printer (e.g. color photocopier) to control the printer to print the instrument face with functional indicia on a piece of 20 sheet material. And (c) cutting the appropriate shape and size of the instrument face from the piece of sheet material on which it is printed.
The method also preferably comprises the further step of assembling the instrument face with other functional components, such as clock hands and a clock movement, to produce an operable 25 instrument having a face with functional indicia thereon. Step (c) is typically practiced automatically, using a laser cutter. Step (b) may be practiced to print the instrument face on a sheet of paper and then there is the further step (d), between steps (b) and (c), of laminating the sheet of paper onto a piece of more rigid material, such as acrylic or 30 plexiglass if self-supporting, or these materials or styrene or cardboard if it is to be mounted in a casing. Numerical indicia may be part of the functional indicia, in multiple colors, on the instrument face, and the method may be employed as to produce 1-500 instrument faces of a particular type in a cost effective manner.

CA 022~90~8 1999-01-29 More generally, the invention relates to a method of constructing a functional multicolor element having indicia thereon utilizing a computer and a color photocopier. The method comprises the following steps: (a) Electronically creating or providing in the 5 computer an electronic simulation of the desired functional multicolor element, with indicia thereon. (b) Under the control of the computer, transmitting electronic signals from the computer to the photocopier so that the photocopier transforms the electronic simulation of the desired functional multicolor element onto a piece of sheet material.
10 And (c) using the functional multicolor element with other elements to produce a functioning object.
There is also typically the further step (d), between steps (b) and (c), of cutting the sheet material into a different shape containing substantially only the functional multicolor element, and step (d) is 15 typically practiced automatically under the control of the laser cutter.
The steps (a) and (b) may be practiced to produce an instrument face which is assembled with mechanical and electrical components at the instrument to produce an operable instrument with multicolor functional instrument face, such as clock, thermometer, air speed 20 indicator, altimeter, barometer, horizon indicator, etc. Other functional objects that could be created according to the invention include customized plaques, trophies, or like awards.
A simplified procedure for making multicolor instrument faces can be employed if a color photograph (as is, or doctored, as with an 25 air brush) is used to provide the basis for the artwork on the instrument face. In this case the method comprises the following steps:
(a) Superimposing functional indicia for an instrument face on a transparent substrate over the color photograph. (b) Copying the color photograph with superimposed functional indicia, using a color 30 photocopier, onto a sheet of paper. (c) Laminating the sheet of paper to a piece of sheet material more rigid than the piece of paper to provide a laminate; and (d) cutting the instrument face out of the laminate. Step (b) is typically practiced to simultaneously enlarge or reduce the photograph with superimposed functional indicia when CA 022~90~8 1999-01-29 making the copy on the sheet of paper to insure the proper size for the instrument face.
The invention also may be used to produce self-supporting instruments. That is, the instrument face itself provides the support for 5 the instrument (rather than being mounted in a casing), either the sheet material on which photocopying has been practiced, or more typically a piece of acrylic or plexiglas to which that sheet is laminated.
According to this aspect of the present invention a method is provided comprising the following steps: (a) Making a color copy of a geometric 10 design having functional instrument indicia thereon, and at least one color besides black and white, on a piece of paper. (b) Laminating the piece of paper on a piece of rigid, self supporting material with the functional indicia facing outwardly, to provide a laminate. (c) Cutting the geometric design from the laminate to form a self-supporting 15 design element comprising the instrument face and back, the face having the functional indicia thereon; and (d) connecting the mechanism to back of the self-supporting design element, with the indicator visible on the front of the design element and cooperating with the functional indicia on the instrument face. The geometric 20 design may be an irregular geometric design, and the instrument may be a clock and the at least one functional moving indicator at least an hour and a minute hand.
It is the primary object of the present invention to cost effectively produce high quality, even multicolor, instrument faces in 25 short runs. This and other objects of the invention will become clear from inspection of the detailed description of the invention and from the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a control schematic illustrating the various pieces of apparatus for the practice of the present invention;

FIGURE 2 is a schematic diagram illustrating the various steps CA 022~90~8 1999-01-29 that may be utilized to practice the method according to the present invention;

FIGURE 3 is a top plan view of an exemplary sheet of paper 5 printed with an instrument face utilizing the apparatus of FIGURE 1 according to the method of FIGURE 2;

FIGURE 4 is a side view, with the components greatly exaggerated in thickness for clarity of illustration, of the sheet of paper 10 FIGURE 3 after it has been laminated to a more rigid sheet;

FIGURE 5 is a front perspective view, with portions cut away for clarity of illustration, of the instrument face of FIGURE 3 shown in an assembled instrument (clock);
FIGURE 6 is a perspective view illustrating matching of a transparent material with instrument indicia thereon with a color photograph for the practice of a simplified method of producing instrument faces according to the invention;
FIGURE 7 is a front view of an instrument face made utilizing the components of FIGURE 6, according to the invention;

FIGURE 8 is a schematic side view of the face of FIGURE 7 with 25 the components greatly exaggerated in thickness for clarity of illustration;

FIGURE 9 is a front perspective view of a self-supporting clock face produced according to another exemplary method according to 30 the invention; and FIGURE 10 is a rear view of the clock of FIGURE 9.

DETAILED DESCRIPTION OF THE DRAWINGS

CA 022~90~8 1999-01-29 Exemplary apparatus according to the present invention is schematically illustrated in FIGURE 1, with the dotted line arrows between components indicating electronic controller feed, while the solid lines indicate movement of tangible objects.
One of the most basic components of the apparatus of FIGURE
1 is a computer 11. The computer 11 preferably is an IBMTM PC or an APPLETM PC, although a wide variety of other computers may be utilized. A second major component of the apparatus of FIGURE 1 is a 10 printer, preferably a color photocopier 12. Exemplary color photocopiers that may be utilized with success to achieve the desired results according to the invention are a CANONTM CLC-300 color laser photocopier, a CANONTM CLC-500, a KODAKTM 1550, a KODAKTM 1525, and XEROXTM 5775. In order for the PC 11 to 15 properly control the color photocopier 12, a suitable interface/controller 13 must be provided. One suitable interface 13 for CANONTM photocopiers is a CANONTM PS-IPU; another, generic, interface is a FIERYTM controller, or a FIERYTM LITE controller, both made by EFI.
The artwork that will be used to create the instrument face, with functional indicia thereon, is created in electronic format in the computer 11. Information may initially be inputted into the computer 11 for this purpose from a conventional scanner 14 or a CD ROM 15.
Typical commercially available software programs which may be 25 utilized in the computer 11 in order to produce almost any design desired on an instrument face include CORELDRAWTM (combined with Micrographics Picture Publisher to do photoediting), HARVARD
DRAWTM, MICROGRAPHICS DESIGNERTM, VENTURA DESKTOP
PUBLISHINGTM, QUARK EXPRESSTM, or ALDUS PAGEMAKERTM.
30 The appropriate electronic version of the instrument face is electronically transmitted from the computer 11 software through the interface 13 to the color photocopier 12, and is printed out on a sheet of paper, or if desired and practical for a particular situation, a slightly heavier sheet material.

CA 022~90~8 1999-01-29 After an instrument face has been printed out on a sheet of paper with the photocopier 12 (e.g. see the sheet of paper 17 in FIGURE 3, with the instrument facc clock dial 18--thereon) may be laminated onto a more rigid piece of material which may serve as the 5 base for the instrument itself, or be combined with other casing components. A typical other piece of material that may be utilized is a sheet of styrene, cardboard, acrylic, or plexiglass if the instrument face produced is to be mounted in a casing (e.g. FIGURE 5), or acrylic or plexiglass if it will be self-supporting (e.g. FIGURE 10). A laminator 20 10 for performing the laminating function may be of any suitable conventional type. FIGURE 4 schematically illustrates the sheet 17 of FIGURE 3, having the toner or ink making up the clock dial illustrated at 18, laminated with adhesive 21 onto a piece of more rigid material (e.g. styrene) 22, the various components illustrated greatly 15 exaggerated in thickness for clarity of illustration.
After laminating to produce the laminate 23 (see FIGURE 4), or if lamination will not be employed, utilizing just the sheet 17, the instrument face 18 is cut out. That is, face 18 is separated from the rest of the sheet material 17, 22. This is preferably accomplished 20 automatically, utilizing a laser cutter 25. One particular laser cutter that may be utilized for this purpose is made by Universal Laser Systems, Inc. of Scottsdale, Arizona, Model #ULS, containing a twenty five watt carbon dioxide laser. In general, the smallest and least expensive laser cutter 25 that will cut the particular material that will be supplied 25 should be selected. The laser cutter 25 may be controlled directly by the PC 11, or through the interface 13, as necessary for the particular components selected.
FIGURE 2 schematically illustrates an exemplary method according to the present invention. The first box 27 indicates that the 30 artwork for the instrument face is created or selected. If the creation or selection is external of the computer, rather than created within the computer itself by a suitable software package such as CORELDRAWTM, it is then entered into the computer as indicated by the dotted line box 28 in FIGURE 2, such as utilizing a scanner 14 or a CA 022~90~8 1999-01-29 CD ROM 15. Ultimately, within the computer 11--indicated by box 29--the instrument face, in electronic format, is revised, and once it is in an appropriate form, an electronic control signal is sent from the PC
11, through the interface 13, to the color photocopier 12 to print the 5 desired number of copies (e.g. 1-500) of instrument faces typically on sheets of paper, as indicated by box 30.
After printing out the paper sheets with the multicolor instrument dials thereon, the sheets may be laminated--indicated by optional box 31--to a more rigid sheet, and then ultimately they are 10 cut to the correct geometric shape (e.g. circle, octagon, etc.) and size of the instrument face, as indicated at 32 in FIGURE 2. Then the instrument face is assembled with the ultimate instrument to be produced, as indicated at box 33. Typically, the face is assembled with hands, movements, casings, and other mechanical or electrical 15 elements, to produce the final operable instrument.
In one exemplary procedure according to the invention, e.g. for making an instrument such as illustrated in FIGURE 5, the sheet of paper 17 from printer (e.g. photocopier) 12 is affixed to a piece of styrene 22 about 0.02-0.03 inches thick, having a suitable adhesive 21 20 (typically used for silk screening), such as DECOCHEMTM W
photoboard acrylic adhesive, on one face thereof, e.g. covered by a release sheet. The release sheet is removed from the styrene 22, and then the sheet 17 is pressed into contact with the adhesive 21 by hand, and perhaps lightly rolled, forming the laminate 23 (see FIGURE 4).
25 The laminate 23 is then used with the laser cutter 25 to produce a clock dial, which is then secured by another adhesive to a blank face of a hard plastic clock, the styrene isolating the art work on paper 17 from the adhesive securing the dial 18 to the clock casing.
FIGURE 5 illustrates an exemplary instrument, shown generally 30 by reference numeral 35, produced according to the invention. In this particular case, the instrument face 18 has been laminated to a 0.02 inch thick styrene sheet 22 (if the face 18 is printed onto cardboard, the more rigid sheet 22 is not necessary), and it is placed within the plastic casing 36 and secured thereto, e.g. with adhesive. In this particular CA 022~90~8 1999-01-29 case, the instrument face 18 has numerical functional indicia thereon, in this case the hour symbols of a clock. Also, various decorative indicia are also provided, in this case the clock face simulating an altimeter, and therefore having the nonfunctional but decorative indicia such as 5 39. Also, a unique logo or design is provided as indicated generally by reference numeral 40, and the design 40 (as well as the other printed indicia 38, 39 or the background therefor, if desired) is multicolored.
For example, the colors yellow, blue, and red are indicated for the design 40 in FIGURE 5 by suitable hatching/stippling.
The instrument 35 also comprises operable mechanical and electrical components, including the hour hand 42, minute hand 43, and clock movement 44, which is mounted to the back of the sheet 22 in a conventional manner, and has a shaft 45 extending outwardly through a central opening 46 in the face 18 so as to provide for movement of 15 the clock hands 42, 43.
While a clock is illustrated at 35 in FIGURE 5, the invention is applicable to virtually any type of instrument, including thermometers, altimeters, barometer, air speed indicators, horizon indicators, etc. Also while a circular instrument face 18 has been illustrated, it need not be 20 circular but can be any polygonal shape, or even an geometric irregular shape since the laser cutter 25 can cut almost any shape that the computer 11 can generate. Also, while the invention is particularly applicable to instrument faces (dials), it may also be utilized to create other functional multicolor elements having indicia thereon, including 25 trophies, plaques, or other aesthetic structures that are attached to or incorporated in otherwise functional objects, such as machines, appliances, and the like.
The invention has been actually practiced to cost effectively produce a wide variety of clock and thermometer dials having unique 30 artwork and designs thereon. The cost of producing instrument dials according to the invention is only about 10-50% greater than producing instrument dials by conventional mass production techniques despite the fact that the invention produces the instrument faces in small quantities (typically 1-500 units). The instrument faces CA 022~90~8 1999-01-29 are also of extremely high quality, long-lasting, and allow uniquely designed instruments or the like to be produced in a matter of hours.
According to a simpler method, the invention can be practiced to make instrument faces directly from color photographs (e.g. prints), 5 either untouched, or modified (e.g. by using an airbrush). As seen in FIGURES 6-8, a transparent substrate (e.g. plastic, such as MYLARTM) 50 with an instrument face 51 inked thereon, having functional indicia 52, is superimposed on a color photo 48 with a physical object or being 49 illustrated thereon. The substrate 50 may be held in place with 10 transparent tape. lt is then photocopied with a color photocopier, such as of the types earlier described, and normally will be enlarged (or sometimes reduced) in size so as to produce an instrument dial of desired size.
The piece of paper on which the photocopy is produced may 15 then be laminated and laser cut, as described above with respect to FIGURES 1 and 2, to produce the instrument face 54 (FIGURE 7), having the same object or being 49 as the photo 48. The instrument face 54 has a circumferential periphery 55 defined by the cutter, and a central hole 56. As seen in FIGURE 8, typically the face 54 comprises a 20 laminate, a top sheet of paper 59 having the color representation 49 thereon, a substrate 60 (e.g. styrene, cardboard, acrylic, plexiglas, etc.) and adhesive 61 holding them together.
FIGURES 9 and 10 illustrate an instrument 63 according to the invention in which the face is self-supporting, there being no 25 requirement for a casing, such as illustrated in FIGURE 5. Here, a rigid substrate 64 (e.g. plexiglas or acrylic) has a colored paper sheet made as described in any of the above described methods, laminated on the front thereof, having functional indicia 66. The instrument 63 includes at least one functional moving indicator 68, such as the clock minute 30 and hour hands 69, 70, respectively (FIGURE 9) visible on the front and cooperating with indicia 66. The instrument electrical and mechanical components (e.g. clock movement) 72 are mounted on the rear of the sheet 64 (FIGURE 10), and may include a power source (e.g. battery) 73, and a mounting flange 74 with a mounting opening 75 therein.

CA 022~90~8 1999-01-29 Opening 75 may be received by a hook or nail in a wall, or the like, supporting the geometrically shaped laminate 64, 65 so that the instrument 63 is readily visible.
While the invention has been herein shown and described, no 5 one has presently conceived to be the most practical and preferred embodiment thereof it will be apparent to those of ordinary skill in the art that many modifications may be made thereof within the scope of the invention, which scope is to be accorded the broadest interpretation of the appended claims so as to encompass all equivalent 10 methods and apparatus.

Claims (4)

1. A method of making an instrument face from a color photograph, comprising the steps of:
(a) superimposing functional indicia for an instrument face on a transparent substrate over the color photograph;
(b) copying the color photograph with superimposed functional indicia, using a color photocopier, onto a sheet of paper;
(c) laminating the sheet of paper to a piece of sheet material more rigid than the piece of paper to provide a laminate; and (d) cutting the instrument face out of the laminate.
2. A method as recited in claim 1 wherein step (b) is practiced to simultaneously enlarge the photograph with superimposed functional indicia when making the copy on the sheet of paper.
3. A method of making an instrument having a face, a back, at least one functional moving indicator visible when viewing the face, and a mechanism for moving the indicator, comprising the steps of:
(a) making a color copy of a geometric design having functional instrument indicia thereon, and at least one color besides black and white, on a piece of paper;
(b) laminating the piece of paper on a piece of rigid, self supporting material with the functional indicia facing outwardly, to provide a laminate;
(c) cutting the geometric design from the laminate to form a self-supporting design element comprising the instrument face and back, the face having the functional indicia thereon; and (d) connecting the mechanism to back of the self-supporting design element, with the indicator visible on the front of the design element and cooperating with the functional indicia on the instrument face.
4. A method as recited in claim 3 wherein the rigid, self-supporting material is plexiglas or acrylic, and wherein the geometric design is an irregular geometric design, and wherein the instrument is a clock and the at least one functional moving indicator are at least an hour hand and a minute hand.
CA002259058A 1993-06-02 1993-10-12 Automated small volume production of instrument face Expired - Fee Related CA2259058C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/071,008 1993-06-02
US08/071,008 US5818717A (en) 1993-06-02 1993-06-02 Automated small volume production of instrument faces
CA 2108246 CA2108246C (en) 1993-06-02 1993-10-12 Automated small volume production of instrument faces

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA 2108246 Division CA2108246C (en) 1993-06-02 1993-10-12 Automated small volume production of instrument faces

Publications (1)

Publication Number Publication Date
CA2259058C true CA2259058C (en) 2000-09-19

Family

ID=29216666

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002259058A Expired - Fee Related CA2259058C (en) 1993-06-02 1993-10-12 Automated small volume production of instrument face
CA 2108246 Expired - Fee Related CA2108246C (en) 1993-06-02 1993-10-12 Automated small volume production of instrument faces

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA 2108246 Expired - Fee Related CA2108246C (en) 1993-06-02 1993-10-12 Automated small volume production of instrument faces

Country Status (1)

Country Link
CA (2) CA2259058C (en)

Also Published As

Publication number Publication date
CA2108246C (en) 1999-07-06
CA2108246A1 (en) 1995-04-13

Similar Documents

Publication Publication Date Title
US5818717A (en) Automated small volume production of instrument faces
JP2014124748A (en) Cutting data preparing device, cutting data preparing program and cutting device
GB2126389A (en) Vehicle number plates and their production
US6280553B1 (en) Method for making hologram ornamental sticker
CA2259058C (en) Automated small volume production of instrument face
US5484495A (en) Method for carving wood accurately, artistically, and in a time efficient manner
JP2009234157A (en) Printer, and printing process program
US8397412B2 (en) Image mounting system
KR20010034793A (en) Personalized stamps
JP4298240B2 (en) Label unit
EP1144188A1 (en) Index sticker print
JP2546389Y2 (en) Card printing holder
JP2002373542A (en) Operating panel and producing method of name plate
JPH0641247Y2 (en) Flat screen for photoengraving
JP2000088652A (en) Colorimetric gage and its using method
JP2547283Y2 (en) Form with label
JPH08335051A (en) Outdoor advertisement display medium
JPS5841555Y2 (en) Guide plate
JP2001282110A (en) Sheet for printing
JPS6134544Y2 (en)
JPH11221981A (en) Calendar
JP3126733U (en) Bookmark
RU2090920C1 (en) Process of manufacture of dial plate with decorative appearance
GB2221427A (en) Preprinted artwork presentation folder
JPH04112418U (en) illuminated knob

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed