CA2251760C - Nozzle for use with fire-fighting foams - Google Patents

Nozzle for use with fire-fighting foams Download PDF

Info

Publication number
CA2251760C
CA2251760C CA002251760A CA2251760A CA2251760C CA 2251760 C CA2251760 C CA 2251760C CA 002251760 A CA002251760 A CA 002251760A CA 2251760 A CA2251760 A CA 2251760A CA 2251760 C CA2251760 C CA 2251760C
Authority
CA
Canada
Prior art keywords
nozzle
sleeve
liquid
foam
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002251760A
Other languages
French (fr)
Other versions
CA2251760A1 (en
Inventor
Kenneth C. Baker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kidde Fire Fighting Inc
Original Assignee
National Foam Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/633,241 external-priority patent/US5779158A/en
Application filed by National Foam Inc filed Critical National Foam Inc
Publication of CA2251760A1 publication Critical patent/CA2251760A1/en
Application granted granted Critical
Publication of CA2251760C publication Critical patent/CA2251760C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0018Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with devices for making foam
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/02Nozzles specially adapted for fire-extinguishing
    • A62C31/12Nozzles specially adapted for fire-extinguishing for delivering foam or atomised foam

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Nozzles (AREA)

Abstract

A nozzle assembly including a nozzle body having an inlet at a first end and an outlet at a second end. A first fluid passageway is defined within the nozzle body for first fluids passing between the inlet and outlet. Second and third fluid passageways for respective second and third fluids are also defined within said nozzle body. A discharge mixing unit is provided at the second end and is in fluid communication with the first, second and third fluid passageways for mixing the first, second and third fluids to produce a discharge solution.
The discharge mixing unit includes one or more mixing chambers provided on the interior surface of the second end of the nozzle body.
The mixing chambers are defined between a plurality of inwardly extending blades from the interior surface of the second end. The second end of the nozzle body has an adjustably extending pattern selection sleeve.
The third passageway includes a variable fluid flow control device which is operable for varying the expansion ratios of the discharge solution.

Description

NOZZLE FOR USE WITH FIRE-FIGHTING FOAMS
BACKGROUND OF THE INVENTION
In the design and operation of air-foam nozzles of the type used for flammable liquid firefighting, there are a number of problems that must be solved. Over the years many nozzles have been developed attempting to overcome one, or more, of the following problems: (1) provide a simple means to inject firefighting foam concentrates into the water stream at the nozzle; (2) provide a means to,insure thorough mixing of water and foam concentrate within the nozzle; (3) provide a means to control the amount of air entrained into the water-foam solution; and (4) provide a means of increasing the discharge range of aerated foam solution.
Conventional air-foam nozzles can easily be divided into two broad groups based on the "expansion ratio" of the nozzle. "Expansion ratio" is a term describing the final volume of air-foam bubbles when compared to the original volume of foam solution. As the expansion ratio of a foam sample increases, it indicates a greater ability of the nozzle to mechanically agitate and aerate the foam solution.
A nozzle with a higher expansion ratio generates foam having a lighter weight per unit of volume, with smaller, more homogeneous, thinner-walled bubbles which are longer lasting due to their greater ability to retain foam liquid in the bubbles.
Air-foam nozzles designed for use with synthetic based foam concentrates know as aqueous film forming foams (AFFF) customarily have low expansion ratios, less than 4 to 1.
AFFF foams are very effective on flammable liquid spill fires, and were originally developed for aircraft crash firefighting, where a rapidly spreading, low expansion foam blanket is preferred to give rapid knockdown of flames so that passengers and crew can be quickly rescued from a burning aircraft. This effectiveness is due in large part to an aqueous film that spreads on the surfaces of the flammable liquid as the foam bubbles break, thereby slowing vaporization from the surface of the liquid and helping prevent re-ignition. A low expansion, quick draining foam is preferred for this application.
Nozzles designed for use with AFFF concentrates may be subdivided into two additional types: (1) those in which foam solution is pumped to the nozzles through fire hose or piping as shown by the nozzle 10 of Figs. 1A and 1B; and (2) those where foam solution is formed in the nozzle by water being pumped to the nozzle through fire hose or piping and foam concentrate being supplied to the nozzle through a separate conduit as shown by the nozzle 20 of Figs. 2A and 2B.
In nozzles where foam solution is pumped to the nozzle as in the nozzle 10 of Figs. 1A and 1B, water and concentrate have ample time for thorough mixing while traveling through the hose or piping. In nozzles where the water and foam concentrate must mix at the nozzle as in the nozzle 20 of Figs. 2A and 2B, mixing may not be uniform, especially if the concentrate is injected on the inside of the cylinder formed by the water discharge.
This non uniform distribution of foam concentrate in the water stream will have a negative impact on the foam quality produced by the nozzle. The foam bubbles will not be uniform in size and as a result the expanded (aerated) foam will deteriorate rapidly. Foam with rapid deterioration (typically called fast draining) is not optimized and therefore is not likely to be suitable for the intended application.
Air can only be entrained on the outer surface of the discharge pattern when either type nozzle is adjusted at or near the straight stream setting as shown in Figs. 1A and 2A
when a pattern selection sleeve 12, 22 is adjusted to the outward position. This limited aeration results in low expansion ratios. Lower expansion foam is heavier than foam with higher expansion ratios, and generally has a greater ability to travel through the air over longer distances for a given discharge velocity.
Nozzles designed for use with protein based foam concentrates are of the air-aspirating type. Exemplary nozzles 30 and 32 are shown in Figs. 3A and 3B, respectively. These nozzles have expansion ratios greater than 6 to 1. Protein based foam concentrates require more energy than do synthetic based concentrates for aeration of the foam solution into expanded fire-fighting foam. Protein based foams depend on a thick blanket of bubbles, not an aqueous film, for extinguishment.
These nozzles may also be subdivided into two additional types: (1) those in which foam solution is pumped to the nozzle through fire hose or piping as shown in Fig 3A; and (2) those where water is pumped to the nozzle through fire hose or piping and foam concentrate is supplied to the nozzle through a separate conduit as shown in Fig.
3B.
Nozzles with the ability to pick up concentrate through a separate conduit by use of a built-in-venturi as shown in Fig. 3B have been in widespread use since they were developed in the 1940's. These "self educting" nozzles offer good mixing of the water and foam concentrate, however, the kinetic energy required to assure good mixing and air aspiration reduces the velocity of the discharge stream, thereby shortening the discharge range that can be achieved. On the other hand, nozzles of the variable-pattern fog type with a built-in venturi as shown in Figs.
2A and 2B, do not offer mixing as good as the air-aspirating type, but because they use less kinetic energy for mixing and air-aspiration their discharge range is enhanced.
Existing nozzles with a built-in means of foam concentrate pick-up as shown in Figs. 2A, 2B and 3B are all designed so that concentrate enters through a conduit in the side of the nozzle. This conduit then typically connects with a conduit along the central axis of the nozzle bore and inside the main waterway. The conduit may be equipped with a venturi suction chamber, or the end of the conduit may be sealed. If the concentrate conduit is sealed on the inlet end of the nozzle, concentrate must be pumped to the nozzle by a separate pump which could be of the water powered venturi type. Although designs may differ, the basic principle has remained unchanged since its inception.
SUMMARY OF THE INVENTION
It is therefore desirable to provide a single firefighting nozzle design addressing all four of these problem areas. A nozzle is provided which can discharge a solution consisting of fresh, brackish, or sea water, mixed with small amounts of firefighting foam concentrate. This solution can be then aerated to form expanded firefighting foam suitable for use by those skilled in the flammable liquid firefighting art. The characteristics of the fire or hazard determine the type and percent concentration of the foam concentrate used, the desired foam expansion ratio, and the 1 o type discharge device selected.
According to an aspect of the present invention, there is provided a nozzle assembly for combining a liquid foam concentrate with a liquid to produce a fire extinguishing foam solution, the nozzle assembly comprising: a tubular body having axially aligned inlet and outlet openings; wall means for internally subdividing the 15 body into an axial passageway surrounded by an annular chamber, opposite ends of the passageway being in communication with the inlet and outlet openings to accommodate a flow of the liquid through the body; a sleeve surrounding the outlet opening and extending axially from the body; means for introducing a supply of the foam concentrate into the annular chamber; a plurality of openings in the wall means 2o spaced around the passageway; jet nozzles for diverting a portion of the liquid flowing through the passageway into the openings to mix with and educt foam concentrate in the annular chamber for delivery into the interior of the sleeve; and guide means for directing an annular exiting flow of the liquid from the outlet opening outwardly towards the interior of the surrounding sleeve to additionally mix the -4a-liquid with the educted foam concentrate and to thereby produce a dilute mixture of foam solution within the sleeve.
There is also disclosed a nozzle assembly including a nozzle body having an inlet at a first end and an outlet at a second end. A first fluid passageway is defined within the nozzle body for first fluids passing between the inlet and outlet.
Second and third fluid passageways for respective second and third fluids are also defined within said nozzle body. A discharge mixing unit is provided at the second end and is in fluid communication with the first, second and third fluid passageways for mixing the first, second and third fluids to produce a discharge solution. The discharge 1o mixing unit includes one or more mixing chambers provided on the interior surface of the second end of the nozzle body. The mixing chambers are defined between a plurality of inwardly extending blades from the interior surface of the second end. The second end of the nozzle body has an adjustably extending pattern selection sleeve.
The third passageway includes a variable fluid flow control device which is operable 15 for varying the expansion ratios of the discharge solution.
BRIEF DESCRIPTION OF THE DRAWINGS
Figs. 1A and 1B show cross sections of a conventional nozzle with a pattern Selartinn clPPxlP al1111CtP17 nmtxx~arrllv for straight stream discharge and inwardly for fog stream discharge, respectively;
Figs. 2A and 2B show cross sections of a conventional nozzle using a separate foam concentrate conduit with a pattern selection sleeve adjusted outwardly for straight stream discharge and inwardly for fog stream discharge, respectively;
Fig. 3A shows a cross section of a conventional aspirating nozzle in which a foam solution is supplied to the nozzle; Fig. 3B shows a cross section of a conventional aspirating nozzle in which water and foam concentrate are supplied to the nozzle via different conduits;
Fig. 4 shows a cross section of a nozzle in accordance with the present invention having a pattern selection sleeve adjusted outwardly for straight stream discharge;
Fig. 5 shows a cross section of the nozzle of Fig. 4 in a disassembled state;
Fig. 6 shows a frontal view of the nozzle of Fig. 4 taken along line 4-4; and Fig. 7 shows an exploded cross section view of the jet nozzles and discharge tube assembly openings from the nozzle of Fig. 4.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
An exemplary nozzle 40 in accordance with the present invention is shown in Figs. 4-6. The nozzle 40 includes a nozzle body 42 having a feed-in conduit 41 and an internal main waterway 43. A swivel inlet coupler 44 accommodates the attachment of the nozzle to a desired source, e.g. hose, of water or foam.
In accordance with an exemplary embodiment of the present invention, water is pumped through the conduit 41 to the base of the nozzle where it flows into the main waterway 43. The main waterway has therein a discharge tube assembly 45 which changes having a central short cylindrical tube opening 46 that curves outward to an annular orifice 47 formed by a nozzle discharge head 48 and a baffle plate 49.
The discharge tube assembly 45 is held in place by the discharge head 48 when the discharge head is screwed into the nozzle body.
The discharge tube assembly 45 includes a plurality of discharge openings 62.
Fluid from the main waterway 43 is fed to the openings 62 via a plurality of jet nozzles 63.
The interaction between the jet nozzles and openings serving as a jet pump will be described in more detail hereinafter.
A first conduit 50 in the nozzle body communicates with a chamber 51, which is concentrically defined around the outside of the main waterway 43. A coaxially displaced cylindrical wall 52 is positioned within the nozzle body in order to separate the main waterway 43 and chamber 51. In accordance with an exemplary embodiment o:f the present invention, the 1o conduit 50 serves as an entryway for foam concentrate to the nozzle.
A second conduit 53 in the nozzle body communicates with a chamber 54, which is concentrically defined within the main waterway 43. A coaxially displaced tube 55 is positioned within the nozzle body in order to separate the main waterway 43 .and chamber 54. The tube 55 extends through the main waterway and through the discharge head 48, and includes an outwardly 15 flared end which defines the baffle plate 49. In accordance with an exemplary embodiment of the present invention, the conduit 53 serves as an entryway for air to the nozzle.
The nozzle body also includes an adjustable pattern selection sleeve 56. The pattern selection sleeve is slidable between a fully extended outward position as shown which promotes straight stream discharge of fluids from the nozzle, and an inward position which promotes fog 2o stream discharge of fluids from the nozzle.
In accordance with the present invention, a plurality of blades 57 extend radially inwardly from the inner circumferential end surface of the pattern selection sleeve 56.
The plurality of blades 57 in turn define a plurality of mixing chambers 58 therebetween. 'The mixing chambers are in fluid communication with both the main waterway 43 and the chamber 51 associated with the first 25 conduit 50 via a _ 7 _ chamber 59. The chamber 59 is defined between the inner surface of the pattern selection sleeve 56 and the discharge head 48.
The nozzle configuration shown in Fig. 4 gradually increases the velocity head of the water stream, thereby decreasing the pressure head. In the situation where a water stream from the main waterway 43 passes through the annular orifice 47 and is discharged to atmosphere, all of the available kinetic energy has been converted to velocity head. Water passes over the outer edge of the discharge head 48 and enters the multiple mixing chambers 58 formed by the blades 57 on the pattern selection sleeve. Within the mixing chambers 58, the water mixes with foam concentrates flowing from conduit 50 and chamber 51.
With reference now to Fig. 7, a more detailed description of the jet pump action of the openings 62 and jet nozzles 63 is provided. The jet nozzle 63 includes an inlet 70 for fluid communication with the main waterway 43.
A suction chamber 71 is defined at the outlet of the nozzle jet and the opening 62, which in turn are in fluid communication with the chamber 51. The opening 62 includes a cylindrical parallel section 72 which feeds to a diffuser/discharge area 73 which coincides with earlier described chamber 59.
The ability of the jet pump formed by jet nozzles 63 and opening 62 to educt a fluid is based on the same principle found in all nozzles of the self educting type.
This same principle is used in air aspirating nozzles to pick up air and aspirate the foam solution. The inlet 70 is the area where fluid enters the jet pump nozzle. The suction chamber 71 is an area where fluid being pumped enters the jet pump, and where high velocity fluid from the jet pump nozzle entrains fluid being pumped from suction.
The parallel section 72 is an area where fluid being pumped mixes with fluid from the jet pump nozzle, thereby acquiring energy from the nozzle discharge. The diffuser/discharge area is an area where fluids loose velocity pressure and regain static pressure due to velocity change so that fluids _g_ can enter pressurized area in the mixing chambers 58 formed by the blades 57.
According to a preferred embodiment, it is critical that the included angle of the discharge head 49 is 90° or less. If this included angle is greater, pressure rises excessively in chamber 59 so that the jet pumps are no longer capable of operating. The jet pumps will operate up to a back pressure equal to 10% of the nozzle operating pressure, and if the included angle is greater than 90°, the back pressure in chamber 59 will exceed this 10% limit.
With reference back to Figs. 4-6, a variable air flow control device 60, e.g.
a conventional air flow valve, may be opened to allow air to flow through the conduit 53 and chamber 54 along the nozzle axis. Air exits the central chamber 54 into a low pressure area 61 which exists behind the l0 baffle plate 49 at the end of the tube 55. The low pressure area 61 is created by water flow out of the annular orifice 47 being deflected by the pattern selection sleeve 56 to flow parallel, or nearly so, to the axis of the nozzle. Air enters mixing chambers 58 and mixes with the foam solution to form finished foam for discharge.
The variable air flow control device 60 may be closed completely to provide lower 15 expansion ratios when AFFF foams are used for spill fires. Alternatively, the air flow control device may be fully opened to provide higher expansion ratios when protein based foams are used.
In situations where foam solution is pumped to the nozzle feed-in conduit 41 through .the main waterway 43, it is not necessary to use the conduit 50 and chamber 51 for entering foam 2o concentrate to the nozzle. Instead, the conduit 50 and chamber 51 c;an be used for additional aeration. In this manner, air is allowed to enter the chamber 51, where it can flow through the chamber 59 into the mixing chambers 58, thus allowing greater aeration and higher expansion ratios for the discharged foam solution.
Accordingly, the present invention provides a firefighting nozzle for use in flammable liquid 25 firefighting and has a unique combination of benefits not available in _ 9 _ conventional nozzle designs. The invention combines several desirable characteristics in a cost effective design. For example, when adjusted at or near the straight stream patterns, aeration takes place on the outside of the stream as in existing nozzles, but the unique central air passage allows the option of selecting higher expansion ratios by allowing air to enter the low pressure area created inside the discharge pattern.
The use of the blades 57 located on the inside of the outer pattern selection sleeve 56 serve multiple functions.
The blades act as straightening vanes to cancel the twisting currents developed inside the nozzle and the negative effect these currents have on the discharge pattern, thus tending to increase the discharge range capability with aerated foams. The blades 57 separate the discharge area into the plurality of mixing chambers 58 to enhance mixing of the water and foam concentrate when the liquids must mix in the nozzle. The separate mixing chambers formed by the blades allow greater agitation and aeration of the solution when the central airway is opened and the nozzle is adjusted at, or near the straight stream pattern. If foam solution is pumped to the nozzle and the concentrate chamber around the main conduit is left open to atmosphere, more air enters the mixing chambers formed by the blades and additional aeration occurs.
Furthermore, when water and foam concentrate are supplied through separate conduits, good mixing will occur in the mixing chambers, regardless of the pattern selected.
The foregoing description has been set forth to illustrate the invention and is not intended to be limiting.
Since modifications of the described embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the scope of the invention should be limited solely with reference to the appended claims and equivalents thereof. What is claimed is:

Claims (6)

Claims:
1. ~A nozzle assembly for combining a liquid foam concentrate with a liquid to produce a fire extinguishing foam solution, said nozzle assembly comprising:
a tubular body having axially aligned inlet and outlet openings;
wall means for internally subdividing said body into an axial passageway surrounded by an annular chamber, opposite ends of said passageway being in communication with said inlet and outlet openings to accommodate a flow of said liquid through said body;
a sleeve surrounding said outlet opening and extending axially from said body;
means for introducing a supply of said foam concentrate into said annular chamber;
a plurality of openings in said wall means spaced around said passageway;
jet nozzles for diverting a portion of the liquid flowing through said passageway into said openings to mix with and educt foam concentrate in said annular chamber for delivery into the interior of said sleeve; and guide means for directing an annular exiting flow of said liquid from said outlet opening outwardly towards the interior of the surrounding sleeve to additionally mix said liquid with the educted foam concentrate and to thereby produce a dilute mixture of foam solution within said sleeve.
2. ~The nozzle assembly as claimed in claim 1, further comprising means for axially adjusting said sleeve between extended and retracted positions relative to said body.
3.~The nozzle assembly as claimed in claim 1 or 2, further comprising circumferentially spaced vane members extending radially inwardly from said sleeve to define mixing chambers therebetween, said mixing chambers receiving and mixing the educted foam concentrate with the outwardly directed annular exiting liquid flow from said guide means, said vane members being configured and dimensioned to direct the liquid mixture from said mixing chambers towards the outlet opening of said sleeve.
4. The nozzle assembly as claimed in claim 3, wherein the configuration and arrangement of said vane members is such that when said sleeve is in its extended position, the liquid mixture exiting from said mixing chambers is further directed to flow toward the outlet opening of said sleeve in a direction parallel to the axial centerline of said nozzle.
5. The nozzle assembly as claimed in claim 1, further comprising a tubular conduit extending axially through said passageway, said conduit having an entry end open to atmosphere and a discharge end protruding centrally into an area circumscribed by the annular exiting flow of liquid from said outlet opening, said circumscribed area being in communication with said tubular conduit to thereby aerate said liquid mixture within said mixing chambers prior to discharge from said sleeve.
6. The nozzle assembly as claimed in claim 5, further comprising valve means in said tubular conduit for controlling the flow of entrained air therethrough.
CA002251760A 1996-04-16 1997-04-15 Nozzle for use with fire-fighting foams Expired - Fee Related CA2251760C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/633,241 1996-04-16
US08/633,241 US5779158A (en) 1996-04-16 1996-04-16 Nozzle for use with fire-fighting foams
PCT/US1997/006324 WO1997038757A1 (en) 1996-04-16 1997-04-15 Nozzle for use with fire-fighting foams

Publications (2)

Publication Number Publication Date
CA2251760A1 CA2251760A1 (en) 1997-10-23
CA2251760C true CA2251760C (en) 2006-07-18

Family

ID=36694084

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002251760A Expired - Fee Related CA2251760C (en) 1996-04-16 1997-04-15 Nozzle for use with fire-fighting foams

Country Status (1)

Country Link
CA (1) CA2251760C (en)

Also Published As

Publication number Publication date
CA2251760A1 (en) 1997-10-23

Similar Documents

Publication Publication Date Title
US5779158A (en) Nozzle for use with fire-fighting foams
US4640461A (en) Foam-applying nozzle
AU645942B2 (en) Dry powder and liquid method and apparatus for extinguishing fire
US5445226A (en) Foam generating apparatus for attachment to hose delivering pressurized liquid
EP0399646B1 (en) Foam-applying nozzle
US5312041A (en) Dual fluid method and apparatus for extinguishing fires
US4497442A (en) Foam-applying nozzle having adjustable flow rates
US7207501B2 (en) Systems and methods for generating high volumes of foam
CA1269410A (en) Aspirating foamer
CA1313532C (en) Multifunction nozzle
US6102308A (en) Self-educing nozzle
US5382389A (en) Foam producing venturi and method of using same
US5848752A (en) Foam aeration nozzle
US4828038A (en) Foam fire fighting apparatus
AU2012202832A1 (en) Foam generating device for fire hoses
CA2251760C (en) Nozzle for use with fire-fighting foams
EP0099626B1 (en) Foam-applying nozzle
WO2007001212A2 (en) Mixer and fire-extinguishing apparatus
US5934568A (en) Nozzle apparatus for delivering fire retardant foam
JP3852061B2 (en) Fire nozzle and detachable deflector for fire nozzle
WO2006049529A1 (en) Apparatus for generation of fire extinguishing flow
US11691041B1 (en) Compressed air foam mixing device
JPH05104034A (en) Spray nozzle
EP3878524A1 (en) Device for producing a gas-liquid mixture for firefighting purposes
CZ309813B6 (en) A hand-held fire extinguishing device for obtaining a two-phase bubble stream and a method of extinguishing

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20150415