CA2237756C - Expandable stent - Google Patents

Expandable stent Download PDF

Info

Publication number
CA2237756C
CA2237756C CA 2237756 CA2237756A CA2237756C CA 2237756 C CA2237756 C CA 2237756C CA 2237756 CA2237756 CA 2237756 CA 2237756 A CA2237756 A CA 2237756A CA 2237756 C CA2237756 C CA 2237756C
Authority
CA
Canada
Prior art keywords
wire
ribbon
serpentine
stent
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 2237756
Other languages
French (fr)
Other versions
CA2237756A1 (en
Inventor
Allen J. Tower
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Numed Inc
Original Assignee
Numed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Numed Inc filed Critical Numed Inc
Priority claimed from PCT/US1997/017211 external-priority patent/WO1998014137A1/en
Publication of CA2237756A1 publication Critical patent/CA2237756A1/en
Application granted granted Critical
Publication of CA2237756C publication Critical patent/CA2237756C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

A radially expandable stent which is formed of a fine wire (10) bent into a serpentine flat ribbon and helically wound around a mandrel (14), is disclosed. The stent is formed into a cylindrical sleeve (18) for mounting on a balloon catheter (38) and transluminal insertion into a vessel (35). A free end (20) of the wire (10) is looped or wrapped around the helix at locations (40X42)(44). The wire (10) forming the scent comprises an alloy selected from the group consisting of Pt-Ir or Au-Ni and bas a tensile strength of about 155,000 PSI to 175,000 PSI.

Description

EXPANDABLE STENT
FIELD OF THE INVENTION
This invention relates to intravascular implants for maintaining vascular patency in human blood vessels. More particularly, this invention relates to a ' radially expandable stmt made from a fine wire formed into a serpentine ribbon wound into a cylindrical shape for introduction into a body vessel for balloon expansion therein in a radial fashion to support the wall of the vessel when in the expanded configuration. This invention is particularly useful in transluminar implantation of a stmt for use in the coronary angioplasty to prevent restenosis.
BACKGROUND OF THE INVENTION
The basic concept of stents has been known for a number of years.
Various types of stents have been proposed and patented, including self expanding spring types, compressed spring types, mechanically actuated expandable devices, heat actuated expandable devices, and the like. More recently, expandable sleeves have been proposed such as shown in U.S. Patent No. 4,733,665 to Palmaz, issued March 29, 1988. In this and other patents, Dr.
Palmaz suggested a series of metal sleeves which could be expanded by a balloon catheter through the elastic limit of the metal so as to permanently deform them into contact and support of the interior surface of the blood vessel in question.
Subsequently, patents to Hiilstead, U.S. Patent No. 4,856,516 issued August i6, 1989 and U.S. Patent No. 4,886, 062 issued December 12, 1989 to Wiktor, have shown stems formed of a zigzag wire wound around a mandrel in a somewhat cylindrical fashion which can then be mounted on a collapsed catheter balloon and expanded after introduction into the vessel by expanding the balloon catheter.
These prior art devices have been satisfactory for certain installations, but have been limited in the amount of support that can be provided to the interior of the blood vessel wall and in some cases, to the ratio of expansion possible, and in other cases in the size of the profile presented for the transluminal insertion.
-2-OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a stent that overcomes the limitations of the prior art.
It is a further object of the present invention to provide a fine wire stmt that is economical to produce and yet exhibits the mechanical strength and elasticity to be able to maintain the desired shape and size in the expanded state after installation.
These and other objects of the present invention are accomplished in one embodiment by providing a stent formed from a fine wire bent into a flat serpentine ribbon and wound around a cylindrical mandrel to form a cylindrical sleeve for application to a collapsed balloon catheter for transluminal insertion in a blood vessel and later expansion by inflation of the balloon catheter at the desired site. In the present invention, the improvement comprises making the stmt from a wire which comprises an alloy selected from the group consisting of Pt-Ir or Au-Ni, and where the alloy exhibits a tensile strength of about 155,000 to 175,000 PSI. In one embodiment of the present invention, the alloy comprises about 90 wt % Pt and 10 wt % Ir. It has been found that alloys of this type provide the combination of strength and resilience to be readily expandable and to maintain their size and shape in the expanded state after installation. In a further embodiment, the welds are eliminated and the free end of the wire forming the stent is looped or wrapped around the helix at a plurality of selected locations to provide for greater dimensional stability.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other and further objects of the present invention with additional features and advantages accruing therefrom will be apparent from the following description shown in the accompanying drawings wherein:
FIG. 1 is an enlarged scale plan view of the first step of the formation of a fine wire into the ribbon of the present invention;
FIG. 2 is a view similar to FIG. i of the serpentine wire ribbon formed from the wire configuration of FIG. 1;

WO 98J14137 PCTILTS97li72I1
-3-FIG. 3 is a view of the wire ribbon of FIG. 2 wound about a mandrel to form a helix; with the wire pigtail of the ribbon of FIG. 2 welded to the helix;
FIG. 4 is a view similar to FIG. 3 showing the stmt mounted about a collapsed balloon catheter inserted in a blood vessel; and ' S FIG. 5 is a view similar to FIG. 4 on a reduced scale showing the expanded stent in position in a blood vessel for holding the blood vessel in the open configuration.
FIG. 6 is an enlarged view of the stmt of the present invention wound about the mandrel similar to FIG. 3 except for the weld construction.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to FIG. 1, a stent in accordance with the present invention and as illustrated by the prior art in U.S. Patent No. 5,217,483 which is formed by first taking a fine wire 10 having a diameter of approximately 0.004 inch, preferably made from platinum and forming it into a generally sinusoidal form, as shown in FIG. 1 in which approximately ten cycles or segments per inch are formed in the wire. These waves can be formed in any convenient manner, for instance as by bending about a rack gear by running a corresponding spur gear over a wire laid along the rack.
As may be seen in FIG. 2, the next step is to take the wire of FIG. 1 and to further bend the sinusoids into a flat band containing alternately inverted teardrop shaped elements or loops 13. Each element shares a common side with its neighbor and includes a base 17 and a pair of arcuate shaped legs 19-19 that come together in touching contact at an apex 15. The apex of a loop will lie along one side edge of the band, such as edge 21 while the base of the loop lies upon the opposite side edge 23 of the band. In this configuration, approximately forty loops 13 per inch of ribbon are present and the height or "amplitude" 34 of the loops is approximately 1/16 inch. This is accomplished by mechanically bending the partially formed loops of FIG. 1 up against each other into the shape shown in FIG. 2.
The fine wire 10 used to form the basic flat ribbon 12 is a soft platinum wire that has been fully annealed to remove as much spring memory as possible. The straight wire before bending, being in the fully annealed condition, will retain whatever shape it is formed into.
After the flat narrow serpentine ribbon 12 is formed, as shown in FIG.
2, the ribbon 12 is wrapped about a mandrel 14 having a diameter of 0.060 inch in a spiral or helix fashion with the edges of each helix wrap 16 of the ribbon 12 basically touching the adjacent ribbon helix edges to form a wire sleeve 18.
The number of circumferential sections 16 on the mandrel will determine the length of the sleeve 18, and a typical stmt of this type may have a length of approximately one-and-one-half inches.
According to the present invention, as the serpentine ribbon 12 of FIG.
2 is wound on the mandrel 14 of FIG. 3, the free end 20 of the wire of FIG. 1 is inserted through the helix, as may be seen in FIG. 3. In actual practice, the ribbon 12 is wound about the mandrel 14 over the top of the free end 20 of the wire 10. After the helix is formed to the desired length, the free end 20 extending through the helix is trimmed, and welded smoothly to the final turn or end circumferential section of the helix 16 so as not to present any increased profile and so as not to puncture or pierce the balloon catheter or the blood vessel into which it is being inserted. The end turn of the helix is welded at and intermediate welds such as 24 are formed to stabilize the length of the helix.
The first turn of the helix at the other end may also be welded to the free end at 26 so that the overall length of the stmt can be constrained and maintained in the desired configuration.
The serpentine ribbon sleeve 18 is next placed about a collapsed balloon catheter as shown in FIG. 4. In this configuration, the sleeve 18 generally has a diameter in the neighborhood of 1.5 mm for insertion into the blood vessels adjacent the heart.
In use, the stent is mounted on a balloon catheter as shown in FIG. 4 , and is inserted into the appropriate blood vessel 35. The stmt is guided to the desired location where there is occluding plaque 28 or a weak vessel wall or ' other imperfection requiring placement of a stmt. ~nce the stmt is properly located and verified by fluoroscopic or other means, the balloon catheter 36 is inflated to radially expand the serpentine wire sleeve 18. As the balloon 38 expands, it expands the tight closed apex of each loop of the serpentine ribbon 12 from "touching contact" shown in FIGs. 2-4 to a spaced apart condition as shown in FIG. 5. For instance, in a particular embodiment where the diameter of the stmt on the collapsed balloon catheter was 1.5 mm, the stent has been expanded to 4 mm to 5 mm within the blood vessel. The space 30 between adjacent loops then increases to something approximately 0.0875 inch with the loop dimension being approximately 0.025 inch Thus, what initially in FIG. 2 was a "wavelength" of 0.025 inch, now becomes a "wavelength" of 0.1125 inch. This is an increase of 4.5 times and is perhaps one of the more common expansion ratios found with stems of this type. With the present stmt, expansion of up to 8 mm or six times has been found to be entirely satisfactory.
At the same time, the "amplitude" or width 34 of the ribbon 12 decreases some 20 percent to 25 percent due to the lengthening of the helix wrap due to the increased circumference of the expanded sleeve. Thus, as the helix is lengthened by stretching the helix about the increased circumference of the expanded stem, the adjacent loops 13 are separated by spaces 30 at the same time the amplitude 34 of the individual helixes decrease. Also, the overall length of the sleeve 18 tends to decrease even to the point of causing the free end or pigtail 20 to bend between the welds 22, 24 and 26. The pigtail 20 prevents extension of the overall length of the sleeve 18, but allows it to contract as the diameter increases. The length tends to decrease because the middle of the balloon, and hence the middle of the stmt, expands the most, pulling the ends toward the center.
It will be seen that this action maintains good interior surface support of the blood vessel by maintaining the close spacing of the wire loops and helixes forming the sleeve.
The expanded condition of the stent is shown in FIG. 5 with the balloon catheter having been removed and the back portion 32 of the sleeve 18 shown in dotted lines for clarity of presentation. Even in this expanded configuration, however, it will be seen that there are ample turns of wire spaced closely enough to fully support the inner surface of the blood vessel so as to prevent collapse of the plaque occluded vessel. With this "finer mesh"

serpentine configuration, smaller diameter wire can be used without losing the necessary support for the interior surface of the blood vessel, and thus the scent presents a lower profile during introduction which increases the utility of the stmt for smaller blood vessel usage. This "finer mesh" also results in a more flexible sleeve which, together with the smooth uniform surface of the tightly wound serpentine wire ribbon of FIGs. 2 and 3, improves the ease of transluminal insertion and facilitates proper implantation and location of the stent. Since the wire pigtail has no sharp ends and the free end is welded to the loop of the helix, there are no sharp edges or points to tear or catch on the catheter balloon or the interior surface of the blood vessel, arid thus the stem of the present invention can be more readily manipulated to the desired location.
In prior art devices where the necessary surface support had to be achieved by heavier wire or a denser sleeve, it became di~cult to flex the sleeve so as to transit the convoluted blood vessels. When a looser wire configuration IS was employed, the stability of the stent was decreased and the ultimate efficacy of the implanted stent compromised.
Since in one embodiment, the stmt of the present invention is welded to the longitudinal wire at several locations, the longitudinal stability of the stmt is greatly increased over the prior art devices without creating a stiff and inflexible stem that cannot be manipulated around curves and corners of the vessel into which it is to be introduced.
In some prior art applications, sleeves of platinum were objectionable because of its inherent high elastic limit such that it required extreme pressures to expand and to hold it in the expanded configuration without contraction sometimes causing insufficient support of the wall surfaces. With the serpentine construction of the present wire form, the elastic limit of in the annealed platinum wire can easily be overcome and the device can be fully expanded radially to support the blood vessel with very little pressure required from the balloon catheter. Thus, applicant is able to provide a scent which is more radiopaque than, for instance, stainless steel, without encountering the usual modulus of elasticity problems with platinum. This allows good visibility during implantation and speeds the procedure of positioning the stent in the proper location within the vessel.

_7_ In the present invention, the stmt of the prior art described above in FIGs 1-5 is made from a wire which comprises an alloy selected from the group consisting of Pt-Ir or Au-Ni, and where the alloy exhibits a tensile strength of about 155,000 to 175,000 PSI. In one embodiment of the present invention, the " 5 alloy comprises about 90 wt % Pt and ZO wt °rb Ir. It has been found that alloys of this type are an improvement over the prior art materials, and provide the combination of strength and resilience to be readily expandable, and to maintain their size and shape in the expanded state after installation.
In a further improvement and preferred embodiment of the present invention as shown in FIG. 6, the welds 22, 24 and 26 as shown in FIG. 3, are eliminated and free end 20 is looped or wrapped (tied) around the helix at locations 40, 42 and 44. Wire 20 may overlap a given coil and move back under the next coil as shown at location 42. The tip of free end 20 is bent inwardly to avoid any surface profile and to avoid puncture or piercing the balloon catheter or blood vessel into which it is being inserted. It has been found that the loop and wrap configuration provides a greater dimensional stability to the expanded stmt which overcomes the tendency of the prior art stents to prolapse with time.
Thus with the construction and configuration shown herein, there is provided a stent having good flexibility, dimensional stability, minimal impurities, very smooth surface, low profile and immunity to fatigue and corrosion.
While this invention has been explained with reference to the structure disclosed herein, it is not confined to the details set forth and this application is intended to cover any modifications and changes as may come within the scope of the following claims.

Claims (2)

We Claim:
1. A radially expandable scent for transluminal insertion in a vessel, comprising:
a cylindrical sleeve for mounting on a balloon catheter for transluminal insertion in a vessel, such as a blood vessel;
said cylindrical sleeve being formed of a serpentine ribbon wound along a helix path, said serpentine ribbon having a first end and a second end;
said serpentine ribbon being formed of a wire, said wire having a first wire end joined to said serpentine ribbon adjacent said first end and a second wire end;
said second wire end extending from said second end and being joined to said serpentine ribbon adjacent said first end, said second wire end passing around said serpentine ribbon to thread into and out of said cylindrical sleeve at a plurality of preselected locations along said cylindrical sleeve to provide dimensional stability and to prevent axial expansion of the stent during radial expansion;
wherein the wire forming the stent comprises an alloy selected from the group consisting of Pt-Ir and Au-Ni, and where the alloy exhibits a tensile strength of about 155,000 to 175,000 PSI.
2. The stem of claim 1 in which the alloy comprises about 90 wt% Pt and 10 wt% Ir.
CA 2237756 1996-10-01 1997-09-25 Expandable stent Expired - Fee Related CA2237756C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US2734596P 1996-10-01 1996-10-01
US60/027,345 1996-10-01
PCT/US1997/017211 WO1998014137A1 (en) 1996-10-01 1997-09-25 Expandable stent

Publications (2)

Publication Number Publication Date
CA2237756A1 CA2237756A1 (en) 1998-04-09
CA2237756C true CA2237756C (en) 2006-08-29

Family

ID=29405640

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2237756 Expired - Fee Related CA2237756C (en) 1996-10-01 1997-09-25 Expandable stent

Country Status (1)

Country Link
CA (1) CA2237756C (en)

Also Published As

Publication number Publication date
CA2237756A1 (en) 1998-04-09

Similar Documents

Publication Publication Date Title
US6022370A (en) Expandable stent
US5217483A (en) Intravascular radially expandable stent
US5161547A (en) Method of forming an intravascular radially expandable stent
US5707387A (en) Flexible stent
US5389106A (en) Impermeable expandable intravascular stent
US5843168A (en) Double wave stent with strut
US5503636A (en) Self-expanding stent for hollow organs
CA2283728C (en) Helical mesh endoprosthesis and methods of use
US7722658B2 (en) Longitudinally flexible stent
US5116365A (en) Stent apparatus and method for making
US5683448A (en) Intraluminal stent and graft
US5019090A (en) Radially expandable endoprosthesis and the like
US5226913A (en) Method of making a radially expandable prosthesis
US5092877A (en) Radially expandable endoprosthesis
AU2002304381B2 (en) Longitudinally flexible stent
US6331189B1 (en) Flexible medical stent
JP2975584B2 (en) Body expansion stent
US6923828B1 (en) Intravascular stent
US5833699A (en) Extending ribbon stent
US5843176A (en) Self-expanding endoprosthesis
EP2311409A1 (en) Longitudinally flexible stent
WO1999044537A1 (en) A corrugated stent
CA2291307A1 (en) Radially expandable stent
WO1999048440A1 (en) Helical mesh endoprosthesis and methods of use
CA2237756C (en) Expandable stent

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed