CA2248584A1 - High pressure low cost prestressed composite wrapped transmission line system - Google Patents

High pressure low cost prestressed composite wrapped transmission line system Download PDF

Info

Publication number
CA2248584A1
CA2248584A1 CA002248584A CA2248584A CA2248584A1 CA 2248584 A1 CA2248584 A1 CA 2248584A1 CA 002248584 A CA002248584 A CA 002248584A CA 2248584 A CA2248584 A CA 2248584A CA 2248584 A1 CA2248584 A1 CA 2248584A1
Authority
CA
Canada
Prior art keywords
pipeline
yield strength
thickness
reinforced
metallic liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002248584A
Other languages
French (fr)
Inventor
Edward Matthew Patton
Timothy Stewart Rennick
Carl Harry Popelar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Research Institute SwRI
Original Assignee
Southwest Research Institute SwRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Research Institute SwRI filed Critical Southwest Research Institute SwRI
Publication of CA2248584A1 publication Critical patent/CA2248584A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • F16L9/147Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups comprising only layers of metal and plastics with or without reinforcement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49805Shaping by direct application of fluent pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49906Metal deforming with nonmetallic bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1369Fiber or fibers wound around each other or into a self-sustaining shape [e.g., yarn, braid, fibers shaped around a core, etc.]

Abstract

A method for making a reinforced pipeline comprising determining the thicknesses of a metallic liner and a reinforcement which are effective to limit stresses on a reinforced pipeline at a known operating pressure to a known percentage of the specified minimum yield strength and a known percentage of at least one actual yield strength along the length of the pipeline which differs from the specified minimum yield strength. Preferably, the reinforced pipeline is pressurized to produce yielding which results in a residual stress pattern effective to resist ductile fracture propagation along a longitudinal axis of said metallic liner along a length of the pipeline comprising at least two actual yield strengths.

Description

HIGH PRESSURE LOW COST PRESTRESSED COMPOSITE
WRAPPED TRANSMISSION LINE SYSTEM
Field of the Invention The present invention relates to a method for making reinforced gas and oil transmission lines. More particularly, the invention relates to a method for making large diameter (20 inches or more), high pressure (greater than 1000 psi) reinforced gas and oil transmission pipelines which minimizes the thickness required of the internal metallic liner and provides a predictable residual stress pattern effective.to resist ductile fracture propagation along a length of pipeline having variable yield strengths.
B~round of the Invention and Prior Art Transmission lines are used to transport gas, oil, and other fluids, such as carbon dioxide, over long distances to customers or processing facilities.
Large diameter transmission lines currently are made entirely of steel. The American Petroleum Institute (API) provides design guidelines for building these transmission lines, and the transmission lines also are regulated by the Department of Transportation's Office of Pipeline Safety (DOT/OPS). The API specifications for , transnussion lines (API SL) provide design rules, specifications for acceptable grades of steel, and specifications for acceptable steel pipe joint construction. The API
specified grades of steel for large diameter seam welded pipes are the X-series, where X-60 refers to a steel grade with a minimum yield strength of 60,000 psi (60 ksi).
Transmission lines--particularly those used to transport natural gas--are required to withstand higher and higher pressures and to transport more and more gas.

.-The increased demands have led to the use of higher strength, lower toughness steels) such as X-80 steel, to manufacture the transmission lines. Unfortunately, the use of steels with lower toughness increases the potential for ductile rupture of the pipeline.
The danger of ductile rupture can be reduced somewhat by wrapping the steel , transmission line with fiberglass reinforced plastic to prevent the propagation of ductile rupture-type fractures. However, fiberglass reinforcement by itself provided only protection against crack propagation along the pipeline. In order to provide more cost effective protection against ductile rupture, methods are needed which will (a) allow for a reduction in the thickness of the steel liner wall, and (b) provide for load sharing .
between the steel liner and the fiberglass reinforcement.
A technique called "autofrettage," which is practiced in the manufacture of composite.wrapped pressure vessels, theoretically can be used to advantage.
During autofrettage, a fiberglass composite wrapped metal vessel is subjected to an internal pressure greater than the, pressure at which the metallic liner experiences plastic deformation. Once plastic deformation or yielding of the metallic liner occurs, the pressure is reduced. The resulting composite wrapped vessel is left with a relatively consistent residual stress pattern in which the metallic liner is in circumferential compression and the fiberglass composite wrap is in tension. This residual stress pattern (a) allows the fiberglass composite material, which has a much lower stiffness than the metallic liner, to carry a substantial portion of the pressure load, and (b) reduces the circumferential tensile stress on the metallic liner at the operating pressure of the vessel.

.. . . ,~,,~
Autofrettage cannot be easily applied to transmission lines. In pressure vessels, the yield strength of the metallic liner is tightly controlled, and the use of a single autofrettage or "proof' pressure results in a consistent residual stress pattern within each vessel. In contrast, the only tightly controlled property for steels used to make transmission lines is the "minimum yield strength." In the art of manufacturing.fluid transmission lines, "Specified Minimum Yield Strength" (SMYS) means that no portion of the pipeline can have a yield strength below the specified strength. The pipeline commonly has portions with a yield strength above the specified strength. For ' example) a pipeline made of X-60 steel may have portions ranging in yield strength from about 60 ksi up to about 75 ksi, with some welded areas having a yield strength as high as about 80 ksi.
Because of the potential variability in yield strength along a transmission line, the use of a single autofrettage or "proof' pressure does not necessarily result in a consistent residual stress pattern.. Because of this, autofrettage has not been considered a viable method to reduce the danger of ductile fracture in transmission lines.
Methods are needed for ( 1 ) minimizing the thickness required of the metallic liner while maximizing the resistance to ductile fracture propagation, and (2) producing a consistent residual stress pattern effective to resist ductile fracture propagation along the longitudinal axis of a length of pipeline having variable yield strengths.
The invention is a method for making a reinforced pipeline comprising an inner - ,'U''.~~
'4 metallic liner having a specified minimum yield strength and an outer reinforcement therearound. The method comprises: defining operating parameters comprising an operating pressure at a given internal diameter for the metallic liner;
defining a first thickness for the metallic liner and a second thickness for the reinforcement;
determining operating stresses on a length of said reinforced pipeline based on said operating parameters, said first thickness, said second thickness, said specified minimum yield strength, and at least one actual yield strength different from said specified minimum yield strength along said length; and, determining an adjusted first thickness and an adjusted second thickness effective to limit stresses on said reinforced pipeline at said operating pressure to a known percentage of the specified minimum yield strength and of the actual yield strength. The invention also involves pressurizing the reinforced pipeline to cause yielding of the metallic liner in an amount effective to produce a residual stress pattern effective to resist propagation of a ductile fracture along said length.
Deb led Descri,ntion of the Invention The present invention provides a method for minimizing the thickness of a metallic liner while maximizing the burst strength of a reinforced pipeline, and for providing a consistent and predictable residual stress pattern in a reinforced pipeline comprising compressive stress in the steel liner and tensile stress in the composite reinforcement. The residual stress pattern resists ductile fracture propagation along the longitudinal axis of the ' . ~~J
a 5 metallic liner along a length of the pipeline even though the actual yield strength along the pipeline varies.
Transmission lines are made in part of a pipe or liner made of metal, such as steel, which is subject to ductile fracture propagation in a predetermined direction, such as along the longitudinal axis of the pipe. The transmission line may be wrapped in a reinforcement material. The application of the reinforcement material increases the strength of the pipeline in the circumferential direction and increases the ductile fracture resistance of the pipeline in the axial direction. The reinforcement provides substantial resistance to ductile fracture propagation along a longitudinal axis of the metallic liner, but does not provide a means of reducing the thickness of the metallic liner.
A major problem in designing a predictable residual stress pattern is the actual strength of the metallic liner along its length. As an example, steel pipe manufacturers traditionally have variations in their X-60 yield strengths of as much as 15 ksi (from about 60 ksi to about 75 ksi). In addition, the welding rod that is used by most pipeline welders for the girth welds typically is 70XX, which has a minimum of 70 ksi strength in the as welded~condition. Typical weld yield strengths can go as high as 80 ksi. Thus, the variability in steel yield strength in the pipeline can be as much as 20 ksi (60 to 80 ksi), when girth welds are included.
There are two basic approaches to the problem of developing a Composite Reinforced Pipeline (CRP) design taking into account the variability in actual strength of the metallic liner. A first approach is to perform a process during the wrapping of a _;
pipe joint or after the pipe joint is wrapped that would provide a consistent, known pre-stress in the metallic liner. This approach, if technically and financially feasible, has the benefit of producing known levels of stress in the metallic liner and the composite over-wrap.
The second approach, taken in the present invention, is to understand the variability of the metal properties and to make the transmission line based on a parametric study of those properties. Using this approach, a test pressure is applied to the entire pipeline that is less than an autofrettage pressure, but that is sufficient to cause a plastic strain in the range of from about 0.75 percent to about 1 percent on the metallic liner. In other words, a test pressure is determined based upon the SMYS of the metallic liner. In addition, for metallic pipe joints with a higher yield strength, the variability of the working stresses in both the metallic liner and the composite over-wrap is determined and taken into consideration to ensure that these stresses still will provide safe pipeline operation, even though they are very different from the stresses on the sections of pipe having the minimum yield strength. Once the thickness of the metallic liner and reinforcement have been determined, the reinforced pipeline may be formed using known procedures.
The metallic liner may be substantially any size (diameter) and type of pipe with characteristics equivalent to metals such as stainless steel, aluminum, copper, or brass.
The metallic liner typically will have a relatively large diameter, and typically will be treated to provide protection against electrolytic and biochemical corrosion) cathodic disbonding, soil stress, and mechanical damage. Generally, the liner is cleaned by ~'~~.../ .'. ~' t' s! i either sand or grit blasting or by mechanical scraping and wire brushing to render the pipe surface free from oil, grease, dust, moisture, and non-adhering mill scale. The clean pipe then is wrapped with the reinforcement material, described more fully below, using any suitable procedure, for example, the method described in U.
S. Patent No. 4,676,276 to Fawley, incorporated herein by reference.
The metal pipe preferably is reinforced either at the site where the pipe itself is manufactured, or at some other site specifically designed for the application of the reinforcement using known procedures. The pipeline also may be reinforced in the field with a suitable reinforcement material, preferably a composite reinforcement material, and most preferably a fiberglass reinforcement material. A machine or set of machines capable of applying the reinforcement material at the rate of a mile of pipe per day would be required to make the process cost effective. and cost competitive with an all steel pipe. If the pipe is reinforced at the manufacturer, the rate of reinforcement preferably should meet the rate of production of the pipe by the manufacturer's facility. The reinforcement material is wrapped around the pipe under a tension (a) less than a wrapping tension that would cause fibers in the reinforcement material to break or that would cause any perceptible prestress in the pipe, but (b) sufficient ~to assure that any fibers stay straight and parallel during wrapping and lie down in order on the pipe.
Where the reinforcement material is fiberglass, the fibers preferably are lightweight continuous unidirectional high-strength inorganic fibers, preferably glass fibers. Among the fibers usefi~l in the reinforcement material are "E" type fiberglass) _ . . ~~.'..~

i "S" type fiberglass, and KEVLAR. A preferred fiberglass is low cost, high performance "E" type fiberglass. The reinforcement material preferably is non-corrodible by the atmosphere, the soil, and most chemicals. The reinforcement material also preferably is electrically non-conductive so that it does not cause galvanic corrosion of the pipe and does not disturb cathodic corrosion protection, which often is provided in a pipeline. Preferred commercially available reinforcement materials are ADVANTEX~'~"'' glass fiber, which is commercially available from Owens Corning, Toledo, Ohio, or other similar structural glass fiber systems.
In order to form the composite reinforcement material, the fibers are impregnated with a viscous material which is capable of curing or hardening by time) heating, cooling, chemical reaction, moisture, ultraviolet light, or the like.
Suitable viscous materials for use in forming the composite reinforcement material include, 'but are not necessarily limited to urethane, epoxy resin, vinyl ester, and isophthalic polyester resin. Preferred viscous materials are urethane resins and isophthalic polyester resins) most preferably isophthalic polyester resins. A preferred commercially available resin is AMOCO F-764 Isopolyester, available from Amoco Chemical, Napierville, Illinois.
The fibers may be impregnated with the resin, e.g., by passing them through a bath or over a coating roller or the like, immediately before wrapping the pipe. The resin then should be cured. In a preferred embodiment, the resin impregnated fibers are exposed to a suitable source of UV light either by rotating the pipe to expose the entire circumference or by moving a UV light source which surrounds the pipe along '~ , ~~,"~, 9 , the length of the pipe. The cured resin forms a fluid impervious composite mass wlSich 1;
prevents the ingress of moisture and dirt, and also bonds the fibers to one another and to the pipe. Additional resin may be applied to the fibers as they are wrapped around the pipe, or after wrapping to avoid damage during transportation and subsequent procedures.
A portion of the stress in the circumferential direction of the metallic liner, i. e., the hoop stress, is taken up by the composite wrapping. The circumferential strength imparted to the pipe by the unidirectional fibers can be controled so that the imparted circumferential strength can be twice the strength of the bare metallic liner.
The imparted circumferential strength can be regulated by the type, number, size of fibers, and thickness of the reinforcement material. The reinforcement material is substantially as strong as steel, but only about one-third as dense as steel, and thus weighs only a fraction as much as steel. The use of the reinforcement material can have little or no cost impact on the construction of the transmission line. A short section of each end of the pipe section is left unreinforced so that the pipe sections can be welded together on site without damage to the fiberglass reinforcement.
The reinforced and cured pipe sections are transported to the site where the pipeline is being constructed, and the sections of the pipeline are welded together to construct a section the proper length for hydrostatic testing or autofrettage.
The welded joints between the pipe sections are reinforced with field application of reinforcement material and resin, and the resin is cured, to make a fully reinforced section of transmission line. The pipe then is subjected to a process similar to '~ ~~i "autofrettage" (the inventive pressurization process is sometimes hereinafter called "autofrettage" for simplicity). A predetermined hydrostatic pressure is applied to the pipeline sufficient to cause a small amount of yielding (0.75-1%) of the metallic liner.
The pressure is maintained until all of the required yielding has occurred.
The pressure 5 then is removed, resulting in a residual stress pattern comprising residual compressive stress in the metallic liner and residual tensile stress in the reinforcing material. This residual stress pattern resists the longitudinal propagation of ductile rupture type fractures, and also allows for a reduction in the wall thickness required for the metallic liner. The application of the hydrostatic test pressure provides the required hydrostatic 10 test of a constructed section of the transmission line.
In order to induce a consistent, predictable residual stress pattern according to the invention, the stresses in the metallic liner and reinforcement are calculated, taking into account the variability in the yield strength of the metallic liner.
These calculated values, rather than the Specified Minimum Yield Strength (SMYS) of the metallic I S liner, then are used to design the transmission line. The result is that the stresses in both the metallic liner and the reinforcement material are limited to a known percentage of the actual yield and ultimate strengths of those materials, with the pipeline operating at its maximum rated pressure.
In order to meet DOT standards for non-steel pipe, the pressure applied to the reinforced pipeline during "autofrettage" should be at least 125% of the expected operating pressure. Preferably, a hypothetical "autofrettage" pressure which is approximately 30-40% higher than the expected operating pressure is used as a ~.A~ ~ , , f.

. starting point. The pressure should be sufficiently high that, at minimum specification properties (SMYS), an amount of about 0. 75-1 % plastic yielding is achieved.
Using the hypothetical set of parameters, a structural analysis is performed to calculate the stress in the metallic liner and in the reinforcement for a range of actual metal yield strengths. The results are used to calculate the characteristics of a transmission line made of both a metallic liner and composite reinforcement in order to determine the design required to meet the applicable DOT standards.
In the following discussion, the following characters represent the following values:
e0 or E°=total circumferential strain in pipe (elastic and plastic) E,=elastic modulus of steel EZ=tangent modulus of steel after yield-bilinear stress-strain curve E~ elastic modulus of reinforcement (fiberglass) e~ =strain in reinforcement E,; = strain in reinforcement at autofrettage pressure .
E,--strain in steel Ep = strain in steel at autofrettage pressure ey~ield strain (typically accepted to be 0.002) Q~ stress in reinforcement a~ stress in reinforcement at autofrettage pressure o,--stress in steel Q~ = stress in steel at autofrettage pressure ay=yield strength of steel P= pressure R=radius of pipe sy=yield strength of steel t<=thickness of reinforcement t,--- thickness of steel r~ radius of reinforcement r,=radius of steel The predetermined hydrostatic pressure for the "autofrettage" type pressurization may be determined by making the following assumptions 1. t,/R, t,lR «1; pipe is thin-walled.
2. Uniaxial reinforcement in hoop direction, providing no axial support.
3. Yielding of metal is bi-linear (E, & Ez); reinforcement remains elastic (Er) Compatibility of the interface between the reinforcement and the metal requires, (1) ~r=~.
Equilibrium requires, (2) PR =r rtr + rate Initial pressurization causes the metal to yield, (3) ~,; _ ~a = ~o > ~y Qa = Qy + (~a - ~y)Ez Then, PR = Q,;tr + (Qy + (~.. - ~y)Ez)t.
PR = ~ritrErtr + Qyt. + ~dE2t. - ~2t. _ ~o(Ertr + Ezt.) + Qyt.( 1-EzW ) And, 6 P [~°(Ertr + EZt,) + vyt,(1-Ez/El)~~
For example, using typical values for E-Glass (70% Vf) (University of Delaware Composites Design Guide) and API X-60, found in the API 5-L specification for steel pipe, the following pressures (based on expected variations in vy) are required when yielding the metal (~° > ~y):
R = 18.0 E2 = 60000 E 1 = 30000000 e0 = 0.012 tr = 0.55 is = 0.55 Er = 7000000 _ ~..~

10 P(sY) = e0 ~ ~r ~ tr + EZ ~ t.) ~' sY ~ t. ~ 1-P(60000) = 4.4183 x 103 P(65000) = 4.5708 x 103 P(70000) = 4.7233 x 103 P(60000) = 4.4183 x 10' P(65000) = 4.5708 x 103 P(70000) = 4.7233 x 103 If the axial stress in the reinforcement is negligible and the axial stress in the metal remains less than the yield strength, (7) , o,~,x;,,~ = PR/2t, < vy .
Substituting (5) into (7).
EO(Erh't. +'r2) + Qy(1-E2~1) < 2Qy Then, Eo < Qy( 1-Ez~l)~~r~t. + EZ) .
For a pipe with only hoop reinforcement, equation (9) sets the upper limit on strain when conducting autofrettage by internal pressurization by ensuring that no axial yielding occurs. For varying values of oy, these limits are:

. . CA 02248584 1998-09-23 ~'~.--..~.SJ
,.

. 5 F~
- sy ~ (1- E1 ) e0 (sy) - e0(60000) = 0.0085 ~ e0(65000) = 0.0092 ( Er ~ is + E2) e0(70000) = 0.0099 Upon depressurization, the pipe unloads elastically and equation ( 1 ) becomes, Eru - ~au (10) eN = ~o - 1/E,((Q,; - Q.,~ - uPR/(2t,)) ZO Substituting (2), (4) and (5) into ( 10), and solving.
- Q.~t.~rtr = ~o - Q.W + Q.~E~ + uPR/(2E,t,) - QN( 1 W + ~rtr) = Eo - (Qy ~' (~o - Ey)EZ)W + U(eo(Ertr + Ezt.) + Qyt.( 1 -EzW ))~2E, t.) ( 11 ) Q.~ _ { ~o~ 1 - Ez~' 1 + u(Er~~lte) + E~' I)~2l - ~y~ 1 - ~1- u( 1 _ Ez~1)~2l ~EI~~It.~~rtr)+1 ) Numerically solving for o,~
' cy = 0.002 e0 = 0.012 nu = 0.29 3 5 ssu= [c0~ C 1 - ~ + ~ ~ ~~ + ~~ -ey . 1 - ~ - ~ 1 - ~
E1 ~ 2 E1 ~ is E1 1) E1 2 E1 (E1 ts+
~ .tr Er ssu = 6.061 x 104 And solving for vN
~ Snu = ssu fraction sru = 6.061 x 104 Now if the pipe is repressurized such that o,~ = S < oy equation ( 1 ) takes the form, ( 12) (Q~r - Qra)~r = ('S - Q.u - uPR/(2t,))W
Reducing and solving for pressure, where a~ = PR/tr - St~/t<

Plvtr - St,~tr = Q,ut,~tr + Er(S - Q") - uPR/(2t,))/E1 PR( 1 + uErt,/(2EIta))~tr = S(t.tr '~' E~' ~) - Qru(t~te + E.~~) (13) P = (S - o,)t,~l + Ert~/E~t,J/R(1 + uE,t,/(2E~t,)J
5 The operating pressure, for a given S, is then,' Er-trtr ~ ~ (1 + EI~ is ) P(S) - is nu~~r~ir (1+ 2~E1~ts P(43200) = 3.7841 x 103 For example, assume that it is desired to operate a pipeline with composite reinforced pipe. The current design of the pipeline is for a 42 inch diameter X-80 all steel line pipe operating at 2200 psi. Assume a target for the CRP to be a the same 5 diameter and pressure, but using a X-60 liner reinforced with fiberglass.
Four potential design targets must be addressed: ( 1 ) Composite Reinforced Line Pipe with pre-stress of the steel; (2) Composite Reinforced Line Pipe without any steel pre-stress;
(3 ) all steel X-60 line pipe; and, (4) all steel X-80 line pipe. The API rules for steel pipe state that the hoop stress in the steel pipe at operating pressure can be no more than 72% of 10 the Specified Minimum Yield Stress (SMYS) of the steel. For X-60 steel, this is therefore 43,200 psi. The DOT regulations for fiber wound compressed gas cylinders states that the working stress in the composite over-wrap can be no more than 30% of the strength of the glass, or in the present example, 45,000 psi ( 150,000 psi ultimate . '.~ .
'-~'.V;

strength).
For ( I ), Composite Reinforced Pipe with pre-stress of the steel, the steel and fiberglass will be defined for simplicity as having equal thickness. The overall pipe thickness will be approximately 1.0 inches, composed of 0. 5 inches of steel and 0. S
, inches fiberglass. The pre-stress that would have to be created in the steel could be provided by pressurizing the steel to in the range of from about 0. 75% to 1 %
plastic strain. This pre-stress will provide a residual compressive stress (at zero internal pressure) of about 34,000 psi, and an equivalent tensile stress in the composite over-wrap of 34,000 psi (because they are the same thickness).
For (2), Composite Reinforced Pipe without any steel pre-stress, there can be no pre-stress of the steel, and the steel must operate at 72% of the yield, or 43,200 psi At this stress, since the composite will strain the same amount as the steel (no pre-stress or yielding, everything remains elastic), the stress in the composite will be 10,080 psi. ~'he thickness of the steel and composite will both have to be 0.87 inches, or the line pipe will be 1.74 inches in thickness.
For (3), an all steel X-60 line pipe, the thickness will be 1.07 inches, and for (4), an X-80 line pipe, the thickness will be 0.809 inches. All of these examples use the current API and DOT design rules for pipelines and over-wrapped pressure vessels. It is apparent from the above that pre-stress of the steel is required at some level for any design of CRP, to be considered to be competitive with the steel.

~,~

CRP PS CRP no X-60 X-80 ~

Diameter 42 42 42 42 Pressure 2200 2200 2200 2200 t steel 0.5 0.87 1.07 0.809 t comp. 0.5 0.87 0 . ~ 0 weight/ft 280 490 480 360 Note that, in addition to thickness dimensions, a weight per foot estimate was added at the bottom of the table. This shows the real differences in each of the design options, I 0 and shows directly the benefits of pre-stressing the steel.
Table I demonstrates an alternate method for determining the parameters of a proposed steeUcomposite transmission line. Table 1 shows a prestressed composite reinforced pipe with an X-60 liner nominally 0.5 inches in thickness, and an equal thickness of fiberglass reinforcement when the pressure is: (a) increased up to the I5 hydrostatic test pressure; (b) reduced to zero pressure showing the residual stresses in both steel and fiberglass; and (c) then taken back up to operating pressure showing the stresses in both fiberglass and steel. Table I also gives such calculations for pipe sections of an X-60 steel liner which may have other yield strengths, up to X-80.
Based on the data presented in Table I, those portions of the X-60 steel liner 20 with actual yield strengths of 60 ksi clearly meet the DOT 72% limitation.
The circumferential stress on the steel liner approaches 75% of the actual yield strength for those portions of the steel liner with actual yield strengths of 75 ksi, and approaches 76% for those portions of the steel liner with actual yield strengths of 80 ksi. For the fiberglass, the highest circumferential stress is in those locations where the actual yield strength of the steel is 60 ksi. In these locations, the stress in the fiberglass is slightly in excess of 50 ksi, which is approximately I /3 of the ultimate strength of the fiberglass, within the guidelines of the DOT for fiberglass wrapped pressure vessels. In those areas where the steel is actually a higher yield strength, there is less load sharing S by the fiberglass, and the fiberglass stress in the circumferential direction is lower than in the area where the actual yield strength is at its specified minimum. In other words, in those areas where the steel stress is higher, the stress in the fiberglass is lower, and the pipe is inherently safe, meeting the intent of the DOT guidelines.
The 72% DOT limit is based on a pipeline made entirely of steel. It is not clear how this 72% limit should apply in the case of a metaUcomposite pipeline. In order to address this issue, the present invention uses a Limit States design. In a Limit States design, all of the metal operates at some given percentage of its actual yield strength, and a structural analysis is performed to determine the margins of safety left in the pipeline given that the metallic liner exhibits a range of different yield strengths. In this manner, the composite reinforcement can not only resist the propagation of ductile fracture, it can also be designed to carry a significant fraction of the pressure load of the pipe.
Persons of ordinary skill in the art will recognize that many modifications may be made to the present invention without departing from the spirit and scope of the present invention. The embodiment described herein is meant to be illustrative only and should not be taken as limiting the invention, which is defined in the following claims.

Claims (25)

1. A method for making a reinforced pipeline comprising an inner metallic liner having a specified minimum yield strength, said reinforced pipeline comprising an outer reinforcement therearound, said method comprising:
defining operating parameters comprising an operating pressure at a given internal diameter for said metallic liner;
defining a first thickness for said metallic liner and a second thickness for said reinforcement;
determining operating stresses on a length of said reinforced pipeline based on said operating parameters, said first thickness, said second thickness, said specified minimum yield strength, and at least one actual yield strength different from said specified minimum yield strength along said length; and, determining an adjusted first thickness and an adjusted second thickness effective to limit stresses on said reinforced pipeline at said operating pressure to a known percentage of said specified minimum yield strength and of said actual yield strength.
2. The method of claim 1 further comprising providing said metallic liner having said adjusted first thickness; and applying around said metallic liner said reinforcement having said adjusted second thickness.
3. The method of claim 1 wherein said known percentage is no more than about 72%.
4. The method of claim 2 wherein said known percentage is no more than about 72%.
5. The method of claim 1 wherein said method further comprises pressurizing said reinforced pipeline to cause in the range of from about 0.75 to about 1 % plastic yielding along portions of said reinforced metallic pipeline actually having said specified minimum yield strength.
6. A method for making a reinforced pipeline comprising an inner metallic liner having a specified minimum yield strength and an outer reinforcement therearound, said method comprising:
defining operating parameters comprising an operating pressure at a given internal diameter for said metallic liner:
defining a first thickness for said metallic liner and a second thickness for said reinforcement;
determining operating stresses on a length of said reinforced pipeline based on said operating parameters, said first thickness, said second thickness, said specified minimum yield strength, and at least one actual yield strength different from said specified minimum yield strength along said length;

determining an adjusted first thickness and an adjusted second thickness effective to limit stresses on said reinforced pipeline at said operating pressure to a known percentage of said specified minimum yield strength and of said actual yield strength; and providing said metallic liner having said adjusted first thickness; and applying around said metallic liner said reinforcement having said adjusted second thickness;
pressurizing said reinforced pipeline to cause in the range of from about 0.75 to about 1 % plastic yielding along portions of said reinforced metallic pipeline actually having said specified minimum yield strength.
7. The method of claim 4 wherein said method further comprises pressurizing said reinforced metallic pipeline to cause yielding of said metallic liner in an amount effective to produce a residual stress pattern effective to resist ductile facture propagation along a longitudinal axis of said metallic liner, said residual stress pattern comprising residual compressive stress on said metallic liner and residual tensile stress on said reinforcement.
8. A method for making a reinforced metallic pipeline comprising:
providing a reinforced pipeline comprising a metallic liner having a specified minimum yield strength and comprising a reinforcement therearound;
and pressurizing said reinforced pipeline to cause in the range of from about 0.75 to about 1 % plastic yielding along portions of said reinforced metallic pipeline actually having said specified minimum yield strength.
9. The method of claim 8 wherein said metallic liner comprises at least one actual yield strength which differs from said specified minimum yield strength.
10. The method of claim 8 wherein said yielding produces a residual stress pattern comprising residual compressive stress on said metallic liner and residual tensile stress on said reinforcement, said residual stress pattern being effective to resist ductile fracture propagation along a longitudinal axis of said metallic liner.
11. A method for making a reinforced metallic pipeline comprising:
providing a reinforced pipeline for transporting fluid at a given operating pressure, said reinforced pipeline comprising:
a metallic liner having a specified minimum yield strength and comprising at least one actual yield strength which differs from said specified minimum yield strength, said metallic liner comprising a wall having a first thickness and defining a bore therethrough; and, a reinforcement therearound comprising a second thickness;
wherein said first thickness and said second thickness are effective to limit stresses on said reinforced pipeline at said operating pressure to a known percentage of said specified minimum yield strength and said actual yield strength.
12. The method of claim 11 further comprising pressurizing said reinforced pipeline to cause yielding of said metallic liner in an amount effective to produce a residual stress pattern effective to resist ductile fracture propagation along said length.
13. The method of claim 12 wherein said pressurizing is effective to cause in the range of from about 0.75 to about 1% plastic yielding along portions of said reinforced metallic pipeline actually having said specified minimum yield strength
14. A method for making a reinforced metallic pipeline comprising:
providing a reinforced pipeline for transporting fluid at a given operating pressure, said reinforced pipeline comprising:
a length of a metallic liner comprising a specified minimum yield strength and at least one actual yield strength which differs from said specified minimum yield strength, said metallic liner comprising a wall having a first thickness defining a bore through said length; and a reinforcement therearound having a second thickness; and pressurizing said reinforced pipeline to cause yielding of said metallic liner in an amount effective to create a residual stress pattern;
wherein an all metallic liner would require a third thickness greater than said first thickness to resist ductile fracture propagation along said length, and said residual stress pattern permits said reinforced pipeline to resist ductile fracture propagation along said length even though said metallic liner has said first thickness.
15. The method of claim 14 wherein said known percentage is no more than about 72%.
16. The method of claim 14 wherein said yielding comprises in the range of from about 0.75 to about 1% plastic yielding along portions of said reinforced metallic pipeline actually having said specified minimum yield strength.
17. A reinforced metallic pipeline for transmission of fluid at a given operating pressure comprising:
a length of metallic liner comprising a specified minimum yield strength and at least one actual yield strength which differs from said specified minimum yield strength, said metallic liner comprising a wall having a first thickness defining a bore through said length; and an outer reinforcement along said length of said metallic liner, said reinforcement comprising a second thickness;
wherein an all metallic liner would require a third thickness greater than said first thickness to resist ductile fracture propagation along said length, and said residual stress pattern permits said reinforced pipeline to resist ductile fracture propagation along said length even though said metallic liner has said first thickness.
18. The pipeline of claim 17 wherein said first thickness and said second thickness are effective to result in a burst strength which is a given percentage greater than said minimum yield strength and said actual yield strength.
19. The pipeline of claim 17 wherein said reinforcement comprises a composite.
20. The pipeline of claim 17 wherein said composite comprises fiberglass.
21. The pipeline of claim 18 wherein said reinforcement comprises a composite.
22. The pipeline of claim 18 wherein said composite comprises fiberglass.
23. The pipeline of claim 17 wherein said residual stress pattern comprises residual compressive stress on said metallic liner and residual tensile stress on said reinforcement.
24. The pipeline of claim 18 wherein said residual stress pattern comprises residual compressive stress on said metallic liner and residual tensile stress on said reinforcement.
25. The pipeline of claim 22 wherein said residual stress pattern comprises residual compressive stress on said metallic liner and residual tensile stress on said reinforcement.
CA002248584A 1998-04-20 1998-09-23 High pressure low cost prestressed composite wrapped transmission line system Abandoned CA2248584A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US8238498P 1998-04-20 1998-04-20
US60/082,384 1998-04-20
US8252498P 1998-04-21 1998-04-21
US60/082,524 1998-04-21
US09/126,520 US6146482A (en) 1998-04-20 1998-07-30 Method for designing high pressure low cost prestressed composite wrapped transmission line system
US09/126,520 1998-07-30

Publications (1)

Publication Number Publication Date
CA2248584A1 true CA2248584A1 (en) 1999-10-20

Family

ID=27374266

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002248584A Abandoned CA2248584A1 (en) 1998-04-20 1998-09-23 High pressure low cost prestressed composite wrapped transmission line system

Country Status (2)

Country Link
US (1) US6146482A (en)
CA (1) CA2248584A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062477A2 (en) * 2000-02-25 2001-08-30 Fernand Ellyin Fiber-reinforced composite wrapped steel liner

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2828121B1 (en) * 2001-08-01 2003-10-24 Inst Francais Du Petrole METHOD FOR SIZING A FREIGHT TUBE
FR2851995B1 (en) * 2003-03-03 2006-07-28 METHOD FOR REINFORCING A METAL TANK AND REINFORCED METAL TANK
US20050087910A1 (en) * 2003-10-27 2005-04-28 Fawley Norman C. Method and apparatus for bending composite reinforced pipe
US8418337B2 (en) * 2006-08-29 2013-04-16 Conocophillips Company Dry fiber wrapped pipe
US20080277398A1 (en) * 2007-05-09 2008-11-13 Conocophillips Company Seam-welded 36% ni-fe alloy structures and methods of making and using same
US7900655B2 (en) * 2008-07-18 2011-03-08 Tdw Delaware, Inc. Composite load transferring technique
FR2961427B1 (en) * 2010-06-22 2012-06-15 Inst Francais Du Petrole FREQUENCY METHOD FOR REINFORCING A TUBE WITH AXIAL HOLD AND INTERNAL PRESSURE TENSION
CN106503303B (en) * 2016-09-29 2019-05-03 中国石油天然气集团公司 A kind of composite material enhancing metallic conduit design pressure calculation method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA735870A (en) * 1966-06-07 Structural Fibers Method of producing fiber-reinforced plastic vessels and the like
US2401092A (en) * 1943-10-09 1946-05-28 Price Brothers Co Prestressed steel pipe
US2713551A (en) * 1951-11-19 1955-07-19 Trenton Corp Reinforced covering for pipes
US2718583A (en) * 1952-11-18 1955-09-20 David B Noland Water-heater tank of reinforced plastic and method and apparatus for making the same
FR1243920A (en) * 1959-09-10 1960-10-21 Quartz & Silice Improvements in the manufacture of hollow bodies such as tubes or containers that must withstand high internal pressure at high temperature
US3068562A (en) * 1960-04-15 1962-12-18 Struthers Wells Corp Method of making pressure vessels
US3240644A (en) * 1962-11-02 1966-03-15 Specialties Dev Corp Method of making pressure vessels
US3439405A (en) * 1966-11-25 1969-04-22 Foster Wheeler Corp Method of vessel fabrication
US3844730A (en) * 1968-05-10 1974-10-29 Maschf Augsburg Nuernberg Ag Process for the manufacture of a rotor or shaft of low deformability
US3969812A (en) * 1974-04-19 1976-07-20 Martin Marietta Corporation Method of manufacturing an overwrapped pressure vessel
NL8100088A (en) * 1981-01-09 1982-08-02 Tech Hogeschool Delft Afdeling LAMINATE OF METAL SHEETS AND CONNECTED WIRES, AND METHODS FOR MANUFACTURE THEREOF
US4589562A (en) * 1981-05-04 1986-05-20 Fawley Norman Structures reinforced by a composite material
US4417459A (en) * 1981-07-30 1983-11-29 National Distillers And Chemical Corporation Autofrettage process
US4676276A (en) * 1981-10-20 1987-06-30 Fawley Norman Method of treating a pipe and product produced thereby
JPS59117994A (en) * 1982-10-01 1984-07-07 ノ−マン・シ−・フアウリ− Device and method for preventing propagation of ductility breakdown
US4559947A (en) * 1984-01-27 1985-12-24 Renger Herman L Cardiac tissue stimulator providing P-wave verification, telemetry, marker channels, and antitachycardia capabilities
CA1251151A (en) * 1984-03-28 1989-03-14 Norman C. Fawley Structures reinforced by a transparent composite material
US4688374A (en) * 1986-03-10 1987-08-25 Essex Composite Wrap, Inc. Pipe wrapping machine
US4700782A (en) * 1986-11-07 1987-10-20 Dresser Industries, Inc. Flow control valve for use in oil and gas wells and the like
EP0323660A1 (en) * 1987-12-31 1989-07-12 Akzo N.V. Process for manufacturing a laminate of metal sheets and filaments-reinforced synthetic layers
WO1994005499A1 (en) * 1992-09-09 1994-03-17 Clock Spring Company L.P. High tensile strength composite reinforcing bands and methods for making same
US5332049A (en) * 1992-09-29 1994-07-26 Brunswick Corporation Composite drill pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062477A2 (en) * 2000-02-25 2001-08-30 Fernand Ellyin Fiber-reinforced composite wrapped steel liner
WO2001062477A3 (en) * 2000-02-25 2001-12-27 Fernand Ellyin Fiber-reinforced composite wrapped steel liner

Also Published As

Publication number Publication date
US6146482A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
JP5203369B2 (en) Dry fiber cladding tube
KR20070036160A (en) Improvements in tubular bodies and methods of forming same
US7824751B2 (en) Structural reinforcement system
US9163757B2 (en) High-pressure pipe element having an assembly of hooped tubes and method of manufacture
US6146482A (en) Method for designing high pressure low cost prestressed composite wrapped transmission line system
US3880195A (en) Composite pipeline prestressed construction
Budhe et al. Composite repair system for corroded metallic pipelines: an overview of recent developments and modelling
US6895806B2 (en) Hooped tube dimensioning method
US9097366B2 (en) Pipe element made of a hoop-wound tube with transition elements
Manouchehri et al. A discussion of the effect of the reeled installation process on pipeline limit states
Ehsani Repair of corroded/damaged metallic pipelines using fiber-reinforced polymer composites
Meniconi et al. Stress analysis of pipelines with composite repairs
Batisse Review of gas transmission pipeline repair methods
Johnson et al. Composite production riser-manufacturing development and qualification testing
Saeed et al. Design of fibre-reinforced polymer overwraps for pipe pressure
Salama Qualification Strategy for FAST-Pipe™ for High Pressure Gas Pipelines
Anelli et al. Effect of reel-laying simulation on mechanical performance of flowlines
Salama Qualification of fiber wrapped steel pipe for high pressure arctic pipeline
Chan Design study of composite repair system for offshore riser applications
Alexander et al. State-of-the-art assessment of today’s composite repair technologies
US20100119862A1 (en) Fiber Wrapped Pipe Weld Seam
Laughlin et al. Full Encirclement Engineered Laminated Steel Sleeve System for Repairs and Augmentation of Pipelines: The Engineering Development, Validation Test Results, and Implications for Mitigation of Both Stress and Strain Dependent Integrity Threats
Silva et al. Investigation of the Defect Width Effect on the Burst Capacity of Composite-Repaired Pipelines With Corrosion Defects Using Finite Element Analysis
George et al. Simplified FE model predicting the bending behaviour of corroded tubular steel members rehabilitated using CFRP
Smyth et al. Pipeline Repair

Legal Events

Date Code Title Description
FZDE Discontinued