CA2249786C - Difluoro statone analogs - Google Patents
Difluoro statone analogs Download PDFInfo
- Publication number
- CA2249786C CA2249786C CA002249786A CA2249786A CA2249786C CA 2249786 C CA2249786 C CA 2249786C CA 002249786 A CA002249786 A CA 002249786A CA 2249786 A CA2249786 A CA 2249786A CA 2249786 C CA2249786 C CA 2249786C
- Authority
- CA
- Canada
- Prior art keywords
- alkyl
- phenyl
- hydroxy
- alkylene
- independently
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Pyridine Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
This invention relates to novel difluoro statone analogs of Formula 1, to the processes and intermediates useful for their preparation and to their use as anti-viral agents.
Description
WO 95!01958 PCTlUS94106376 DIFLUORO STATONE ANALOGS
This invention relates to novel statone analogs, to the processes and intermediates useful for their preparation and to their use as anti-viral acents.
BACKGROUND OF THE PRESENT INVENTION
Retroviruses are a class of viruses which transport their genetic material as ribonucleic acid rather than as deoxyribonucleic acid. Retroviruses are associated with a wide variety of diseases in man, one of which is AIDS.
Although there have been disclosures of other anti-viral agents useful in the treatment of AIDS, for example see patent applications EP 0 218 688, EP 0 352 000 and Inter-national Publication No. WO 92/122123 dated June 23, 1992, the compounds of the present invention have not been pre-viously disclosed.
DESCRIPTION OF THE PRESENT INVENTION
More specifically this invention relates to novel difluoro statone analogs of Formula 1 x I
_ Z _ and the stereoisomers, hydrates, isosteres and the pharmaceutically acceptable salts thereof wherein P1 is Q or B, wherein B is C alk lene ~T~~ wherein i-s y T is ((0)b-W-R) and T' is [(O)b~-W'-R'] or H, wherein each of W and W' are independently Cl_6 alkylene or nothing and R and R' are each independently -CHZCHO, hydroxy Cl_6 alkyl, C1_6 alkoxy C1_6 alkyl, C1_6 alkyl, Q, (R3)dor R~
provided that W is C2_6 alkylene when W is directly attached to a nitrogen atom in R, provided that W' is CZ_6 alkylene when W' is directly attached to a nitrogen atom in R', provided that W or W' are each independently Cl_6 alkylene when R or R' are each independently an aryl, and provided that H is other than p-hydroxy-benzyl or p-alkoxybenzyl;
Q is 2 w 25 tcs d - ~ o (CH2)d,;
P2 is Cl_6 alkyl, cyclopentyl, hydroxy C1_6 alkyl, phenyl, benzyl or 3-tetrahydrofuryl;
Rl is benzyloxy, C1_6 alkoxy, C1_6 alkyl, phenyl, benzyl, phenethyl, fluorenylmethylenoxy, 2-isoquinolinyl, PDL, I I
CHIN-(CHz)3CH2, ~-(CHZ)Z-N-CH2~H2, NHSOZR4, N(R4)(benzyl), or N(R4)(PDL), wherein PDL is -(CH2)a-2-,3-, or 4-pyridyl, or p-substituted benzyloxy, wherein the substitution is a vitro, OH, amino, C1_6 alkoxy, hydroxy C1_6 alkylene, or halogeno;
R3 is Cl_6 alkenyl, Cl_6 alkoxy, hydroxy Cl_6 alkyl, C1_6 alkyl, or OH;
R4 is H, C1_6 alkyl, phenyl or benzyl;
RS is C7_ls alkyl, C~_ls alkoxy, CH([(CH2)d-O-CH2Jx-Re)2.
branched-chain C1_6 alkylene~ Ve~ or CH(Y)(Z) wherei '~'n Y is C1_ls alkyl, hydroxy C1_is alkyl or (CHz)~ ve~ and Z is (CH2)d-O-CHO, C1_6 alky eve-O-(CH2)d-(O-CH2-CH2)e-O-Ci-s alkyl, (CH2)~ ~ Vy Or (CHy)d-0(C$2)d~R7 provided that d' =2 when R~ is piperazinyl, substituted piperazinyl, piperidyl or morpholinyl, wherein V is OR4 or hydroxy C1_6 alkyl;
R6 is H or C1_3 alkyl;
R7 is piperazinyl, substituted piperazinyl, piperidyl, morpholinyl, pyridyl, pyrazinyl, pyrimidinyl or phenyl, wherein substituted piperazinyl is piperazinyl substituted on one nitrogen atom thereof with CHO, C(0)NHlt4, Cl_4 alkyl or COZR4;
Re is pyrimydyl, pyridyl, pyrazinyl or phenyl;
a is zero, 1, 2 or 3;
b and b' are each independently zero or 1;
d and d' are each independently 1 or 2;
a and e' are each independently zero, 1 or 2; and x is zero or one.
Isosteres of the compounds of Formula I include those wherein (a) the a-amino acid residues of the Pl and P2 substituents are in their unnatural configuration (when there, is a natural configuration) or (b) when the normal peptidic carbamoyl linkage is modified, such as for example, to form 1 -CH2NH- (reduced), -C-N(CH3) (N-methylamide), -COCHy-(keto), -CH(OH)CHZ- (hydroxy), -CH(NHZ)CHZ- (amino), -CHZCHz- (hydrocarbon). Preferably a compound of the invention should not be in an isosteric form. Unless otherwise stated the a-amino acids are preferably in their L-configuration.
A compound of the invention may be in free form, e.g., amphoteric form, or in salt, e.g., acid addition or anionic salt, form. A compound in free form may be converted into a salt form in an art-known manner and vice-versa.
The pharmaceutically acceptable salts of the peptide of Formula I (in the form of water, or oil-soluble or dispersible products) include the conventional non-toxic salts or the quaternary ammonium salts of these peptides, which are formed, e.g., from inorganic or organic acids or bases. Examples of such acid addition salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate. heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethane-sulfonate, lactate, maleate, methanesulfonate, 2-naphthal-enesulfonate. nicotinate, oxalate, pamoate. pectinate, persulfate, 3-phenylpropionate. picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, and undecanoate. Base salts include ammonium salts, alkalimetal salts such as sodium and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases such as dicyclohexylamine salts, N-methyl-D-glucamine, and salts with amino acids such as arginine, lysine, and so forth. Also, the basic nitrogen-containing groups may be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl; and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides and others.
The hydrates of the compounds of Formula I are hydrated compounds having the partial structure 1 ~~
~ '\\~ O
HO OH
and in their end-use application are generally the active forms .
In general, as used herein, the term "alkyl" includes the straight, branched-chain and cyclized manifestations thereof unless otherwise indicated, particularly such moieties as methyl, ethyl, isopropyl, n-butyl, t-butyl, -CHZ-t-butyl, cyclopropyl, n-propyl, pentyl, cyclopentyl, n-hexyl, cyclohexyl and cyclohexylmethyl. The term "aralkyl", when used, includes those aryl moieties attached to an alkylene bridging moiety, preferably methyl or ethyl.
"Aryl" includes both carbocyclic and hetereocyclic moieties of which phenyl, pyridyl, pyrimidinyl, pyazinyl, indolyl, indazolyl, furyl and thienyl are of primary interest; these moieties being inclusive of their position isomers such as, for example, 2-, 3-, or 4-pyridyl, 2- or WO 95/01958 ' PCTlUS94106376 3-furyl and thienyl, 1-, 2-, or 3-indolyl or the 1- and 3-indazolyl, as well as the dihydro and tetrahydro analogs of the furyl and thienyl moieties. Also included within the term "aryl" are such fused carbocyclic moieties as pentalenyl, indenyl, naphthalenyl, azulenyl, heptalenyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthrenyl, anthracenyl, acephenanthrylenyl, aceanthrylenyl, triphenylenyl, pyrenyl, chrysenyl and naphthacenyl. Also included within the term "aryl" are such other heterocyclic radicals as 2- or 3-benzo[b]thienyl, 2- or 3-naphtho[2,3-b]thienyl, 2- or 3-thianthrenyl, 2H-pyran-3-(or 4- or 5-)yl, 1-isobenzo- furanyl, 2H-chromenyl-3-yl, 2- or 3-phenoxathiinyl, 2- or 3-pyrrolyl, 4- or 3-pyrazolyl, 2-pyrazinyl, 2-pyrimidinyl. 3-pyridazinyl, 2-indolizinyl, 1-isoindolyl, 4H-quinolizin-2-yl, 3-isoquinolyl, 2-quinolyl, 1-phthalazinyl, 1,8-naphthyridinyl, 2-quinoxalinyl, 2-quinazolinyl, 3-cinnolinyl, 2-pteridinyl, 4aH-carbazol-2-yl, 2-carbazolyl, B-carbolin-3-yl, 3-phenanthridinyl, 2-acridinyl, 2-perimidinyl, 1-phenazinyl, 3-isothiazolyl, 2-phenothiazinyl, 3-isoxazolyl, 2-phenoxazinyl, 3-isochromanyl, 7-chromanyl, 2-pyrrolin-3-yl, 2-imidazol-idinyl, 2-imidazolin-4-yl, 2-pyrazolidinyl, 3-pyrazolin-3-yl, 2-piperidyl, 2-piperazinyl, 1-indolinyl, 1-isoindolinyl, 3-morpholinyl, benzo[b]isoquinolinyl and benzo[b]furanyl, including the position isomers thereof except that the heterocyclic moieties cannot be attached directly through their nitrogen one, two or three substituents independently selected from C1_6 alkyl, haloalkyl, alkoxy, thioalkoxy, aminoalkylamino, dialkylamino, hydroxy, halo, mercapto, nitro, carboxaldehide, carboxy, carboalkoxy and carboxamide.
Likewise the term "alkylene" includes straight or branched-chain moieties. Some examples of branched-chain alkylene moieties are ethylethylene, 2-methyltrimethylene, 2,2-dimethyltrimethylene, and so on. For example, C3 alkylene can mean _ 7 _ . -CH2-CH2-CH2- or -C- or -CH2-CH- Or -CH-CHZ- .
I I I
All (C1_i5) moieties are preferably (C1_6) moieties and all (C1_6) moieties such as C1_6 alkyl, C1_6 allenyl, Cl_6 alkoxy, and hydroxy C1_6 alkyl, are more preferably Cl_3 moieties (containing 1-3 carbon atoms instead of 1-6 carbon atoms ) .
The fluorenylmethyloxy moiety is that moiety generally called by its abbreviation FMOC, and is the fluorenyl moiety bearing -CH20- attached to the 9-position of the fluoroenyl moiety. Other terms defined herein are piperazinyl -N~ or substituted piperazinyl -N~_ the substitution (*) occurring only at one nitrogen molecule which is not attached to the remainder of the molecule (attachment via a nitrogen atom). The substituents are one of CHO, C(O)NHR4, C1_4 alkyl or C02R4.
Piperidyl and morpholinyl both bind to the rest of the -N -N
molecule via their respective nitrogen atoms while pyrimidinyl, pyridyl and pyrazinyl bind to the rest N~ N N
~N
of the molecule anywhere except their respective nitrogen atoms.
More specifically, in the instance wherein PZ is either C1_6 alkyl or hydroxy C1_6 alkyl, such moieties as -C(CH3)3, _ g _ -CH(CH3)2, -CH(CH3)(C2H5), -C(OH)(CH3)2 and -CH(OH)CH3 are preferred. The "hydroxy C1_6 alkyl" moiety is illustrated in one example by -CH2-OH, the "C1_6 alkoxy C1_6 alkyl" moiety, is illustrated in one example by -CH2-OCH3, (although in each instance the C1_6 alkylene may be straight or branched and the hydroxy radical. is not limited to the terminal carbon atom of the alkyl moiety). The ~1 ~(R3)d moiety shows a phenyl moiety which may be substituted with one or two of the R3 moieties,(said moieties being the same or different ) .
As it is often quite advantageous to have what is termed an amino protecting group (Pg), the scope of those compounds of Formula I, includes those Rl moieties which, together with their adjacent carbonyl moiety form such groups as acetyl (Ac), succinyl (Suc), benzoyl (Br), t-butyloxycarbonyl (Hoc), benzyloxycarbonyl (CHZ), tosyl (Ts), dansyl (DNS), isovaleryl (Iva), methoxysuccinyl (MeOSuc), 1-adamantanesul hon 1 AdSO
P y ( 2), 1-adamantaneacetyl (AdAc), phenylacetyl, t-butylacetyl (Tba), bis[(1-naphthyl)methyl]acetyl (BNMA) and Rz wherein Rz is an aryl group as previously described suitably substituted by 1 to 3 members selected independently from the group consisting of fluoro, chloro, bromo, iodo, trifluoromethyl, hydroxy, alkyl containing from 1 to 6 carbons, alkoxy containing from 1 to 6 carbons, carboxy, alkylcarbonylamino wherein the alkyl group contains 1 to 6 carbons. 5-tetzazolo, and acylsulfonamido (i.e., acylaminosulfonyl and sulfonylamino-carbonyl) containing from 1 to 15 carbons, provided that when the acylsulfonamido contains an aryl. The aryl may be further substituted by a member selected from fluoro, chloro, bromo, iodo and nitro.
In those instances wherein there is an Rz moiety, it is preferred that Rz represent acylsulfonamido, particularly those wherein the acylsulfonamido contains an aryl moiety _g_ (preferably phenyl) substituted by a halogen. The preferred Rz moieties being 4-[(4-chlorophenyl)sulfonylaminocarbon-yl)phenylcarbonyl, 4-[(4-bromophenyl)sulfonylamino-carbonyl]-phenylcarbonyl and 4-[phenylsulfonylamino carbonyl]-phenylcarbonyl (said moieties being abbreviated as 4-C1-0-SAC-Bz, 4-Br-0-SAC-Bz and 0-SAC-Bz, respectively).
Among the classes of amino protecting groups contemplated are: (1) acyl type protecting groups such as formyl, trifluoroacetyl, phthalyl, p-toluenesulfonyl (tosyl), benzenesulfonyl, nitrophenylsulfenyl, trityl-sulfenyl, O-nitrophenoxyacetyl, and a-chlorobutyryl; (2) aromatic urethane type protecting groups such as benzyloxy-carbonyl and substituted benzyloxycarbonyls such as p-chlorobenzyloxycarbonyl, p-methoxybenzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-bromobenzyloxycarbonyl, 1-(p-biphenylyl)-1-methylethoxycarbonyl, a,a-dimethyl-3,5-dimethoxybenzyloxycarbonyl, and benz-hydryloxycarbonyl; C3) aliphatic urethane protecting groups such as tert-butyloxycarbonyl (Boc), diisopropylmethoxy-carbonyl, isopropyloxycarbonyl, ethoxycarbonyl, and allyl-oxycarbonyl; (4) cycloalkyl urethane type protecting groups such as cyclopentyloxycarbonyl, adamantyloxycarbonyl, and cyclohexyloxycarbonyl; (5) thio urethane type protecting groups such as phenylthiocarbonyl; (6) alkyl type protecting groups such as triphenylmethyl (trityl) and benzyl (Hzl); (7) trialkylsilane protecting groups such as trimethylsilane if compatible. The preferred a-amino protecting groups are tert-butyloxycarbonyl (Boc) or benzyloxycarbonyl (CBZ). The use of Hoc as an a-amino protecting group for amino acids is described by Hodansky et al. in "The Practice of Peptide Synthesis", Springer-Verlag, Berlin (1984), p. 20.
In general the compounds of this invention may be prepared using standard chemical reactions analogously known in the art.
In the instance wherein it is desired to prepare compounds of the formula R CNHC CNHCHC-CF -C-NR R
O O O O
x II
wherein R1, P2, P1, RS and R6 are as previously defined, the process outlined by the following reaction scheme may advantageously be utilized.
WO 95/01958 PCTlUS94/06376 REACTION SCCBEMEME A
(a) PgNHCH-CHO Zn PgNHCA-~HCF2~OEt BrCF2C02Et 0g II0 (3) (4) (b) 1f I1 (c) I1 H2N-CH- iH-CF2 -iINR5R6 ~E---~ PgNH-CH-C i CF2-il-NRSR6 OH O
(6) (5) (6) (d)/
I s _ I i ~i R'1~-NH-CH- II NH CH- ~8-CF2-~-NR5R6 R'l~-NH-CH- C'IH-CF2-~-NRSR6 'Ii O O OH O O
(7) ( f) (8) (f) P
I
R1~-NH-CH- ~-NH-CH-~- CFZ-~NRSR6 Rl~l NH CH- ~-CFZ-~RSR6 IO O O IOI O O IIO
IIA IIB
30 wherein R'1 represents optional amino protecting groups, as herein above defined, and the R1, pi~ P2~ R5 and R6 moieties are as previously defined.
In effecting reaction scheme A, the process is 35 initiated by conducting a Reformatsky-type reaction wherein an aldehyde of Formula (3) is subjected to a condensation reaction with an ester of bromodifluoroacetic acid, preferably the ethyl ester in the presence of zinc and in an anhydrous aprotic solvent, e.g., tetrahydrofuran, ether, dimethoxyethane and the like under a nitrogen or argon inert atmosphere. The reaction is gently heated to about 60°C for about 1-l2 hours or ultrasonicated to produce compounds (4). Step (b) to obtain compounds (S) may be effected directly or undirectly. In one instance, the esters of Formula (4) are de-esterified using a strong base (LiOH, KOH, NaOH and the like) in the presence of water using a partially water miscible solvent (such as tetrahydrofuran, dimethoxyethane, dioxane) at about room temperature. The so-obtained de-esterified compound is then aminated with the appropriate R5R6-substituted amine using a peptide-like coupling procedure - i.e., using a mixed anhydride method using DCC and hydroxybenzotriazole at room temperature in solvents such as CH2C12, tetrahydrofuran or dimethylformamide. Alternatively the esters (4) may be directly subjected to a reaction with the appropriate RSR6-substituted amine without or with a solvent (tetrahydro-furan) at about 80°C. Following the preparation of compounds (5), the protecting groups Pg may readily be removed by standard procedures, e.g., hydrogenation or acid base hydrolysis. Compounds (6) are subjected to a peptide coupling procedure with an appropriately protected acid of the formulae R1CONH(PZ)COOH or R1C02H, using the herein-described procedures (or by any other coupling procedure currently available) to produce compounds (7) and (8), respectively. At this point, if desired, the amide formed with R1 may be optionally deprotected, or if desired, the amide may be replaced with another amide within the scope of Rl. The alcohols of (7) and (8) are then oxidized to the corresponding ketones and, if desired, the compounds may be converted to their pharmaceutically acceptable salts.
The oxidation may be effected via the well-known Swern oxidation procedure, or with 1,1,1-triacetoxy-2,1-benzoxiodol (Dess-Martin reagent). The coupling proceduzes are effected according to standard procedures well known in the art.
"Swern oxidation" is well known in the art [see Synthesis, (1981), 165]. For example, it may be effected by reacting about 2 to 20 equivalents of dimethylsulfoxide (DMSO) with about 1 to 10 equivalents of trifluoromethyl-acetic anhydride [(CF3C0)ZO] or oxalyl chloride [(COC1)Z], said reactants being dissolved in an inert solvent, e.g., methylene chloride (CHZC12), said reaction being under an inert atmosphere (e. g., nitrogen or equivalently function-ing gas) under anhydrous conditions at temperatures of about -70°C to -30°C to form an in situ sulfonium adduct to which is added about 1 equivalent of the appropriate alcohols. i.e., compounds (7) and (8). Preferably, the alcohols are dissolved in an inert solvent, e.g., CH2Cly, tetrahydrofuran, or minimum amounts of DMSO, and the reaction mixture is allowed to warm to about -50°C or -20°C
(for about 20-60 minutes) and then the reaction is completed by adding about 3 to 30 equivalents of a tertiary amine, e.g., triethylamine, diisopropylethylamine, N-methyl morpholine. etc.
Another alternative process for converting the alcohols to the desired ketones is an oxidation reaction which is called the "Dess Martin oxidation" reaction and employs periodane (i.e.. 1,1,1-triacetoxy-2,1-benzoxiodol), [see Dess Martin, J. Ora. Chem., 48, 4155, (1983)]. This oxidation is effected by contacting about 1 equivalent of the alcohols with 1 to 5 equivalents of periodane (preferably 1.5 equivalents), said reagent being in suspen-sion in an inert solvent (e. g., methylene chloride) under an inert atmosphere (preferably nitrogen) under anhydrous conditions at 0°C to 50°C (preferably room temperature) and allowing the reactants to interact for about 1 to 48 hours.
Optional deprotection of the amine protecting groups may be effected as desired after the ketones have been isolated.
In general, the modified Jones oxidation proceduze may conveniently be effected by reacting the alcohols with pyridinium dichromate by contacting the reactants together in a water-trapping molecular sieve powder, e.g., a grounded 3 Angstrom molecular sieve), wherein said contact is in.the presence of glacial acetic acid at about 0°C to 50°C, preferably at room temperature followed by isolation and then optionally removing amine protecting groups.
Alternatively, 1 to 5 equivalents of a chromic anhydride-pyridine complex (i.e., a Sarett reagent prepared insitu) [see Fieser and Fieser "Reagents for Organic Synthesis" Vol. 1, pp. 145 and Sarett, et al., J.A.C.S. _25.
422, (1953)) said complex being prepared insitu in an inert solvent (e. g., CHyCl2) in an inert atmosphere under anhy-drous conditions at 0°C to 50°C to which complex is added 1 equivalent of the alcohols allowing the reactants to inter-act for about 1 to 15 hours, followed by isolation and optionally removing amine protecting groups.
In certain instances, it may be prefereably to introduce the appropriate P1 group after the R5R6 group is attached. In those instances. P1 may comprise a protecting group until after step (a). For example, Pl at compound (3) may be 4-(benzyloxy)benzyl which can be hydrogenated to the phenol, preferably by catalytic hydrogenation after steps (a) or (b). Introduction of the remainder of the appropriate Pl moiety can be accomplished after steps (b), (d) or (e) by alkylation under basic conditions such as cesium or potassium carbonate with X-C1_6 alkylene R wherein X is an appropriate leaving group such as halogeno or triflate, in the presence of a solvent such as dioxane, tetrahydro-furan or dimethylformamide.
For the preparation of the necessary aldehydes of (3), and the preparation of the acids which are to be coupled with the amines of Formula (6), alternative alkylation procedures are utilized depending upon whether the P1 and/or the P2 moieties are or are not residues of natural amino acids. The preparation of these intermediates wherein the P1 or P2 moieties are residues of natural amino acids (or minor modifications thereof, e.g., P1 or PZ being a methyl ether of tyrosine), the compounds are either known or are prepared by processes and techniques well known in the art.
To prepare the intermediates of the formula p3 PgHN-CHC02R9 (9) wherein Pg is an amino protecting group, P3 is either a P'1 or P'2 moiety with P'1 and P'2 being as defined for P1 and PZ respectively, except that they are other than residues of naturally occuring amino acids, and the R9 moiety is an alkyl radical, preferably methyl when P3 is P'l, and ethyl when P3 is P'2, alternative methods are available.
To prepare the intermediates of formulae p~l P' P9~-CHCHO
PgHN-CHCOOH
(10H) (10A) the following reaction scheme may be utilized REACTION SCHEME B
p3 PgNHCH2CO2R9 ( 1 ) Hase P9~CHCOZR9 (11) (2) P3X
(12) wherein P3 is as previously defined and X is a leaving group, preferably halo or triflate, R9 is methyl when P3 is P'1. and ethyl when P3 is P'Z.
In essence, the preparation of compounds (12) utilizes the Krapcho method [Tetrahedron Letters, 26. 2205 (1976)]
for alkylation wherein compounds (11) are treated with a base, e.g., LDA, (lithium diisopropylamide), followed by reaction with the desired P3X in the presence of TMEDA
(i.e. tetramethylethylenediamine) in a solvent (tetrahydro-furan) with or without AMPA (i.e. hepamethylphosphonamide) according to the standard Krapcho conditions. Following alkylation the compounds are then subjected to a reduction using diisobutyl aluminum hydride (Dibal) in a mixture of solvents, e.g., ether, toluene, hexane, tetrahydrofuran at about -78°C for about 1 hour. Following the preparation of the aldehydes of Fozmula (10B), the compounds are subjected to the processes of Reaction Scheme A.
Alternatively, the compounds of (12) may be prepared by a Malonate/Curtius type sequence of reactions, [see Yamada, et al., J. Amer. Chem. Soc., (1972) 94, 6203] as illustrated by the following reaction scheme REACTION SCHEME C p ~3 t-Bu02CCHZC02R9 t-BuOZCCH2C02R9 ( 1 ) Base (11) (2) P3X (13) Removal of t-Bu (14) Curtius-type rearrangement (12) wherein t-Hu is t-butyl, although other selectively removal acid protecting groups may be utilized, and P3X is as previously defined. This reaction involves the alkylation of the malonate ester (11) followed by selective removal of the t-butyl protecting grou to p produce compounds (14).
These compounds are then transformed to (12) using the Curtius type rearrangement which entails their conversion to the protected amine via the intermediately formed azides, isocyanates, amines which are then protected with standard amino protecting groups, preferentially being protected in situ.
In the instance wherein P3 represents a P'1 moiety, the ester is transformed to the desired aldehydes of Formula (3) using standard Dibal reduction techniques, particularly in this situation (wherein Pl is not a residue of a natural amino acid). Alternatively, (as is preferred when Pl is a residue of a natural amino acid) the ester is de-esterified to its corresponding acid, converted to its corresponding hydroxamate and the hydroxamate upon treatment with lithium aluminum hydride is converted to its aldehyde. In the instance wherein P3 represents a P'2 moiety, the ethyl ester of compounds (12) are removed and the resulting compounds are ready for coupling as outlined in Reaction Scheme A.
Having generically described the methods for the preparation of the compounds of this invention, the following specific examples illustrate the chemistry and techniques by which the synthesis may be effected.
WO 95/01958 ~ PCT/US94/06376 O-(3-Pyridylmethyl)-(D)-valinol H2N ( D ) O !~~
N
STEP A:
N-TRITYL-(D)-VALINOL
A solution of (D)-Valinol (4.95 g, 48.06 mmol), triethylamine (7.4 ml, 52.87 mmol) and trityl chloride (14.74 g, 52.87 mmol) in dry dichloromethane (75 ml) was stirred for 17 hours at room temperature. The organic solution was washed twice with water (2 x 75 ml) and dried over sodium sulfate. After filtration and concentration in vacuo, the resulting oil (22.4 g) was purified by flash chromatography (silica gel, ethyl acetate/petroleum ether:
15/85) to give the title compound in 81% yield (13.5 g, hard oil).
Rf.: 0.45 (ethyl acetate/petroleum ether: 15/85).
STEP B:
N-TRITYL-O-(3-PYRIDYLMETHYL)-(D)-VALINOL
Under nitrogen, to a suspension of sodium hydride (1.3 g, 30 mmol, 55% dispersion in oil, previously washed twice with pentane) in dry dimethylformamide (3 ml) was added under stirring a solution of N-trityl-(D)-valinol (3.45 g, 10 mmol) in dimethylformamide (23 ml). To the reaction mixture kept for 30 minutes at room temperature and then cooled down to 0°C, was added as a solid tetrabutylammonium iodide (0.37 g, 1 mmol). After addition in portions over 5 minutes of solid 3-picolyl chloride hydrochloride (1.81 g, 11 mmol), the cooling bath was removed and the mixture was stirred for 17 hours at room temperature. The reaction mixture, previously cooled in an ice bath, was hydrolyzed with water (100 ml) and extracted twice with ethyl acetate (2 X 100 ml). The organic phases WO 95!01958 PCT/US94l06376 were washed until neutral with water (2 X 50 ml) and the combined organic layers were dried over sodium sulfate.
Filtration and concentration invacuo yielded a yellow oil (4.8 g) which was purified by flash chromatography (silica gel, dichloromethane/ethyl acetate: 9/1, Rf.: 0.42). The title compound was obtained as an oil (3.4 g, 78% yield).
STEP C:
O-(3-PYRIDYLMETHYL)-(D)-VALINOL
A solution of N-trityl-0-(3-pyridyl)methyl-(D)-valinol (3.63 g, 8.3 mmol) in formic acid (30 ml) was kept for 5.5 hours at room temperature. After removal of the formic acid invacuo, the residue was dissolved in water (100 ml) and extracted twice with ethyl acetate (100 ml, 50 ml) in order to remove trityl alcohol. The aqueous phase was basified with a saturated solution of sodium carbonate (50 ml) and 4N sodium hydroxyde (3 ml) and extracted with ethyl acetate (4 X 50 ml). After washing with brine until neutral (2 X 50 ml), the combined organic layers were dried over sodium sulfate. After usual work-up, the resulting amine was used without further purification (1.32 g, 82%
yield).
Rf.: 0.12 (silica gel, dichloromethane/methanol: 8/2).
O-(2-Pyridylmethyl)-(D)-valinol HZN (D) N O
STEP A:
N-TRITYL-O-(2-PYRIDYLMETHYL)-(D)-VALINOL
The title compound was prepared in 81% yield from the compound given in Example 1, Step A using the alkylation WO 95101958 PCT/US94l06376 procedure described in Example 1 Step B, with 2-picolyl chloride. hydrochloride instead of the 3-derivative.
Rf.: 5.1 (silica gel, dichloromethane/ethyl acetate: 9/1).
STEP B:
O-(2-PYRIDYLMETHYL)-(D)-VALINOL
The title amine was obtained in 80% yield from the compound of Example 2, Step A using the formic acid deprotection described in Example 1, Step C.
O-(2-(2-Methoxyethoxy)-1-ethyl]-(D)-valinol H2N (D
O ~~OCH3 STEP A:
N-~ITYL-0-(2-(2-METHOXYETHOXY)-1-ETHYL]-(D)-VALINOL
The title derivative was prepared in 86% yield from the compound of Example 1, Step A using 2-(2-methoxy-ethoxy)ethyl-1-bromide as reagent in the alkylation procedure described in Example 1, Step B.
Rf.: 0.74 (silica gel, acetone/petroleum ether: 2/8).
STEP H:
O-[2-(2-METHOXYETHOXY)-1-ETHYL]-(D)-VALINOL
A solution of N-Trityl-O-[2-(2-methoxyethoxy)-1-ethyl]-(D)-valinol 1.0 ( g, 2.28 mmol) in dry ether saturated with HC1 gar (20 ml) was kept for 2.5 hours at room temperature.
After concentration inUacuo, the resulting solid (1.16 g) was purified by flash chromatography (silica gel, dichloromethane first to elute trityl alcohol and then dichloromethane/diethylamine: 95/5, Rf.: 0.20) to give the title free amine as a colorless oil (0.46 g, quantitative).
O-Henzyl-(D)-valinol H2N (D) ~O I \
STEP A:
N-TERT-BUTOXYCARBONYL-(D)-VALINOL
A solution of (D)-valinol (5.1 g, 49.4 mmol) and di-tert-butyldicarbonate (10.9 g, 50 mmol) in methanol (60 ml) was stirred for 17 hours at room temperature. After concentration invacuo, the residue was purified by flash chromatography (silica gel, ethyl acetate/petroleum ether:
3/7, Rf.: 0.37) to give the title compound in quantitative yield (10.07 g, colorless oil).
MS: MH+ = 204.
STEP H:
N- TERT-BUTOXYCARHONYL-O-HENZYL-(D)-VALINOL
To a solution of N-tent-butoxycarbonyl-(D)-valinol (10 g, 49.3 mmol) and benzylbromide (5.86 ml, 49.3 mmol) in anhydrous DMF (50 ml) was added at -5°C and under nitrogen, potassium-tent-butoxide (11.06 g, 98.6 mmol) as a solid, portionwise, and in such a way that the internal temperature does not exceed +5°C. The reaction mixture was stirred for 2 hours at 0°C, diluted with ethyl acetate (2 X
300 ml), extracted with a 1N solution of potassium hydrogenosulfate (50 ml) and water (250 ml) and washed twice with water (2 X 200 ml). After drying of the organic phase on sodium sulfate, filtration and concentration in vacuo, the resulting oil was purified by flash chromatography (silica gel, ethyl acetate/petroleum ether:
1/9, Rf.: 0.42) to give the title compound as a colorless oil (9.95 g, 69% yield).
MS: MH+ = 294.
STEP C:
O-HENZYL-(D)-VALINOL
A solution of N-tent-Hutoxycarbonyl-D-benzyl-(D)-valinol (9.95 g. 34 mmol) in formic acid (50 ml) Was stirred for 4 hours at room temperature. After removal of the formic acid invacuo, the sticky residue was dissolved in water (100 ml), neutralized with a saturated solution of sodium bicarbonate (100 ml) and the organic material extracted twice with ethyl acetate (2 X 200 ml). The organic phases were washed until neutral with water (2 X 100 ml) and the combined organic layers were dried on sodium sulfate.
Filtration and evaporation of the solvent invacuo afforded the title amine as a slightly yellowish oil (5.20 g, 79%).
MS : MH'* = 19 4 .
O-2-Methogyethoxymethyl-(D)-valinol HZN ( D ) O /~O ~OCH3 STEP A:
N-TERT-BUTOXYCARHONYL-O-(2-METHOXYETFiOXYMET$YL)-(D)-VALINOL
To a solution of N-tent-butoxycarbonyl-(D)-valinol (2.03 g, 10 mmol) in anhydrous dimethylformamide (20 ml) cooled under nitrogen at -10°C, was added 1-methoxy-ethoxymethyl chloride (1.37 ml, 12 mmol) and then in two portions potassium tent-butoxide (1.35 g, 12 mmol, rinced with 10 ml of dimethylformamide). The cooling bath being removed, the reaction mixture was stirred for 3.5 hours at room temperature. After hydrolysis with water (~ 5 ml), the ~jor part of the solvent was removed with a high vacuum pomp. The residue was taken up in slightly acidic water WO 95!01958 PCTIUS94I06376 (potassium hydrogenosulfate), extracted twice with ethyl acetate (2 X 100 ml) and the organic phases washed with water until neutral (2 X 50 ml). Usual work-up afforded an oil (2.8 g) which was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate: 7/3; Rf.: 0.43) to give the title ether in 37% yield.
MS: MH+ = 292, MNH4+ = 309.
STEP B:
0-(2-METHOXYETHOXYMETHYL)-(D)-VALINOL
The title amine was obtained in 77% yield from the compound of Example 5. Step A using the procedure described in Example 4, Step C, the washings being performed with brine to avoid the loss of this amine in the aqueous phase.
ERAN~LE 6 4-tert-Butoxycarbonylamino-2.2-difluoro-3-hydroxy-5(4-benzyloxy)phenyl pentanoic acid, ethyl ester BOC HN
O
STEP A:
N-TERT HUTOXYCARHONYL-L-O-BENZYLTYROSINE-N.O-DIMETHYL-HYDROXAMATE
A mixture of N-tert-butoxycarbonyl-L-O-benzyltyrosine (37~1 g, 100 mmol), dicyclohexylcarbodiimide (20.6 g, 100 mmol) and N-hydroxybenzotriazole, hydrate (15.3 g, 100 mmol) in anhydrous dichloromethane (350 ml) was stirred at 0°C for 10 minutes. To that mixture were added, at 0°C, N,0-dimethylhydroxylamine hydrochloride (9.75 g, 100 mmol) and N-methylmorphiline (10.1 g, 100 mmol). The temperature was allowed to raise to room temperature while the stirring was continued for 15 hours. The white precipitate was filtered off, rinsed with dichloromethane. The filtrate was evaporated to dryness. The crude mixture was purified by flash chromatography (silica gel, ethyl acetate/cyclohexane: 2/8). 34.3 g of the expected hydroxamate were isolated as a white solid (83% yield).
Rf: 0.36 (ethyl acetate/cyclohexane: 1/1).
STEP H:
N-TfRT-BUTOXYCARBONYL-L-O-BENZYLTYROSINAL
To a solution of N-tert-butoxycarbonyl-L-O-benzyl-tyrosine, N,O-dimethylhydroxamate (18.2 g, 44 mmol) in a 4:1 mixture of anhydrous dietylether and dimethoxyethane (300 ml) was added at 0°C, portionwise, lithium aluminium hydride (1.82 g, 48 mmol). Stirring was continued for 1.5 hours at 0°C. Hydrolysis was done by dropwise addition of a 1 M solution of potassium hydrogeno sulfate (55 ml).
The aqueous phase was decanted and reextracted with ethyl acetate (2 X 200 ml). The combined organic layers were washed with 3 N hydrochloric acid (250 ml) and brine (200 ml). The organic phase was dried over anhydrous magnesium sulfate. Filtration and removal of the solvent in vacuo yielded the expected aldehyde as a white solid.
Recrystallization from ethyl acetate/pentane afforded 13 g of crystalline N-rert-butoxycarbonyl-L-O-benzyltyrosinal.
Rf: 0.51 (silica gel, ethyl acetate/cyclohexane: 1/1).
WO 95/01958 PCTlUS94106376 STEP C:
4-TERT-BUTOXYCARBONYLAMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYLPENTANOIC ACID, ETHYL ESTER
To a suspension of zinc (1.95 g, 30 matg) in anhydrous tetrahydrofuran (5 ml) was added, under nitrogen, a mixture of ethyl bromodifluoroacetate (6.09 g, 30 mmol) and N-fert-butoxycarbonyl-L-O-benzyltyrosinal (3.55 g, 10 mmol) in anhydrous tetrahydrofuran (25 ml). After addition of 2 ml of that solution, the suspension was heated at reflux with stirring. Gentle reflux was maintained by slow addition (dropwise) of the rest of the solution of aldehyde and bromoester. The mixture was stirred for 4 additional hours at room temperature after completion of the addition.
Hydrolysis was performed by addition of 1 M sulfuric acid (20 ml) and the mixture was extracted with ethyl acetate (3 X 50 ml). The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate.
Filtration and removal of the solvent in vacuo afforded an oil that was purified by flash chromatography (silica gel.
gradient of ethyl acetate/cyclohexane: 1/9 to 3/7). 1.8 g of the title compound were isolated (38% yield).
Rf: 0.55 and 0.5 (ethyl acetate/cyclohexane: 1/1).
Analysis calculated for Cy5H3iNOsF2:
C: 62.62 H: 6.52 N: 2.92 Found: C: 62.81 H: 6.67 N: 3.05 WO 95!01958 PCT/US94I06376 N-[4-(N-Benzyloxycarbonyl-1-valyl)amino-2,2-difluoro-1,3-dioxo-5-(4-benzyloxy)phenyl-pentyl]-O-((3-pyridyl)methyl] -D-valinol O
O O NH L
NH
CF2~~~ D
° ~° °J
O O N
STEP A:
N-I4-TERT-BUTOXYCARHONYLAMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-O-[(3-PYRIDYL)METHYL]-D-VALINOL
A solution of 1.14 g (2.38 mmol) of the ester of Example 6, Step C and 1.32 g (6.8 mmol) of the amine of Example 1, Step C in dry tetrahydrofuran (1.5 ml) was heated for 2 days under reflux. After cooling, the reaction mixture was diluted with ethyl acetate (5 ml), pentane (10 ml) and the precipitate thus obtained was filtered off and rinsed with pentane. The residue (1.25 g) was recrystallized from a mixture of dichloromethane/drops of methanol/pentane and the title compound was obtained as a white solid (0.8 g, 54% yield).
Rf: 0.5 (silica gel, ethyl acetate).
MS: MH+ = 628.
WO 95/01958 PCTlUS94106376 _ 28 _ STEP B:
N-f4-AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)-PHENYL-PENTYL]-O-[(3-PYRIDYL)METHYL]-D-VALINOL
The title compound was prepared in 91% yield from the carbamate of Example 7. Step A following the deprotection procedure described in Example 4, Step C using sodium carbonate instead of sodium bicarbonate.
MS: MH+ = 528.
STEP C
N-[4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-HENZYLOXY)PHENYL-PENTYL]-O-[(3-PYRIDYL)-METHYL]-D-VALINOL
To a solution of N-benzyloxycarbonyl-L-valine (0.101 g, 0.4 mmol) in anhydrous dimethylformamide (2 ml) were added under nitrogen N-hydroxybenzotriazole, hydrate (0.115 g.
0.4 mmol) and 1-ethyl-3(3-dimethylaminopropyl)carbodiimide, hydrochloride (0.085 g~ 0.44 mmol) with the help of 1 ml of dimethylformamide. To the reaction mixture stirred for 0.5 hour at room temperature was added the amine of Example 7, Step H (0.211 g, 0.4 mmol) with 1 ml of dimethylformamide. The stirring was continued for 15 hours and the reaction mixture was diluted with ethyl acetate (80 ml) and washed twice with water (2 X 80 ml), the aqueous phases being extracted a second time with ethyl acetate (80 ml). The combined organic layers were dried over sodium sulfate. After filtration and concentration in vacuo, the solid residue (0.360 g) was purified by flash chromatography (silica gel, dichloromethane/ethanol: 95/5.
Rf: 0.23) to give the title compound in 85% yield (0.260 g).
MS: MH+ = 761.
Analysis calculated for C42H5oNa0~FZ:
C: 66.38 H: 6.62 N: 7.36 Found: C: 66.68 H: 6.68 N: 7.40 WO 95/01958 PCTlUS94I06376 STEP D:
N-[4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-1,3-DIOXO-5-(4-BENZYLOXY)PHENYL-PENTYL)-O-[(3-PYRIDYL)METHYL) -f1-T7T T T1T~1T
To a solution of oxalyl chloride (0.23 ml, 2.63 mmol) in anhydrous dichloromethane (1 ml) at - 60°C was added under nitrogen, freshly distilled dimethylsulfoxide (0.42 ml, 5.26 mmol) in 2 ml of dichloromethane. After minutes of stirring at - 60°C, the temperature was 10 allowed to rise to -20°C. Immediately was added dropwise to that mixture a solution of the alcohol of Example 7, Step C
(0.2 g, 0.263 mmol) in dichloromethane (7 ml) and dimethylsulfoxide (1 ml). After stirring for 3.5 hours at - 20°C, the reaction mixture was cooled down to - 78°C, hydrolyzed with diisopropyl ethyl amine (1.24 ml, 8.94 mmol) and kept for 5 more minutes at - 78°C. The cooling bath was removed and the mixture was allowed to return to~room temperature. After dilution with dichloromethane (25 ml), the mixture was washed twice with water (2 X 25 ml), the aqueous layers being extracted again with dichloromethane (25 ml). The combined organic phases were dried on sodium sulfate. After filtration and concentration in vacuo. the residue (0.240 g) was purified by flash chromatography (silica gel. dichloromethane/ethyl acetate: 30/70 followed by neutral alumina act. III, tetrahydrofuran/dichloromethane/water: 10/20/0.1, in order to remove residual starting material) to give the title ketone in 37% yield (0.075 g).
Rf: 0.23 (silica gel, dichloromethane/ethyl acetate:
30/70 ) .
MS: MH* = 759.
Analysis calculated for C42H48N407F2, 0.5 H20:
C: 65.70 H: 6.43 N: 7.30 Found: C: 65.49 H: 6.34 N: 7.14 4-(N-Benzyloxycarbonyl-L-valyl)amino-2,2-difluoro-3-oxo-5-(4-benzyloxy)phenyl-N(1-isopropyl-2-methyl-propane)-pentanamide O
O
a O NH- CF2~~~
L
O
STEP A:
4-TERT-BUTOXYCARBONYLAMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
A solution of the ester of Example 6. Step C (0.50 g, 1.04 mmol) in 0.77 ml of 3-amino-2,4-dimethyl pentane (5.2 mmol) was heated at 75°C for 90 hours. After dilution with ethyl acetate (15 ml), extraction with 1N potassium hydrogeno sulfate (15 ml) and washing with water (2 X
15 ml) - the aqueous phases being extracted again with ethyl acetate (15 ml) - the combined organic layers were dried over sodium sulfate. Filtration and concentration of the solvent afforded a residue (0.54 g) which was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate: 75/25, Rf: 0.34) to give the title compound in 42%
yield (0.24 g).
MS: MH+ = 549.
STEP B
4-AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY1PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
The title amine was obtained in 92% yield from the compound of Example 8, Step A, using the deprotection method described in Example 7, Step B.
MS: MH+ = 449.
WO 95/01958 PCT/US94l06376 STEP C:
4-(N-HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
To a stirred solution of N-benzyloxycarbonyl-L-valyl anhydride (0.181 g, 0.37 mmol) and the amine described in Example 8, Step B (0.140 g, 0.31 mmol) in anhydrous dimethylformamide (3 ml) was added under nitrogen 0.041 ml of N-methylmorpholine (0.37 mmol). The reaction mixture was kept overnight at room temperature, diluted with water (15 ml) and extracted with ethyl acetate (2 X 15 ml), the organic layers being washed a second time with water (15 ml) and then dried over sodim sulfate. After filtration, removal of the solvent in vacuo and purification of the residue (0.200 g) by flash chromatography (silica gel, dichloromethane/ethyl acetate:
85/15. Rf: 0.16) the title compound was obtained as a white solid (0.080 g, 38% yield).
MS: MH+ = 682.
STEP D:
4-(N-BENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-OXO-5-~4-BENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)-PENTANAMIDE
The title compound was obtained in 51% yield from the alcohol, of Example 8, Step C using the Swern oxidation depicted in Example 7, Step D.
MS: MH+ = 680, MNH4+ = 697.
Analysis calculated for C39H41N306F2~
C: 64.14 H: 6.97 N: 6.18 Found: C: 64.53 H: 6.57 N: 5.75 WO 95101958 PCT/US94l06376 cwntu«r.~ O
4-[N-(3-PVridylpropionyl)-L-valyl]amino-2,2-difluoro-3-oxo-5-(4-benzyloxy)phenyl-N(1-isopropyl-2-methyl-propane)-~entanamide N O NH CF2~~~
L
STEP A:
4-(N-TERT-BUTOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
The title compound was prepared in 76% yield from the amine of Example 8. Step H and N-tent-butoxycarbonyl-L-valine using the coupling procedure given in Example 7, Step C
with dichloromethane as solvent instead of dimethyl-formamide.
Rf: 0.17 (silica gel, dichloromethane/ethyl acetate:
90/10).
MS: MH+ = 648.
STEP B
4-(L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
The title amine was prepared in quantitative yield from the compound described in Example 9. Step A, using the procedure given in Example 7, Step B.
MS: MH+ = 548.
WO 95101958 PCTIUS94l06376 STEP C:
4-[N-(3-PYRIDYLPROPIONYL)-L-VALYL]AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
The title compound was obtained in 84% yield from the amine of Example 9, Step B and 3-pyridylpropionic acid using the coupling method described in Example 7, Step C.
Rf: 0.16 (silica gel, ethyl acetate) MS: MH+ = 681.
Analysis calculated for C38H50N405F2~
C: 67.04 H: 7.40 N: 8.23 Found: C: 67.34 H: 7.60 N: 7.74 STEP D:
4-[N-(3-PYRIDYLPROPIONYL)-L-VALYL]AMINO-2.2-DIFLUORO-3-OXO-5-(4-BENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)-PENTANAMIDE
The title compound was prepared in 57% yield from the alcohol of Example 9. Step C using the Swern oxidation procedure described in Example 7, Step D.
Rf: 0.2 (silica gel, ethyl acetate);
Analysis calculated for C38H48N405Fz, 0.75 H20:
C: 65.92 H: 7.21 N: 8.09 Found: C: 65.93 H: 7.21 N: 7.92 N-[4-(N-Henzyloxycarbonyl-L-valyl)amino-2,2-difluoro-1,3-dioxo-5-(4-benzyloxy)phenyl-pentyl]-di(O-benzyl)serinol O
O
O NH L ~ O
p ~ ~~ p O
WO 95/01958 PCTlUS94l06376 STEP A:
N-TERT-BUTOXYCARBONYL SERINOL
The title derivative was prepared as a white solid in 94% yield from commercially available serinol using the protection procedure described in Example 4, Step A.
Rf: 0.33 (silica gel, ethyl acetate).
STEP B:
N-TERT-BUTOXYCARBONYL-DI(O-HENZYL)SERINOL
The title compound was prepared in 49% yield from N-tert-butoxycarbonyl serinol using the procedure given in Example 4, Step B, but using tetrahydrofuran as solvent, 2.4 equivalents of benzyl bromide and 2.2 equivalents of potassium-tert-butoxide.
RF: 0.17 (silica gel, petroleum ether/ethyl acetate:
90/10).
STEP C:
DI(O-BENZYL)SERINOL
The title amine was prepared in 80% yield from the compound depicted in Example 10, Step B, following the deprotection method described in Example 7, Step B.
STEP D:
N-[4-TERT-BUTOXYCARHONYLAMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-DI(O-BENZYL)SERINOL
A solution of the ester of Example 6, Step C (0.256 g, 0.534 mmol) and di(O-benzyl)serinol (0.43 g, 1.6 mmol) in dry tetrahydrofuran (2 ml) was heated under reflux during 40 hours. After removal of the solvent, the residue was taken up in ethyl acetate (15 ml), extracted with 1N
potassium hydrogeno sulfate (15 ml) and whashed twice with water (2 X 15 ml), the aqueous phases being extracted again with 15 ml of ethyl acetate. After drying of the organic layers on sodium sulfate, filtration and concentration in vaCUO, the residue (0.52 g) was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate:
70/30. Rf: 0.35) to give the title derivative in 52~ yield (0.33 g).
STEP E:
N-[4-AMINO-2.2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-HENZYLOXY)-PHENYL-PENTYL]-DI(O-HENZYL)SERINOL
The title amine was obtained in 92% yield from the compound of Example 10, Step D using the deprotection procedure given in Example 7, Step H.
STEP F:
N-[4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-HENZYLOXY)PHENYL-PENTYL]-DI(O-HENZYL)SERINOL
The title compound was obtained in 47% yield from the amine given in Example 10, Step E and N-benzyloxycarbonyl-L-valyl anhydride following the coupling procedure described in Example 8, Step c and using dichloromethane as solvent.
RF: 0.30 (silica gel, dichloromethane/ethyl acetate:
90/10).
MS: MH'* = 838r MNH4+ = 855.
STEP G:
N-[4-(N-HENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-1.3-DIOXO-5-(4-HENZYLOXY)PHENYL-PENTYL]-DI(O-BENZYL)SERINOL
The title derivative was obtained in 26% yield from the alcohol given in Example 10, Step F, following the Swern oxidation described in Example 7, Step D.
RF: 0.11 (silica gel, petroleum ether/ethyl acetate:
70/30).
MS: MH+ = 836.
Analysis calculated for C48H51N308F2~ 0.5 HZO:
C: 68.23 H: 6.20 N: 4.97 Found: C: 68.02 H: 6.16 N: 4.81 WO 95101958 PCTlUS94106376 _4-(N-Henzyloxycarbonyl-L-valyl)amino-2,2-difluoro-3-oxo-5-(9-benzyloxy)phenyl-N(ar-L-methyl)benzyl pentanamide O
O
O ~ CF _ L O
~l~ L~~
O O O O
STEP A:
4-TERT-BUTOXYCARHONYLAMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N(a-L-METHYL)HENZYL PENTANAMIDE
The title compound was prepared in 75% yield from the ester of Example 6, Step C and a-L-methyl benzylamine following the procedure depicted in Example 10, Step D.
Rf: 0.06 (silica gel, petroleum ether/ethyl acetate:
80/20).
STEP H:
4-AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N(a-L-METHYL)BENZYL PENTANAMIDE
The title amine was obtained in 92% yield from the derivative described in Example 11. Step A, using the formic acid deprotection given in Example 7, Step B.
STEP C
4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-OXO-5-(4-BENZYLOXY)PHENYL-N(a-L-METFiYL)HENZYL PENTANAMIDE
The title compound was obtained in 87% yield from the amine of Example 11, Step B and N-benzyloxycarbonyl-L-valyl anhydride using the procedure described in Example 8, Step C and with dichloromethane as solvent.
STEP D:
4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-OXO-5-(4-BENZYLOXY)PHENYL-N(Gt-L-METHYL)BENZYL PENTANAMIDE
The title derivative was obtained in low yield from the alcohol of Example 11, Step C using the oxidation procedure described in Example 7. Step D (recovery of more than 50%
of starting alcohol despite of 2 successive Swern oxidations).
Rf: 0.14 (silica gel, petroleum ether/ethyl acetate:
70/30 ) .
Analysis calculated for C39H41N306F2~ 0~5 H20:
C: 67.42 H: 6.09 N: 6.05 Found: C: 67.22 H: 5.91 N: 5.74 N-f4-(N-Benzyloxycarbonyl-L-valyl)amino-2.2-difluoro-1.3-diozo-5-(4-benzyloay)phenyl-pentyl]-O-(2-methoxyethoxy-methyl)-D-valinol v ~ O L NH CF2 NH D O ~O~ OCH3 1~
0 0 o O
STEP A:
N-f4-(TfRT-HUTOXYCARHONYLAMINO-2.2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-O-(2-METHOXYETHOXY-METHYL)-D-VALINOL
The title compound was prepared in 56% yield from the ester of Example 6, Step C and the amine of Example 5.
Step B using the substitution procedure described in Example 10, Step D.
Rf: 0.35 (silica gel, petroleum ether/ethyl acetate:
55/45).
STEP B:
N-[4-AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-O-(2-METHOXYETHOXYMETHYL)-D-VALINOL
The title amine was obtained in quantitative yield from the compound of Example 12, Step A using the deprotection method given in Example 7. Step H, the reaction temperature being kept at 5°C instead of room temperature.
STEP C:
N-[4-(N-HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL)-O-(2-METHOXYETHOXYMETHYL)-D-VALINOL
The title derivative was prepared in 59% yield from the amine of Example 12, Step B and N-benzyloxycarbonyl-L-valyl anhydride following the procedure described in Example 8, Step C and with dichloromethane as solvent.
Rf: 0.25 (silica gel, dichloromethane/ethyl acetate:
80/20).
MS: MH* = 758. MNH4* = 775.
STEP D
N-(4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-1,3-DIOXO-5-(4-HENZYLOXY)PHENYL-PENTYL]-O-(2-METHOXYETHOXY-METHYL)-D-VALINOL
The title compound was obtained in 73% yield from the alcohol of Example 12, Step C using the Swern oxidation depicted in Example 7, Step D.
Rf: 0.26 (silica gel, dichloromethane/ethyl acetate:
70/30).
MS: MH* = 770.
Analysis calculated for C40H51N309F2~
C: 63.56 H: 6.80 N: 5.56 Found: C: 63.55 H: 6.78 N: 5.49 N-[4-(N-Henzyloxycarbonyl-L-valyl)amino-2,2-difluoro-1,3-dioxo-5-(4-benzyloxy)phenyl-pentyl]-O-formyl-D-valinol v p N L NH CF2\ NH D
1~ ~~ ~ lI~ °
° ° ° °
A solution of the compound given in Example 12, Step D
(0.050 g, 0.066 mmol) in formic acid (5 ml) was stirred for 5 hours at room temperature. After concentration in vaCUO, the residue (0.043 g) was purified by a micro flash chromatography (silica gel, dichloromethane/ethyl acetate:
70/30, Rf: 0.49) to give the title compound in 44% yield.
MS: MH+ = 696.
Analysis calculated for C37H43N3°8F2~
C: 63.87 H: 6.23 N: 6.04 Found: C: 64.15 H: 6.35 N: 5.78 N-.[4-(N-Henzyloxycarbonyl-L-valyl)amino-2,2-difluoro-1.3-dioxo-5-(4-benzyloxy)phenyl-pentyl]-O-[2-(2-methoxyethoxyl-1-ethyl]-D-valinol v p L NH CFZ NH D °
1~ ~~ ~ ~~ °~H3 ° ° ° °
WO 95/01958 PCT/US94l06376 STEP A:
_N-(4-(TERT-BUTOXYCARBONYLAMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-O-[2-(2-METHOXYETHOXY)-1-ETHYL]-D-VALINOL
The title compound was prepared in 51% yield from the ester of Example 6, Step C and the amine of Example 3, Step B using the procedure depicted in Example 10, Step D.
Rf: 0.37 (silica gel. petroleum ether/ethyl acetate:
30/70).
STEP B:
N ~4-AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-S-(4-BENZYLOXY)PHENYL-PENTYL]-O-[2-(2-METHOXYETHOXY)-1-ETHYL]-D-VALINOL
The title amine was obtained in 97% yield from the compound of Example 14. Step A using the deprotection method described in Example 7. Step B.
MS: MH+ = 539.
STEP C
N-(4-(N-HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-O-[2-(2-METHOXYETHOXY1-1-ETHYL]-D-VALINOL
The title derivative was obtained in 74% yield from the amine of Example 14, Step H and N-benzyloxycarbonyl-L-valyl anhydride using the coupling procedure described in Example 8, Step C and with dichloromethane as solvent.
Rf: 0.19 (major isomer at the 3-hydroxy function) and 0.13 (minor isomer) (silica gel, dichloromethane/ethyl acetate:
60/40 ) .
MS: MH+ = 772.
WO 95!01958 PCTlUS94106376 STEP D:
N-(4-(N-HENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-1,3-DIOXO-5-(4-HENZYLOXY)PHENYL-PENTYL]-O-[2-(2-METHOXY~THOXY~
1-ETHYL]-D-VALINOL
The title compound was prepared in 74% yield from the alcohol of Example 14, Step C using the oxidation method given in Example 7. Step D.
Rf: 0.13 (silica gel, dichloromethane/ethyl acetate:
70/30).
MS: MH+ = 770 Analysis calculated for C4iH53N309F2~
C: 63.96 H: 6.84. N: 5.46 Found: C: 63.94 H: 6.86 N: 5.38 4-(N-Benzyloxycarbonyl-L-valyl)amino-2,2-difluoro-3-oxo-5-~4-benzyloxy)phenyl-N-benzydrYl pentanamide O NH
~~ ~r L ~~
STEP A:
4-(TERT-BUTOXYCARBONYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N-BENZYDRYL PENTANAMIDE
The title compound was obtained in 45% yield from the ester of Example 6. Step C and commercially available benzydrylamine (distilled over potassium hydroxyde) using the procedure described in Example 10, Step D.
Rf: 0.50 (silica gel, cyclohexane/ethyl acetate: 1/1).
MS: MH+ = 617.
STEP B:
4-AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N-HENZYDRYL PENTANAMIDE
The title amine was obtained in 82$ yield from the derivative of Example 15, Step A following the deprotection method given in Example 7. Step B.
STEP C:
4-(N-HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N-BENZYDRYL PENTANAMIDE
The title compound was prepared in 83% yield from the amine of Example 15. Step H and N-benzyloxycarbonyl-L-valyl anhydride following the coupling reaction given in Example 8. Step C using dichloromethane as solvent.
Rf: 0.49 (silica gel, cyclohexane/ethyl acetate: 1/1).
MS: MH+ = 750.
STEP D:
4-lN-HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-OXO-5-(4-BENZYLOXY)PHENYL-N-HENZYDRYL PENTANAMIDE
The title derivative was obtained from the alcohol of Example 15, Step C using the Swern oxidation depicted in Example 7. Step D.
Rf: 0.47 (silica gel, cyclohexane/ethyl acetate: 1/1).
MS: MH+ = 748. MNH4+ = 765.
Analysis calculated for C44H43N306F2~
C: 70.67 H: 5.79 N: 5.62 Found: C: 69.88 H: 5.89 N: 5.49 WO 95!01958 PCTlUS94106376 4-(N-Henzyloxycarbonyl-L-valyl)amino-2,2-difluoro-3-oxo-5-(4-benzyloxy)phenyl-N(1,1-di(2-pyridyl)methyllpentanamide O
O
v N
O NH CF NH O
°l~ L
° ° ° ° O
STEP A:
N-TERT-BUTOXYCARBONYL-1,1-DI(2-PYRIDYL)METHYL AMINE
To a solution of commercial di(2-pyridyl)ketone (3.68 g, 20 mmol) in anhydrous methanol (60 ml) was added ammonium acetate (15.40 g, 200 mmol) and sodium cyanoborohydride (0.88 g, 14 mmol). After stirring at room temperature for 24 hours, the reaction mixture was hydrolyzed with 37% hydrochloric acid until pH - 2 and the solvent removed in vatuo. The residue was taken off in water (100 ml), extracted twice with diethyl ether (2 X
60 ml) and the combined organic layers were dried over magnesium sulfate. After filtration and removal of the solvent in vacuo, the residue was taken off in anhydrous dichloromethane (50 ml) and di-tart-butyl dicarbonate (2.80 g, 13 mmol) was added, the reaction mixture being stirred for 16 hours at room temperature. The solvent was removed invacuo and the residue was purified by flash chromatography (silica gel, cyclohexane/ethyl acetate: 3/7) to give the title compound in 17% yield (0.90 g).
Rf: 0.34 (silica gel, ethyl acetate).
STEP B:
1,1-DI(2-PYRIDYL)METHYL AMINE
To a solution of the compound of Example 16, Step A
(0.85 g, 3 mmol) in anhydrous diethyl ether (10 ml) was added at 0°C 40 ml of a saturated solution of hydrogen chloride gas in anhydrous diethyl ether. The reaction mixture was stirred at 0°C and then the temperature was allowed to rise to room temperature overnight. The solvent was removed in vacuo and the residue was taken off in ethyl acetate (100 ml), washed three times with a saturated solution of sodium carbonate (3 X 30 ml) and the organic layer dried over magnesium sulfate. Removal of the solvent invacuo afforded the title compound in 55% yield (0.30 g).
STEP C:
4-(TERT-BUTOXYCARHONYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N-[1.1-DI(2-PYRIDYL)METHYL]PENTANAMIDE
The title compound was prepared in 43% yield from the ester of Example 6. Step C and the amine of Example 16.
Step H following the procedure described in Example 10, Step D.
Rf: 0.40 (silica gel, ethyl acetate) MS: MH+ = 619.
STEP D:
4-AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N-[1,1-DI(2-PYRIDYL)METHYL]PENTANAMIDE
The title amine was obtained in 77% yield from the compound of Example 16, Step C using the deprotection method described in Example 7, Step B.
STEP E:
4-(N-BENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N-[1,1-DI(2-PYRIDYL)-METHYL]PENTANAMIDE
The title compound was obtained in 70% yield from the amine of Example 16. Step D and N-benzyloxycarbonyl-L-valyl anhydride using the coupling method depicted in Example 8, Step C using dichloromethane as solvent.
Rf: 0.49 (silica gel, ethyl acetate).
MS: MH+ = 752.
' PCT 1US94106376 WO 95!01958 STE- P F:
(4 BENZYLOXY)PHENYL N [1.1-DI(2-PYRIDYL)METHYL]PENTANAMIDE
The title compound was prepared in 42% yield from the alcohol of Example 16, Step E using the oxidation procedure described in Example 7. Step D.
Rf: 0.39 (silica gel. ethyl acetate).
MS: MH+ = 750.
Analysis calculated for C42H41N506F2~ 0.5 H20:
C: 66.48 H: 5.58 N: 9.23 Found: C: 66.37 H: 5.55 N: 8.91 N [4 (N Henzyloxycarbonyl-L-valyl)amino-2.2-difluoro-1.3-dioxo-5 (4 {2 N morpholyl~ethyloxy)Phenyl-pentvll-0-[(3-pyridyl)methyl]-D-valinol O
O
O O ~ CF 2~~~ D
l~ ~~ ~ b 5 O O p O N
STEP A:
_4 TERT BUTOXYCARBONYLAMINO-2.2-DIFLUORO-3-HYDROXY-5-(4-HYDROXY)PHENYL PENTANOIC ACID. ETHYL ESTER
A solution of compound of Example 6, Step C (0.719 g.
1.5 mmol) in ethanol (50 ml) was kept for 7.5 hours under an hydrogen atmosphere in the presence of 10% palladium on charcoal (0.074 g). The hydrogen atmosphere was exchanged by a nitrogen atmosphere, the suspension was filtered off and the solution concentrated in vacuo. The title PCTlUS94l06376 thus obtained was used as such in the next step (0.500 g.
83% yield).
Rf: 0.51 (silica gel. petroleum ether/ethyl acetate: 1/1).
STEP H:
5 (4 HYDROXY)PHENYL PENTYL)-O-[(3-PYRIDYL)METHYL)-D-VALINOL
The title compound was obtained in 82% yield from the ester of Example 17. Step A and the amine of Example 1, Step C, following the procedure described in Example 10, Step D.
Rf: 0.47 (silica gel, ethyl acetate).
STEP C:
5 (4 {2 N MORPHOLYL~ETHYLOXY)PHENYL-PENTYL)-O-[(3-PYRIDYL~ -METHYL)-D-VALINOL
A solution of the phenolic derivative described in Example 17, Step H (0.081 g, 0.15 mmol) and 4-(2-chloro-ethyl)morpholine, hydrochloride (0.039 g, 0.21 mmol) in dry dimethylformamide (3 ml) was stirred under nitrogen for 66 hours at room temperature in the presence of cesium carbonate (0.166 g, 0.51 mmol) and potassium iodide (0.0035 mg, 0.021 mmol). The reaction mixture was diluted with ethyl acetate (15 ml) and washed twice with water (2 X 15 ml), the aqueous phases being extracted again with ethyl acetate (15 ml). After drying of the combined organic layers on sodium sulfate, filtration and concentration in vacuo, the residue (0.117 g) was purified by flash chromatography (silica gel, ethyl acetate/methanol: 90/10.
Rf: 0.27) to give the title compound in 51% yield (0.050 g).
MS: MH+ = 651.
PCTlUS94106376 STEP D:
N [4 AMINO 2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-{2-N-MORPHOLYL~ETHYLOXY)PHENYL-PENTYL]-O-[(3-PYRIDYL)METHYL]-D-V_ALINOL
title amine was prepared in quantitative yield from the derivative of Example 17. Step C following the deprotection procedure described in Example 7, Step B.
MS: MH+ = 551.
STEP E
N [4 (N BENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY 1 OXO 5 (4 {2-N-MORPHOLYL}ETHYLOXY)PHENYL-PENTYL]-O_-[(3-PYRIDYL)METHYL]-D-VALINOL
The title compound was obtained in 53% yield from the amine of Example 17. Step D and N-benzyloxycarbonyl-L-valine following the coupling method given in Example 7.
Step C.
Rf: 0.17 (silica gel, dichloromethane/ethanol: 95/5).
MS: MH+ = 784.
Analysis calculated for C41H55N50sF2,0~25H2o:
C: 62.46 H: 7.10 N: 8.88 Found: C: 62.41 H: 6.94 N: 8.69 STEP F:
N [4 (N HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-1,3-DIOXO 5 (4-{2-N-MORPHOLYL}ETHYLOXY)PHENYL-PENTYL]-O-[(3-PYRIDYL)METHYL]-D-VALINOL
The title compound was prepared in 25% yield from the alcohol described in Example 17. Step E using the Swern oxidation depicted in Example 7, Step D.
Rf: 0.06 (silica gel, ethyl acetate/acetone: 8/2).
Analysis calculated for C41H53N50sF2'H2~' C: 61.56 H: 6.93 N: 8.76 Found: C: 61.56 H: 6.80 N: 8.26 Alternative procedure;
To a solution of the alcohol of example 17, step E (0.244 g, 0.31 mmol) in freshly distilled dichloromethane (10 ml) was added the Dess-Martin reagent (0.528 g, 1.24 mmol) and tent-butanol (0.06 ml, 0.62 mmol). After stirring for 10 minutes at room temperature, the reaction mixture was quenched with 2-propanol (1 ml) and concentrated in vatuo.
The white solid residue was suspended in dichloromethane (4 ml, then 2 ml for rinsing) and the solid part was removed by filtratioai over a FluorcyporeTM filter. Co~centratioo is vacuo afforded a residue which was purified by flash chromatography (silica gel, dichloromethane/ methanol: 98/2 for removing the by-products of the Dess-Martin reagent, then dichloromethane/ methanol: 96/4 and finally dichloromethane/ methanol: 90/10 to eluate the desired product). The title ketone was obtained as a white solid in 61% yield (0.148 g) Analysis calculated for C41HS3NsCeFZ,0.5H=o:
C: 62.26 H: 6.88 N: 8.86 Found: C: 62.49 H: 5.98 N: 8.97.
N-j4-(N-Henzyloxycarbonyl-L-valyl)amino-2.2-difluoro-1.3-dioxo-5-(4-t2-N-morpholyl~ethyloxy)phenyl-pentyl]-O-((2-pyridyl)methvl]-D-valinol O ~ 0 O C L NH CFZ ~ D
O
N
- ~ PCTlUS94106376 STEP A:
N- 4.-TERT-BUTOXYCARBONYLAMINO-2 2-DIFLUORO-3-HYDROXY-1-OXO-(4 t2 N MORPHOLYL}ETHYLOXY)PHENYL-PENTYL]-O-[(2-PYRIDYL -M_ETHYL]-D-VALINOL
5 The title compound was prepared in 67% yield from the ester of Example 17. Step A and the amine of Example 2, Step a using the procedure described in Example 10, Step D.
Rf: 0.29 (silica gel, dichloromethane/ethyl acetate: 3/7).
STEP H
N_ (4 AMINO 2.2 DIFLUORO-3-HYDROXY-1-OXO-5-(4-HYDROXY
PHENYL PENTYL]-O-[(2-PYRIDYL)METHYL]-D-VALINOL
The title amine was obtained in 96% yield from the derivative of Example 18, Step A following the deprotection method given in Example 7.. Step B.
MS: MH+ = 438.
STEP C:
N [4 (N HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY 1 OXO 5 (4 HENZYLOXY)PHENYL-PENTYL]-O-((2-PYRIDYL)-M_ETHYL]-D-VALINOL
The title derivative was obtained in 47% yield from the amine of Example 18. Step B and N-benzyloxycarbonyl-L-valine using the coupling procedure described in Example 7.
Step C.
Rf: 0.31 (silica gel, dichloromethane/ethyl acetate: 2/8).
MS: MH+ = 671.
STEP D:
N [4 N HENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-H_YDROXY 1 OXO 5 (4-{2-N-MORPHOLYL}ETHYLOXY)PHENYL-PENTYL]-O-[(2-PYRIDYL)METHYL]-D-VALINOL
The title compound is obtained from the phenol derivative of Example 18. Step C using the alkylation procedure described in Example 17, Step C.
STEP E:
N (4 N BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-1.3-_DIOXO 5 (4 {2 N MORPHOLYL~ETHYLOXY)PHENYL-PENTYL]-O-((2-PYRIDYL)METHYL]-D-VALINOL
The title derivative is obtained from the compound given in Example 18. Step D using the oxidation method described in Example 7. Step D.
. - PCT/US94106376 The compounds of the present invention are useful as inhibitors of retroviral proteases required for replication. particularly the HIV-1 and HIV-2 viral proteases, the prevention or treatment of infection by the human immunodeficiency virus (HIV), and the treatment of consequent pathological conditions such as the acquired immunodeficiency syndrome (AIDS) in mammals capable of being infected with HIV virus. Treating AIDS, preventing infection by HIV or treating infection by HIV, is defined as including. but not limited to, treating a wide range of states of HIV infection: AIDS, ARC (AIDS related complex), both symptomatic and asymptomatic, and actual or potential exposure to HIV. For example, the compounds of this invention are useful in preventing infection by HIV after suspected past exposure to HIV by, e.g., blood transfusion, accidental needle stick, or exposure to patient blood during surgery.
The term "stereoisomers" is a general term for all isomers of individuals molecules that differ only in the orientation of their atoms in space. It includes mirror image isomers (enantiomers), geometric (cis/trans) isomers, and isomers of compounds with more than one chiral center that are notmirror images of one another (diastereoisomers).
For amino-acids, the designations L/D, or R/S can be used as described in IUPAC-IUB Joint Commission on Biochemichal Nomenclature , Eur. J. Biochem . 138: 9-37 ( 1984 ) .
For these purposes, the compounds of the present invention may be administered orally, parenterally (including subcutaneous injections. intravenous, intra-muscular, transdermal, intrasternal injection or infusion techniques), by inhalation spray, or rectally, in dosage unit formulations containing convention non-toxic pharma-ceutically acceptable carriers, adjuvants and vehicles.
Thus, in accordance with the present invention there is further provided a method of treating and a pharmaceutical composition for treating HIV infection and AIDS. The treat-ment involves administering to a patient in need of such treatment a pharmaceutical composition comprising a pharma-ceutical carrier and a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt thereof.
These pharmaceutical compositions may be in the form of orally-administrable suspensions or tablets: nasal sprays:
steriel injectable preparations, for example, as sterile injectable aqueous or oleagenous suspensions or suppositories) or they may be administered transdermally.
When administered orally as a suspension, these compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may contain ~~_..rocrystalline cellulose for imparting bulk, alginic acid or sodium alginate as a suspending agent, methylczllulose as a viscosity enhancer, and sweetener/flavoring agents known in the art. As immediate release tablets, these compositions may contain microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and lactose and/or other excipients, binders, extenders. disintegrants, diluents and lubricants known in the art.
When administered by nasal aerosol or inhalation, these compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
PCTIUS94l06376 The injectable solutions or suspensions may be formulated according to known art. using suitable non-toxic. parenterally acceptable diluents or solvents, such as mannitol, 1,3-butanediol, water. Ringer's solution or isotonic sodium chloride solution, or suitable dispersing or wetting and suspending agents, such as sterile, bland.
fixed oils. including synthetic mono- or diglycerides, and fatty acids, including oleic acid.
When rectally administered in the form of suppositories. these compositions may be prepared by mixing the drug with a suitable non-irritating excipient, such as cocoa butter, synthetic glyceride esters or polyethylene glycols, which are solid at ordinary temperatures. but liquidize and/or dissolve in the rectal cavity to release the drug.
Dosage levels of the order of 0.02 to 5.0 or 10.0 grams per day are useful in the treatment or prevention of the above-indicated conditions, with oral doses being higher.
For example, infection by HIV is effectively treated by the administration of from 1 to 50 milligrams of the compound per kilogram of body weight from one to three times per day. It will be understood, however, that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination the severity of the particular condition. and the host undergoing therapy.
The present invention is also directed to combinations of the HIV protease-inhibitory compounds with one or more agents useful in the treatment of AIDS, such as, for example, with known antiviral agents suitable for treating HIV 1 and HIV 2 viral infections. e.g.. AZT, with or without a PNPase inhibitor. or in conjunctive therapy with DDI and a PNPase inhibitor.
The compounds of this invention may be assayed for their HIV-protease inhibition using the following published techniques.
Preparation of Retroviral Enzyme and Assay for Inhibition of the Protease A) preparation of Retroviral Enzyme To prepare the recombinant protease, the HIV protease was expressed via E.Coli by the published work of C. Gu~net, et al.. in European Journal of Pharmacology.
Molecular Pharmacology Section, 172 (1989) 443-451.
H) Assay for Inhibition of Recombinant Viral Protease Inhibition of the reaction of the protease with a peptide substrate [Ser-Gln-Asn-Tyr-pro-Ile-Val-NH2.
Km . 1 mM were in 50 mM Na acetate. 10% glycerol. 5%
ethyleneglycol, pH 5.5. at 37°C for 1 hour. Various concentrations of inhibitor in 10 u1 DMSO were added to 80 u1 of assay solution and the reaction initiated by the addition of 10 u1 (1.6 ug) of recombinant protease. The reaction was quenched with 16 u1 of 4 M
perchloric acid. Products of the reaction were separated by HPLC (VYDAC wide pore 5 cm C-18 reverse phase. acetonitrile gradient. 0.1% trifluoroacetic acid). The extent of inhibition of the reaction was determined from the peak heights of the products. HPLC
of the products. independently synthesized, provided ' PCTlUS94106376 quantitation standards and confirmation of the product composition.
By following the techniques referenced above, as well as by utilization of other known techniques. as well as by comparison with compounds known to be useful for treatment of the above-mentioned disease states, it is believed that adequate material is available to enable one of ordinary skill in the art to practice the invention.
As is true for most classes of compounds found to be useful in the pharmaceutical industry, certain subgeneric groups and certain specific compounds are more preferred such as those exemplified and shown in the following chart.
Within the concepts of this invention, it is to be found that the preferred compounds are those wherein R5 is CH(Y)(Z) and P1 is B. especially when T' is H.
PCTlUS94106376 WO 95!01958 z z V V
v v Q
O
..
N
C
N N ~ x 4l ~ L
_ x ~ O E
o ~ _.
N N
N G '13 d w 1 ~, O4 c~
v 1.~ ~ ~ d x x x x o N
N N ~ G
C
.a z z Oz Oz n _ .a ~-C~r ~ O G
r~
?~ ?~ N N
N
C
x x p o o r, >, ~, t t s E y E
E
E
~!3 ,C ~C
w >. a a a a N
v .r .r r.r I 1 V' Q' d' Q' r-1 "' p, CL
C' a Q O
O O ~ d p O
O O ~ Ql x x x x p p p O
N
N
C ~ ~ y PCTIUS94l06376 z z Oz 0 O Oz u, ., O O O
Cd I~ ~ O
v i r '1 ?~ ?~ N N
N N C O
x x O O
>' t t , t t y E
.,., .~ y, .
N
( N a t f'~1 N V ...
v 'r .r ,.r r r d' ~' a a y O O o 0 w ~ t O ~ i~
.., ri t y ',, >, O x x a ~ .. 0 0 'O N
.'1 C
r 1r I
I
WO 95101958 _ s z s U Q
v1 p O O O
0~r O O O O O
N N
N C C
C O
O ~ .a N ~ x x C O O O
d t S
y p ~ y ~ d E E
N
C ,~ ~p 't7 Cl .".~ ..1 '.v j7 y 4r 1r V
N
v ...
V
V
~1 O
O
x x x x O
04 ~. a, N N N
C C C
O ~ 4J
m Ox ,a N
N
C
41 .C
~ ~
>, ?~ N x x O d o ,.
O i .u x W E ~ '-~ E
,. --r1 N
'C d ...
w 1~1 v '1 ~ 1 01 A1 ~' M
N
0 ~ o L L'~ ~ a d1 ~ ...1 .~i s s ~ ~ o x ~
., o ~ .o C
.-~ ~
N Lr 1~
d a M M
V V
o ~ o C~
O O O O
p O
v r-1 N N .-~ r, C C ?~ ?i °' °' x x s~ 0 0 x O ~ y y o _v t y ~ ..
o O
_B E O O
..-i .-~ t t d a ..., ..~ O E
w ''' 6 I
IG~. a Z ~ Z .-1 cat 1 ?. I ?~
!V N N N
,_, ..r .r C ~ C
1 1 1 Ill 1 07 a~ .G er L7 d a CL
O
o ° ~ a a, o, a, o, O~ ~ aol i~
.,.~ .,~ ...
'' x x o x o O ~ ~ r, N N N N
C G G C
O d 4l 4l .a z oG 0 Q " z 0 z o ° 0 m ~ ,~ _""
N N N N
C G C C
4l N 4l 4J
I x I x I x x Z~ Z~ Z~ I
Z~
..rI ~'' I ~' I ?r C~N y N ~ c~ y N ~
I ~ I ~ I ~ I
er .1 ~ ~
t .0C .0G
a L1~ CL CL
4. 1r ar E E E E
a, .-, ~., O y O u N
.
u~ m y ., ..., x O
O O
O
.- ~ ~, >, ~
N N N
N C C C
C G1 ~ y .D
. ~ CA 02249786 1998-10-26 WO 95!01958 _ 6 3 _ PCT/US94/06376 z zz t~ 0 0 ~ z w m O ~ o 0 D p D
.M..
~i ~i N N N N
C C G
a!
,..., ,~ ~ .Q
x x z ,~ z ,~ . z o z C4 N ~ I ~ L 1 ~'' _ .t~ N JJ N N .~
~
Cl ~ ri 'C 'O
.~1 ~i -rl .~1 !.a 4 Ir 4l d a d ~i CL
s.. ~", ' O
1r I
iJ
.,i ~"~ G1 x a' >' x o x x O .-.i O O
.i N D N N
C ~ D C
.a al CJ
.a .p
This invention relates to novel statone analogs, to the processes and intermediates useful for their preparation and to their use as anti-viral acents.
BACKGROUND OF THE PRESENT INVENTION
Retroviruses are a class of viruses which transport their genetic material as ribonucleic acid rather than as deoxyribonucleic acid. Retroviruses are associated with a wide variety of diseases in man, one of which is AIDS.
Although there have been disclosures of other anti-viral agents useful in the treatment of AIDS, for example see patent applications EP 0 218 688, EP 0 352 000 and Inter-national Publication No. WO 92/122123 dated June 23, 1992, the compounds of the present invention have not been pre-viously disclosed.
DESCRIPTION OF THE PRESENT INVENTION
More specifically this invention relates to novel difluoro statone analogs of Formula 1 x I
_ Z _ and the stereoisomers, hydrates, isosteres and the pharmaceutically acceptable salts thereof wherein P1 is Q or B, wherein B is C alk lene ~T~~ wherein i-s y T is ((0)b-W-R) and T' is [(O)b~-W'-R'] or H, wherein each of W and W' are independently Cl_6 alkylene or nothing and R and R' are each independently -CHZCHO, hydroxy Cl_6 alkyl, C1_6 alkoxy C1_6 alkyl, C1_6 alkyl, Q, (R3)dor R~
provided that W is C2_6 alkylene when W is directly attached to a nitrogen atom in R, provided that W' is CZ_6 alkylene when W' is directly attached to a nitrogen atom in R', provided that W or W' are each independently Cl_6 alkylene when R or R' are each independently an aryl, and provided that H is other than p-hydroxy-benzyl or p-alkoxybenzyl;
Q is 2 w 25 tcs d - ~ o (CH2)d,;
P2 is Cl_6 alkyl, cyclopentyl, hydroxy C1_6 alkyl, phenyl, benzyl or 3-tetrahydrofuryl;
Rl is benzyloxy, C1_6 alkoxy, C1_6 alkyl, phenyl, benzyl, phenethyl, fluorenylmethylenoxy, 2-isoquinolinyl, PDL, I I
CHIN-(CHz)3CH2, ~-(CHZ)Z-N-CH2~H2, NHSOZR4, N(R4)(benzyl), or N(R4)(PDL), wherein PDL is -(CH2)a-2-,3-, or 4-pyridyl, or p-substituted benzyloxy, wherein the substitution is a vitro, OH, amino, C1_6 alkoxy, hydroxy C1_6 alkylene, or halogeno;
R3 is Cl_6 alkenyl, Cl_6 alkoxy, hydroxy Cl_6 alkyl, C1_6 alkyl, or OH;
R4 is H, C1_6 alkyl, phenyl or benzyl;
RS is C7_ls alkyl, C~_ls alkoxy, CH([(CH2)d-O-CH2Jx-Re)2.
branched-chain C1_6 alkylene~ Ve~ or CH(Y)(Z) wherei '~'n Y is C1_ls alkyl, hydroxy C1_is alkyl or (CHz)~ ve~ and Z is (CH2)d-O-CHO, C1_6 alky eve-O-(CH2)d-(O-CH2-CH2)e-O-Ci-s alkyl, (CH2)~ ~ Vy Or (CHy)d-0(C$2)d~R7 provided that d' =2 when R~ is piperazinyl, substituted piperazinyl, piperidyl or morpholinyl, wherein V is OR4 or hydroxy C1_6 alkyl;
R6 is H or C1_3 alkyl;
R7 is piperazinyl, substituted piperazinyl, piperidyl, morpholinyl, pyridyl, pyrazinyl, pyrimidinyl or phenyl, wherein substituted piperazinyl is piperazinyl substituted on one nitrogen atom thereof with CHO, C(0)NHlt4, Cl_4 alkyl or COZR4;
Re is pyrimydyl, pyridyl, pyrazinyl or phenyl;
a is zero, 1, 2 or 3;
b and b' are each independently zero or 1;
d and d' are each independently 1 or 2;
a and e' are each independently zero, 1 or 2; and x is zero or one.
Isosteres of the compounds of Formula I include those wherein (a) the a-amino acid residues of the Pl and P2 substituents are in their unnatural configuration (when there, is a natural configuration) or (b) when the normal peptidic carbamoyl linkage is modified, such as for example, to form 1 -CH2NH- (reduced), -C-N(CH3) (N-methylamide), -COCHy-(keto), -CH(OH)CHZ- (hydroxy), -CH(NHZ)CHZ- (amino), -CHZCHz- (hydrocarbon). Preferably a compound of the invention should not be in an isosteric form. Unless otherwise stated the a-amino acids are preferably in their L-configuration.
A compound of the invention may be in free form, e.g., amphoteric form, or in salt, e.g., acid addition or anionic salt, form. A compound in free form may be converted into a salt form in an art-known manner and vice-versa.
The pharmaceutically acceptable salts of the peptide of Formula I (in the form of water, or oil-soluble or dispersible products) include the conventional non-toxic salts or the quaternary ammonium salts of these peptides, which are formed, e.g., from inorganic or organic acids or bases. Examples of such acid addition salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate. heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethane-sulfonate, lactate, maleate, methanesulfonate, 2-naphthal-enesulfonate. nicotinate, oxalate, pamoate. pectinate, persulfate, 3-phenylpropionate. picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, and undecanoate. Base salts include ammonium salts, alkalimetal salts such as sodium and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases such as dicyclohexylamine salts, N-methyl-D-glucamine, and salts with amino acids such as arginine, lysine, and so forth. Also, the basic nitrogen-containing groups may be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl; and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides and others.
The hydrates of the compounds of Formula I are hydrated compounds having the partial structure 1 ~~
~ '\\~ O
HO OH
and in their end-use application are generally the active forms .
In general, as used herein, the term "alkyl" includes the straight, branched-chain and cyclized manifestations thereof unless otherwise indicated, particularly such moieties as methyl, ethyl, isopropyl, n-butyl, t-butyl, -CHZ-t-butyl, cyclopropyl, n-propyl, pentyl, cyclopentyl, n-hexyl, cyclohexyl and cyclohexylmethyl. The term "aralkyl", when used, includes those aryl moieties attached to an alkylene bridging moiety, preferably methyl or ethyl.
"Aryl" includes both carbocyclic and hetereocyclic moieties of which phenyl, pyridyl, pyrimidinyl, pyazinyl, indolyl, indazolyl, furyl and thienyl are of primary interest; these moieties being inclusive of their position isomers such as, for example, 2-, 3-, or 4-pyridyl, 2- or WO 95/01958 ' PCTlUS94106376 3-furyl and thienyl, 1-, 2-, or 3-indolyl or the 1- and 3-indazolyl, as well as the dihydro and tetrahydro analogs of the furyl and thienyl moieties. Also included within the term "aryl" are such fused carbocyclic moieties as pentalenyl, indenyl, naphthalenyl, azulenyl, heptalenyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthrenyl, anthracenyl, acephenanthrylenyl, aceanthrylenyl, triphenylenyl, pyrenyl, chrysenyl and naphthacenyl. Also included within the term "aryl" are such other heterocyclic radicals as 2- or 3-benzo[b]thienyl, 2- or 3-naphtho[2,3-b]thienyl, 2- or 3-thianthrenyl, 2H-pyran-3-(or 4- or 5-)yl, 1-isobenzo- furanyl, 2H-chromenyl-3-yl, 2- or 3-phenoxathiinyl, 2- or 3-pyrrolyl, 4- or 3-pyrazolyl, 2-pyrazinyl, 2-pyrimidinyl. 3-pyridazinyl, 2-indolizinyl, 1-isoindolyl, 4H-quinolizin-2-yl, 3-isoquinolyl, 2-quinolyl, 1-phthalazinyl, 1,8-naphthyridinyl, 2-quinoxalinyl, 2-quinazolinyl, 3-cinnolinyl, 2-pteridinyl, 4aH-carbazol-2-yl, 2-carbazolyl, B-carbolin-3-yl, 3-phenanthridinyl, 2-acridinyl, 2-perimidinyl, 1-phenazinyl, 3-isothiazolyl, 2-phenothiazinyl, 3-isoxazolyl, 2-phenoxazinyl, 3-isochromanyl, 7-chromanyl, 2-pyrrolin-3-yl, 2-imidazol-idinyl, 2-imidazolin-4-yl, 2-pyrazolidinyl, 3-pyrazolin-3-yl, 2-piperidyl, 2-piperazinyl, 1-indolinyl, 1-isoindolinyl, 3-morpholinyl, benzo[b]isoquinolinyl and benzo[b]furanyl, including the position isomers thereof except that the heterocyclic moieties cannot be attached directly through their nitrogen one, two or three substituents independently selected from C1_6 alkyl, haloalkyl, alkoxy, thioalkoxy, aminoalkylamino, dialkylamino, hydroxy, halo, mercapto, nitro, carboxaldehide, carboxy, carboalkoxy and carboxamide.
Likewise the term "alkylene" includes straight or branched-chain moieties. Some examples of branched-chain alkylene moieties are ethylethylene, 2-methyltrimethylene, 2,2-dimethyltrimethylene, and so on. For example, C3 alkylene can mean _ 7 _ . -CH2-CH2-CH2- or -C- or -CH2-CH- Or -CH-CHZ- .
I I I
All (C1_i5) moieties are preferably (C1_6) moieties and all (C1_6) moieties such as C1_6 alkyl, C1_6 allenyl, Cl_6 alkoxy, and hydroxy C1_6 alkyl, are more preferably Cl_3 moieties (containing 1-3 carbon atoms instead of 1-6 carbon atoms ) .
The fluorenylmethyloxy moiety is that moiety generally called by its abbreviation FMOC, and is the fluorenyl moiety bearing -CH20- attached to the 9-position of the fluoroenyl moiety. Other terms defined herein are piperazinyl -N~ or substituted piperazinyl -N~_ the substitution (*) occurring only at one nitrogen molecule which is not attached to the remainder of the molecule (attachment via a nitrogen atom). The substituents are one of CHO, C(O)NHR4, C1_4 alkyl or C02R4.
Piperidyl and morpholinyl both bind to the rest of the -N -N
molecule via their respective nitrogen atoms while pyrimidinyl, pyridyl and pyrazinyl bind to the rest N~ N N
~N
of the molecule anywhere except their respective nitrogen atoms.
More specifically, in the instance wherein PZ is either C1_6 alkyl or hydroxy C1_6 alkyl, such moieties as -C(CH3)3, _ g _ -CH(CH3)2, -CH(CH3)(C2H5), -C(OH)(CH3)2 and -CH(OH)CH3 are preferred. The "hydroxy C1_6 alkyl" moiety is illustrated in one example by -CH2-OH, the "C1_6 alkoxy C1_6 alkyl" moiety, is illustrated in one example by -CH2-OCH3, (although in each instance the C1_6 alkylene may be straight or branched and the hydroxy radical. is not limited to the terminal carbon atom of the alkyl moiety). The ~1 ~(R3)d moiety shows a phenyl moiety which may be substituted with one or two of the R3 moieties,(said moieties being the same or different ) .
As it is often quite advantageous to have what is termed an amino protecting group (Pg), the scope of those compounds of Formula I, includes those Rl moieties which, together with their adjacent carbonyl moiety form such groups as acetyl (Ac), succinyl (Suc), benzoyl (Br), t-butyloxycarbonyl (Hoc), benzyloxycarbonyl (CHZ), tosyl (Ts), dansyl (DNS), isovaleryl (Iva), methoxysuccinyl (MeOSuc), 1-adamantanesul hon 1 AdSO
P y ( 2), 1-adamantaneacetyl (AdAc), phenylacetyl, t-butylacetyl (Tba), bis[(1-naphthyl)methyl]acetyl (BNMA) and Rz wherein Rz is an aryl group as previously described suitably substituted by 1 to 3 members selected independently from the group consisting of fluoro, chloro, bromo, iodo, trifluoromethyl, hydroxy, alkyl containing from 1 to 6 carbons, alkoxy containing from 1 to 6 carbons, carboxy, alkylcarbonylamino wherein the alkyl group contains 1 to 6 carbons. 5-tetzazolo, and acylsulfonamido (i.e., acylaminosulfonyl and sulfonylamino-carbonyl) containing from 1 to 15 carbons, provided that when the acylsulfonamido contains an aryl. The aryl may be further substituted by a member selected from fluoro, chloro, bromo, iodo and nitro.
In those instances wherein there is an Rz moiety, it is preferred that Rz represent acylsulfonamido, particularly those wherein the acylsulfonamido contains an aryl moiety _g_ (preferably phenyl) substituted by a halogen. The preferred Rz moieties being 4-[(4-chlorophenyl)sulfonylaminocarbon-yl)phenylcarbonyl, 4-[(4-bromophenyl)sulfonylamino-carbonyl]-phenylcarbonyl and 4-[phenylsulfonylamino carbonyl]-phenylcarbonyl (said moieties being abbreviated as 4-C1-0-SAC-Bz, 4-Br-0-SAC-Bz and 0-SAC-Bz, respectively).
Among the classes of amino protecting groups contemplated are: (1) acyl type protecting groups such as formyl, trifluoroacetyl, phthalyl, p-toluenesulfonyl (tosyl), benzenesulfonyl, nitrophenylsulfenyl, trityl-sulfenyl, O-nitrophenoxyacetyl, and a-chlorobutyryl; (2) aromatic urethane type protecting groups such as benzyloxy-carbonyl and substituted benzyloxycarbonyls such as p-chlorobenzyloxycarbonyl, p-methoxybenzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-bromobenzyloxycarbonyl, 1-(p-biphenylyl)-1-methylethoxycarbonyl, a,a-dimethyl-3,5-dimethoxybenzyloxycarbonyl, and benz-hydryloxycarbonyl; C3) aliphatic urethane protecting groups such as tert-butyloxycarbonyl (Boc), diisopropylmethoxy-carbonyl, isopropyloxycarbonyl, ethoxycarbonyl, and allyl-oxycarbonyl; (4) cycloalkyl urethane type protecting groups such as cyclopentyloxycarbonyl, adamantyloxycarbonyl, and cyclohexyloxycarbonyl; (5) thio urethane type protecting groups such as phenylthiocarbonyl; (6) alkyl type protecting groups such as triphenylmethyl (trityl) and benzyl (Hzl); (7) trialkylsilane protecting groups such as trimethylsilane if compatible. The preferred a-amino protecting groups are tert-butyloxycarbonyl (Boc) or benzyloxycarbonyl (CBZ). The use of Hoc as an a-amino protecting group for amino acids is described by Hodansky et al. in "The Practice of Peptide Synthesis", Springer-Verlag, Berlin (1984), p. 20.
In general the compounds of this invention may be prepared using standard chemical reactions analogously known in the art.
In the instance wherein it is desired to prepare compounds of the formula R CNHC CNHCHC-CF -C-NR R
O O O O
x II
wherein R1, P2, P1, RS and R6 are as previously defined, the process outlined by the following reaction scheme may advantageously be utilized.
WO 95/01958 PCTlUS94/06376 REACTION SCCBEMEME A
(a) PgNHCH-CHO Zn PgNHCA-~HCF2~OEt BrCF2C02Et 0g II0 (3) (4) (b) 1f I1 (c) I1 H2N-CH- iH-CF2 -iINR5R6 ~E---~ PgNH-CH-C i CF2-il-NRSR6 OH O
(6) (5) (6) (d)/
I s _ I i ~i R'1~-NH-CH- II NH CH- ~8-CF2-~-NR5R6 R'l~-NH-CH- C'IH-CF2-~-NRSR6 'Ii O O OH O O
(7) ( f) (8) (f) P
I
R1~-NH-CH- ~-NH-CH-~- CFZ-~NRSR6 Rl~l NH CH- ~-CFZ-~RSR6 IO O O IOI O O IIO
IIA IIB
30 wherein R'1 represents optional amino protecting groups, as herein above defined, and the R1, pi~ P2~ R5 and R6 moieties are as previously defined.
In effecting reaction scheme A, the process is 35 initiated by conducting a Reformatsky-type reaction wherein an aldehyde of Formula (3) is subjected to a condensation reaction with an ester of bromodifluoroacetic acid, preferably the ethyl ester in the presence of zinc and in an anhydrous aprotic solvent, e.g., tetrahydrofuran, ether, dimethoxyethane and the like under a nitrogen or argon inert atmosphere. The reaction is gently heated to about 60°C for about 1-l2 hours or ultrasonicated to produce compounds (4). Step (b) to obtain compounds (S) may be effected directly or undirectly. In one instance, the esters of Formula (4) are de-esterified using a strong base (LiOH, KOH, NaOH and the like) in the presence of water using a partially water miscible solvent (such as tetrahydrofuran, dimethoxyethane, dioxane) at about room temperature. The so-obtained de-esterified compound is then aminated with the appropriate R5R6-substituted amine using a peptide-like coupling procedure - i.e., using a mixed anhydride method using DCC and hydroxybenzotriazole at room temperature in solvents such as CH2C12, tetrahydrofuran or dimethylformamide. Alternatively the esters (4) may be directly subjected to a reaction with the appropriate RSR6-substituted amine without or with a solvent (tetrahydro-furan) at about 80°C. Following the preparation of compounds (5), the protecting groups Pg may readily be removed by standard procedures, e.g., hydrogenation or acid base hydrolysis. Compounds (6) are subjected to a peptide coupling procedure with an appropriately protected acid of the formulae R1CONH(PZ)COOH or R1C02H, using the herein-described procedures (or by any other coupling procedure currently available) to produce compounds (7) and (8), respectively. At this point, if desired, the amide formed with R1 may be optionally deprotected, or if desired, the amide may be replaced with another amide within the scope of Rl. The alcohols of (7) and (8) are then oxidized to the corresponding ketones and, if desired, the compounds may be converted to their pharmaceutically acceptable salts.
The oxidation may be effected via the well-known Swern oxidation procedure, or with 1,1,1-triacetoxy-2,1-benzoxiodol (Dess-Martin reagent). The coupling proceduzes are effected according to standard procedures well known in the art.
"Swern oxidation" is well known in the art [see Synthesis, (1981), 165]. For example, it may be effected by reacting about 2 to 20 equivalents of dimethylsulfoxide (DMSO) with about 1 to 10 equivalents of trifluoromethyl-acetic anhydride [(CF3C0)ZO] or oxalyl chloride [(COC1)Z], said reactants being dissolved in an inert solvent, e.g., methylene chloride (CHZC12), said reaction being under an inert atmosphere (e. g., nitrogen or equivalently function-ing gas) under anhydrous conditions at temperatures of about -70°C to -30°C to form an in situ sulfonium adduct to which is added about 1 equivalent of the appropriate alcohols. i.e., compounds (7) and (8). Preferably, the alcohols are dissolved in an inert solvent, e.g., CH2Cly, tetrahydrofuran, or minimum amounts of DMSO, and the reaction mixture is allowed to warm to about -50°C or -20°C
(for about 20-60 minutes) and then the reaction is completed by adding about 3 to 30 equivalents of a tertiary amine, e.g., triethylamine, diisopropylethylamine, N-methyl morpholine. etc.
Another alternative process for converting the alcohols to the desired ketones is an oxidation reaction which is called the "Dess Martin oxidation" reaction and employs periodane (i.e.. 1,1,1-triacetoxy-2,1-benzoxiodol), [see Dess Martin, J. Ora. Chem., 48, 4155, (1983)]. This oxidation is effected by contacting about 1 equivalent of the alcohols with 1 to 5 equivalents of periodane (preferably 1.5 equivalents), said reagent being in suspen-sion in an inert solvent (e. g., methylene chloride) under an inert atmosphere (preferably nitrogen) under anhydrous conditions at 0°C to 50°C (preferably room temperature) and allowing the reactants to interact for about 1 to 48 hours.
Optional deprotection of the amine protecting groups may be effected as desired after the ketones have been isolated.
In general, the modified Jones oxidation proceduze may conveniently be effected by reacting the alcohols with pyridinium dichromate by contacting the reactants together in a water-trapping molecular sieve powder, e.g., a grounded 3 Angstrom molecular sieve), wherein said contact is in.the presence of glacial acetic acid at about 0°C to 50°C, preferably at room temperature followed by isolation and then optionally removing amine protecting groups.
Alternatively, 1 to 5 equivalents of a chromic anhydride-pyridine complex (i.e., a Sarett reagent prepared insitu) [see Fieser and Fieser "Reagents for Organic Synthesis" Vol. 1, pp. 145 and Sarett, et al., J.A.C.S. _25.
422, (1953)) said complex being prepared insitu in an inert solvent (e. g., CHyCl2) in an inert atmosphere under anhy-drous conditions at 0°C to 50°C to which complex is added 1 equivalent of the alcohols allowing the reactants to inter-act for about 1 to 15 hours, followed by isolation and optionally removing amine protecting groups.
In certain instances, it may be prefereably to introduce the appropriate P1 group after the R5R6 group is attached. In those instances. P1 may comprise a protecting group until after step (a). For example, Pl at compound (3) may be 4-(benzyloxy)benzyl which can be hydrogenated to the phenol, preferably by catalytic hydrogenation after steps (a) or (b). Introduction of the remainder of the appropriate Pl moiety can be accomplished after steps (b), (d) or (e) by alkylation under basic conditions such as cesium or potassium carbonate with X-C1_6 alkylene R wherein X is an appropriate leaving group such as halogeno or triflate, in the presence of a solvent such as dioxane, tetrahydro-furan or dimethylformamide.
For the preparation of the necessary aldehydes of (3), and the preparation of the acids which are to be coupled with the amines of Formula (6), alternative alkylation procedures are utilized depending upon whether the P1 and/or the P2 moieties are or are not residues of natural amino acids. The preparation of these intermediates wherein the P1 or P2 moieties are residues of natural amino acids (or minor modifications thereof, e.g., P1 or PZ being a methyl ether of tyrosine), the compounds are either known or are prepared by processes and techniques well known in the art.
To prepare the intermediates of the formula p3 PgHN-CHC02R9 (9) wherein Pg is an amino protecting group, P3 is either a P'1 or P'2 moiety with P'1 and P'2 being as defined for P1 and PZ respectively, except that they are other than residues of naturally occuring amino acids, and the R9 moiety is an alkyl radical, preferably methyl when P3 is P'l, and ethyl when P3 is P'2, alternative methods are available.
To prepare the intermediates of formulae p~l P' P9~-CHCHO
PgHN-CHCOOH
(10H) (10A) the following reaction scheme may be utilized REACTION SCHEME B
p3 PgNHCH2CO2R9 ( 1 ) Hase P9~CHCOZR9 (11) (2) P3X
(12) wherein P3 is as previously defined and X is a leaving group, preferably halo or triflate, R9 is methyl when P3 is P'1. and ethyl when P3 is P'Z.
In essence, the preparation of compounds (12) utilizes the Krapcho method [Tetrahedron Letters, 26. 2205 (1976)]
for alkylation wherein compounds (11) are treated with a base, e.g., LDA, (lithium diisopropylamide), followed by reaction with the desired P3X in the presence of TMEDA
(i.e. tetramethylethylenediamine) in a solvent (tetrahydro-furan) with or without AMPA (i.e. hepamethylphosphonamide) according to the standard Krapcho conditions. Following alkylation the compounds are then subjected to a reduction using diisobutyl aluminum hydride (Dibal) in a mixture of solvents, e.g., ether, toluene, hexane, tetrahydrofuran at about -78°C for about 1 hour. Following the preparation of the aldehydes of Fozmula (10B), the compounds are subjected to the processes of Reaction Scheme A.
Alternatively, the compounds of (12) may be prepared by a Malonate/Curtius type sequence of reactions, [see Yamada, et al., J. Amer. Chem. Soc., (1972) 94, 6203] as illustrated by the following reaction scheme REACTION SCHEME C p ~3 t-Bu02CCHZC02R9 t-BuOZCCH2C02R9 ( 1 ) Base (11) (2) P3X (13) Removal of t-Bu (14) Curtius-type rearrangement (12) wherein t-Hu is t-butyl, although other selectively removal acid protecting groups may be utilized, and P3X is as previously defined. This reaction involves the alkylation of the malonate ester (11) followed by selective removal of the t-butyl protecting grou to p produce compounds (14).
These compounds are then transformed to (12) using the Curtius type rearrangement which entails their conversion to the protected amine via the intermediately formed azides, isocyanates, amines which are then protected with standard amino protecting groups, preferentially being protected in situ.
In the instance wherein P3 represents a P'1 moiety, the ester is transformed to the desired aldehydes of Formula (3) using standard Dibal reduction techniques, particularly in this situation (wherein Pl is not a residue of a natural amino acid). Alternatively, (as is preferred when Pl is a residue of a natural amino acid) the ester is de-esterified to its corresponding acid, converted to its corresponding hydroxamate and the hydroxamate upon treatment with lithium aluminum hydride is converted to its aldehyde. In the instance wherein P3 represents a P'2 moiety, the ethyl ester of compounds (12) are removed and the resulting compounds are ready for coupling as outlined in Reaction Scheme A.
Having generically described the methods for the preparation of the compounds of this invention, the following specific examples illustrate the chemistry and techniques by which the synthesis may be effected.
WO 95/01958 ~ PCT/US94/06376 O-(3-Pyridylmethyl)-(D)-valinol H2N ( D ) O !~~
N
STEP A:
N-TRITYL-(D)-VALINOL
A solution of (D)-Valinol (4.95 g, 48.06 mmol), triethylamine (7.4 ml, 52.87 mmol) and trityl chloride (14.74 g, 52.87 mmol) in dry dichloromethane (75 ml) was stirred for 17 hours at room temperature. The organic solution was washed twice with water (2 x 75 ml) and dried over sodium sulfate. After filtration and concentration in vacuo, the resulting oil (22.4 g) was purified by flash chromatography (silica gel, ethyl acetate/petroleum ether:
15/85) to give the title compound in 81% yield (13.5 g, hard oil).
Rf.: 0.45 (ethyl acetate/petroleum ether: 15/85).
STEP B:
N-TRITYL-O-(3-PYRIDYLMETHYL)-(D)-VALINOL
Under nitrogen, to a suspension of sodium hydride (1.3 g, 30 mmol, 55% dispersion in oil, previously washed twice with pentane) in dry dimethylformamide (3 ml) was added under stirring a solution of N-trityl-(D)-valinol (3.45 g, 10 mmol) in dimethylformamide (23 ml). To the reaction mixture kept for 30 minutes at room temperature and then cooled down to 0°C, was added as a solid tetrabutylammonium iodide (0.37 g, 1 mmol). After addition in portions over 5 minutes of solid 3-picolyl chloride hydrochloride (1.81 g, 11 mmol), the cooling bath was removed and the mixture was stirred for 17 hours at room temperature. The reaction mixture, previously cooled in an ice bath, was hydrolyzed with water (100 ml) and extracted twice with ethyl acetate (2 X 100 ml). The organic phases WO 95!01958 PCT/US94l06376 were washed until neutral with water (2 X 50 ml) and the combined organic layers were dried over sodium sulfate.
Filtration and concentration invacuo yielded a yellow oil (4.8 g) which was purified by flash chromatography (silica gel, dichloromethane/ethyl acetate: 9/1, Rf.: 0.42). The title compound was obtained as an oil (3.4 g, 78% yield).
STEP C:
O-(3-PYRIDYLMETHYL)-(D)-VALINOL
A solution of N-trityl-0-(3-pyridyl)methyl-(D)-valinol (3.63 g, 8.3 mmol) in formic acid (30 ml) was kept for 5.5 hours at room temperature. After removal of the formic acid invacuo, the residue was dissolved in water (100 ml) and extracted twice with ethyl acetate (100 ml, 50 ml) in order to remove trityl alcohol. The aqueous phase was basified with a saturated solution of sodium carbonate (50 ml) and 4N sodium hydroxyde (3 ml) and extracted with ethyl acetate (4 X 50 ml). After washing with brine until neutral (2 X 50 ml), the combined organic layers were dried over sodium sulfate. After usual work-up, the resulting amine was used without further purification (1.32 g, 82%
yield).
Rf.: 0.12 (silica gel, dichloromethane/methanol: 8/2).
O-(2-Pyridylmethyl)-(D)-valinol HZN (D) N O
STEP A:
N-TRITYL-O-(2-PYRIDYLMETHYL)-(D)-VALINOL
The title compound was prepared in 81% yield from the compound given in Example 1, Step A using the alkylation WO 95101958 PCT/US94l06376 procedure described in Example 1 Step B, with 2-picolyl chloride. hydrochloride instead of the 3-derivative.
Rf.: 5.1 (silica gel, dichloromethane/ethyl acetate: 9/1).
STEP B:
O-(2-PYRIDYLMETHYL)-(D)-VALINOL
The title amine was obtained in 80% yield from the compound of Example 2, Step A using the formic acid deprotection described in Example 1, Step C.
O-(2-(2-Methoxyethoxy)-1-ethyl]-(D)-valinol H2N (D
O ~~OCH3 STEP A:
N-~ITYL-0-(2-(2-METHOXYETHOXY)-1-ETHYL]-(D)-VALINOL
The title derivative was prepared in 86% yield from the compound of Example 1, Step A using 2-(2-methoxy-ethoxy)ethyl-1-bromide as reagent in the alkylation procedure described in Example 1, Step B.
Rf.: 0.74 (silica gel, acetone/petroleum ether: 2/8).
STEP H:
O-[2-(2-METHOXYETHOXY)-1-ETHYL]-(D)-VALINOL
A solution of N-Trityl-O-[2-(2-methoxyethoxy)-1-ethyl]-(D)-valinol 1.0 ( g, 2.28 mmol) in dry ether saturated with HC1 gar (20 ml) was kept for 2.5 hours at room temperature.
After concentration inUacuo, the resulting solid (1.16 g) was purified by flash chromatography (silica gel, dichloromethane first to elute trityl alcohol and then dichloromethane/diethylamine: 95/5, Rf.: 0.20) to give the title free amine as a colorless oil (0.46 g, quantitative).
O-Henzyl-(D)-valinol H2N (D) ~O I \
STEP A:
N-TERT-BUTOXYCARBONYL-(D)-VALINOL
A solution of (D)-valinol (5.1 g, 49.4 mmol) and di-tert-butyldicarbonate (10.9 g, 50 mmol) in methanol (60 ml) was stirred for 17 hours at room temperature. After concentration invacuo, the residue was purified by flash chromatography (silica gel, ethyl acetate/petroleum ether:
3/7, Rf.: 0.37) to give the title compound in quantitative yield (10.07 g, colorless oil).
MS: MH+ = 204.
STEP H:
N- TERT-BUTOXYCARHONYL-O-HENZYL-(D)-VALINOL
To a solution of N-tent-butoxycarbonyl-(D)-valinol (10 g, 49.3 mmol) and benzylbromide (5.86 ml, 49.3 mmol) in anhydrous DMF (50 ml) was added at -5°C and under nitrogen, potassium-tent-butoxide (11.06 g, 98.6 mmol) as a solid, portionwise, and in such a way that the internal temperature does not exceed +5°C. The reaction mixture was stirred for 2 hours at 0°C, diluted with ethyl acetate (2 X
300 ml), extracted with a 1N solution of potassium hydrogenosulfate (50 ml) and water (250 ml) and washed twice with water (2 X 200 ml). After drying of the organic phase on sodium sulfate, filtration and concentration in vacuo, the resulting oil was purified by flash chromatography (silica gel, ethyl acetate/petroleum ether:
1/9, Rf.: 0.42) to give the title compound as a colorless oil (9.95 g, 69% yield).
MS: MH+ = 294.
STEP C:
O-HENZYL-(D)-VALINOL
A solution of N-tent-Hutoxycarbonyl-D-benzyl-(D)-valinol (9.95 g. 34 mmol) in formic acid (50 ml) Was stirred for 4 hours at room temperature. After removal of the formic acid invacuo, the sticky residue was dissolved in water (100 ml), neutralized with a saturated solution of sodium bicarbonate (100 ml) and the organic material extracted twice with ethyl acetate (2 X 200 ml). The organic phases were washed until neutral with water (2 X 100 ml) and the combined organic layers were dried on sodium sulfate.
Filtration and evaporation of the solvent invacuo afforded the title amine as a slightly yellowish oil (5.20 g, 79%).
MS : MH'* = 19 4 .
O-2-Methogyethoxymethyl-(D)-valinol HZN ( D ) O /~O ~OCH3 STEP A:
N-TERT-BUTOXYCARHONYL-O-(2-METHOXYETFiOXYMET$YL)-(D)-VALINOL
To a solution of N-tent-butoxycarbonyl-(D)-valinol (2.03 g, 10 mmol) in anhydrous dimethylformamide (20 ml) cooled under nitrogen at -10°C, was added 1-methoxy-ethoxymethyl chloride (1.37 ml, 12 mmol) and then in two portions potassium tent-butoxide (1.35 g, 12 mmol, rinced with 10 ml of dimethylformamide). The cooling bath being removed, the reaction mixture was stirred for 3.5 hours at room temperature. After hydrolysis with water (~ 5 ml), the ~jor part of the solvent was removed with a high vacuum pomp. The residue was taken up in slightly acidic water WO 95!01958 PCTIUS94I06376 (potassium hydrogenosulfate), extracted twice with ethyl acetate (2 X 100 ml) and the organic phases washed with water until neutral (2 X 50 ml). Usual work-up afforded an oil (2.8 g) which was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate: 7/3; Rf.: 0.43) to give the title ether in 37% yield.
MS: MH+ = 292, MNH4+ = 309.
STEP B:
0-(2-METHOXYETHOXYMETHYL)-(D)-VALINOL
The title amine was obtained in 77% yield from the compound of Example 5. Step A using the procedure described in Example 4, Step C, the washings being performed with brine to avoid the loss of this amine in the aqueous phase.
ERAN~LE 6 4-tert-Butoxycarbonylamino-2.2-difluoro-3-hydroxy-5(4-benzyloxy)phenyl pentanoic acid, ethyl ester BOC HN
O
STEP A:
N-TERT HUTOXYCARHONYL-L-O-BENZYLTYROSINE-N.O-DIMETHYL-HYDROXAMATE
A mixture of N-tert-butoxycarbonyl-L-O-benzyltyrosine (37~1 g, 100 mmol), dicyclohexylcarbodiimide (20.6 g, 100 mmol) and N-hydroxybenzotriazole, hydrate (15.3 g, 100 mmol) in anhydrous dichloromethane (350 ml) was stirred at 0°C for 10 minutes. To that mixture were added, at 0°C, N,0-dimethylhydroxylamine hydrochloride (9.75 g, 100 mmol) and N-methylmorphiline (10.1 g, 100 mmol). The temperature was allowed to raise to room temperature while the stirring was continued for 15 hours. The white precipitate was filtered off, rinsed with dichloromethane. The filtrate was evaporated to dryness. The crude mixture was purified by flash chromatography (silica gel, ethyl acetate/cyclohexane: 2/8). 34.3 g of the expected hydroxamate were isolated as a white solid (83% yield).
Rf: 0.36 (ethyl acetate/cyclohexane: 1/1).
STEP H:
N-TfRT-BUTOXYCARBONYL-L-O-BENZYLTYROSINAL
To a solution of N-tert-butoxycarbonyl-L-O-benzyl-tyrosine, N,O-dimethylhydroxamate (18.2 g, 44 mmol) in a 4:1 mixture of anhydrous dietylether and dimethoxyethane (300 ml) was added at 0°C, portionwise, lithium aluminium hydride (1.82 g, 48 mmol). Stirring was continued for 1.5 hours at 0°C. Hydrolysis was done by dropwise addition of a 1 M solution of potassium hydrogeno sulfate (55 ml).
The aqueous phase was decanted and reextracted with ethyl acetate (2 X 200 ml). The combined organic layers were washed with 3 N hydrochloric acid (250 ml) and brine (200 ml). The organic phase was dried over anhydrous magnesium sulfate. Filtration and removal of the solvent in vacuo yielded the expected aldehyde as a white solid.
Recrystallization from ethyl acetate/pentane afforded 13 g of crystalline N-rert-butoxycarbonyl-L-O-benzyltyrosinal.
Rf: 0.51 (silica gel, ethyl acetate/cyclohexane: 1/1).
WO 95/01958 PCTlUS94106376 STEP C:
4-TERT-BUTOXYCARBONYLAMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYLPENTANOIC ACID, ETHYL ESTER
To a suspension of zinc (1.95 g, 30 matg) in anhydrous tetrahydrofuran (5 ml) was added, under nitrogen, a mixture of ethyl bromodifluoroacetate (6.09 g, 30 mmol) and N-fert-butoxycarbonyl-L-O-benzyltyrosinal (3.55 g, 10 mmol) in anhydrous tetrahydrofuran (25 ml). After addition of 2 ml of that solution, the suspension was heated at reflux with stirring. Gentle reflux was maintained by slow addition (dropwise) of the rest of the solution of aldehyde and bromoester. The mixture was stirred for 4 additional hours at room temperature after completion of the addition.
Hydrolysis was performed by addition of 1 M sulfuric acid (20 ml) and the mixture was extracted with ethyl acetate (3 X 50 ml). The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate.
Filtration and removal of the solvent in vacuo afforded an oil that was purified by flash chromatography (silica gel.
gradient of ethyl acetate/cyclohexane: 1/9 to 3/7). 1.8 g of the title compound were isolated (38% yield).
Rf: 0.55 and 0.5 (ethyl acetate/cyclohexane: 1/1).
Analysis calculated for Cy5H3iNOsF2:
C: 62.62 H: 6.52 N: 2.92 Found: C: 62.81 H: 6.67 N: 3.05 WO 95!01958 PCT/US94I06376 N-[4-(N-Benzyloxycarbonyl-1-valyl)amino-2,2-difluoro-1,3-dioxo-5-(4-benzyloxy)phenyl-pentyl]-O-((3-pyridyl)methyl] -D-valinol O
O O NH L
NH
CF2~~~ D
° ~° °J
O O N
STEP A:
N-I4-TERT-BUTOXYCARHONYLAMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-O-[(3-PYRIDYL)METHYL]-D-VALINOL
A solution of 1.14 g (2.38 mmol) of the ester of Example 6, Step C and 1.32 g (6.8 mmol) of the amine of Example 1, Step C in dry tetrahydrofuran (1.5 ml) was heated for 2 days under reflux. After cooling, the reaction mixture was diluted with ethyl acetate (5 ml), pentane (10 ml) and the precipitate thus obtained was filtered off and rinsed with pentane. The residue (1.25 g) was recrystallized from a mixture of dichloromethane/drops of methanol/pentane and the title compound was obtained as a white solid (0.8 g, 54% yield).
Rf: 0.5 (silica gel, ethyl acetate).
MS: MH+ = 628.
WO 95/01958 PCTlUS94106376 _ 28 _ STEP B:
N-f4-AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)-PHENYL-PENTYL]-O-[(3-PYRIDYL)METHYL]-D-VALINOL
The title compound was prepared in 91% yield from the carbamate of Example 7. Step A following the deprotection procedure described in Example 4, Step C using sodium carbonate instead of sodium bicarbonate.
MS: MH+ = 528.
STEP C
N-[4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-HENZYLOXY)PHENYL-PENTYL]-O-[(3-PYRIDYL)-METHYL]-D-VALINOL
To a solution of N-benzyloxycarbonyl-L-valine (0.101 g, 0.4 mmol) in anhydrous dimethylformamide (2 ml) were added under nitrogen N-hydroxybenzotriazole, hydrate (0.115 g.
0.4 mmol) and 1-ethyl-3(3-dimethylaminopropyl)carbodiimide, hydrochloride (0.085 g~ 0.44 mmol) with the help of 1 ml of dimethylformamide. To the reaction mixture stirred for 0.5 hour at room temperature was added the amine of Example 7, Step H (0.211 g, 0.4 mmol) with 1 ml of dimethylformamide. The stirring was continued for 15 hours and the reaction mixture was diluted with ethyl acetate (80 ml) and washed twice with water (2 X 80 ml), the aqueous phases being extracted a second time with ethyl acetate (80 ml). The combined organic layers were dried over sodium sulfate. After filtration and concentration in vacuo, the solid residue (0.360 g) was purified by flash chromatography (silica gel, dichloromethane/ethanol: 95/5.
Rf: 0.23) to give the title compound in 85% yield (0.260 g).
MS: MH+ = 761.
Analysis calculated for C42H5oNa0~FZ:
C: 66.38 H: 6.62 N: 7.36 Found: C: 66.68 H: 6.68 N: 7.40 WO 95/01958 PCTlUS94I06376 STEP D:
N-[4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-1,3-DIOXO-5-(4-BENZYLOXY)PHENYL-PENTYL)-O-[(3-PYRIDYL)METHYL) -f1-T7T T T1T~1T
To a solution of oxalyl chloride (0.23 ml, 2.63 mmol) in anhydrous dichloromethane (1 ml) at - 60°C was added under nitrogen, freshly distilled dimethylsulfoxide (0.42 ml, 5.26 mmol) in 2 ml of dichloromethane. After minutes of stirring at - 60°C, the temperature was 10 allowed to rise to -20°C. Immediately was added dropwise to that mixture a solution of the alcohol of Example 7, Step C
(0.2 g, 0.263 mmol) in dichloromethane (7 ml) and dimethylsulfoxide (1 ml). After stirring for 3.5 hours at - 20°C, the reaction mixture was cooled down to - 78°C, hydrolyzed with diisopropyl ethyl amine (1.24 ml, 8.94 mmol) and kept for 5 more minutes at - 78°C. The cooling bath was removed and the mixture was allowed to return to~room temperature. After dilution with dichloromethane (25 ml), the mixture was washed twice with water (2 X 25 ml), the aqueous layers being extracted again with dichloromethane (25 ml). The combined organic phases were dried on sodium sulfate. After filtration and concentration in vacuo. the residue (0.240 g) was purified by flash chromatography (silica gel. dichloromethane/ethyl acetate: 30/70 followed by neutral alumina act. III, tetrahydrofuran/dichloromethane/water: 10/20/0.1, in order to remove residual starting material) to give the title ketone in 37% yield (0.075 g).
Rf: 0.23 (silica gel, dichloromethane/ethyl acetate:
30/70 ) .
MS: MH* = 759.
Analysis calculated for C42H48N407F2, 0.5 H20:
C: 65.70 H: 6.43 N: 7.30 Found: C: 65.49 H: 6.34 N: 7.14 4-(N-Benzyloxycarbonyl-L-valyl)amino-2,2-difluoro-3-oxo-5-(4-benzyloxy)phenyl-N(1-isopropyl-2-methyl-propane)-pentanamide O
O
a O NH- CF2~~~
L
O
STEP A:
4-TERT-BUTOXYCARBONYLAMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
A solution of the ester of Example 6. Step C (0.50 g, 1.04 mmol) in 0.77 ml of 3-amino-2,4-dimethyl pentane (5.2 mmol) was heated at 75°C for 90 hours. After dilution with ethyl acetate (15 ml), extraction with 1N potassium hydrogeno sulfate (15 ml) and washing with water (2 X
15 ml) - the aqueous phases being extracted again with ethyl acetate (15 ml) - the combined organic layers were dried over sodium sulfate. Filtration and concentration of the solvent afforded a residue (0.54 g) which was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate: 75/25, Rf: 0.34) to give the title compound in 42%
yield (0.24 g).
MS: MH+ = 549.
STEP B
4-AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY1PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
The title amine was obtained in 92% yield from the compound of Example 8, Step A, using the deprotection method described in Example 7, Step B.
MS: MH+ = 449.
WO 95/01958 PCT/US94l06376 STEP C:
4-(N-HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
To a stirred solution of N-benzyloxycarbonyl-L-valyl anhydride (0.181 g, 0.37 mmol) and the amine described in Example 8, Step B (0.140 g, 0.31 mmol) in anhydrous dimethylformamide (3 ml) was added under nitrogen 0.041 ml of N-methylmorpholine (0.37 mmol). The reaction mixture was kept overnight at room temperature, diluted with water (15 ml) and extracted with ethyl acetate (2 X 15 ml), the organic layers being washed a second time with water (15 ml) and then dried over sodim sulfate. After filtration, removal of the solvent in vacuo and purification of the residue (0.200 g) by flash chromatography (silica gel, dichloromethane/ethyl acetate:
85/15. Rf: 0.16) the title compound was obtained as a white solid (0.080 g, 38% yield).
MS: MH+ = 682.
STEP D:
4-(N-BENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-OXO-5-~4-BENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)-PENTANAMIDE
The title compound was obtained in 51% yield from the alcohol, of Example 8, Step C using the Swern oxidation depicted in Example 7, Step D.
MS: MH+ = 680, MNH4+ = 697.
Analysis calculated for C39H41N306F2~
C: 64.14 H: 6.97 N: 6.18 Found: C: 64.53 H: 6.57 N: 5.75 WO 95101958 PCT/US94l06376 cwntu«r.~ O
4-[N-(3-PVridylpropionyl)-L-valyl]amino-2,2-difluoro-3-oxo-5-(4-benzyloxy)phenyl-N(1-isopropyl-2-methyl-propane)-~entanamide N O NH CF2~~~
L
STEP A:
4-(N-TERT-BUTOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
The title compound was prepared in 76% yield from the amine of Example 8. Step H and N-tent-butoxycarbonyl-L-valine using the coupling procedure given in Example 7, Step C
with dichloromethane as solvent instead of dimethyl-formamide.
Rf: 0.17 (silica gel, dichloromethane/ethyl acetate:
90/10).
MS: MH+ = 648.
STEP B
4-(L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
The title amine was prepared in quantitative yield from the compound described in Example 9. Step A, using the procedure given in Example 7, Step B.
MS: MH+ = 548.
WO 95101958 PCTIUS94l06376 STEP C:
4-[N-(3-PYRIDYLPROPIONYL)-L-VALYL]AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)PENTANAMIDE
The title compound was obtained in 84% yield from the amine of Example 9, Step B and 3-pyridylpropionic acid using the coupling method described in Example 7, Step C.
Rf: 0.16 (silica gel, ethyl acetate) MS: MH+ = 681.
Analysis calculated for C38H50N405F2~
C: 67.04 H: 7.40 N: 8.23 Found: C: 67.34 H: 7.60 N: 7.74 STEP D:
4-[N-(3-PYRIDYLPROPIONYL)-L-VALYL]AMINO-2.2-DIFLUORO-3-OXO-5-(4-BENZYLOXY)PHENYL-N(1-ISOPROPYL-2-METHYL-PROPANE)-PENTANAMIDE
The title compound was prepared in 57% yield from the alcohol of Example 9. Step C using the Swern oxidation procedure described in Example 7, Step D.
Rf: 0.2 (silica gel, ethyl acetate);
Analysis calculated for C38H48N405Fz, 0.75 H20:
C: 65.92 H: 7.21 N: 8.09 Found: C: 65.93 H: 7.21 N: 7.92 N-[4-(N-Henzyloxycarbonyl-L-valyl)amino-2,2-difluoro-1,3-dioxo-5-(4-benzyloxy)phenyl-pentyl]-di(O-benzyl)serinol O
O
O NH L ~ O
p ~ ~~ p O
WO 95/01958 PCTlUS94l06376 STEP A:
N-TERT-BUTOXYCARBONYL SERINOL
The title derivative was prepared as a white solid in 94% yield from commercially available serinol using the protection procedure described in Example 4, Step A.
Rf: 0.33 (silica gel, ethyl acetate).
STEP B:
N-TERT-BUTOXYCARBONYL-DI(O-HENZYL)SERINOL
The title compound was prepared in 49% yield from N-tert-butoxycarbonyl serinol using the procedure given in Example 4, Step B, but using tetrahydrofuran as solvent, 2.4 equivalents of benzyl bromide and 2.2 equivalents of potassium-tert-butoxide.
RF: 0.17 (silica gel, petroleum ether/ethyl acetate:
90/10).
STEP C:
DI(O-BENZYL)SERINOL
The title amine was prepared in 80% yield from the compound depicted in Example 10, Step B, following the deprotection method described in Example 7, Step B.
STEP D:
N-[4-TERT-BUTOXYCARHONYLAMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-DI(O-BENZYL)SERINOL
A solution of the ester of Example 6, Step C (0.256 g, 0.534 mmol) and di(O-benzyl)serinol (0.43 g, 1.6 mmol) in dry tetrahydrofuran (2 ml) was heated under reflux during 40 hours. After removal of the solvent, the residue was taken up in ethyl acetate (15 ml), extracted with 1N
potassium hydrogeno sulfate (15 ml) and whashed twice with water (2 X 15 ml), the aqueous phases being extracted again with 15 ml of ethyl acetate. After drying of the organic layers on sodium sulfate, filtration and concentration in vaCUO, the residue (0.52 g) was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate:
70/30. Rf: 0.35) to give the title derivative in 52~ yield (0.33 g).
STEP E:
N-[4-AMINO-2.2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-HENZYLOXY)-PHENYL-PENTYL]-DI(O-HENZYL)SERINOL
The title amine was obtained in 92% yield from the compound of Example 10, Step D using the deprotection procedure given in Example 7, Step H.
STEP F:
N-[4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-HENZYLOXY)PHENYL-PENTYL]-DI(O-HENZYL)SERINOL
The title compound was obtained in 47% yield from the amine given in Example 10, Step E and N-benzyloxycarbonyl-L-valyl anhydride following the coupling procedure described in Example 8, Step c and using dichloromethane as solvent.
RF: 0.30 (silica gel, dichloromethane/ethyl acetate:
90/10).
MS: MH'* = 838r MNH4+ = 855.
STEP G:
N-[4-(N-HENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-1.3-DIOXO-5-(4-HENZYLOXY)PHENYL-PENTYL]-DI(O-BENZYL)SERINOL
The title derivative was obtained in 26% yield from the alcohol given in Example 10, Step F, following the Swern oxidation described in Example 7, Step D.
RF: 0.11 (silica gel, petroleum ether/ethyl acetate:
70/30).
MS: MH+ = 836.
Analysis calculated for C48H51N308F2~ 0.5 HZO:
C: 68.23 H: 6.20 N: 4.97 Found: C: 68.02 H: 6.16 N: 4.81 WO 95101958 PCTlUS94106376 _4-(N-Henzyloxycarbonyl-L-valyl)amino-2,2-difluoro-3-oxo-5-(9-benzyloxy)phenyl-N(ar-L-methyl)benzyl pentanamide O
O
O ~ CF _ L O
~l~ L~~
O O O O
STEP A:
4-TERT-BUTOXYCARHONYLAMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N(a-L-METHYL)HENZYL PENTANAMIDE
The title compound was prepared in 75% yield from the ester of Example 6, Step C and a-L-methyl benzylamine following the procedure depicted in Example 10, Step D.
Rf: 0.06 (silica gel, petroleum ether/ethyl acetate:
80/20).
STEP H:
4-AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N(a-L-METHYL)BENZYL PENTANAMIDE
The title amine was obtained in 92% yield from the derivative described in Example 11. Step A, using the formic acid deprotection given in Example 7, Step B.
STEP C
4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-OXO-5-(4-BENZYLOXY)PHENYL-N(a-L-METFiYL)HENZYL PENTANAMIDE
The title compound was obtained in 87% yield from the amine of Example 11, Step B and N-benzyloxycarbonyl-L-valyl anhydride using the procedure described in Example 8, Step C and with dichloromethane as solvent.
STEP D:
4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-OXO-5-(4-BENZYLOXY)PHENYL-N(Gt-L-METHYL)BENZYL PENTANAMIDE
The title derivative was obtained in low yield from the alcohol of Example 11, Step C using the oxidation procedure described in Example 7. Step D (recovery of more than 50%
of starting alcohol despite of 2 successive Swern oxidations).
Rf: 0.14 (silica gel, petroleum ether/ethyl acetate:
70/30 ) .
Analysis calculated for C39H41N306F2~ 0~5 H20:
C: 67.42 H: 6.09 N: 6.05 Found: C: 67.22 H: 5.91 N: 5.74 N-f4-(N-Benzyloxycarbonyl-L-valyl)amino-2.2-difluoro-1.3-diozo-5-(4-benzyloay)phenyl-pentyl]-O-(2-methoxyethoxy-methyl)-D-valinol v ~ O L NH CF2 NH D O ~O~ OCH3 1~
0 0 o O
STEP A:
N-f4-(TfRT-HUTOXYCARHONYLAMINO-2.2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-O-(2-METHOXYETHOXY-METHYL)-D-VALINOL
The title compound was prepared in 56% yield from the ester of Example 6, Step C and the amine of Example 5.
Step B using the substitution procedure described in Example 10, Step D.
Rf: 0.35 (silica gel, petroleum ether/ethyl acetate:
55/45).
STEP B:
N-[4-AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-O-(2-METHOXYETHOXYMETHYL)-D-VALINOL
The title amine was obtained in quantitative yield from the compound of Example 12, Step A using the deprotection method given in Example 7. Step H, the reaction temperature being kept at 5°C instead of room temperature.
STEP C:
N-[4-(N-HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL)-O-(2-METHOXYETHOXYMETHYL)-D-VALINOL
The title derivative was prepared in 59% yield from the amine of Example 12, Step B and N-benzyloxycarbonyl-L-valyl anhydride following the procedure described in Example 8, Step C and with dichloromethane as solvent.
Rf: 0.25 (silica gel, dichloromethane/ethyl acetate:
80/20).
MS: MH* = 758. MNH4* = 775.
STEP D
N-(4-(N-BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-1,3-DIOXO-5-(4-HENZYLOXY)PHENYL-PENTYL]-O-(2-METHOXYETHOXY-METHYL)-D-VALINOL
The title compound was obtained in 73% yield from the alcohol of Example 12, Step C using the Swern oxidation depicted in Example 7, Step D.
Rf: 0.26 (silica gel, dichloromethane/ethyl acetate:
70/30).
MS: MH* = 770.
Analysis calculated for C40H51N309F2~
C: 63.56 H: 6.80 N: 5.56 Found: C: 63.55 H: 6.78 N: 5.49 N-[4-(N-Henzyloxycarbonyl-L-valyl)amino-2,2-difluoro-1,3-dioxo-5-(4-benzyloxy)phenyl-pentyl]-O-formyl-D-valinol v p N L NH CF2\ NH D
1~ ~~ ~ lI~ °
° ° ° °
A solution of the compound given in Example 12, Step D
(0.050 g, 0.066 mmol) in formic acid (5 ml) was stirred for 5 hours at room temperature. After concentration in vaCUO, the residue (0.043 g) was purified by a micro flash chromatography (silica gel, dichloromethane/ethyl acetate:
70/30, Rf: 0.49) to give the title compound in 44% yield.
MS: MH+ = 696.
Analysis calculated for C37H43N3°8F2~
C: 63.87 H: 6.23 N: 6.04 Found: C: 64.15 H: 6.35 N: 5.78 N-.[4-(N-Henzyloxycarbonyl-L-valyl)amino-2,2-difluoro-1.3-dioxo-5-(4-benzyloxy)phenyl-pentyl]-O-[2-(2-methoxyethoxyl-1-ethyl]-D-valinol v p L NH CFZ NH D °
1~ ~~ ~ ~~ °~H3 ° ° ° °
WO 95/01958 PCT/US94l06376 STEP A:
_N-(4-(TERT-BUTOXYCARBONYLAMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-O-[2-(2-METHOXYETHOXY)-1-ETHYL]-D-VALINOL
The title compound was prepared in 51% yield from the ester of Example 6, Step C and the amine of Example 3, Step B using the procedure depicted in Example 10, Step D.
Rf: 0.37 (silica gel. petroleum ether/ethyl acetate:
30/70).
STEP B:
N ~4-AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-S-(4-BENZYLOXY)PHENYL-PENTYL]-O-[2-(2-METHOXYETHOXY)-1-ETHYL]-D-VALINOL
The title amine was obtained in 97% yield from the compound of Example 14. Step A using the deprotection method described in Example 7. Step B.
MS: MH+ = 539.
STEP C
N-(4-(N-HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-BENZYLOXY)PHENYL-PENTYL]-O-[2-(2-METHOXYETHOXY1-1-ETHYL]-D-VALINOL
The title derivative was obtained in 74% yield from the amine of Example 14, Step H and N-benzyloxycarbonyl-L-valyl anhydride using the coupling procedure described in Example 8, Step C and with dichloromethane as solvent.
Rf: 0.19 (major isomer at the 3-hydroxy function) and 0.13 (minor isomer) (silica gel, dichloromethane/ethyl acetate:
60/40 ) .
MS: MH+ = 772.
WO 95!01958 PCTlUS94106376 STEP D:
N-(4-(N-HENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-1,3-DIOXO-5-(4-HENZYLOXY)PHENYL-PENTYL]-O-[2-(2-METHOXY~THOXY~
1-ETHYL]-D-VALINOL
The title compound was prepared in 74% yield from the alcohol of Example 14, Step C using the oxidation method given in Example 7. Step D.
Rf: 0.13 (silica gel, dichloromethane/ethyl acetate:
70/30).
MS: MH+ = 770 Analysis calculated for C4iH53N309F2~
C: 63.96 H: 6.84. N: 5.46 Found: C: 63.94 H: 6.86 N: 5.38 4-(N-Benzyloxycarbonyl-L-valyl)amino-2,2-difluoro-3-oxo-5-~4-benzyloxy)phenyl-N-benzydrYl pentanamide O NH
~~ ~r L ~~
STEP A:
4-(TERT-BUTOXYCARBONYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N-BENZYDRYL PENTANAMIDE
The title compound was obtained in 45% yield from the ester of Example 6. Step C and commercially available benzydrylamine (distilled over potassium hydroxyde) using the procedure described in Example 10, Step D.
Rf: 0.50 (silica gel, cyclohexane/ethyl acetate: 1/1).
MS: MH+ = 617.
STEP B:
4-AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N-HENZYDRYL PENTANAMIDE
The title amine was obtained in 82$ yield from the derivative of Example 15, Step A following the deprotection method given in Example 7. Step B.
STEP C:
4-(N-HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N-BENZYDRYL PENTANAMIDE
The title compound was prepared in 83% yield from the amine of Example 15. Step H and N-benzyloxycarbonyl-L-valyl anhydride following the coupling reaction given in Example 8. Step C using dichloromethane as solvent.
Rf: 0.49 (silica gel, cyclohexane/ethyl acetate: 1/1).
MS: MH+ = 750.
STEP D:
4-lN-HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-OXO-5-(4-BENZYLOXY)PHENYL-N-HENZYDRYL PENTANAMIDE
The title derivative was obtained from the alcohol of Example 15, Step C using the Swern oxidation depicted in Example 7. Step D.
Rf: 0.47 (silica gel, cyclohexane/ethyl acetate: 1/1).
MS: MH+ = 748. MNH4+ = 765.
Analysis calculated for C44H43N306F2~
C: 70.67 H: 5.79 N: 5.62 Found: C: 69.88 H: 5.89 N: 5.49 WO 95!01958 PCTlUS94106376 4-(N-Henzyloxycarbonyl-L-valyl)amino-2,2-difluoro-3-oxo-5-(4-benzyloxy)phenyl-N(1,1-di(2-pyridyl)methyllpentanamide O
O
v N
O NH CF NH O
°l~ L
° ° ° ° O
STEP A:
N-TERT-BUTOXYCARBONYL-1,1-DI(2-PYRIDYL)METHYL AMINE
To a solution of commercial di(2-pyridyl)ketone (3.68 g, 20 mmol) in anhydrous methanol (60 ml) was added ammonium acetate (15.40 g, 200 mmol) and sodium cyanoborohydride (0.88 g, 14 mmol). After stirring at room temperature for 24 hours, the reaction mixture was hydrolyzed with 37% hydrochloric acid until pH - 2 and the solvent removed in vatuo. The residue was taken off in water (100 ml), extracted twice with diethyl ether (2 X
60 ml) and the combined organic layers were dried over magnesium sulfate. After filtration and removal of the solvent in vacuo, the residue was taken off in anhydrous dichloromethane (50 ml) and di-tart-butyl dicarbonate (2.80 g, 13 mmol) was added, the reaction mixture being stirred for 16 hours at room temperature. The solvent was removed invacuo and the residue was purified by flash chromatography (silica gel, cyclohexane/ethyl acetate: 3/7) to give the title compound in 17% yield (0.90 g).
Rf: 0.34 (silica gel, ethyl acetate).
STEP B:
1,1-DI(2-PYRIDYL)METHYL AMINE
To a solution of the compound of Example 16, Step A
(0.85 g, 3 mmol) in anhydrous diethyl ether (10 ml) was added at 0°C 40 ml of a saturated solution of hydrogen chloride gas in anhydrous diethyl ether. The reaction mixture was stirred at 0°C and then the temperature was allowed to rise to room temperature overnight. The solvent was removed in vacuo and the residue was taken off in ethyl acetate (100 ml), washed three times with a saturated solution of sodium carbonate (3 X 30 ml) and the organic layer dried over magnesium sulfate. Removal of the solvent invacuo afforded the title compound in 55% yield (0.30 g).
STEP C:
4-(TERT-BUTOXYCARHONYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-BENZYLOXY)PHENYL-N-[1.1-DI(2-PYRIDYL)METHYL]PENTANAMIDE
The title compound was prepared in 43% yield from the ester of Example 6. Step C and the amine of Example 16.
Step H following the procedure described in Example 10, Step D.
Rf: 0.40 (silica gel, ethyl acetate) MS: MH+ = 619.
STEP D:
4-AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N-[1,1-DI(2-PYRIDYL)METHYL]PENTANAMIDE
The title amine was obtained in 77% yield from the compound of Example 16, Step C using the deprotection method described in Example 7, Step B.
STEP E:
4-(N-BENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY-5-(4-HENZYLOXY)PHENYL-N-[1,1-DI(2-PYRIDYL)-METHYL]PENTANAMIDE
The title compound was obtained in 70% yield from the amine of Example 16. Step D and N-benzyloxycarbonyl-L-valyl anhydride using the coupling method depicted in Example 8, Step C using dichloromethane as solvent.
Rf: 0.49 (silica gel, ethyl acetate).
MS: MH+ = 752.
' PCT 1US94106376 WO 95!01958 STE- P F:
(4 BENZYLOXY)PHENYL N [1.1-DI(2-PYRIDYL)METHYL]PENTANAMIDE
The title compound was prepared in 42% yield from the alcohol of Example 16, Step E using the oxidation procedure described in Example 7. Step D.
Rf: 0.39 (silica gel. ethyl acetate).
MS: MH+ = 750.
Analysis calculated for C42H41N506F2~ 0.5 H20:
C: 66.48 H: 5.58 N: 9.23 Found: C: 66.37 H: 5.55 N: 8.91 N [4 (N Henzyloxycarbonyl-L-valyl)amino-2.2-difluoro-1.3-dioxo-5 (4 {2 N morpholyl~ethyloxy)Phenyl-pentvll-0-[(3-pyridyl)methyl]-D-valinol O
O
O O ~ CF 2~~~ D
l~ ~~ ~ b 5 O O p O N
STEP A:
_4 TERT BUTOXYCARBONYLAMINO-2.2-DIFLUORO-3-HYDROXY-5-(4-HYDROXY)PHENYL PENTANOIC ACID. ETHYL ESTER
A solution of compound of Example 6, Step C (0.719 g.
1.5 mmol) in ethanol (50 ml) was kept for 7.5 hours under an hydrogen atmosphere in the presence of 10% palladium on charcoal (0.074 g). The hydrogen atmosphere was exchanged by a nitrogen atmosphere, the suspension was filtered off and the solution concentrated in vacuo. The title PCTlUS94l06376 thus obtained was used as such in the next step (0.500 g.
83% yield).
Rf: 0.51 (silica gel. petroleum ether/ethyl acetate: 1/1).
STEP H:
5 (4 HYDROXY)PHENYL PENTYL)-O-[(3-PYRIDYL)METHYL)-D-VALINOL
The title compound was obtained in 82% yield from the ester of Example 17. Step A and the amine of Example 1, Step C, following the procedure described in Example 10, Step D.
Rf: 0.47 (silica gel, ethyl acetate).
STEP C:
5 (4 {2 N MORPHOLYL~ETHYLOXY)PHENYL-PENTYL)-O-[(3-PYRIDYL~ -METHYL)-D-VALINOL
A solution of the phenolic derivative described in Example 17, Step H (0.081 g, 0.15 mmol) and 4-(2-chloro-ethyl)morpholine, hydrochloride (0.039 g, 0.21 mmol) in dry dimethylformamide (3 ml) was stirred under nitrogen for 66 hours at room temperature in the presence of cesium carbonate (0.166 g, 0.51 mmol) and potassium iodide (0.0035 mg, 0.021 mmol). The reaction mixture was diluted with ethyl acetate (15 ml) and washed twice with water (2 X 15 ml), the aqueous phases being extracted again with ethyl acetate (15 ml). After drying of the combined organic layers on sodium sulfate, filtration and concentration in vacuo, the residue (0.117 g) was purified by flash chromatography (silica gel, ethyl acetate/methanol: 90/10.
Rf: 0.27) to give the title compound in 51% yield (0.050 g).
MS: MH+ = 651.
PCTlUS94106376 STEP D:
N [4 AMINO 2,2-DIFLUORO-3-HYDROXY-1-OXO-5-(4-{2-N-MORPHOLYL~ETHYLOXY)PHENYL-PENTYL]-O-[(3-PYRIDYL)METHYL]-D-V_ALINOL
title amine was prepared in quantitative yield from the derivative of Example 17. Step C following the deprotection procedure described in Example 7, Step B.
MS: MH+ = 551.
STEP E
N [4 (N BENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY 1 OXO 5 (4 {2-N-MORPHOLYL}ETHYLOXY)PHENYL-PENTYL]-O_-[(3-PYRIDYL)METHYL]-D-VALINOL
The title compound was obtained in 53% yield from the amine of Example 17. Step D and N-benzyloxycarbonyl-L-valine following the coupling method given in Example 7.
Step C.
Rf: 0.17 (silica gel, dichloromethane/ethanol: 95/5).
MS: MH+ = 784.
Analysis calculated for C41H55N50sF2,0~25H2o:
C: 62.46 H: 7.10 N: 8.88 Found: C: 62.41 H: 6.94 N: 8.69 STEP F:
N [4 (N HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-1,3-DIOXO 5 (4-{2-N-MORPHOLYL}ETHYLOXY)PHENYL-PENTYL]-O-[(3-PYRIDYL)METHYL]-D-VALINOL
The title compound was prepared in 25% yield from the alcohol described in Example 17. Step E using the Swern oxidation depicted in Example 7, Step D.
Rf: 0.06 (silica gel, ethyl acetate/acetone: 8/2).
Analysis calculated for C41H53N50sF2'H2~' C: 61.56 H: 6.93 N: 8.76 Found: C: 61.56 H: 6.80 N: 8.26 Alternative procedure;
To a solution of the alcohol of example 17, step E (0.244 g, 0.31 mmol) in freshly distilled dichloromethane (10 ml) was added the Dess-Martin reagent (0.528 g, 1.24 mmol) and tent-butanol (0.06 ml, 0.62 mmol). After stirring for 10 minutes at room temperature, the reaction mixture was quenched with 2-propanol (1 ml) and concentrated in vatuo.
The white solid residue was suspended in dichloromethane (4 ml, then 2 ml for rinsing) and the solid part was removed by filtratioai over a FluorcyporeTM filter. Co~centratioo is vacuo afforded a residue which was purified by flash chromatography (silica gel, dichloromethane/ methanol: 98/2 for removing the by-products of the Dess-Martin reagent, then dichloromethane/ methanol: 96/4 and finally dichloromethane/ methanol: 90/10 to eluate the desired product). The title ketone was obtained as a white solid in 61% yield (0.148 g) Analysis calculated for C41HS3NsCeFZ,0.5H=o:
C: 62.26 H: 6.88 N: 8.86 Found: C: 62.49 H: 5.98 N: 8.97.
N-j4-(N-Henzyloxycarbonyl-L-valyl)amino-2.2-difluoro-1.3-dioxo-5-(4-t2-N-morpholyl~ethyloxy)phenyl-pentyl]-O-((2-pyridyl)methvl]-D-valinol O ~ 0 O C L NH CFZ ~ D
O
N
- ~ PCTlUS94106376 STEP A:
N- 4.-TERT-BUTOXYCARBONYLAMINO-2 2-DIFLUORO-3-HYDROXY-1-OXO-(4 t2 N MORPHOLYL}ETHYLOXY)PHENYL-PENTYL]-O-[(2-PYRIDYL -M_ETHYL]-D-VALINOL
5 The title compound was prepared in 67% yield from the ester of Example 17. Step A and the amine of Example 2, Step a using the procedure described in Example 10, Step D.
Rf: 0.29 (silica gel, dichloromethane/ethyl acetate: 3/7).
STEP H
N_ (4 AMINO 2.2 DIFLUORO-3-HYDROXY-1-OXO-5-(4-HYDROXY
PHENYL PENTYL]-O-[(2-PYRIDYL)METHYL]-D-VALINOL
The title amine was obtained in 96% yield from the derivative of Example 18, Step A following the deprotection method given in Example 7.. Step B.
MS: MH+ = 438.
STEP C:
N [4 (N HENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-HYDROXY 1 OXO 5 (4 HENZYLOXY)PHENYL-PENTYL]-O-((2-PYRIDYL)-M_ETHYL]-D-VALINOL
The title derivative was obtained in 47% yield from the amine of Example 18. Step B and N-benzyloxycarbonyl-L-valine using the coupling procedure described in Example 7.
Step C.
Rf: 0.31 (silica gel, dichloromethane/ethyl acetate: 2/8).
MS: MH+ = 671.
STEP D:
N [4 N HENZYLOXYCARHONYL-L-VALYL)AMINO-2,2-DIFLUORO-3-H_YDROXY 1 OXO 5 (4-{2-N-MORPHOLYL}ETHYLOXY)PHENYL-PENTYL]-O-[(2-PYRIDYL)METHYL]-D-VALINOL
The title compound is obtained from the phenol derivative of Example 18. Step C using the alkylation procedure described in Example 17, Step C.
STEP E:
N (4 N BENZYLOXYCARBONYL-L-VALYL)AMINO-2,2-DIFLUORO-1.3-_DIOXO 5 (4 {2 N MORPHOLYL~ETHYLOXY)PHENYL-PENTYL]-O-((2-PYRIDYL)METHYL]-D-VALINOL
The title derivative is obtained from the compound given in Example 18. Step D using the oxidation method described in Example 7. Step D.
. - PCT/US94106376 The compounds of the present invention are useful as inhibitors of retroviral proteases required for replication. particularly the HIV-1 and HIV-2 viral proteases, the prevention or treatment of infection by the human immunodeficiency virus (HIV), and the treatment of consequent pathological conditions such as the acquired immunodeficiency syndrome (AIDS) in mammals capable of being infected with HIV virus. Treating AIDS, preventing infection by HIV or treating infection by HIV, is defined as including. but not limited to, treating a wide range of states of HIV infection: AIDS, ARC (AIDS related complex), both symptomatic and asymptomatic, and actual or potential exposure to HIV. For example, the compounds of this invention are useful in preventing infection by HIV after suspected past exposure to HIV by, e.g., blood transfusion, accidental needle stick, or exposure to patient blood during surgery.
The term "stereoisomers" is a general term for all isomers of individuals molecules that differ only in the orientation of their atoms in space. It includes mirror image isomers (enantiomers), geometric (cis/trans) isomers, and isomers of compounds with more than one chiral center that are notmirror images of one another (diastereoisomers).
For amino-acids, the designations L/D, or R/S can be used as described in IUPAC-IUB Joint Commission on Biochemichal Nomenclature , Eur. J. Biochem . 138: 9-37 ( 1984 ) .
For these purposes, the compounds of the present invention may be administered orally, parenterally (including subcutaneous injections. intravenous, intra-muscular, transdermal, intrasternal injection or infusion techniques), by inhalation spray, or rectally, in dosage unit formulations containing convention non-toxic pharma-ceutically acceptable carriers, adjuvants and vehicles.
Thus, in accordance with the present invention there is further provided a method of treating and a pharmaceutical composition for treating HIV infection and AIDS. The treat-ment involves administering to a patient in need of such treatment a pharmaceutical composition comprising a pharma-ceutical carrier and a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt thereof.
These pharmaceutical compositions may be in the form of orally-administrable suspensions or tablets: nasal sprays:
steriel injectable preparations, for example, as sterile injectable aqueous or oleagenous suspensions or suppositories) or they may be administered transdermally.
When administered orally as a suspension, these compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may contain ~~_..rocrystalline cellulose for imparting bulk, alginic acid or sodium alginate as a suspending agent, methylczllulose as a viscosity enhancer, and sweetener/flavoring agents known in the art. As immediate release tablets, these compositions may contain microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and lactose and/or other excipients, binders, extenders. disintegrants, diluents and lubricants known in the art.
When administered by nasal aerosol or inhalation, these compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
PCTIUS94l06376 The injectable solutions or suspensions may be formulated according to known art. using suitable non-toxic. parenterally acceptable diluents or solvents, such as mannitol, 1,3-butanediol, water. Ringer's solution or isotonic sodium chloride solution, or suitable dispersing or wetting and suspending agents, such as sterile, bland.
fixed oils. including synthetic mono- or diglycerides, and fatty acids, including oleic acid.
When rectally administered in the form of suppositories. these compositions may be prepared by mixing the drug with a suitable non-irritating excipient, such as cocoa butter, synthetic glyceride esters or polyethylene glycols, which are solid at ordinary temperatures. but liquidize and/or dissolve in the rectal cavity to release the drug.
Dosage levels of the order of 0.02 to 5.0 or 10.0 grams per day are useful in the treatment or prevention of the above-indicated conditions, with oral doses being higher.
For example, infection by HIV is effectively treated by the administration of from 1 to 50 milligrams of the compound per kilogram of body weight from one to three times per day. It will be understood, however, that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination the severity of the particular condition. and the host undergoing therapy.
The present invention is also directed to combinations of the HIV protease-inhibitory compounds with one or more agents useful in the treatment of AIDS, such as, for example, with known antiviral agents suitable for treating HIV 1 and HIV 2 viral infections. e.g.. AZT, with or without a PNPase inhibitor. or in conjunctive therapy with DDI and a PNPase inhibitor.
The compounds of this invention may be assayed for their HIV-protease inhibition using the following published techniques.
Preparation of Retroviral Enzyme and Assay for Inhibition of the Protease A) preparation of Retroviral Enzyme To prepare the recombinant protease, the HIV protease was expressed via E.Coli by the published work of C. Gu~net, et al.. in European Journal of Pharmacology.
Molecular Pharmacology Section, 172 (1989) 443-451.
H) Assay for Inhibition of Recombinant Viral Protease Inhibition of the reaction of the protease with a peptide substrate [Ser-Gln-Asn-Tyr-pro-Ile-Val-NH2.
Km . 1 mM were in 50 mM Na acetate. 10% glycerol. 5%
ethyleneglycol, pH 5.5. at 37°C for 1 hour. Various concentrations of inhibitor in 10 u1 DMSO were added to 80 u1 of assay solution and the reaction initiated by the addition of 10 u1 (1.6 ug) of recombinant protease. The reaction was quenched with 16 u1 of 4 M
perchloric acid. Products of the reaction were separated by HPLC (VYDAC wide pore 5 cm C-18 reverse phase. acetonitrile gradient. 0.1% trifluoroacetic acid). The extent of inhibition of the reaction was determined from the peak heights of the products. HPLC
of the products. independently synthesized, provided ' PCTlUS94106376 quantitation standards and confirmation of the product composition.
By following the techniques referenced above, as well as by utilization of other known techniques. as well as by comparison with compounds known to be useful for treatment of the above-mentioned disease states, it is believed that adequate material is available to enable one of ordinary skill in the art to practice the invention.
As is true for most classes of compounds found to be useful in the pharmaceutical industry, certain subgeneric groups and certain specific compounds are more preferred such as those exemplified and shown in the following chart.
Within the concepts of this invention, it is to be found that the preferred compounds are those wherein R5 is CH(Y)(Z) and P1 is B. especially when T' is H.
PCTlUS94106376 WO 95!01958 z z V V
v v Q
O
..
N
C
N N ~ x 4l ~ L
_ x ~ O E
o ~ _.
N N
N G '13 d w 1 ~, O4 c~
v 1.~ ~ ~ d x x x x o N
N N ~ G
C
.a z z Oz Oz n _ .a ~-C~r ~ O G
r~
?~ ?~ N N
N
C
x x p o o r, >, ~, t t s E y E
E
E
~!3 ,C ~C
w >. a a a a N
v .r .r r.r I 1 V' Q' d' Q' r-1 "' p, CL
C' a Q O
O O ~ d p O
O O ~ Ql x x x x p p p O
N
N
C ~ ~ y PCTIUS94l06376 z z Oz 0 O Oz u, ., O O O
Cd I~ ~ O
v i r '1 ?~ ?~ N N
N N C O
x x O O
>' t t , t t y E
.,., .~ y, .
N
( N a t f'~1 N V ...
v 'r .r ,.r r r d' ~' a a y O O o 0 w ~ t O ~ i~
.., ri t y ',, >, O x x a ~ .. 0 0 'O N
.'1 C
r 1r I
I
WO 95101958 _ s z s U Q
v1 p O O O
0~r O O O O O
N N
N C C
C O
O ~ .a N ~ x x C O O O
d t S
y p ~ y ~ d E E
N
C ,~ ~p 't7 Cl .".~ ..1 '.v j7 y 4r 1r V
N
v ...
V
V
~1 O
O
x x x x O
04 ~. a, N N N
C C C
O ~ 4J
m Ox ,a N
N
C
41 .C
~ ~
>, ?~ N x x O d o ,.
O i .u x W E ~ '-~ E
,. --r1 N
'C d ...
w 1~1 v '1 ~ 1 01 A1 ~' M
N
0 ~ o L L'~ ~ a d1 ~ ...1 .~i s s ~ ~ o x ~
., o ~ .o C
.-~ ~
N Lr 1~
d a M M
V V
o ~ o C~
O O O O
p O
v r-1 N N .-~ r, C C ?~ ?i °' °' x x s~ 0 0 x O ~ y y o _v t y ~ ..
o O
_B E O O
..-i .-~ t t d a ..., ..~ O E
w ''' 6 I
IG~. a Z ~ Z .-1 cat 1 ?. I ?~
!V N N N
,_, ..r .r C ~ C
1 1 1 Ill 1 07 a~ .G er L7 d a CL
O
o ° ~ a a, o, a, o, O~ ~ aol i~
.,.~ .,~ ...
'' x x o x o O ~ ~ r, N N N N
C G G C
O d 4l 4l .a z oG 0 Q " z 0 z o ° 0 m ~ ,~ _""
N N N N
C G C C
4l N 4l 4J
I x I x I x x Z~ Z~ Z~ I
Z~
..rI ~'' I ~' I ?r C~N y N ~ c~ y N ~
I ~ I ~ I ~ I
er .1 ~ ~
t .0C .0G
a L1~ CL CL
4. 1r ar E E E E
a, .-, ~., O y O u N
.
u~ m y ., ..., x O
O O
O
.- ~ ~, >, ~
N N N
N C C C
C G1 ~ y .D
. ~ CA 02249786 1998-10-26 WO 95!01958 _ 6 3 _ PCT/US94/06376 z zz t~ 0 0 ~ z w m O ~ o 0 D p D
.M..
~i ~i N N N N
C C G
a!
,..., ,~ ~ .Q
x x z ,~ z ,~ . z o z C4 N ~ I ~ L 1 ~'' _ .t~ N JJ N N .~
~
Cl ~ ri 'C 'O
.~1 ~i -rl .~1 !.a 4 Ir 4l d a d ~i CL
s.. ~", ' O
1r I
iJ
.,i ~"~ G1 x a' >' x o x x O .-.i O O
.i N D N N
C ~ D C
.a al CJ
.a .p
Claims (13)
1. A compound of Formula 1 and the stereoisomers, hydrates, isosteres and the pharmaceutically acceptable salts thereof wherein P1 is Q or B, wherein B is C1-6 alkylene , wherein T is [ (O) b-W-R] and T', is [ (O) b' -W' -R' ] or H, wherein each of W and W' are independently C1-6 alkylene or nothing and R and R' are each independently -CH2CHO, hydroxy C1-6 alkyl, C1-6 alkoxy C1-6 alkyl, C1-6 alkyl, Q, provided that W is C2-6 alkylene when W is directly attached to a nitrogen atom in R, provided that W' is C2-6 alkylene when W is directly attached to a nitrogen atom in R1, provided that W or W' are each independently C1-6 alkylene when R or R' are each independently phenyl, pyridyl, pyrazinyl or pyrimidinyl, and provided that B is other than ~-hydroxybenzyl or g-alkoxybenzyl;
Q is P2 is C1-6 alkyl, cyclopentyl, hydroxy C1-6 alkyl, phenyl, benzyl or 3-tetrahydrofuryl;
R1 is benzyloxy, C1-6 alkoxy, C1-6 alkyl, phenyl, benzyl, phenethyl, fluorenylmethylenoxy, 2-isoquinolinyl, PDL, <IMG > NHSO2R4, N(R4)(benzyl), Or N(R4)(PDL), wherein PDL is -(CH2)a-2-,3-, or 4-pyridyl, or p-substituted benzyloxy, wherein the substitution is a nitro, OH, amino, C1-6 alkoxy, hydroxy C1-6 alkylene, or halogeno;
R3 is C1-6 alkenyl, C1-6 alkoxy, hydroxy C1-6 alkyl, C1-6 alkyl, or OH, R4 is H, C1-6 alkyl, phenyl or benzyl, R5 is C7-15 alkyl, C7-15 alkoxy, CH([(CH2)d-O-CH2)x-R8)2, branched-chain C2-6 alkylene or CH(Y) (Z) wherein Y is C1-15 alkyl, hydroxy C3-15 alkyl or (CH2)e , and Z is (CH2)d-O-CHO, C1-6 alkylene-O-(CH2)d-(O-CH2-CH2)e-O-C1-6 alkyl, or (CH2)e and wherein V is OR4 or hydroxy C1-6 alkyl;
R6 is H or C1-3 alkyl:
R7 is piperazinyl, substituted piperazinyl, piperidyl, morpholinyl, pyridyl, pyrazinyl, pyrimidinyl or phenyl, wherein substituted piperazinyl is piperazinyl substituted on one nitrogen atom thereof with CHO, C(O)NHR4, C1-4 alkyl or CO2R4;
is pyrimydyl, pyridyl, pyrazinyl or phenyl;
a is zero, 1, 2 or 3:
b and b' are each independently zero or 1;
d and d' are each independently 1 or 2;
e and e' are each independently zero, 1 or 2; and x is zero or one.
Q is P2 is C1-6 alkyl, cyclopentyl, hydroxy C1-6 alkyl, phenyl, benzyl or 3-tetrahydrofuryl;
R1 is benzyloxy, C1-6 alkoxy, C1-6 alkyl, phenyl, benzyl, phenethyl, fluorenylmethylenoxy, 2-isoquinolinyl, PDL, <IMG > NHSO2R4, N(R4)(benzyl), Or N(R4)(PDL), wherein PDL is -(CH2)a-2-,3-, or 4-pyridyl, or p-substituted benzyloxy, wherein the substitution is a nitro, OH, amino, C1-6 alkoxy, hydroxy C1-6 alkylene, or halogeno;
R3 is C1-6 alkenyl, C1-6 alkoxy, hydroxy C1-6 alkyl, C1-6 alkyl, or OH, R4 is H, C1-6 alkyl, phenyl or benzyl, R5 is C7-15 alkyl, C7-15 alkoxy, CH([(CH2)d-O-CH2)x-R8)2, branched-chain C2-6 alkylene or CH(Y) (Z) wherein Y is C1-15 alkyl, hydroxy C3-15 alkyl or (CH2)e , and Z is (CH2)d-O-CHO, C1-6 alkylene-O-(CH2)d-(O-CH2-CH2)e-O-C1-6 alkyl, or (CH2)e and wherein V is OR4 or hydroxy C1-6 alkyl;
R6 is H or C1-3 alkyl:
R7 is piperazinyl, substituted piperazinyl, piperidyl, morpholinyl, pyridyl, pyrazinyl, pyrimidinyl or phenyl, wherein substituted piperazinyl is piperazinyl substituted on one nitrogen atom thereof with CHO, C(O)NHR4, C1-4 alkyl or CO2R4;
is pyrimydyl, pyridyl, pyrazinyl or phenyl;
a is zero, 1, 2 or 3:
b and b' are each independently zero or 1;
d and d' are each independently 1 or 2;
e and e' are each independently zero, 1 or 2; and x is zero or one.
2. A compound of Claim 1 wherein x is one;
3. A compound of Claim 2 wherein P1 is B.
4. A compound of Claim 1 wherein P2 is C1-6 alkyl.
5. A compound of Claim 1 wherein R5 is CH(Y)(Z).
6. A compound according to Claim 1 for use as a pharmaceutically active compound.
7. A compound according to Claim 1 for use in the treatment of HIV infection.
8. A pharmaceutical composition comprising a compound according to Claim 1, in combination with a pharmaceutically acceptable carrier.
9. A pharmaceutical composition according to Claim 8 for the treatment of HIV infection.
10. Use of a compound according to Claim 1, in combination with a pharmaceutically acceptable carrier, for the preparation of a pharmaceutical composition, for the treatment of HIV infection.
11. A process for preparing compound of the formula and the hydrates, isosteres and the pharmaceutically acceptable salts thereof wherein P1 is Q or B, wherein B is C1-6 alkylene wherein T is [ (O) b-W-R] and T' is [ (O) b' -W' -R' ] or H, wherein each of W and W' are independently C1-6 alkylene or nothing and R and R' are each independently -CH2CHO, hydroxy C1-6 alkyl, C1-6 alkoxy C1-6 alkyl, C1-6 alkyl, Q, provided that W is C2-6 alkylene when W is directly attached to a nitrogen atom in R, provided that W' is C2-6 alkylene when W' is directly attached to a nitrogen atom in R', provided that W or W' are each independently C1-6 alkylene when R or R' are each independently phenyl, pyridyl, pyrazinyl or pyrimidinyl, and provided that B is other than p-hydroxybenzyl or p-alkoxybenzyl;
Q is P2 is C1-6 alkyl, cyclopentyl, hydroxy C1-6 alkyl, phenyl, benzyl or 3-tetrahydrofuryl;
R1 is benzyloxy, C1-6 alkoxy, C1-6 alkyl, phenyl, benzyl, phenethyl, fluorenylmethylenoxy, 2-isoquinolinyl, PDL, NHSO2R4, N(R4)(benzyl), or N(R4)(PDL), wherein PDL is -(CH2)a-2-,3-, or 4-pyridyl, or p-substituted benzyloxy, wherein the substitution is a nitro, OH, amino, C1-6 alkoxy, hydroxy C1-6 alkylene, or halogeno;
R3 is C1-6 alkenyl, C1-6 alkoxy, hydroxy C1-6 alkyl, C1-6 alkyl, or OH;
R4 is H, C1-6 alkyl, phenyl or benzyl;
R5 is C7-15 alkyl, C7-15 alkoxy, CH([(CH2)d-O-CH2]x-R8)2, branched-chain C2-6 alkylene or CH(Y)(Z) wherein Y is C1-15 alkyl, hydroxy C3-15 alkyl or and Z is (CH2)d-O-CHO, C1-6 alkylene-O-(CH2)d-(O-CH2-CH2)w-O-C1-6 alkyl, wherein V is OR4 or hydroxy C1-6 alkyl;
R6 is H or C1-3 alkyl;
R7 is piperazinyl, substituted piperazinyl, piperidyl, morpholinyl, pyridyl, pyrazinyl, pyrimidinyl or phenyl, wherein.substituted piperazinyl is piperazinyl substituted on one nitrogen atom thereof with CHO, C(O)NHR4, C1-4 alkyl or CO2R4;
R8 is pyrimydyl, pyridyl, pyrazinyl or phenyl:
a is zero, 1. 2 or 3;
b and b' are each independently zero or l;
d and d' are each independently 1 or 2;
a and e' are each independently zero, 1 or 2; and x is zero or one.
which comprises using a compound of the formula wherein R1, P2, P1, R5, and R6 are defined above, oxidizing the compound and optionally converting the resulting oxidized compounds to a pharmaceutically acceptable salt thereof.
Q is P2 is C1-6 alkyl, cyclopentyl, hydroxy C1-6 alkyl, phenyl, benzyl or 3-tetrahydrofuryl;
R1 is benzyloxy, C1-6 alkoxy, C1-6 alkyl, phenyl, benzyl, phenethyl, fluorenylmethylenoxy, 2-isoquinolinyl, PDL, NHSO2R4, N(R4)(benzyl), or N(R4)(PDL), wherein PDL is -(CH2)a-2-,3-, or 4-pyridyl, or p-substituted benzyloxy, wherein the substitution is a nitro, OH, amino, C1-6 alkoxy, hydroxy C1-6 alkylene, or halogeno;
R3 is C1-6 alkenyl, C1-6 alkoxy, hydroxy C1-6 alkyl, C1-6 alkyl, or OH;
R4 is H, C1-6 alkyl, phenyl or benzyl;
R5 is C7-15 alkyl, C7-15 alkoxy, CH([(CH2)d-O-CH2]x-R8)2, branched-chain C2-6 alkylene or CH(Y)(Z) wherein Y is C1-15 alkyl, hydroxy C3-15 alkyl or and Z is (CH2)d-O-CHO, C1-6 alkylene-O-(CH2)d-(O-CH2-CH2)w-O-C1-6 alkyl, wherein V is OR4 or hydroxy C1-6 alkyl;
R6 is H or C1-3 alkyl;
R7 is piperazinyl, substituted piperazinyl, piperidyl, morpholinyl, pyridyl, pyrazinyl, pyrimidinyl or phenyl, wherein.substituted piperazinyl is piperazinyl substituted on one nitrogen atom thereof with CHO, C(O)NHR4, C1-4 alkyl or CO2R4;
R8 is pyrimydyl, pyridyl, pyrazinyl or phenyl:
a is zero, 1. 2 or 3;
b and b' are each independently zero or l;
d and d' are each independently 1 or 2;
a and e' are each independently zero, 1 or 2; and x is zero or one.
which comprises using a compound of the formula wherein R1, P2, P1, R5, and R6 are defined above, oxidizing the compound and optionally converting the resulting oxidized compounds to a pharmaceutically acceptable salt thereof.
12. The process according to claim 11 wherein the oxidation step uses the Dess Martin oxidation.
13. The process according to claim 11 wherein the oxidation step uses the Swern oxidation.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93401785 | 1993-07-08 | ||
EP93401785.6 | 1993-07-08 | ||
CA002166693A CA2166693C (en) | 1993-07-08 | 1994-06-07 | Difluoro statone analogs |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002166693A Division CA2166693C (en) | 1993-07-08 | 1994-06-07 | Difluoro statone analogs |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2249786A1 CA2249786A1 (en) | 1995-01-09 |
CA2249786C true CA2249786C (en) | 2003-10-28 |
Family
ID=25678291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002249786A Expired - Fee Related CA2249786C (en) | 1993-07-08 | 1994-06-07 | Difluoro statone analogs |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2249786C (en) |
-
1994
- 1994-06-07 CA CA002249786A patent/CA2249786C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA2249786A1 (en) | 1995-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5716973A (en) | Anti-viral compounds | |
CA2195125C (en) | Difluorostatone antiviral agents | |
CA2166693C (en) | Difluoro statone analogs | |
CA2249786C (en) | Difluoro statone analogs | |
US5831094A (en) | Difluoro statone antiviral analogs | |
US5559140A (en) | Difluoro statone analogs | |
US6114380A (en) | Difluoro statone analogs | |
NZ277410A (en) | Macrocyclic difluorostatone derivatives as antiviral agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20130607 |
|
MKLA | Lapsed |
Effective date: 20130607 |