CA2232750A1 - Peptides and peptidomimetics inhibiting the oncogenic action of p21 ras - Google Patents

Peptides and peptidomimetics inhibiting the oncogenic action of p21 ras Download PDF

Info

Publication number
CA2232750A1
CA2232750A1 CA 2232750 CA2232750A CA2232750A1 CA 2232750 A1 CA2232750 A1 CA 2232750A1 CA 2232750 CA2232750 CA 2232750 CA 2232750 A CA2232750 A CA 2232750A CA 2232750 A1 CA2232750 A1 CA 2232750A1
Authority
CA
Canada
Prior art keywords
lys
val
asp
leu
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2232750
Other languages
French (fr)
Inventor
Joseph J. Hlavka
Matthew R. Pincus
John Fowler Noble
Henry Baxter Abajian
Andrew S. Kende
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tetragenex Pharmaceuticals Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/531,525 external-priority patent/US5840683A/en
Application filed by Individual filed Critical Individual
Publication of CA2232750A1 publication Critical patent/CA2232750A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention provides peptides, cyclized peptides and peptidomimetics which inhibit the oncogenic and/or transforming activity of the p21 ras protein, pharmaceutical compositions containing at least one of the rasinhibiting peptides, cyclized peptides and peptidomimetics, and methods for inhibiting the ras-mediated oncogenic and/or transformation process in mammalian cells or tissues.

Description

CA 022327~0 l998-03-23 PEPTIDES AND PEPTIDOMIMETICS INHIBITING THE ONCOGENIC ACTION

Field of the Invention This invention relates to peptides effective in inhibiting oncogenesis, particularly as related to inhibition of p21 ras and adenocarcinomas of the colon, pancreatic carcinomas, neuroblastomas, and other cancers which express the transformed sequence of the ras gene product.

Backqround of the Invention ras protooncogenes are activated by characteristic point mutations in a wide variety of malignancies. The expressed p21 ras proteins are oncogenic by virtue of single substituted amino acids, usually at position 12 or 61 of the 189-residue p21 ras gene product. ras proteins act as membrane-associated molecular switches that bind GTP and GDP and slowly hydrolyze GTP to GDP.
Mutations in ras are associated with the vast majority of adenocarcinomas of the colon. Cancer of the colon is a highly treatable and often curable disease when it remains localized to the bowel. It is the second most frequently diagnosed malignancy ln the United States as well as the second most common cause of cancer death. Surgery is the primary treatment and results in cure in approximately 50~ of patients. Adenocarcinoma is the primary lesion in the majority of cases. Recurrence following surgery is a major problem and often is the ultimate cause of death. The prognosis for colon cancer patients is clearly related to the degree of penetration of the tumor through the bowel wall and the presence or absence of nodal involvement. For locally advanced disease, the role of radiation therapy in colon cancer is under clinical evaluation. There is no standard~ 30 therapy for advanced colon cancer and no evidence that chemotherapy improves survival, although short-term palliation may be achieved in approximately 10-20~ of patients.

CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 Pancreatic carcinoma has a high incidence of K-ras mutations. Mutated K-ras sequences which can be identified by polymerase chain reaction utilizing allele-specific primers can even be found in the plasma or serum from patients with pancreatic carcinoma. The c-Ki-ras oncogene is activated by point mutations involving codon 12 in 72~-100~ of primary pancreatic adenocarcinomas, but the gene is not activated in nonneoplastic tissues. Cancer of the exocrine pancreas is rarely curable. The highest cure rate (4~-12~) occurs if the tumor is truly localized to the pancreas. Unfortunately, this stage of disease accounts for fewer than 20~ of cases and, even with surgical resection, results in little more than a 5~ 5-year survival rate. For small cancers (less than 2 cm) in the head of the pancreas with no lymph node metastases and no extension beyond the "capsule" o~ the pancreas, the survival rate following resection of the head of the pancreas approaches 20~. Overall survival rate of all stages is less than 2~ at 5 years with most patients dying within one year. Worldwide, very few patients with cancers of the pancreatic tail or uncinate process have been cured.
Lung cancers also frequently involve ras mutations. Point mutations in codon 12 of the K-ras protooncogene occur more frequently in lung adenocarcinomas from smokers (30~) than they do in lung adenocarcinomas from nonsmokers (7~), suggesting that smoking is an important factor in the induction of these mutations. The ras oncogene may thus be a specific target of the mutagenic activity of tobacco smoke, and suggest that DNA
alterations at this site can occur early and irreversibly during the development of adenocarcinomas of the lung.
Mutations in the ras protooncogenes are the most frequently observed molecular alteration in acute myeloid leukemia (AML).
Whether ras mutations occur as late or relatively early events in the multistep process of myeloid transformation, remains an open question. There is significant evidence that the ras oncogene plays a role in experimental m~mm~y carcinogenesis; the evidence in human breast cancer, however, is more limited.

CA 022327~0 1998-03-23 W O 97/10836 PCTrUS96/15098 Similarly, there is significant evidence that the ras oncogene plays a role in nitrosoamine-induced esophageal tumors - in rats, but in human esophageal cancers ras gene mutations are more rarely found. However, it is probable that there is a ~ 5 significant role of mutated ras genes in both cell proliferation and malignant transformation of human esophageal cells.
Certain human neuroblastomas also show a high incidence of oncogenic ras mutations. Indeed, one study suggested that expressions of the oncogene N-myc and p21 together as detected by immunohistochemical staining could be among the most reliable prognostic indicators in neuroblastoma patients.
The ras proteins are key regulators of the growth of eukaryotic cells. Some of the direct targets are unknown. These target proteins include raf-1, qap, phosphatidylinositol-3-hydroxykinase and, very recently, two nuclear proteins, C-JUN and its kinase (JNK). The three-dimensional x-ray crystal structure for a ras-related protein bound to a domain of raf-1 has been elucidated. The ras-related protein (rak-1-a) binds to raf directly, utilizing residues contained in a sequence involving amino acids 35-37. All o~ the contact residues in the ras-related protein are homologous to those in the corresponding segment of ras-p-21. One of the inventors has shown that the p-21 ras protein (35-47 segment) selectively inhibits the mitogenic effects of oncogenic ras-p-21.
In addition to its role as an oncogene, the activation of ras proteins is a key step in the signal transduction pathways triggered by ligand-bound cell surface receptors, such as the insulin receptor.
The classical target of the ras protein is the GTPase activating protein GAP. This target protein is thought to play an essential role in the regulation of ras activity by increasing the GTPase activity of wild type, but not transformed ras. On the other hand, there is a considerable super~amily of these GAP-related proteins, which includes pl20-GAP. Other target proteins besides mammalian gap itself include (1) IRA1 and IRA2, the functional equivalents of GAP in yeast. They regulate the ras-cyclic AMP pathway, controlling cell growth; (2) sarl, the CA 022327~0 1998-03-23 fission yeast protein that regulates rasl in that organism; (3) BUD2, a yeast protein that activates BUD1/RSR1 which participates in the regulation of bud-site selection; (4) Human neurofibromitosis (gene NF1). NFl is associated with type 1 neurofibromatosis, one of the most frequently inherited genetic diseases characterized, in part, by multiple neural tumors. NF1 has been shown genetically and biochemically to interact with and stimulate the GTPase activity of ras; (5) Drosophila Gapl, which acts as a negative regulator of signalling by the Sevenless (SOS) receptor tyrosine kinase involved in eye development.
Human SOS1 and SOS2 genes have also been recently identified which encode proteins that control GDP--~GTP exchange on ras proteins and are involved in signal transduction by tyrosine kinase receptors. In si tu hybridization shows that SOS1 maps to 2p22-->pl6 and SOS2 to 14q21-->q22 in the human genome.
Another important target of ras is raf. The protein encoded by the c-raf-1 protooncogene is thought to function downstream of p21 ras because disruption of ra~ blocks signalling by ras in a number of systems. A highly-conserved 81 residue region o~ the N-terminus of raf protein has been to be shown to be critical as the ras protein interaction region. Importantly, the raf gene product interacts with both wild-type and activated ras protein.
In one study, approximately 50~ of the clones identified as interacting with ras were encoded portions of the c-raf and A-raf serine/threonine kinases. Thus, ras and the N-terminal region of raf protein associate directly in vi tro and this interaction is dependent on GTP bound to ras.
Within the superfamily of ras-related GTP-binding proteins, only the ras protein itself has been shown to act as an oncogenic protein. Many other proteins, however, have substantial amino acid homology to ras. This ras superfamily of GTP-binding proteins (, 50 members) regulates a diverse spectrum of intracellular processes. These include cellular proliferation and differentiation, intracellular vesicular tra~ficking, cytoskeletal control, NADPH oxidase function, as well as others.
Some of these homologs may have biological activities which are related to ras. For example, rhoA encodes a ras-related CA 022327~0 1998-03-23 W O 97/10836 PCTrUS96/15098 GTP-binding protein that was thought principally to play a role in cytoskeletal organization. Recent evidence, however, has - suggested both that rhoA could act either as a dominant oncogene, since transfection of both normal and activated rho genes confer a transformed phenotype on fibroblast cells in culture, or as a recessive tumor suppressor gene, by virtue, in part, of its chromosomal location at 3p21, a site deleted in many human malignancies. Thus, it is important to consider these ras homologs as potentially involved in cell growth and transformation.
Azatyrosine strongly inhibits oncogenic ras-p-21. This small molecule induces the EE~ gene, which encodes a proteinase sequence showing 90~ amino acid sequence identity to lysyl oxidase.
To acquire transforming potential, the precursor of the ras oncoprotein must undergo farnesylation or similar modification of the cysteine residue located in a carboxyl-terminal tetrapeptide. These C-terminal lipid modifications are essential for the interaction of ras-related proteins with membranes.
While all ras proteins are farnesylated and some palmitoylated, the majority of other ras-related proteins are geranylgeranylated. Thus selective peptide and peptidomimetic inhibitors of ras lipidation have found potential utility as anti-oncogenic agents.
In view of the foregoing, there is there a long~elt need in the art for agents which inhibit the transforming ability of ras.
As described above, selective peptide and peptidomimetic inhibitors or ras lipidation have found potential utility as anti-oncogenic agents (Kohl et al. (1993) Science 260:1934-1937;
James et al. (1993) Science 260:1937-1942). Similarly, FR
patents 2694296 and 2690162 teach that peptides derived from the GAP protein may serve to inhibit ras. However, neither '694296 nor '690162 describes peptides derived from the ras protein itself. EP 203587 describes new ras oncogene polypeptides which are used ~or producing antibodies for i~munogenic assays.
However, these sequences are derived from ras and its homologs in the carboxyl terminal domain (residues 170 - 189 in SEQ ID

CA 022327~0 1998-03-23 W O 97/10836 PCTrUS96/1~098 NO:5) and are thus physically distant ~rom and completely unrelated to any sequences claimed herein. Furthermore, these sequences were claimed for the production o~ antibodies, preferably by linking to an immunogenic carrier, and a claim for direct therapeutic application was not made.
Thus, peptides constructed ~rom ~ and its homologs for therapeutic application, namely by interfering with downstream or upstream actions of ~ itsel~, are useful. Furthermore, the method of identification o~ said peptides utilizing calculational approaches is believed novel and has unexpectedly led us to these cyclic peptides and peptidomimetics disclosed herein.

Sl~m~ry of the Inve~t;on The present invention provides peptides, cyclized peptides and peptidomimetics capable of inhibiting the oncogenic action of p21 La~. The oncogenic ~-inhibiting cyclized peptides correspond to domains of the oncogenic ~ protein which are most flexible and important in ~interacting with target proteins upstream and downstream from ~. The peptidomimetics are obtained by molecular modeling, including the structural minimization techniques o~ molecular dynamics.
The peptides are designated by the ~ormulas: Val-Val-Ile, Lys-Arg-Val, Ile-Lys-Arg-Val-Lys-Asp (SEQ ID NO:1), Lys-Cys-Asp-Leu-Ala (SEQ ID NO:2), Cys-Asp-Leu-Ala-Ala-Arg-Thr (SEQ ID NO:3), Asp-Leu-Ala-Ala (SEQ ID NO:4) or physiologically acceptable salts of the ~oregoing peptides.
Also provided in the present invention are cyclic analogues of the above peptides and certain peptides and cyclic peptides:

cyclo [- R(1) R(2) Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Val Ile Asp R(3) R(4)-] (I);

cyclo [-R(1) R(2) Val Val Ile R(3) R(4)-] (II);

cyclo [-R(1) R(2) Tyr Arg Glu Gln Ile Lys Arg Val Lys Asp Ser Asp Asp Val Pro R(3) R(4)-] (III);

CA 022327~0 1998-03-23 W O 97/10836 PCTrUS96/15098 cyclo [-R(l) R(2) Lys Arg Val R(3) R(4)-] (IV);

~ cyclo [-R(1) R(2) Ile Lys Arg Val Lys Asp R(3) R(4)-] (V);

~ cyclo [-R(1) R(2) Gly Asn Lys Cys Asp Leu Ala Ala Arg Thr Val Glu R(3) R(4)-] (VI);

cyclo [-R(l) R(2) Lys Cys Asp Leu Ala R(3) R(4)-] (VII);

cyclo [-R(l) R(2) Cys Asp Leu Ala Ala Arg Thr R(3) R(4)]
(VIII);

cyclo [-R(1) R(2) Asp Leu Ala Ala R(3) R(4)-] (IX); and O Asp H2N-Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Lys-Gln-NH-CH2-C-Val-NH-CH (X) or physiologically acceptable salts thereof.

In cyclized peptide formulas (I)-(IX), R(1) R(2), R(3) and R(4) represent, in the most general case, any amino acid which can serve as an amino acid residue linker. Amino acid residue linkers are usually at least one residue and can be most often two to four residues, more often 1 to 10 residues, both ranges being inclusive. Typical amino acid residues useful for linking are tyrosine, cysteine, lysine, and glutamic and aspartic acid.
Most preferably [R(1), R(2)] and [R(3) , R(4)] are each independently selected from either the group consisting of Glu, Gln, Asp, Asn or from the group consisting of Lys, Arg, Orn.
The symbol - represents a bond between the carboxyl and amino termini by which R(1) and R(4) can be interconnected to each other via an lower alkenyl or lower alkynyl group, but most preferably by a branched or unbranched methylene bridge of type ~ ~ (CH2) m ~ -or --(CH2) m~ -M- -(CH2)~--. In such an moiety, m and m' CA 022327~0 1998-03-23 WO 97/10836 PCT~US96/lSO98 are integers ~rom 1 to 6, inclusive, and pre~erably ~rom 1 to 3, inclusive; and M is NH, N[R(5)], O, S or CH-R(5), wherein R(5) is lower alkyl, cycloalkyl or aryl and is preferably methyl, ethyl, propyl, phenyl, X-phenyl, or heterocyclic, wherein X is Cl-, CF3-, F-, substituted at the o-, m- , or p- positions on the phenyl group M can contain a part of another diamino acid within the same peptide, e.g., the omega amino group of the one residue can be so linked to such an unnatural amino acid residue in a terminal residue.
Furthermore, any amino acid in the sequences provided hereinabove may be replaced with its D-analogue, with the proviso that not more than 50~ of the total amino acids are so replaced.
Similarly, a homologous conservative substitution ~or any amino acid is within the bounds of the present invention provided that substitution does not eliminate the oncogenic ras p21-inhibiting activity. Thus, depending on the applications for which the peptides according to the invention are intended, it is also possible to envisage intercalating between several amino acids, or even between all the amino acids, o~ the peptides de~ined above, dextrorotatory amino acids, and in particular dextrorotatory phenylalanine or dextrorotatory tryptophan, capable of preventing the action of the degradative enzymes in the cell environment and thus of increasing their activity.
Another modification in this sense consists in replacing certain amino acids, for example o~ the isoleucine type, by leucine.
In addition, a subject polypeptide can di~fer, unless otherwise speci~ied, ~rom the natural sequences shown above by the sequence being modified by terminal -NH2 acylation, e.g., acetylation, or by terminal-carboxylamidation, e.g., with ammonia, alkylamines, and the like.
This invention ~urther relates to peptidomimetics which model the critical semi-extended conformation of at least one peptide of or cyclic peptide of the present invention, exempli~ied by the compounds o~ Structure 1:

CA 022327~0 1998-03-23 W O 97/10836 PCTrUS96/15098 x Y2 x x Y ~ 3 1 711 X Y~l 1 1 l;-X
~2~ ~1 0/ ~8~ 1 5 y Y~:, I 1, Y/\x O \~
C = O R
~ OOC-( CH2) m wherein the sidechain R attached at the carbon atom numbered 6 on the sterol nucleus can be NH-CH2-CH2NH3, alkylamino, arylamino, or aralkylamino group, and wherein the sidechain attached at the carbon number 3 can be replaced with -O-C(=O)--(CH2)~--COOH, where m is an integer ~rom 1 to 6, inclusive, pre~erably ~rom 1 to 3, inclusive, and more pre~erably 2, and one o~ X and Y at each position independently, can be one H, a small alkyl group o~ C1 to C3, pre~erably C1; a halogen, preferably F, or an amino group where the other o~ one o~ X and Y is H.
Pre~erably, each o~ X and Y is H.

CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 " ~ ~,3 17 1 1 l4 2 / '~o / \ 8 /

O / \ 4 / \ ~ /
C=O NH
OOC-CH2 iCH2 + NH3 An exemplary compound falling within Structure 1 is 3 malonoxy-6-(2-aminoethyl)aminocyclopentanoperhydrophenanthrene (Structure 2).

Detailed Description of the Invention The natural sequence of the human oncogenic ras p21 is given in SEQ ID N0:5. The crystal X-ray structure has been determined at high resolution for that portion of the human ras protein corresponding to residues 1 to 166 of SEQ ID N0:5.

The regions o~ the p21 protein that are the most likely to change their conformations upon activation o~ the protein, e.g.
by oncogenic amino acid substitutions have been computed using two different methods. Both methods are based on the principle that the linear sequence o~ amino acids in a protein determines its unique three-dimensional structure. Given an amino acid sequence of a polypeptide or protein, therefore, it should be possible to predict its three-dimensional structure. This task can be accomplished by using the principle that the observed three-dimensional structure of a protein is the one of lowest f-ree energy. There are a vast number of possible structures a given polypeptide chain can adopt, but essentially only one of these is observed. To allow folding to occur, therefore, the interatomic interactions in the protein chain must greatly CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 stabilize its final folded form, i.e., lower its conformational energy substantially with respect to that of any other competing structure Thus, to compute the lowest energy form of a protein, it is necessary to be able first to compute the conformational energy of a given conformation of the protein and then, second, to generate its low energy con~ormations, or a representative sampling of them. The structure of lowest conformational energy so computed is then predicted to be the observed structure of the protein. This structure may be the one determined by x-ray crystallography or by 2- or 3-dimensional nuclear magnetic resonance (NMR) techniques.
A set of potential energy functions, in the computer program ECEPP (Empirical Conformational Energies of Peptides Program), have been developed that accurately compute the conformational energies of given conformations of proteins. The conformational energy of a peptide can be expressed in Equation 1.

Etot = ~ DRl, + ~ ij Rij - 2 [ R j ] 6) + ~ ( 2 ) (licos(n~k)) where Etot is the total conformational energy of the protein, the Q's are the charges on the ith and jth atoms; Rij is the distance between the ith and jth atoms, D is the dielectrlc constant, ~ij and Pij are the lowest non-bonded (Lennard-Jones) energy and the distance at this lowest energy between atoms i and j in the protein; Ak is the torsional barrier to rotation around specific bonds; 9k iS the kth dihedral angle in the protein; n is a degeneracy factor, i.e., 3 for single bonds and 2 for double bonds; and the sign in the last summation term is positive for single bonds and negative for double bonds such as occur in the - peptide bond units.
This equation shows the total conformational energy as the sum of three terms: the pairwise electrostatic interactions between the individual atoms of a protein, each of which has a partial charge, (first sum); a non-bonded energy term (second term) that consists of an attractive term that varies as the CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 inverse sixth power (tenth power for hydrogen-bonding atoms) of the distance between the atoms (from an induced dipole-induced dipole interaction term) and a repulsive term, from the overlap of electron shells, that varies as the inverse twelfth power of 5the interatomic distance; and finally a torsional term (third sum) that depends upon the bonds about which rotation takes place. All of the constants in these terms have been determined from experimental crystal packing data and reproduce the lattice constants o~ all o~ the crystal structures of small molecules to 10which they have been applied and, where measured, the sublimation energies of these crystals These potential functions have been used to compute the low energy minima for single terminally blocked amino acid residues, simple peptides, oligopeptides, polypeptides, and proteins with excellent agreement between the 15lowest energy predicted structures and the structures determined experimentally. These potentials have therefore been well-tested, are based on experimental data, and have proved to be reliable in prediction of structure from sequence.
These potential functions have been used to compute the 20average structure ~or the ras-p-21 protein in its normal and in its oncogenic form using the perturbation method called the electrostatically-driven Monte Carlo method (EDMC). Specific regions of the oncogenic p21 protein undergo large conformational changes compared with the structure of the normal, inactive 25protein. One o~ these regions has been found to be residues 35-47. All of the segments that change conformation in the oncogenic protein were found to be the most flexible in the normal, inactive protein.
Of considerable significance has been the finding that a 30completely dif~erent method, viz. molecular dynamics, based upon a completely different set of potential functions, i.e. the program DISCOVER, yields identical results for the p21 protein.
Molecular dynamics is based on the principle that the positions o~ the atoms of a molecule can be predicted as a 35function of time by solving Newton's equations of motion ~or the molecule. The force on the molecule is the negative of the first derivative of the potential function with respect to the CA 022327~0 1998-03-23 coordinates of each of the atoms. Newton's equations of motion are then integrated, using the Verlet algorithm, over a ~ trajectory such that the low energy region5 around the starting structure are computed. The trajectories are computed over time ~ 5 intervals such that the total energy converges to a low, constant value. The structures whose energies have converged are then used to compute an average structure. Comparison of the coordinates of the atoms of this average structure with those of the starting structure reveals regions of the protein whose conformations may change significantly. Furthermore, if the variance of the coordinates of regions of the low energy structures from the corresponding coordinates of the average structure are high, these regions can be identified as being flexible, i.e., are the ones most likely to be parts of effector domains. Within this algorithm, for the p21 protein, up to 2000 water molecules have been generated around the protein in the molecular dynamics simulations performed thus far.
Using these novel calchlational approaches, the present inventors have identified important peptide regions of the protein that are involved in the signal transduction process, and these peptides can be used to design anti-cancer agents, as taught herein. We have found that most particularly the 35-47, 96-110 and 115-126 peptides have strong and specific anti-oncogenic p21 activity. Even more particularly, we found that these domains contain unique extended structures and/or short beta-bend structures which are hypothesized to account in large part for their biological uni~ueness. This suggested that cyclization of the peptide structures to force the beta-bend conformation in place would serve to enhance therapeutic activity.
The results of these studies indicate that a domain of particular interest is the domain from residues 35 through 47 of SEQ ID NO:5, i.e., Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Lys-Gln-Val-Val-Ile-Asp (SEQ ID NO:6), of even more particular interest the peptide corresponding to residues 44 to 46 in SEQ ID NO:5, i.e., Val-Val-Ile, of still more interest is the se~uence from residues 96 to 110 o~ SEQ ID NO:5, i.e., Tyr-Arg-Glu-Gln-Ile-Lys-Arg-Val-CA 022327~0 1998-03-23 WO 97/10836 PCT~US96/15098 Lys-Asp-Ser-Asp-Asp-Val-Pro (SEQ ID NO:7), of even more particular interest is the sequence from residues 101-103 in SEQ
ID NO:5, i.e., Lys-Arg-Val; and the sequence corresponding to residues 100 to 105 in SEQ ID NO:5, i.e., Ile-Lys-Arg-Val-Lys-Asp (SEQ ID NO:1); the sequence corresponding to residues 115 to 126 of SEQ ID NO:5, i.e., Gly-Asn-Lys-Cys-Asp-Leu-Ala-Ala-Arg-Thr-Val-Glu (SEQ ID NO:8); and most particularly the sequence corresponding to residues 117 to 121 of SEQ ID NO:5, i.e, Lys-Cys-Asp-Leu-Ala (SEQ ID NO:2) and the sequence corresponding to residues 118 to 124 of SEQ ID NO:5, i.e., Cys-Asp-Leu-Ala-Ala-Arg-Thr (SEQ ID NO:9); and the sequence corresponding to residues 119 to 122 of SEQ ID NO:5, i.e., Asp-Leu-Ala-Ala (SEQ ID NO:4).

Additional sequences homologous to the various preferred sequences recited hereinabove can be derived by one skilled in the art from the sequences of closely related ras proteins. Such sequences may possess enhanced therapeutic activity. Nonlimiting examples of such proteins closely related to the ras gene product which represent the parent sequences having identical or nearly identical three dimensional structures and from which homologs of the sequences given in the preceding paragraph can be derived by one normally skilled in the art are:

ras-related protein Ara-3 [Arabidopsis thaliana (mouse ear cress)] (SEQ ID NO:10);

ras-related protein Ara-2 [A. thaliana] SEQ ID NO:11;

ras-related protein Ara-1 [A. thaliana] SEQ ID NO:12;

ras-related protein OraB-1 [Disco~Yae ommata (electric ray)] SEQ ID NO:13;

ras-related protein Rab-lA [Lymnea staqnalis (great pond snail)] SEQ ID NO:14;

CA 022327~0 1998-03-23 ras-related protein Rab-2 [Homo sa~iens (human)] SEQ ID
NO:15;

ras-related protein Rab-2 [L. staqnalis] SEQ ID NO:16;

ras-related protein Rab-2 [OrYctolaaus cuniculus (rabbit)]
SEQ ID NO:17;

ras-related protein Rab-2 [Rattus norveqicus (rat)] SEQ ID
NO:18;

ras-related protein Rab-3 [Drosophila melanoqaster (fruit~ly)] SEQ ID NO:19;

ras-related protein Rab-4 [R. norveqicus] SEQ ID NO:20;

ras-related protein Rab-6 [Caenorhabditis eleaans] SEQ ID
NO:21;

~-related protein Rab-6 [H. sa~iens] SEQ ID NO:22;

ras-related protein Rab-7 [Canis ~amiliaris (dog)] SEQ ID
NO:23;

ras-related protein Rab-7 [Dictyostelium discoideum (slime mold)] SEQ ID NO:24;

ras-related protein Rab-8 [C. ~amiliaris] SEQ ID NO:25;

ras-related protein RabC [D. discoideum] SEQ ID NO:26;

ras-related protein Rac-1 [C. eleqans] SEQ ID NO:27;

ras-related protein Rac-lA [D. discoideum] SEQ ID NO:28;

ras-related protein RacB [D. discoideuml SEQ ID NO:29;

CA 022327~0 1998-03-23 ras-related protein RacC [D. discoideum] SEQ ID NO: 30;

ras-related protein Ral-A [H. sapiensl SEQ ID NO:31;

ras-related protein Ral-B [H. saPiens] SEQ ID NO:32;

ras-related protein O-Ral [D. ommata] SEQ ID NO:33;

ras-related protein Ora-1 [D. ommata] SEQ ID NO:34;

ras-related protein Ora-2 [D. ommatal SEQ ID NO:35;

ras-related protein Ora-3 [D. ommata] SEQ ID NO:36;

ras-related protein Rap-1 [D. discoideuml SEQ ID NO:37;

ras-related protein Rap-2A [H. sapiens] SEQ ID NO:38;

ras-related protein Rap-2B [H. saPiens] SEQ ID NO:39;

ras-related protein O-KREV [D. ommata] SEQ ID NO:40;

ras-related protein Rap-lA [H. sapiens] SEQ ID NO:41;

ras-related protein Rap-lB [H. saPienS] SEQ ID NO:42;

ras-like protein GNROR3 [D. melanoqaster] SEQ ID NO:43;

ras-like protein rasA [D. discoideum] SEQ ID NO:44;

ras-like protein rasB [D. discoideum] SEQ ID NO:45;

ras-like protein rasC [D. discoideum] SEQ ID NO:46;

ras-like protein rasG [D. discoideum] SEQ ID NO:47;

ras-like protein F54C8.5 [C. eleqans] SEQ ID NO:48;

CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 ras-like protein CC-ras [Coprinus cinereus (inky cap fungus)]
SEQ ID NO:49;

ras-like protein [Geodia cvdonium (sponge)] SEQ ID NO:50;

ras-related protein Rab-10 [C. familiaris] SEQ ID NO:51;

ras-related protein Rab-11 [H. sa~iens] SEQ ID NO:52.

In addition, as described hereinabove, the therapeutic activity of these sequences is enhanced by cyclization.
Cyclization forces and maintains the conformations of these peptides in unique structures like beta-bends. The following are representative, nonlimiting examples of cyclized peptides useful for inhibiting the oncogenic activity of the ras protein, said peptides having formulas as given below:

cyclo [- R(1) R(2) THR ILE GLU ASP SER TYR ARG LYS GLN VAL VAL
ILE ASP R(3) R(4)-] (I) cyclo [-R(1) R(2) VAL VAL ILE R(3) R(4)-] (II) cyclo [-R(1) R(2) TYR ARG GLU GLN ILE LYS ARG VAL LYS ASP SER ASP
ASP VAL PRO R(3) R(4)-] (III) cyclo [-R(1) R(2) LYS ARG VAL R(3) R(4)-] (IV) cyclo [-R(1) R(2) ILE LYS ARG VAL LYS ASP R(3) R(4)-] (V) cyclo [-R(1) R(2) GLY ASN LYS CYS ASP LEU ALA ALA ARG THR VAL GLU
R(3) R(4)-] (VI) cyclo [-R(1) R(2) LYS CYS ASP LEU ALA R(3) R(4)-] (VII) cyclo [-R(1) R(2) CYS ASP LEU ALA ALA ARG THR R(3) R(4)-] (VIII) CA 022327~0 1998-03-23 W O 97/10836 PCTrUS96/15098 cyclo [-R(1) R(2) ASP LEU ALA ALA R(3) R(4)-] (IX); and I

O Asp H2N-Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Ly9-Gln-NH-CH2-C-Val-NH-CH (X) or a physiologically acceptable salt thereof.

In the aforementioned cyclized peptide formulas I-IX, R(1) R(2), R(3) and R(4) represent, in the most general case, any amino acid, such that they serve as amino acid residue linkers.
Amino acid residue linkers are usually at least one residue and can be most often two to four residues, more often 1 to 10 residues. Typical amino acid residues used for linking are tyrosine, cysteine, lysine, glutamic and aspartic acid. Most preferably [R(1), R(2)] and [R(3) , R(4)] independently are selected from either the groups [Glu, Gln, Asp, Asn] or tLys, Arg, Orn].
The term - represents a bond between the carboxyl and amino termini by which R(1) and R(4) can be interconnected to each other via an lower alkyl, alkenyl or lower alkynyl group, but most preferably by a branched or unbranched methylene bridge of type --(CHz)m --or --(CH2)m--M--(CH2)m--. In such an moiety, m and m' are integers from 1 to 6, inclusive, and preferably from 1 to 3, inclusive; and M is NH, N[R(5)], O, S or CH-R(5), wherein R(5) is lower alkyl, cycloalkyl or aryl and is preferably methyl, ethyl, propyl, phenyl, X-phenyl, or heterocyclic, wherein X is Cl-, CF3, F-, substituted at the o-, m- , or p- positions on the phenyl group. M can contain a part of another diamino acid within the same peptide, e.g., the omega amino group of the one -I
residue can be so linked to such an unnatural amino acid residue in a terminal residue.
Furthermore, any amino acid in the cyclized peptide sequences (I)-(X) recited herein may be replaced with its D-analogue, insofar as not more than 50~ of the total amino acids CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 are so replaced. Similarly, a homologous conservative substitution for any amino acid is within the bounds of the - present invention. Conservative substitutions include Glu for Asp, Gln for Asn and Val for Ile, among others, as well-known to the art. Depending on the applications for which the peptides according to the invention are intended, it is also possible to intercalate between several amino acids, or even between all the amino acids, of the peptides defined above, dextrorotatory amino acids, and in particular dextrorotatory phenylalanine or dextrorotatory tryptophan, capable of preventing the action of the degradative enzymes in the cell environment and thus of increasing their activity. Another modification in this sense consists ln replacing certain amino acids, for example of the proline type, by D-tryptophan.
In addition, a subject polypeptide can differ, unless otherwise specified, from any of the natural sequences shown herein above by the sequence being modified by terminal -NH2 acylation, e.g., acetylation,~ or by terminal-carboxylamidation, e.g., with ammonia, alkylamines, and the like.
The placement of hydrophobic amino acid residues is highly dependent on the peptide sequence. For example, for the 35-47 peptide sequence, corresponding to amino acids 35-47 of SEQ ID
NO:5, there is a distinct hydrophobic region for the amino acid residues corresponding to amino acids 44-46 of SEQ ID NO:5. The bridge in Compound (X) occurs at what corresponds in structure to amino acids 44-46 in SEQ ID NO:5. It is possible to extend this hydrophobic segment without sacrificing activity. For example, the carboxyl terminal Asp residue can be replaced with one or more hydrophobic residues such as Val or Ile, and the result is greater efficiency in crossing cell membranes.
Short half-lives of peptides, a major problem, can be at least partially extended by the addition of D-amino acids to either or both of the amino and carboxyl terminal ends of the peptide. These D-amino acid residues block the action of exo-proteases that degrade peptides ~rom their amino or carboxyl ends. In addition, the cyclization of the peptide further renders the peptide less susceptible to proteolysis.

CA 022327~0 l998-03-23 Recent advances in the field o:E peptides have been directed towards the stabilization o~ these peptides against enzymatic or hydrolytic degradation. It would be extremely valuable to stabilize these peptides :Erom degradation by proteolytic enzymes in order to improve their pharmacokinetic properties. Enhanced resistance to enzymatic degradation would increase the use~ulness o:E these peptides as therapeutic agents. However, since they only exhibit short hal~ lives in vivo, large amounts o:E such peptides must typically be administered to a subject in order to achieve the desired e~Eect. Alternatively, smaller quantities may be prescribed to an individual, but more ~requent dosages would be required to achieve the same level o~ potency.
It is ~urther well-known to those normally skilled in the art that it is possible to replace peptides with peptidomimetics.
Peptidomimetics are generally pre:Eerable as therapeutic agents to peptides owing to their enhanced bioavailability and relative lack o~ attack from proteolytic enzymes. The present inventors have used the techniques o:E molecular modeling supra to design a peptidomimetic which mimics the critical beta-bend aspects o~
the peptide corresponding in sequence to amino acids 96-llO o:E
SEQ ID NO:5 (p21 ;~). The bend structure occurs at amino acids 102-103 in the p21 ~ protein. These residues have been implicated in the binding o~ ;~ p21 to SOS.
Peptidomimetric compounds which inhibit the oncogenic or transEorming activity o~ the p21 ras protein are provided by the compounds oi~ Structure I:
Y x x Y ~ 1 3 1 7/~
X \ ~ l 1 1 G--X
~2/ ~1 0/ ~8~ -- 1 5 y Y~l I 1, Y \x ~~ ~4~ ~6/
C=O R
OOC- ( CH2) m STRUCTURE I

CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 wherein the sidechain R attached at the carbon atom numbered 6 on the sterol nucleus can be NH-CH2-CH2NH3+, alkyl amino, arylamino, or aralkylamino group, and wherein the sidechain attached at the carbon number 3 can be replaced with -O-C(=O)--(CH2)m--COOH, where m is an integer from 1 to 6, inclusive, preferably from 1 to 3, inclusive, and more preferably 2, and one of x and y at each position independently, can be one H, a small alkyl group of C1 to C3, preferably Cl; a halogen, preferably F, or an amino group where the other of one of x and y is H.
Preferably, each of x and y is H.
Without wishing to be bound by any particular theory, the structure believed to be the optimally designed L~-inhibiting peptidomimetic is illustrated below in Structure II:

1 1 ~ ~1 3 1 7 2/ ~1 0/ \8/ 5 li 1~
~~ ~4/ \6/
C=O NH

The instant invention comprises novel peptides of medicinal importance most particularly for the treatment of adenocarcinomas of the colon, pancreatic carcinomas, neuroblastomas, and other cancers of undefined germ cell origin which express the transformed sequence of the La~ protein. These peptide sequences were unexpectedly obtained by the use of molecular dynamic simulations on ~ p21 to define which domains of the protein CA 022327~0 1998-03-23 WO 97/10836 PCT~US96/15098 were most flexible and were thus most important in interacting with target proteins upstream and downstream from ras. These peptides are identified by the following amino acid sequences:
Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Lys-Gln-Val-Val-Ile-Asp (SEQ ID
NO:6),Val-Val-Ile,Tyr-Arg-Glu-Gln-Ile-Lys-Arg-Val-Lys-Asp-Ser-Asp-Asp-Val-Pro (SEQ ID NO:7), Lys-Arg-Val, Ile-Lys-Arg-Val-Lys-Asp (SEQ ID NO:1), Gly-Asn-Lys-Cys-Asp-Leu-Ala-Ala-Arg-Thr-Val-Glu (SEQ ID NO:8), Lys-Cys-Asp-Leu-Ala (SEQ ID NO:2), Cys-Asp-Leu-Ala-Ala-Arg-Thr (SEQ ID NO:9), and Asp-Leu-Ala-Ala (SEQ ID
NO:4).

Including the cyclic analogues of the above peptides, namely:

cyclo [- R(1) R(2) Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Lys-Gln-Val-Val-Ile-Asp-R(3) R(4)-] (I);

cyclo [-R(1) R(2) Val-Val-Ile-R(3) R(4)-] (II);

cyclo [-R(1) R(2) Tyr-Arg-Glu-Gln-Ile-Lys-Arg-Val-Lys-Asp-Ser-Asp-Asp-Val-Pro-R(3) R(4)-] (III);

cyclo [-R(1) R(2) Lys-Arg-Val R(3) R(4)-] (IV);

~ cyclo [-R(1) R(2) Ile-Lys-Arg-Val-Lys-Asp R(3) R(4)-] (V);

cyclo [-R(1) R(2) Gly-Asn-Lys-Cys-Asp-Leu-Ala-Ala-Arg-Thr-Val-Glu R(3) R(4)-] (VI);

cyclo [-R(1) R(2) Lys-Cys-Asp-Leu-Ala R(3) R(4)-] (VII);

cyclo [-R(1) R(2) Cys-Asp-Leu-Ala-Ala-Arg-Thr R(3) R(4)-] (VIII);

cyclo [-R(1) R(2) Asp-Leu-Ala-Ala R(3) R(4)-] Z (IX); and CA 022327~0 1998-03-23 W O 97/10836 PCTrUS96/15098 O Asp H2N-Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Lys-Gln-NH-CH2-C-Val-NH-CH (X) or a physiologically acceptable salt thereof.

Wherein for cyclized peptide formulas designated by (I)-(IX) hereinabove, R(l) R(2), R(3) and R(4) represent, in the most general case, any amino acid, such that they serve as amino acid residue linkers. Amino acid residue linkers are usually at least one residue and can be most often two to four residues, more often 1 to 10 residues. Typical amino acid residues used for linking are tyrosine, cysteine, lysine, glutamic and aspartic acid, or the like. Most preferably [R(l)~ R(2)] and [R(3), R(4)] independently are selected from either the groups [Glu, Gln, Asp, Asn] or [Lys, Arg, Orn].
The symbol - represents a bond between the carboxyl and amino termini by which R(l) and R(4) can be interconnected to each other via an lower alkenyl or lower alkynyl group, but most preferably by a branched or unbranched methylene bridge of type --(CH2)m --or --(CH2) m~ -M--(CH2) m~~~ In such an moiety, m and m' are integers from 1 to 6 and preferably from 1 to 3; and M is NH, N [R(5)]~ O~ S CH-R(5) or does not exist, wherein R(5) is lower alkyl, cycloalkyl or aryl and is preferably methyl, ethyl, propyl, phenyl, X-phenyl, or heterocyclic, wherein X is Cl-, CF3-, F-, substituted at the o-, m- , or p- positions on the phenyl.
M can contain a part of another diamino acid within the same peptide, e.g., the omega amino group of the one residue can be so linked to such an unnatural amino acid residue in a terminal residue.
Furthermore, any amino acid in the se~uences provided may be replaced with its D-analogue, insofar as not more than 50~ of the total amino acids are so replaced. Conservative substitutions include Glu for Asp, Gln for Asn and Val for Ile, among others, as is well known to those of ordinary skill in the CA 022327~0 l998-03-23 art. Similarly, a homologous conservative substitution for any amino acid is within the bounds of the present invention.
Depending on the applications for which the peptides according to the invention are intended, it is also possible to envisage intercalating between several amino acids, or even between all the amino acids, of the peptides defined above, dextrorotatory amino acids, and in particular dextrorotatory phenylalanine or dextrorotatory tryptophan, capable of preventing the action of the degradative enzymes in the cell environment and thus of increasing their activity. Another modification in this sense consists in replacing certain amino acids, for example of the proline type, by D-tryptophan.
In addition, a subject polypeptide can differ, unless otherwise specified, from the natural sequences shown above by the sequence being modified by terminal -NH2 acylation, e.g., acetylation, or by terminal-carboxylamidation, e.g., with ammonia, alkylamines, and the like.
The instant invention also comprises a method of use of the peptides supra for the treatment of adenocarcinomas of the colon, pancreatic carcinomas, neuroblastomas, and other cancers of undefined germ cell origin which express the transformed sequence of the ras protein.
It is also an object of the present invention to provide peptides and cyclized peptide homologs from the sequences listed in SEQ ID NOS:10-52.
The amino acid residues described herein are preferred to be in the "L" isomeric form. However, residues in the "D"
isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property is retained by the polypeptide. NH2 refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxyl group present at the carboxy terminus of a polypeptide.
In keeping with standard polypeptide nomenclature described in J. Biol. Chem. 243:3552-3559 (1969) and adopted at 37 C.F.R.
1.822 (b) (2)), The list of variable amino acids, capable oE
participating in the composition of this peptide is as follows:
Y, Tyr, tyrosine; G, Gly, glycine; F, Phe, phenylalanine; M, Met, CA 022327~0 1998-03-23 W O 97/10836 PCTrUS96/lS098 methionine; A, Ala, alanine; S, Ser, serine; I, Ile, isoleucine;
L, Leu, leucine; T, Thr, threonine; V, Val, valine; P, Pro, proline; K, Lys, lysine; H, His, histidine; Q, Gln, glutamine;
E, Glu, glutamic acid; W, Trp, tryptophan; R, Arg, arginine;
- 5 D, Asp, aspartic acid; N, Asn, asparagine; C, Cys, cysteine.
Amino acid residue sequences are presented herein in the conventional left-to-right direction of amino-terminus to carboxy-terminus. In addition, the phrase "amino acid residue"
is broadly defined to include the amino acids listed hereinabove, and modified and unusual amino acids, such as those listed in 37 C.F.R. 1. 822 (b)(4), incorporated herein by reference.
Furthermore, it should be noted that a dash at the beginning or end of an amino acid residue sequence indicates either a peptide bond to a further sequence of one or more amino acid residues or a covalent bond to an amino or hydroxyl end group.
Polypeptide and peptide are terms used interchangeably herein to designate a linear series of amino acid residues connected one to the other by peptide bonds between the alpha-amino and carboxy groups of adjacent residues.
Protein is a term used herein to designate a linear series of greater than about 20 amino acid residues connected one to the other as in a polypeptide.
The term synthetic peptide refers to a chemically produced chain of amino acid residues linked together by peptide bonds that is free of naturally occurring proteins and fragments thereof. The term peptide encompasses linear and cyclic peptides.
(D,L), (D), or (L) preceding the amino acid designation means that this amino acids exists in that specific isomeric form, i.e. (D,L) Phe means that the amino acid phenylalanine exists as a racemic mixture; (D) Phe or D-Phe means that the amino acid phenylalanine exists as the D-stereoisomer or implied R configuration; (L) Phe means that the amino acid phenylalanine exists as the L stereoisomer or implied S configuration.

Alkyl as used herein means methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 neopentyl, 2 -methylbutyl, 1-methylbutyl, 1-ethylpropyl, 1,1-dimethylpropyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 2 -ethylbutyl, 1-ethylbutyl, 1~3-dimethylbutyl~ n-heptyl, 5-methylhexyl, 4-methylhexyl, 3-methylhexyl, 2-methylhexyl, 1-methylhexyl, 3-ethylpentyl, 2-ethylpentyl, 1-ethylpentyl, 4,4-dimethylpentyl, 3,3-dimethylpentyl, 2,2-dimethylpentyl, 1,1-dimethylpentyl, n-octyl, 6-methylheptyl, 5-methylheptyl, 4-methylheptyl, 3-methylheptyl, 2-methylheptyl, 1-methylheptyl, 1-ethylhexyl, 1-propylpentyl~ 3-ethylhexyl, 5,5-dimethylhexyl, 4,4-dimethylhexyl, 2,2-diethylbutyl, 3,3-diethylbutyl, 1-methyl-1-propylbutyl.
Cycloalkyl re~ers to a hydrocarbon ring having ~rom 3 to 7 carbon atoms, inclusive. Examples o~ cycloalkyl groups are cyclopropyl, cyclopentyl, cycloheptyl, cyclooctyl, cyclononyl, and the like.
The term aryl re~ers to aromatic groups which have at least one ring having a conjugated pi electron system and includes carbocyclic aryl, heterocyclic aryl aralkyl, and biaryl groups, all of which may be optionally substituted.
Heterocyclic groups means groups having ~rom 1 to 3 heteroatoms as ring atoms in the aromatic ring and the remainder o~ the ring atoms carbon atoms. Suitable heteroatoms include oxygen, sul~ur, and nitrogen, and their heterocyclic compounds can include ~uranyl, thienyl, pyridyl, pyrrolyl, N-lower alkyl pyrrolo, pyrimidyl, pyrazinyl, imidazolyl, and the like, all optionally substituted.
Substituted heterocyclic re~ers to any heterocyclic aryl group substituted by a alkyl, aryl, cycloalkyl, halo, sul~onate, or tri~luoromethyl group.
The term alkyl amino re~ers to the groups --NRR' wherein respectively, (a) R is alkyl and R' is hydrogen or alkyl; (b) R
is aryl and R' is hydrogen or aryl, (c) R is cycloalkyl and R' is hydrogen or alkyl, (d) R is hydrogen and R' is itsel~ linear aminoalkyl, (e) R is alkyl and R' is itsel~ linear aminoalkyl.

CA 022327~0 1998-03-23 The term aminoalkyl re~ers to the groups -(CH2)m-NRR', wherein m is an integer ~rom 1 to 6, inclusive and -NRR' is alkyl - amino, as defined supra .
Halo encompasses fluoro, chloro, bromo and iodo.
- 5 The phrase protecting group, as used herein, means substituents which protect the reactive functional group from undesirable chemical reactions. Examples of such protecting groups include esters of carboxylic acids, ethers of alcohols and acetals and ketals of aldehydes and ketones.
The phrase N-protecting group or N-protected as used herein means those groups intended to protect the N-terminus o~ an amino acid or peptide, to protect an amino group against undesirable reactions during synthetic procedures and includes, but is not limited to, sulfonyl, acetyl, pivaloyl, t-butyloxycarbonyl (Boc), carbonylbenzyloxy (Cbz), benzoyl and an L- or D-aminoacyl residue, which may itself be N-protected similarly. The deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl, alkoxycarbonyl or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an acyl group such as a t-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid such as hydrochloric, sulfuric or phosphoric acid or tri~luoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-charcoal.
The phrase COOH-protecting group or carboxyl-protecting group is, an esterifying group, for example an alkyl group (especially methyl or ethyl) or an arylmethyl group (especially benzyl). The deprotection conditions for the above protectin~
groups necessarily vary with the choice o~ protecting group.
Thus, for example, an esteri~ying group such as an alkyl or arylmethyl group may be removed, :Eor example, by hydrolysis with a suitable base such as an alkali metal hydroxide, ~or example lithium or sodium hydroxide. Alternatively an esteri~ying group CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 such as an arylmethyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-charcoal using either hydrogen or ammonium ~ormate as a hydrogen source by methods well-known to those skilled in the art.
Electrolyte means a solution that has suf~icient acid strength to render a basic starting material essentially protonated.
Chemical derivative re~ers to a subject polypeptide having one or more residues chemically derivatized by reaction o~ a functional side group. Such derivatized molecules include ~or example, those molecules in which ~ree amino groups have been derivatized to ~orm amine hydrochlorides, p-toluene sul~onyl groups, carbobenzoxy groups, t-butyloxycarbonyl groups, chloroacetyl groups or ~ormyl groups. Free carboxyl groups may be derivatized to form salts, methyl and ethyl esters or other types o~ esters or hydrazides. Free hydroxyl groups may be derivatized to ~orm O-acyl or O-alkyl derivatives. The imidazole nitrogen o~ histidine may be derivatized to ~orm N-imidazolyl-benzylhistidine. Also included as chemical derivatives are those peptides which contain one or more naturally occurring amino acid derivatives of the twenty standard amino acids. For examples, 4-hydroxyproline may be substituted ~or proline; 5-hydroxylysine may be substituted ~or lysine; 3-methylhistidine may be substituted ~or histidine; homoserine may be substituted ~or serine; and ornithine may be substituted ~or lysine.
Polypeptides o~ the present invention also include any polypeptide having one or more additions and/or deletions or residues relative to the sequence o~ a polypeptide whose sequence is shown herein, so long as the requisite activity is maintained.
As used herein, ~ragment means any subject peptide or polypeptide having an amino acid residue sequence shorter than that o~ a peptide or polypeptide whose ~ull length amino acid residue sequence is shown herein.
A pharmaceutically acceptable salt is one which is prepared by contacting a compound o~ ~ormulas (I) - (X) according to the speci~ications therein with an acid whose anion is generally considered suitable for human consumption. Examples o~

CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 pharmacologically acceptable acid addition salts include the hydrochloride, hydrobromide, hydroiodide, sulfate, phosphate, - acetate, propionate, lactate, maleate, malate, succinate, and tartrate salts. All of these salts may be prepared by ~ 5 conventional means by reacting, for example, the appropriate acid with the corresponding compound of structure of Formulas (I) -(X) .
Unless otherwise indicated, the preparation methods disclosed herein result in product distributions which include all possible structural isomers. It is understood that physiological response may vary according to stereochemical structure. The isomers may be separated by conventional means such as fractional crystallization or High Pressure Liquid Chromatography (HPLC). Briefly, the absolute configuration of a compound relates to how its substituents are oriented in space about a central atom. This notion becomes significant when coupled with the rigors of chirality. Chirality involves the identity of the substituents~about that central atom. Thus, in general, a compound is said to be chiral when four distinctly different groups are bound to a central carbon atom. These groups may be spatially aligned in more than one manner without repeating their individual orientations. That is, a chiral compound may exhibit a mirror image which is also chiral. These mirror images are termed meso configurations, and are each absolute configurations of a chiral compound.
Pharmaceutical compositions according to the present invention comprise one or more peptides and/or peptidomimetics of the invention in association with a pharmaceutically acceptable carrier or excipient, adapted for use in human or veterinary medicine. The compositions may contain from 0.001-99~
of the active material. Such compositions may be presented ~or use in conventional manner in admixture with one or more physiologically acceptable carriers of excipients. The pharmaceutical compositions according to the invention may also contain other active ingredients such as antimicrobial agents, or preservatives. The compositions may optionally further CA 022327~0 1998-03-23 contain one or more other therapeutic agents which may, if desired, be a chemotherapeutic antiviral agent.
Pharmaceutically acceptable salts of the peptides of this invention may be ~ormed conventionally by reaction with an appropriate acid. The addition salts so formed from addition by acid may be identi~ied by hydrochloric, hydrobromic, phosphoric, acetic, fumaric, salicylic, citric, lactic, mandelic, tartaric, oxalic, methanesul~onic, and the like.
Thus, the peptides and peptidomimetics according to the present invention may be ~ormulated for oral, buccal, parenteral, topical or rectal administration. In particular, these peptides and peptidomimetics may be formulated for injection or for infusion and may be presented in unit dose form in ampoules or in multidose containers with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain ~ormulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g.
sterile, pyrogen-free water, be~ore use.
The present invention ~urther provides a process for preparing a pharmaceutical composition which comprises bringing a peptide and/or peptidomimetic o~ the invention into association with a pharmaceutically acceptable excipient or carrier.
For administration by injection or in~usion, the daily dosage as employed for treatment o~ an adult human o~
approximately 70 kg body weight will range ~rom 0.01 mg to 10 mg of each active ingredient, preferably 0.1 to 5 mg, which may be administered in 1 to 4 doses, for example, depending on the route of administration and the condition of the patient. The dosage of the peptide used in the treatment will vary, depending on the seriousness of the disorder, the weight of the patient, the relative ef~icacy of the peptide and the judgment o~ the treating physician. However, suitable unit dosages in humans may be between about 0.05 mg to about 100 mg. For example, a unit dosage may be ~rom between about 0.2 mg to about 50 mg. Such a unit dosage, described herelnabove, may be administered more than CA 022327~0 1998-03-23 W O 97/10836 PCTrUS96/15098 once a day, e g., two or three times a day. Thus, the total daily dosage is in the range of about 0.01 mg to 10 mg/kg. Such ~ therapy may extend ~or several weeks, in an intermittent or uninterrupted manner, until the patient's symptoms are ~ 5 eliminated.
The present invention also provides pharmaceutical compositions which comprise a pharmaceutically e~ective amount o~ the one or more peptides and/or peptidomimetics o~ this invention, or pharmaceutically acceptable salts thereo~, and, pre~erably, a pharmaceutically acceptable carrier or adjuvant.
Therapeutic methods of this invention comprise the step of treating patients in a pharmaceutically acceptable manner with those peptides or compositions. Such compositions may be in the ~orm o~ tablets, capsules, caplets, powders, granules, lozenges, suppositories, reconstitutable powders, or liquid preparations, such as oral or sterile parenteral solutions or suspensions.
In order to obtain consistency of administration, it is pre~erred that a composition o~ the invention is in the ~orm o~
a unit dose. The unit dose presentation forms ~or oral administration may be tablets and capsules and may contain conventional expedients. For example binding agents, such as acacia, gelatin, sorbitol, or polyvinylpyrrolidone; ~illers, such as lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tabletting lubricants such as magnesium stearate;
disintegrants, such as starch, polyvinylpyrrolidone, sodium starch glycolate or microcrystalline cellulose; or pharmaceutically acceptable wetting agents such as sodium lauryl sul~ate.
The solid oral compositions may be prepared by conventional methods oi~ blending, i~illing, tabletting, or the like. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large ~uantities o~
~illers. Such operations are, o~ course, conventional in the art. The tablets may be coated according to methods well-known in normal pharmaceutical practice, in particular with an enteric coating.

CA 022327~0 1998-03-23 6 PCTrUS96/15098 Oral liquid preparations may be in the ~orm o~ emulsions, syrups, or elixirs, or may be presented as a dry product ~or reconstitution with water or other suitable vehicle be~ore use.
Such liquid preparations may or may not contain conventional additives. For example suspending agents, such as sorbitol, syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethylcellulose, aluminum stearate gel, or hydrogenated edible ~ats; emulsi~ying agents, such as sorbitan monooleate or acacia; non-aqueous vehicles (which may include edible oils), such as almond oil, ~ractionated coconut oil, oily esters selected from the group consisting o~ glycerine, propylene glycol, ethylene glycol, and ethyl alcohol; preservatives, ~or instancemethylpara-hydroxybenzoate, ethylpara-hydroxybenzoate, n-propyl parahydroxybenzoate, or n-butyl parahydroxybenzoate or sorbic acidi and, i~ desired, conventional ~lavoring or coloring agents.
For parenteral administration, ~luid unit dosage ~orms may be prepared by utilizing the peptide and a sterile vehicle, and, depending on the concentration employed, may be either suspended or dissolved in the vehicle. In preparing solutions, the peptides o~ this invention may be dissolved in water, whereas opiates used hereto~ore showed only marginal solubility in aqueous media or physiological ~luids. Once in solution, the peptide may be injected and filter sterilized be~ore ~illing a suitable vial or ampoule and subsequently sealing the carrier or storage package. Adjuvants, such as a local anaesthetic, a preservative or a bu~fering agent, may be dissolved in the vehicle prior to use. Stability o~ the pharmaceutical composition may be enhanced by ~reezing the composition a~ter ~illing the vial and removing the water under vacuum, e.g., ~reeze drying the composition. Parenteral suspensions may be prepared in substantially the same manner, except that the peptide should be suspended in the vehicle rather than being dissolved. A sur~actant or wetting solution may be advantageously included in the composition to ~acilitate uni~orm distribution o~ the peptide.

CA 022327~0 l998-03-23 W O 97/10836 PCT~US96/lS098 The stability of the peptides and cyclized peptides of the present invention exceeds that of naturally occurring peptides - if substitution is made with D-amino acids in at least 20~, but not more than 50~, of those residues which are naturally present ~ 5 in the (L) configuration. Without being bound by theory, we believe that the increased resistance to enzymatic degradation over of the peptides of the present invention as compared to natural peptides is due to the presence of D-amino acids in the peptides. This switch from L to D amino acids neutralizes the digestion capabilities of many of the ubiquitous peptidases found in the digestive tract. Alternatively, the ~nh~n~ed stability of the peptides of this invention may also be the result of the introduction of modifications of traditional peptide linkages.
For example, the introduction of a cyclic ring within the peptide backbone may confer enhanced stability in order to circumvent the effect of many proteolytic enzymes known to digest small peptides in the stomach or other digestive organs and in serum.
The compounds of the~present invention are initially synthesized by either solution or by solid phase techniques.
Specific exemplary syntheses are described in the examples hereinbelow. The peptides of this invention may be prepared by initially reacting a first appropriately protected amino acid with a second appropriately protected amino acid in an organic solvent inert to the reactants, in the presence of a suitable peptide coupling agent according to the following scheme:
Z(l)NH-AA(1)-COOH + coupling agent + NH2-AA(2)-COOZ( 2) Z(1)-~nH-~(l)-C0 ~ -~(2)-COOZ(2) wherein Z(1) is a suitable nitrogen protecting group and Z(2) is a suitable carboxyl protecting group and AA represents any natural or unnatural amino acid residue. The desired peptides may be prepared by utilizing the appropriate amino acids and repeating this reaction sequence as required until a peptide with three to ten amino acid residues has been prepared. A suitable deprotection method is then employed to remove specified or all of the remaining protecting groups or the peptide from the resin.
The first appropriately protected amino acid and, for instance, an appropriately protected tyrosine may be reacted CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 together in the presence o~ a suitable peptide coupling agent in a suitably inert organic solvent with stirring, shaking, or agitation to ~orm a protected tyrosine containing dipeptide.
Introducing this dipeptide to appropriate protecting group removal conditions af~ords a selectively deprotected dipeptide which is well-suited for continued peptide synthesis. Contacting this mono-deprotected tyrosine containing dipeptide with an appropriately protected amino acid having a side chain represented as above, in the presence o~ a suitable peptide coupling agent in a suitably inert organic solvent with stirring, shaking, or agitation ~orms a protected tyrosine containing tripeptide. This method may be repeated as many times as necessary to achieve the desired peptide.
The method o~ preparation ~or peptide synthesis requires speci:Eic i~unctional groups to react with other substituents to link amino acid residues in a desired manner to ~orm a peptide possessing a known and desired sequence of amino acid residues.
Since amino acids possess ~at least two reactive ~unctional groups, suitable protection, blocking, or masking o~ these groups is required to ensure that reaction will occur only at speci~ically desired sites.
These protecting groups should be introduced to the moiety ef~icaciously while their removal should be per~ormed under conditions which do not a~ect other portions o~ the molecule.
In this manner, certain reactions and modiEications may be per~ormed on the amino acid, peptide, or other compound, with assurance that the protected ~unctionality will not inter~ere with the desired reaction. Further, by choosing a protecting group that is sensitive and labile to certain reactive conditions, a reaction scheme may be outlined to advantageously utilize these characteristics to e~ectively remove the protecting group once the synthesis is complete.
Both N-protecting groups and COOH-protecting groups (see de~initions) may be used within the scope o~ this invention. A
variety o:E protecting groups known in the ~ield o~ peptide synthesis and recognized by conventional abbreviations therein, may be ~ound in T. Greene, Protective Gxou~s In Orqanic CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 Synthesis, Academic Press (1981). Among the preferred protecting groups that may be utilized for suitable protection of reactive nucleophilic substituents include, for example, benzyl (Bz), carbobenzyloxy (Cbz), t-butoxycarbonyl (Boc), or ~ 5 9-fluorenylmethyloxy-carbonyl (Fmoc).
Coupling o~ amino acids, which may be the same or di~ferent as those described above, to yield small peptides in route to peptides comprised o~ greater numbers of amino acid residues may be accomplished by employing established techniques in the field of peptide chemistry. A broad range of suitable reactions are described in E. Gross and J Meinhofer, The Peptides: Analysis, SYnthesis, Bioloqv; Modern Techniques of PePtide and Amino Acid Analysis, John Wiley & Sons, (1981) and M. Bodanszky, Principles Of PePtide SYnthesis, Springer-Verlag (1984). The peptide coupling agents which may be used to assist condensation o~ amino a n d c a rb o xy l i c a ci d m o i e t i e s i n c l u de N,N'-dicyclohexylcarbodiimide (DCC), N,N'-carbonyl diimidazole (CDI), l-hydroxy benzotriazole (HOBt), ethyl chloroformate, b e n z y 1 c h 1 o r o f o r m a t e 1-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ), benzotriazoyl-oxy-tris-(dimethyl)amino-phosphonium hexafluoro phosphate (BOP) and the like. A pre~erred technique uses DCC as the coupling reagent. The DCC method may be used with or without catalytic additives such as 4-dimethylaminopyridine (DMAP), copper (II) chloride or HOBt to hasten the reaction and suppress the racemization of the desired compound.
The DCC reaction is often performed at room temperature but may be carried out ~rom about -78 ~C to gentle re~lux in a variety of solvents that are inert with respect to the reactants.
The solvents are normally organic solvents which are polar and aprotic. Preferred solvents include, ~or example, dichloromethane, chloroform, diethyl ether, tetrahydro~uran (THF), N,N'-dimethylformamide (DMF), and the like. Particularly pre~erred solvents are dichloromethane and DMF. In general, the coupling reaction may be carried out at atmospheric pressure a temperature o~ -78 oc to reflux for a period o~ between 1 and 48 hours. Pre~erably, the reaction is carried out at about -10~ C

CA 022327~0 l998-03-23 W O97/10836 PCT~US96/15098 to 25~ C with stirring, shaking or agitation, over a period of between 4 and 6 hours.
Alternatively, synthesis may be achieved prepared using solid phase synthesis, such as that described by Merrifield, J
Am. Chem. Soc., 85, p 2149 (1964), although other equivalent chemical syntheses known in the art can also be used.
Solid-phase synthesis is commenced from the C-terminus of the peptide by coupling a protected alpha-amino acid to a suitable resin as generally set forth in U.S. Pat. No. 4,244,946.
As an example, Ile protected by BOC is coupled to the a BHA
resin using methylene chloride and dimethylformamide. Following the coupling of BOC-Ile to the resin support, the alpha-amino protecting group is removed, as by using trifluoroacetic acid (TFA) in methylene chloride, TFA alone or with HCl in dioxane.
Preferably 50 volume ~ TFA in methylene chloride is used with 0-5 weight ~ 1, 2 ethanedithiol. The deprotection is carried out at a temperature between about 0~ C and room temperature. Other standard cleaving reagents and conditions for removal of specific alpha-amino protecting groups may be used as described in Schroder & Lubke, The Peptides, pp 72-75 (Academic Press 1965).
After removal of the alpha-amino protecting group of Ile, the rem~;n;ng alpha-amino- and side chain-protected amino acids are coupled step-wise in the deslred order to obtain the intermediate compound defined hereinbefore. As an alternative to adding each amino acid separately in the synthesis, some of them may be coupled to one another prior to addition to the solid phase reactor. The selection o~ an appropriate coupling reagent is within the skill of the art. Particularly suitable as coupling reagents are N,N'-dicyclohexyl carbodiimide (DCC) and N,N'-diisopropyl carbodiimide (DICI), or N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide. Other activating reagents and their use in peptide coupling are described by Schroder & Lubke, supra, in Chapter III and by Kapoor (1970) J. Phar. Sci. 59:127.
Each protected amino acid or amino acid sequence is introduced into the solid phase reactor in about a fourfold excess, and the coupling is carried out in a medium of CA 022327~0 l998-03-23 W O 97/10836 PCT~US96/15098 dimethyl~ormamide: dichloromethane (1:1) or in DMF or dichloromethane alone. In instances where the coupling is - carried out manually, the success o~ the coupling reaction at each stage o~ the synthesis is monitored by the ninhydrin reaction, as described by E. Kaiser et al. (1970) Anal. Biochem.
34:595. In cases where incomplete coupling occurs, the coupling procedure is repeated be~ore removal o~ the alpha-amino protecting group prior to the coupling o~ the next amino acid.
The coupling reactions can be per~ormed automatically, as on a Applied Biosystems automatic synthesizer.
After the desired amino acid sequence has been completed, the intermediate peptide is removed ~rom the resin support by treatment with a reagent, such as liquid hydrogen ~luoride, which not only cleaves the peptide ~rom the resin but also cleaves all remaining side chain protecting groups and the alpha-amino protecting group (unless it is an acyl group which is intended to be present in the ~inal peptide) to obtain the peptide. When using hydrogen ~luoride ~or cleaving, anisole or cresol and methylethyl sul~ide are included in the reaction vessel as scavengers. When Met is present in the sequence, the BOC
protecting group may be cleaved with tri~luoroacetic acid (TFA)/ethanedithiol prior to cleaving the peptide ~rom the resin to eliminate potential S-alkylation.
All patents and publications re~erred to in the examples, and throughout the specii~ication, are incorporated herein by re~erence, without admission that such is prior art.
The ~ollowing nonlimiting examples are provided to illustrate the invention. The skilled artisan will recognize that there may be substitutions and variations o~ the exempli~ied methods and compositions which are apparent and can be practiced without departing ~rom the essence o~ the invention.

EXAMPLES
Exam~le 1. Pe~tide Synthesis The synthesis of the peptide o~ SEQ ID NO:1 (Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Lys-Gln-Val-Val-Ile-Asp) is conducted in a CA 022327~0 1998-03-23 W O 97/10836 PCTrUS96/lS098 stepwise manner on a MBHA hydrochloride resin, such as available from Bachem, Inc. (Torrance, CA) having a substitution range of about 0.1 to 0.5 mmoles/gm. resin.
All equipment employed in the examples is commercially available. Unless otherwise indicated, all starting materials employed in the examples are commercially available. Sources ~or these materials include Sigma Chemical Co. (St. Louis, MO), Aldrich Chemical Co. (Milwaukee, WI), Lancaster Synthesis (W;n~lh~m, NH), Fisher Scientific (Pittsburgh, PA), Boehringer Mannheim Biochemicals (Indianapolis, IN), Fluka Chemical Corp.
(Ronkonkoma, NY) and Chemical Dynamics Corp. (South Plain~ield, NJ). Most o~ the starting materials were obtained ~rom Aldrich Chemical Co. (Milwaukee, WI).
All solvents used in the peptide preparations described herein, e.g. methylene chloride dichloromethane, 2-propanol, dimethyl~ormamide (DMF), and methanol, were Burdick and Jackson "distilled in glass" grade and used without additional distillation. Tri~1uoroacetic acid (TFA), diisopropylethylamine (DIPEA), piperidine (PIP), dicyclohexylcarbodiimide (DCC), 1-hydroxybenzotriazole (HOBt), and [benzotriazole-1-yl-oxy-tris(dimethyl) phosphonium hexa~luorophosphate] (BOP) were purchased ~rom Chemical Dynamics Corp. and were "sequenal" grade purity. 1~2-ethanedithiol (EDT) was purchased ~rom Sigma Chemical Co. and used without ~urther puri~ication. All protected amino acids were o~ the L-con~iguration unless otherwise indicated and were obtained ~rom Bachem (Torrance, CA).

CA 022327~0 1998-03-23 The synthesis is performed on an Applied Biosystems peptlde synthesizer (Foster City, CA) using a suitable program, ~ preferably as follows:

STEP REAGENTS AND OPERATIONS MIX TIMES
1 Dichloromethane-80 ml. 2 2 Methanol(MeOH) wash-30 ml. 2 3 Dichloromethane-80 ml. 3 4 50 percent TFA plus 5 percent 1,2-ethane- dithiol in 2 dichloromethane-70 ml.
Isopropanol wash-80 ml. 2 6 TEA 12.5 percent in dichloromethane -70 ml. 2 7 MeOH wash-40 ml. 2 8 Dichloromethane wash-80 ml. 3 9 Boc-amino acid (10 mmoles) in 30 ml. of either DMF or dichloromethane, depending upon the solubility of the particular protected amino acid, (1 time) plus DCC (10 mmoles) in dichloromethane (reaction time 20-200 min) Note: All wash and mix times three minutes except where noted.

Coupling of BOC-ASP(OBz) results in the substitution of about 0 35 mmol ASP per gram of resin. All solvents that are used are carefully degassed, preferably by sparging with an inert gas, e.g., helium or nitrogen, to insure the absence of oxygen.
After deprotection and neutralization, the peptide chain is built stepwise on the resin. Generally, one to two mmol. of BOC-protected amino acid in methylene chloride is used per gram of resin, plus one equivalent of 2 M DCC in methylene chloride, for two hours. When BOC-Arg(Tos) is being coupled, a mixture of 50~ DMF and methylene chloride is used. Bzl is used as the hydroxyl side-chain protecting group for Ser and Thr p-nitrophenyl ester(ONp) can be used to activate the carboxyl end of Asn or Gln; for example, BOC-Asn(ONp) can be coupled overnight using one equivalent o~ HOBt in a 50~ mixture of DMF and methylene chloride. The amido group of Asn or Gln is protected CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 by Xan when DCC coupling i5 used instead of the active ester method. 2-Cl-CBZ is used as the protecting group for the Lys side chain. Tos is used to protect the guanidine group of Arg and the imidazole group of His, and the side-chain carboxyl group of Glu or Asp is protected by OBzl.
To cleave and deprotect the resulting protected peptide-resin, it is treated with 1.5 ml anisole, 0.5 ml of methylethylsulfide and 15 ml liquid hydrogen fluoride (HF) per gram of peptide-resin, first at -20 ~C for 20 min and then at 0 ~C for 30 min. This reaction must be performed with great care owing to the highly toxic and corrosive nature of hydrogen fluoride. Thls reaction is performed in a commercially available teflon apparatus (Peninsula Research, Inc., Richmond, CA). After complete elimination of HF under high vacuum using a KOH trap, the resin-peptide is washed alternately with dry diethyl ether and chloroform, and the peptides are then extracted with degassed 2 N aqueous acetic acid and separated from the resin by filtration on a Hirsch funne~.
The peptide is purified by gel permeation followed by preparative HPLC as described in Marki et al.(1981) J. Am. Chem.
Soc. 103:3178i Rivier, et al. (1984) J. Chromatography 288:303-328; and Hoeger, et al. (1987) BioChromatography 2:134-142. The chromatographic fractions are carefully monitored by HPLC (see below), and only the fractions showing substantial purity are pooled.
To confirm that the desired sequence is achieved, the peptide is hydrolyzed in sealed evacuated tubes containing constant boiling HCl, 3 ~l of thioglycol/ml and 1 nmol of Nle (as an internal standard) for 9 hours at 140 ~C. Amino acid analysis of the hydrolysates using a Beckman 121 amino acid analyzer to determine amino acid ratios allows confirmation that the desired peptide structure has been obtained.

Exam~le 2. Cyclization of Active Pe~tides .

Cyclization "traps" the bioactive conformation o~ the peptide by making the active conformation part of a ring system CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 that allows it much less conformational flexibility. In this procedure, aspartate or glutamate residues are introduced into ~ the sequence either in place of non-essential amino acid residues or as added residues in the chain. The new peptide is then ~ 5 subjected to electro-oxidation in which the two residues are decarboxylated, in an intramolecular Kolbe electro-oxidative coupling reaction, resulting in the joining of their respective -CH2 groups, forming a ring as shown in Fig. 1. This method has been used to make a cyclized ~-bend of the dipeptide, Pro-Gly, by placing a glutamic acid residue on the amino and carboxyl ends of this dipeptide and then performing the Kolbe electro-oxidation to form the tetra-(CH2)-bridge. The Pro-Gly peptide, which has a variety of conformations in solution, when cyclized, was found to adopt the ~-bend structure uniquely (Joran, A., "Conformationally restricted biologically active peptides, methods for their production and uses thereof," U.S. Patent No.
5,364,851.) This method has been used quite recently to synthesize cyclized forms of the peptide vasopressin; these forms have been tested in an in vitro adenylate cyclase system and have been found to have prolonged half-lives and greater activity than the native peptide. Therefore, this cyclization procedure may result in enhanced peptide inhibition and in increased half-life.
Introduction of the cyclizing rigidifying agent reduces the flexibility of the peptide and concurrently introduces non-polar aliphatic groups into the peptide (such as the tetra-methylene bridge shown in Scheme I) that help promote transport of the peptide through the cell membrane.

PCT~US96/15098 Scheme I

H H ~ H H O
I _ 1 11 1 1 11 ~rv~_~~ NC C------~rv~~~~v~v~ N C C ~
l I
CH CH

Cl 2 Cl 2 GI~L
Kolbe electro Iytic decarboxylation 1~ H ~ H H O
~~A N--C C ~\N C - C ~~

~CH2 2 c~2 'H2 Di-arninosuberic acid ring S~ )TE SHEET (RULE 26 _ CA 022327~0 1998-03-23 Scheme I illustrates an exemplary result o~ using ~ electrolytic decarboxylation to cyclize peptides to trap them in their active con~ormations. Either two gultamate, two aspartate, or one glutamate and one aspartate residues are introduced in the chain represented by the wavy line. Under electro-oxidation shown here ~or two glutamate residues, a tetramethylene bridge forms cyclizing the region o~ the peptide that is to be held ~ixed in its bioactive con~ormation. The two connected residues shown constitute the diamino suberic acid moiety.
It should be noted that, in the synthesis o~ this new peptide, there are possibly other aspartate and glutamate amino acid residues that can undergo the oxidative decarboxylation.
To prevent these reactions ~rom occurring, these Asp and Glu residues are protected as esters during the solid phase synthesis o~ the peptide. The i~ree Glu residues at positions 44 and 46 are then allowed to undergo the cyclization reaction, a~ter which the protected acid groups are then deprotected.
This cyclization procedure can be per~ormed on other regions o~ this peptide and on the other two active peptides.
The electrooxidative coupling reaction used to prepare the cyclic peptides o~ the invention can be performed in a divided or an undivided cell such as a standard glass H-cell, as described in Orqanic Electrochemistrv (2nd Ed.), M. Baizer and H. Lund, eds., Marcel Dekker, New York, 1983, Chap. 5, p 168 For large scale runs, the reaction can be carried out in a plate and ~rame ~low cell as described in Technique o~ Electroorqanic Synthesis, Part III, N. Weinberg and B. Tilak, ed., John Wiley & Sons, New York, 19 8 2, Chap. III, p 179.
Cathode materials useful ~or the preparation o~ the compounds o~ the invention include, but are not limited to, high hydrogen overvoltage materials such as mercury, lead or cadmium.
Anode materials include, but are not limited to, materials such as mercury, lead, graphite, or graphite paste, which are stable under electrolysis conditions.

CA 022327~0 1998-03-23 The electrooxidative coupling can occur in aqueous, or aqueous organic electrolytes, comprising solutions of Bronsted acids, such as sulfuric, fluoroboric, and tri~luoroacetic acids.
Any electrolyte may be selected that has sufficient acid strength to render a basic starting material protonated. A dilute solution of trifluoroacetic acid is most preferred.
Although the preferred method of electrolysis to obtain the compounds of this invention takes place under constant current conditions, the oxidative coupling could also be performed using controlled potential electrolysis, as understood by those skilled in the art. Typical current densities are between 1 and 5000 milliamps(mA)/cm2, preferably between 10 and 100 mA/cm2. The reaction is preferably carried out at a temperature in the range of about 0 ~C to 37 ~C, more preferably about 10 ~C.
A standard glass H-cell (200 ml volume, glass frit separator) was equipped with a mercury pool cathode 12 cm2 area), a magnetic stirrer, and a platinum foil anode. The cell reservoir was filled with 40 ~M trifluoroacetic acid (110 ml) and placed in a water bath maintained at 10 ~C. The catholyte was purged with nitrogen. The starting peptide (20 mg) was added to the catholyte and constant current electrolysis was initiated at 0.1 A. The reaction progress was followed by HPLC and after passage of 1,060 coulombs, all the substrate had been consumed and the electrolysis was terminated. The catholyte was recovered and adjusted to pH 8 with NaOH. The pH-adjusted catholyte was extracted with chloroform (2 times 70 ml). The extract was freeze dried and the resultant powdery material extracted with acetonitrile (HPLC grade). This was filtered through a sintered-glass filter (fine porosity) and was reduced in volume on a rotary evaporator using a mechanical vacuum pump to a volume of 2 ml. This material was puri~ied by reversed-phase high pressure liquid chromatography using a Waters HPLC system with a 0.46 x 0.25 cm column packed with 5 ~m C1~ silica, 300 A pore size. I
Buffer A is an aqueous 0.1~ (vol/vol) trifluoroacetic acid .i solution (1.0 ml of TFA per 1000 Ml solution); Buffer B is 100~
acetonitrile. The determination is run at room temperature with a gradient from 15.5~ Buffer B to 75~ Buffer B over a 30 min.

CA 022327~0 l998-03-23 W O 97/10836 PCTrUS96/15098 The flow rate is 2.2 ml per minute, and the retention time is 25.0 min.
~ The structure was confirmed by 300 MHz lH NMR, 13C NMR, and electrospray mass spectroscopy.
The amounts of the reactants and the conditions required to facilitate reaction and encourage efficient completion of the aforementioned Examples may vary widely. However, in general, the amounts of material employed to induce reaction in the processes discussed above will be substantially stoichiometric, unless otherwise specified. In the following examples, reaction concentrations are generally held at 0.1 M for the reactants, unless a higher concentration or dilution would be particularly useful for influencing the direction of a specific reaction. In practice, the amounts used will depend upon variations in reaction conditions and the nature of the reactants as readily apparent to one of ordinary skill in the art.
In any of the methods described hereinabove, the desired products may be isolated- from the reaction mixture by crystallization. Alternatively, chromatographic techniques including, but not limited to, normal phase, reverse phase, ion-exchange, affinity, or gel permeation, may be employed, as well as electrophoresis or extraction or other means.

Example 3. Oocvte Maturation AssaY
Using the method described in Chung et al. (1991) Anticancer Res. 11:1373-1378, test peptides, cyclized peptides and/or peptidomimetics are injected into immature oocytes at various doses. The oocytes are co-injected with recombinant transforming ras p21 obtained from the National Cancer Institute of Japan.
Alternatively, the oncogenic ras p21 can be prepared by the ordinary skilled artisan without the expense of undue experimentation as described in Chung et al. (1991) supra and in Chung et al. (1992) Exp. Cell. Res. 203:329-335 The maturation of the oocytes is evaluated microscopically at low power (20 X), using a Nikon Diaphot microscope, for example. Percent inhibition is calculated based on comparisons with oocytes which are injected with 0. 05 mg/ml oncogenic ras p21.

WO 97/10836 PCT~US96/15098 The ~ollowing results were obtained using a dose o~ each peptide equivalent to an internal oocyte concentration o~ 50 nM:

Peptide ORSequence ID Percent Inhibition of Numberras-lnduced Maturation Val-Val-lle 34 Lys-Arg-Val 22 The peptidomimetics and cyclic peptides o~ the present invention will be similarly e~ective in inhibiting oocyte maturation in response to the oncogenic ras p21 protein, and in inhibiting oncogenesis.

W O 97/10836 PCTrUS96/15098 Example 4. SYnthesis oi~ PePtidomimetic p21 ras Inhibitor A representative peptidomimetic o~ the present invention is synthesized according to Scheme II, as ~urther described hereinbelow.

Scheme II

f ~ H2NOH~CI
H J ~, NaOAc,ESOH ~ Na. nPrO~
HO ~ ~ux,~h,72~~ ~O ~ ~flu~.79Y~
~OH

R z c~3C~(CH~3C~(C~)2 ~ BnOCOCI. THF ~ t8uO~OH
HO ; K2CC~ ooC--rt HO ~ cr~ DMAP. CH2CIz NH2 NH(CBZ) 92Y~

R R
~ ~z,~ P~C ~;~
E~H.~ g3Y~ R'5 NlttCE3Z) NH2 FI' _ tBI~OzC C i 12C O
' Steroid 1 was commercially available, and used without ~urther puri~ication. Mono-t-butylmalonate was prepared by literature methods [Brunwin, D.M.; et al. (1971) J. ChelZI. Soc. C. 3756].
THF was distilled ~rom sodium/benzophenone under Ar. Methylene chloride and ethanol (absolute) were distilled from CaH2 under Ar. Benzylchloro~ormate and n-propyl alcohol are commercially CA 022327~0 1998-03-23 WO 97/10836 PCT~US96/15098 available, and used without further purification or drying. All reactions performed under an atmosphere of Ar unless otherwise noted 5-~-3-~-hydroxy-6-o~;m;nochole~tane (2): Cholestanone 1 (1.00 g. 2.5 mmol), NaOAc (352 mg, 4.3 mmol) and hydroxylamine hydrochloride (197 mg, 2.8 mmol) were heated at reflux in absolute ethanol (15 ml). The reaction was efficiently stirred under Ar for llh at reflux. The reaction was cooled, and the solvent removed on the rotary evaporator. The resulting white solid was dissolved in CHC13, and washed once with brine (80 ml).
The organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The yield of crude material was 1.068 g of a lightly colored solid. The material was recrystallized from absolute ethanol (15.5 mL) to give 752 mg (72~) of white needles, mp = 202-204~C (dec). 1H NMR(CDCl3): ~3.60 (m, lH), 3.33 (dd, = 4.37, 13.6 Hz, lH), 2.10-1.75 (broad m, 6H), 1.70-1.45 (broad m, 5H), 1.42-1.28 (broad m, 8H), 1.14 (m, 9H), 0.92 (d, J = 6.87 Hz, 3H), 0.88 (d, ~ = 6.54 Hz, 6H), 0.77 (s, 3H), 0.67 (s, 3H).
l3C NMR (CDCl3): ~159.55, 70.77, 56.39, 55.91, 54.04, 49.26, 42.60, 39.42, 39.20, 38.57, 35.92, 35.84, 35.63, 35.43, 31.24, 30.40, 29.39, 27.87, 27.70, 23.80, 23.53, 22.51, 22.26, 21.17, 18.36, 12.34, 11.79, IR (neat film): 3354, 2941, 1667, 1467, 1065, 978 cm~1.
5-~-6-~-amino-3-~-hydroxycholestane (3): Oxime 2 (752 mg, 1.8 mmol) was dissolved with good stirring in boiling n-propyl alcohol (32 mL). The flask was removed from the oil bath, and small pieces of freshly prepared sodium wire (2.898 g, 126 mmol) were added at a rate sufficient to maintain the reflux. After the addition of the sodium was complete, the flask was lowered into the bath, and stirred at reflux for 2h (a thick, white crust forms). The reaction was cooled to room temperature, and carefully quenched by slow, dropwise addition of water under an inert atmosphere. The quenched reaction was extracted twice with CHCl3 (50 mL), and the extracts were washed with brine, dried .I
over Na2SO4, filtered, and concentrated. The yield of a vanilla colored solid was 723 mg. The material was puri~ied by flash chromatrography on silica in CHCl3/MeOX (3:2) to give 577 mg CA 022327~0 l99X-03-23 WO 97/10836 PCTrUS96/15098 (79~) of a vanilla colored solid. Alternatively, the product can be recrystallized from EtOAc. lH NMR (CDCl3): ~3.59 (m, lH), 2.60 (dd, ~ = 2.87, 10.35, 20.73Hz, lH), 2.09 (d, J = 11.79Hz, lH), 1.99 (d, ~ = 12.94Hz, lH), 1.85 (m, 3H), 1.78 - 1.45 (broad m, 10H), 1.36 (m, 5H), 1.24 - 0.96 (m, 9H), 0.89 (m, 10H), 0.83 (s, 3H), 0.77 (m, 2H), 0.67 (s, 3H).
N-(benzyloxy carbonyl)-5-~-6-~-amino-3-~-hydroxycholestane (4):
The amine 3 (465 mg. 1.15 mmol) and anhydrous K2CO3(457 mg, 3.3 mmol) were stirred in dry THF (4 mL), and cooled to 0~C in an ice-water bath. Benzyl-chloroformate (0.16 mL, 1.15 mmol) was added dropwise, and the reaction was stirred at 0~C for 15 min, then at room temperature for 6h. The reaction was diluted with water and poured into saturated NaHCO3 (15 mL). A thick, flocculent white precipitate ~ormed. The a~ueous mixture was extracted with CHCl3 (20 mL), and the aqueous layer was saturated with NaC1 and extracted with CHCl3 (5x20 mL). The organic extracts were washed with brine (40 mL), dried over Na2SO4, filtered, and concentrated. ~The yield of crude material was 649 mg of a tan solid. The material was flash chromatographed on silica in Hex/EtOAc (1:1), (using a little CHC13 to help dissolve material) to give 546 mg (88~) of a white solid. 1H NMR (CDC13):
~7.88 (m, 4H), 7.23 (s, lH), 5.08 (d, J = 3.08Hz, 2H), 4.86 (d, J = 9.46Hz, lH), 3.53 (m, lH), 3.50 (s, lH; overlaps with the multiplet at 3.53), 2.00 (d, J = 12.35Hz, 2H), 1.85 (m, 3H), 1.53 (m, 4H), 1.49 - 1.22 (broad m, 9H), 1.20 - 0.98 (broad m, 10H), o.9o (m, 9H), 0.87 (s, 3H), 0.77 (m, 2H), 0.66 (s, 3H). IR (neat film): 3346 (broad), 1691, 1544, 1022 cm~l.
N-(benzyloxy carbonyl)-5-~-6-~-amino-3-~-mono-t-butyl malonyl cholestane (5): The amine 4 (144.4 mg, 0.27 mmol), mono-t-butyl malonate (107.7 mg, 0.67 mmol), and DMAP were dissolved in dry CH2Cl2 (1.2 mL), and stirred efficiently at room temperature.
DCC (67.4 dmg, 0.33 mmol) was added in one portion under a stream of Ar. The reaction was stirred at room temperature for 23h, then diluted with ether, and filtered through a pad of Celite (a white solid remains on the pad). The filtrate was washed with 10~ citric acid (20 mL), saturated NaHCO3 (20 mL), and brine (20 mL). The organic layer was dried over Na2SO4, filtered and CA 022327~0 1998-03-23 concentrated. The yield of crude material was 200 mg. The material was flash chromatographed in Hex/EtOAc (6.7:1) to give 168.7 mg (92~) of a yellow-gold residue lH NMR (CDC13): ~7.36 (s, 4H), 7.29 (s, lH), 5.08 (q, J = 12.25, 27.09Hz, 2H), 4.70 (m, lH), 4.38 (d, J = 9.56Hz, lH), 3.27 (s, 2H), 2.00 (m, 2H), 1.85 (m, 4H), 1.54 (m, 3H), 1.48 (s, 9H), 1.35 (M, 8H), 1.11 (m, llH), 0.89 9(m, 12H), 0.75 (m, 2H), 0.66 (s, 3H).
The N-CBZ group of 5 was cleanly removed by hydrogenolysis using 10~ palladium on carbon under a hydrdogen atmosphere to give 6 in 93~ yield. Trials employing 1,4-cyclohexadiene as the hydrogen source [Felix et al. (1978) J. Org. Chem. 43:4194]
produced 6 in only 23~ yield, even when a large excess of the diene was used. Longer reaction time did not improve the yield.
5-~-6-~-amino-3-~-mono-t-butyl malonyl cholestane (6): 5 (200.7 mg, 0.3 mmol) and 10~ palladium on carbon (194 mg) were stirred vigorously in abs. EtOH (1.8 mL). The system was flushed with a balloon of hydrogen, and an atmosphere of hydrogen was maintained by 2 balloons of hydrogen. The reaction was stirred for 20h at room temperature, then vented with Ar, and suction-filtered through a tighly packed pad o~ Celite. The flask and filter cake were thoroughly washed with 1:1 EtOH/THF. The filtrate was concentrated in vacuo to give 167.8 mg o~ material. The crude product was flash chromatographed first in Hex/EtOAc (3:2) to elute off minor byproducts, then CHCl3/MeOH (9:1) to give the product in a yield of 152.3 mg (93~) of a golden residue. 1H NMR
(CDCl3): ~4.76 (m, lH), 3.27 (s, 2H), 2.60 (m, lH), 2.22 (m, lH), 2.05 - 1.71 (broad m, 6H), 1.51 (s, 3H), 1.49 (s, 9H), 1.34 (broad m, 8H), 1.24 - 0.97 (broad m, 12H), 0.92 (d, J = 6.55Hz, 3H), 0.88 (d, J = 6.64Hz, 6H), 0.85 (s, 3H), 0.75 (m, 2H), 0.67 (s, 3H), IR (neat film): 3368, 2946, 2868, 1747, 1729, 1144, 1008 cm-l Reductive amination of N(BOC) aminoacetaldehyde [Buchardt et al. (1993) Org. Prep. Proc. Int. 25:457] is promoted by the use of NaBH3CN and catalytic acetic acid. t-Butylester and BOC
groups are removed. The general plan is given in Scheme III.

Scheme III

Na2H C~
6 + ~E~OC~HN 4, OE HoA
H 25:1 M~oH/~HF RO H ~
HN N~I~BOC) R ~ tBu02C S: H2C Q
- HO2C c ~c o ~ r r ~
R~o ~ _ --NH~"X-~UU~N - ~ LISTING
(1) GENERAL INFORMATION:
ti) APPLICANT: INNAP~ARMA, INC.
(ii) TITLE OF lNV NllON: Peptides and Pepti~o~i~tics Inhibiting the Oncogenic Action o~ P21 Ras (iii) NUMBER OF ~u N~S: 52 (iV) ~O~ ?T~.Cp~NIll.:N~ ~nnT~ q rA ~nD~.~S~: Greenlee, Winner and Sullivan, P.C.
~BJ STREET: 5370 Manhattan Circle, Suite 201 C~ CITY: Boulder ~D~ STATE: Colorado E~ ~Y: US
~F) ZIP: 80303 (v) COMPUTER ~n~RT.T.' FORM:
(A~ MEDIUM TYPE: Floppy disk ~B~ CCM~U1~:K: IBM PC compatible iC OPERATING SYSTEM: PC-DOS/MS-DOS
~D) SOFTWARE: PatentIn Release ~1.0, Version ~1.30 (~i) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER: PCT/US96/15098 (B) FILING DATE: 20-SEP-1996 (C) CLASSIFICATION:
(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NU~BER: US 08/531,525 (B) FILING DATE: 21-SEP-1995 (vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: US 60/004,091 (B) FILING DATE: 21-SEP-1995 (~iii) AlLO~N~Y/AGENT INFORMATION:
(A) NAME: Ferber, Donna M.
(B) REGISTRATION N~MBER: 33,878 (C) REFERENCE/DOCKET NU~E3ER: 37-94A WO
(ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: (303) 499-8080 (B) TELEFAX: (303) 499-8089 (2) INFORMATION FOR SEQ ID NO:l:
(i) ~Qu~ CHARACTERISTICS:
~A LENGTH: 6 amino acids (B~ TYPE: amino acid ~ C I S TR.~ N I ) t~: I ] N ~: .C:
~D~ TOPOLOGY: linear (ii~ MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO .

I

S~J~ 111 ~JTE SHEET (RULE 26) W O 97/10836 PCT~US96/15098 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:l:
Ile Lys Arg Val Lys Asp l 5 (2) INFORMATION FOR SEQ ID NO:2:
- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
Lys Cys Asp Leu Ala l 5 (2) INFORMATION FOR SEQ ID NO:3:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOT~ETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
Cys Asp Leu Ala Ala Arg Thr l 5 (2) INFORMATION FOR SEQ ID NO:4:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4 amino acids (B) TYPE: amino acid (C) STRAN~SS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Asp Leu Ala Ala (2) INFORMATION FOR SEQ ID NO:5:

CA 022327~0 1998-03-23 WO 97/10836 PCT~US96/15098 ( i ) S~U~N~ CHARACTERISTICS:
(A) LENGTH: 188 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
Met Thr Glu Tyr Lys Leu Val Val Val Gly Ala Gly Gly Val Gly Lys Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe Val Asp Glu Tyr Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Val Ile Asp Gly Glu Thr Cys Leu Leu Asp Ile Leu Asp Thr Ala Gly Gln Glu Glu Tyr Ser Ala Met Ary Asp Gln Tyr Met Arg Thr Gly Glu Gly Phe Leu Cys Val Phe Ala Ile Asn Asn Thr Lys Ser Phe Glu Asp Ile His Gln Tyr Arg Glu Gln Ile Lys Arg Val Lys Asp Ser Asp Asp Val Pro Met Val Leu Val Gly Asn Lys Cys Asp Leu Ala Ala Thr Val Glu Ser Arg Gln Ala Gln Asp Leu Ala Arg Ser Tyr Gly Ile Pro Tyr Ile Glu Thr Ser Ala Lys Thr Arg Gln Gly Val Glu Asp Ala Phe Tyr Thr Leu Val Arg Glu Ile Arg Gln His Lys Leu Arg Lys Leu Asn Pro Pro Asp Glu Ser Gly Pro Gly Cys Met Ser Cys Lys Cys Val Leu Ser (2) INFORMATION FOR SEQ ID NO:6:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STR~NDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CA 022327~0 l998-03-23 W O 97/10836 PCT~US96/15098 Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Val Ile Asp (2) INFORMATION FOR SEQ ID NO:7:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
Tyr Arg Glu Gln Ile Lys Arg Val Lys Asp Ser Asp Asp Val Pro (2) INFORMATION FOR SEQ ID NO:8:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 12 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
Gly Asn Lys Cys Asp Leu Ala Ala Arg Thr Val Glu 1 5 lO
(2) INFORMATION FOR SEQ ID NO:9:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) sTR~NnFDNF-~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
Cys Asp Leu Ala Ala Arg Thr (2) INFORMATION FOR SEQ ID NO:10:
(i) ~U~N~ CHARACTERISTICS:
(A) LENGTH: 215 amino acids CA 022327~0 l998-03-23 WO 97/10836 PCT~US96/l5098 (B) TYPE: amino acid (C) STR~Nn~n~.~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Arabidopsis thaliana (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
Met Ala Ala Pro Pro Ala Arg Ala Arg Ala Asp Tyr Asp Tyr Leu Ile Lys Leu Leu Leu Ile Gly Asp Ser Gly Val Gly Lys Ser Cys Leu Leu Leu Arg Phe Ser Asp Gly Ser Phe Thr Thr Ser Phe Ile Thr Thr Ile Gly Ile Asp Phe Lys Ile Arg Thr Ile Glu Leu Asp Gly Lys Arg Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Arg Thr Ile Thr Thr Ala Tyr Tyr Arg Gly Ala Met Gly Ile Leu Leu Val Tyr Asp Val Thr Asp Glu Ser Ser Phe Asn Asn Ile Arg Asn Trp Ile Arg Asn Ile Glu Gln His Ala Ser Asp Asn Val Asn Lys Ile Leu Val Gly Asn Lys Ala Asp Met Asp Glu Ser Lys Arg Ala Val Pro Thr Ala Lys Gly Gln Ala Leu Ala Asp Glu Tyr Gly Ile Lys Phe Phe Glu Thr Ser Ala Lys Thr Asn Leu Asn Val Glu Glu Val Phe Phe Ser Ile Gly Arg Asp Ile Lys Gln Arg Leu Ser Asp Thr Asp Ser Arg Ala Glu Pro Ala Thr Ile Lys Ile Ser Gln Thr Asp Gln Ala Ala Gly Ala Gly Gln Ala Thr Gln 195 200 205 ':
Lys Ser Ala Cys Cys Gly Thr (2) INFORMATION FOR SEQ ID NO:11:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 213 amino acids .
(B) TYPE: amino acid (C) STRP~nF.n~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein !

CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 (iii) ~YPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Arabidopsis thaliana (xi) SEQUENCE DESCRIPTION: SEQ ID NO:ll:
Met Ala Gly Tyr Ala Asp Glu Glu Tyr Asp Tyr Leu Phe Lys Leu Val Leu Ile Gly Asp Ser Gly Val Gly Lys Ser Asn Leu Leu Ser Arg Phe Thr Lys Asn Phe Asn Leu Glu Ser Lys Ser Thr Ile Gly Val Glu Phe Ala Thr Lys Thr Thr Lys Val Glu Gly Lys Val Val Lys Ala Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Tyr Arg Ala Ile Thr Ser Ala Tyr Tyr Arg Gly Ala Val Gly Ala Leu Leu Ile Tyr Asp Val Thr Arg His Ala Thr Phe Glu Asn Ala Ala Arg Trp Leu Arg Glu Leu Arg Gly His Thr Asp Pro Asn Ile Val Val Met Leu Ile Gly Asn Lys Cys Asp Leu Arg His Leu Val Ala Val Lys Thr Glu Glu Ala Lys Ala Phe Ala Glu Arg Glu Ser Leu Tyr Phe Met Glu Thr Ser Ala Leu Asp Ala Thr Asn Val Glu Asn Ala Phe Thr Glu Val Leu Thr Gln Ile His Lys Ile Val Ser Lys Arg Ser Val Asp Gly Gly Gly Ser Ala Asp Leu Pro Gly Lys Gly Glu Thr Ile Asn Val Lys Glu Asp Gly Ser Val Leu Lys Arg Met Gly Cys Cys Ser Asn (2) INFORMATION FOR SEQ ID NO:12:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 213 amino acids (B) TYPE: amino acid (C) STR~NDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOT~ETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Arabidopsis thaliana CA 022327~0 l998-03-23 WO 97/10836 PCTAJS96/1~098 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
Met Ser Ser Asp Asp Glu Gly Arg Glu Glu Tyr Phe Lys Ile Val Val Ile Gly Asp Ser Ala Val Gly Lys Ser Asn Leu Leu Ser Arg Tyr Ala Arg Asn Glu Phe Ser Ala Asn Ser Lys Ala Thr Ile Gly Val Glu Phe Gln Thr Gln Ser Met Ile Glu Gly Lys Glu Val Lys Ala Gln Ile Trp Asp Thr Ala Gly Gln Glu Phe Arg Ala Val Thr Ser Tyr Tyr Arg Gly Ala Val Gly Ala Leu Val Val Tyr Asp Ile Thr Arg Arg Thr Thr Phe Glu Ser Val Gly Arg Trp Leu Asp Glu Leu Lys Ile His Ser Asp Thr Thr Val Ala Arg Met Leu Val Gly Asn Lys Cys Asp Leu Glu Asn Ile Arg Ala Val Ser Val Glu Glu Gly Lys Ala Leu Ala Glu Glu Glu Gly Leu Phe Phe Val Glu Thr Ser Ala Leu Asp Ser Thr Asn Val Lys Thr Ala Phe Glu Met Val Ile Leu Asp Ile Tyr Asn Asn Val Ser Arg Lys Gln Leu Asn Ser Asp Thr Tyr Lys Asp Glu Leu Thr Val Arg Val Ser Leu Val Lys Asp Asp Asn Ser Ala Ser Lys Gln Ser Ser Gly Phe Ser Cys Cys Ser Ser Thr (2) INFORMATION FOR SEQ ID NO:13:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 201 amino acids (B) TYPE: amino acid (C) sTR~Nn~nN~s single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Discopyge ommata (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
Met Asn Pro Glu Tyr Asp Tyr Leu Phe Lys Leu Leu Leu Ile Gly Asp Ser Gly Val Gly Lys Ser Cys Leu Leu Leu Arg Phe Ala Asp Asp Thr CA 022327~0 l998-03-23 Tyr Thr Glu Ser Tyr Ile Ser Thr Ile Gly Val Asp Phe Lys Ile Arg Thr Ile Glu Leu Asp Gly Lys Thr Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Phe Arg Thr Ile Thr Ser Ser Tyr Tyr Arg Gly Ala His Gly Ile Ile Val Val Tyr Asp Val Thr Asp Gln Glu Ser Phe Asn Asn Val Lys Gln Trp Leu Gln Glu Ile Asp Arg Tyr Ala Ser Glu Asn Val Asn Lys Leu Leu Val Gly Asn Lys Cys Asp Leu Thr Thr Lys Lys Val Val Asp Tyr Thr Thr Lys Glu Phe Ala Asp Ser Leu Gly Ile Pro Phe Leu Glu Thr Ser Ala Lys Asn Ala Thr Asn Val Glu Gln Ala Phe Met Thr Met Ala Ala Glu Ile Lys Lys Arg Met Gly Pro Gly Ala Thr Ser Gly Gly Ser Glu Lys Ser ~sn Val Asn Ile Gln Ser Thr Pro Val Lys Ser Ser Gly Gly Gly Cys Cys (2) INFORMATION FOR SEQ ID NO:14:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 202 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Lymnea stagnalis (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
Met Ser Thr Met Asn Pro Asp Tyr Asp Tyr Leu Phe Lys Leu Leu Leu l 5 10 15 Ile Gly Asp Ser Gly Val Gly Lys Ser Cys Leu Leu Leu Arg Phe Ala Asp Asp Thr Tyr Thr Glu Ser Tyr Ile Ser Thr Ile Gly Val Asp Phe Lys Ile Arg Thr Ile Glu Leu Asp Gly Lys Thr Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Phe Arg Thr Ile Thr Ser Ser Tyr CA 022327~0 l998-03-23 WO 97/10836 PCT~US96/l~098 Tyr Arg Gly Ala His Gly Ile Ile Val Val Tyr Asp Val Thr Asp Gln Glu Ser Phe Asn Asn Val Lys Gln Trp Leu Gln Glu Ile Asp Arg Tyr Ala Ser Glu Asn Val Asn Lys Leu Leu Val Gly Asn Lys Ser Asp Leu Thr Thr Lys Lys Val Asp Phe Thr Thr Ala Lys Glu Tyr Ala Asp Gln Leu Gly Ile Pro Phe Leu Glu Thr Ser Ala Lys Asn Ala Thr Asn Val Glu Gln Ala Phe Met Thr Met Ala Ala Glu Ile Lys Asn Arg Met Gly Pro Ile Thr Ala Ser Asp Ser Lys Pro Ser Val Lys Ile Asn Ser Ser Thr Pro Ser Ala Asn Lys Gly Gly Cys Cys (2) INFORMATION FOR SEQ ID NO:15:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 208 amino acids (B) TYPE: amino acid (C) STR~n~n~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
Met Ala Tyr Ala Tyr Leu Phe Lys Tyr Ile Ile Ile Gly Asp Thr Gly Val Gly Lys Ser Cys Leu Leu Leu Gln Phe Thr Asp Lys Arg Phe Gln Pro Val His Asp Leu Thr Ile Gly Val Glu Phe Gly Ala Arg Met Ile g5 Thr Ile Asp Gly Lys Gln Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Ser Phe Arg Ser Ile Thr Arg Ser Tyr Tyr Arg Gly Ala Ala Gly Ala Leu Leu Val Tyr Asp Ile Thr Arg Arg Asp Thr Phe Asn His Leu Thr Thr Trp Leu Glu Asp Ala Arg Gln His Ser Asn Ser Asn Met Val Ile Met Leu Ile Gly Asn Lys Ser Asp Leu Glu Arg Arg Glu Val CA 022327~0 l998-03-23 W O 97/10836 PCTrUS96/15098 Lys Lys Glu Glu Gly Glu Ala Phe Ala Glu His Gly Leu Ile Phe Met Glu Thr Ala Lys Thr Ala Ser Val Glu Glu Ala Phe Ile Asn Thr Ala Lys Glu Ile Tyr Glu Lys Ile Gln Glu Gly Val Phe Asp Ile Asn Asn Glu Ala Asn Gly Ile Lys Ile Gly Pro Gln His Ala Ala Thr Asn Ala Thr His Ala Gly Asn Gln Gly Gly Gln Gln Ala Gly Gly Gly Cys Cys (2) INFORMATION FOR SEQ ID NO:16:
(i) SEQUENCE CH~RACTERISTICS:
(A) LENGTH: 210 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(~i) ORIGINAL SOURCE:
(A) ORGANISM: Lymnea stagnalis (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
Met Ser Tyr Ala Tyr Leu Phe Lys Tyr Ile Ile Ile Gly Asp Thr Gly Val Gly Lys Ser Cys Leu Leu Leu Gln Phe Thr Asp Lys Arg Phe Gln Pro Val His Asp Leu Thr Ile Gly Val Glu Phe Gly Ala Arg Met Ile Thr Ile Asp Gly Lys Gln Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Ser Phe Arg Ser Ile Thr Arg Ser Tyr Tyr Arg Gly Ala Ala Gly Ala Leu Leu Val Tyr Asp Ile Thr Arg Arg Asp Thr Phe Asn His Leu Thr Thr Trp Leu Glu Asp Ala Arg Gln His Ser Asn Ser Asn Met Val Ile Met Leu Ile Gly Asn Lys Ser Asp Leu Glu Ala Arg Arg Val Lys Lys Glu Glu Gly Glu Ala Phe Arg Glu ~is Gly Leu Ile Phe Met Glu Thr Ser Ala Lys Thr Ala Ala Asn Val Glu Glu Ala Phe Ile Asn CA 022327~0 l998-03-23 WO 97/10836 PCT~US96/15098 Thr Ala Lys Glu Ile Tyr Gln Lys Ile Gln Asp Gly Val Phe Asp Ile Asn Asn Glu Ala Asn Gly Ile Lys Ile Gly Pro Gln His Ser Pro Ala 180 185 l90 Ser Gln Ser Leu Asn Val Gly Gly Ser Gly Gly Asn Gln Gly Gly Asn Cys Cys (2) INFORMATION FOR SEQ ID NO:17:
(i) SEQUENCE CH~RACTERISTICS:
(A) LENGTH: 208 amino acids (B) TYPE: amino acid (C) STRANn~nN~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Oryctolagus cuniculus (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
Met Ala Tyr Ala Tyr Leu Phe Lys Tyr Ile Ile Ile Gly Asp Thr Gly Val Gly Lys Ser Cys Leu Leu Leu Gln Phe Thr Asp Lys Arg Phe Gln Pro Val His Asp Leu Thr Ile Gly Val Glu Phe Gly Ala Arg Met Ile Thr Ile Asp Gly Lys Gln Ile Lys Leu Gln Ile Trp Asp Thr Ala Gln Glu Ser Phe Arg Ser Ile Arg Ser Tyr Tyr Arg Gly Ala Gly Ala Leu Leu Val Tyr Asp Ile Thr Arg Arg Asp Thr Phe Asn His Leu Thr Thr Trp Leu Glu Asp Ala Arg Gln His Ser Asn Ser Asn Met Val Ile Met Leu Ile Gly Asn Lys Ser Asp Leu Glu Ser Arg Arg Glu Val Lys Lys Glu Glu Gly Glu Ala Phe Ala Arg Glu His Gly Leu Ile Phe Met Glu Thr Ser Ala Lys Thr Ala Ser Asn Val Glu Glu Ala Phe Ile Asn Thr Ala Lys Glu Ile Tyr Glu Lys Ile Gln Glu Gly Val Phe Asp Ile Asn Asn Glu Ala Asn Gly Ile Lys Ile Gly Pro Gln His Gly Ala Thr Asn CA 022327~0 l998-03-23 W O 97/10836 PCTAUS96/l5098 Ala His Ala Gly Asn Gln Gly Gly Gln Gln Ala Gly Gly Gly Cys Cys (2) INFORMATION FOR SEQ ID NO:18:
(i) SEQUENCE CHARACTERISTICS:
~ (A) LENGTH~ 212 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Rattus norvegicus (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
Met Ala Tyr Ala Tyr Leu Phe Lys Tyr Ile Ile Ile Gly Asp Thr Gly Val Gly Lys Ser Cys Leu Leu Leu Gln Phe Thr Asp Lys Arg Phe Gln Pro Val His Asp Leu Thr Met Gly Val Glu Phe Gly Ala Arg Met Ile Thr Ile Asp Gly Lys Gln Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Ser Phe Arg Ser Ile Thr Arg Ser Tyr Tyr Arg Gly Ala Ala Gly Ala Leu Leu Val Tyr Asp Ile Thr Arg Arg Asp Thr Phe Asn His Leu Thr Thr Trp Leu Glu Asp Ala Arg Gln His Ser Asn Ser Asn Met Val Ile Met Leu Ile Gly Asn Lys Ser Asp Leu Glu Ser Arg Arg Glu Val Lys Lys Glu Glu Gly Glu Ala Phe Ala Arg Glu His Gly Leu Ile Phe Met Glu Thr Ser Ala Lys Thr Ala Ser Asn Val Glu Glu Ala Phe Ile Asn Thr Ala Lys Glu Ile Tyr Glu Lys Ile Gln Glu Gly Val Phe Asp Ile Asn Asn Glu Ala Asn Gly Ile Lys Ile Gly Pro Gln His Ala Ala Thr Asn Ala Ser His Gly Gly Asn Gln Gly Gly Gln Gln Ala Gly Gly Gly Cys Cys (2) INFORMATION FOR SEQ ID NO:19:
-CA 022327~0 1998-03-23 WO 97/10836 PCT~US96/l5098 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 218 amino acids (B) TYPE: amino acid (C) STR~Nn~nN~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Drosophila melanogaster (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
Met Ala Gly Gly Asp Pro Lys Trp Gln Lys Asp Ala Ala Asp Gln Asn Phe Asp Tyr Met Phe Lys Leu Leu Ile Ile Gly Asn Ser Ser Val Gly Lys Thr Ser Phe Leu Phe Arg Tyr Ala Asp Asp Ser Phe Thr Ser Ala Phe Val Ser Thr Val Gly Ile Asp Phe Lys Val Lys Thr Val Phe Arg His Asp Lys Arg Val Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Tyr Arg Thr Ile Thr Thr Ala Tyr Tyr Arg Gly Ala Met Gly Phe Ile Leu Met Tyr Asp Val Thr Asn Glu Asp Ser Phe Asn Ser Val Gln Asp Trp Val Thr Gln Ile Lys Thr Tyr Ser Trp Asp Asn Ala Gln Val Ile Leu Val Gly Asn Lys Cys Asp Met Glu Asp Gln Arg Val Ile Ser Phe Glu Arg Gly Arg Gln Leu Ala Asp Gln Leu Gly Val Glu Phe Phe Glu Thr Ser Ala Lys Glu Asn Val Asn Val Lys Ala Val Phe Glu Arg Leu Val Asp Ile Ile Cys Lys Met Ser Glu Ser Leu Asp Ala Asp Pro Thr Leu Val Gly Gly Gly Gln Lys Gly Gln Arg Leu Thr Asp Gln Pro Gln Gly Thr Pro Asn Ala Asn Cys Asn Cys (2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CXARACTERISTICS:
(A) LENGTH: 208 amino acids (B) TYPE: amino acid (C) STR~N~:SS: single (D) TOPOLOGY: linear -CA 022327~0 l998-03-23 W O 97/10836 PCTrUS96/15098 (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Rattus norvegicus (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
Met Ser Glu Thr Tyr Asp Phe Leu Lys Phe Leu Val Ile Gly Asn Ala Gly Thr Gly Lys Ser Cys Leu Leu His Gln Phe Ile Glu Lys Lys Phe Lys Asp Asp Ser Asn His Thr Ile Gly Val Glu Phe Gly Gln Lys Ile Ile Asn Val Gly Gly Lys Tyr Val Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Phe Arg Val Thr Thr Ser Tyr Arg Gly Ala Ala Gly Ala Leu Leu Val Tyr Asp Ile Thr Ser Arg Glu Thr Tyr Asn Ala Leu Thr Asn Trp Leu Thr Asp Ala Arg Met Leu Ala Ser Gln Asn Ile Val Ile Cys Gly Asn Lys Lys Asp Leu Asp Ala Asp Arg Glu Val Thr Phe Leu Glu Ala Ser Arg Phe Ala Gln Glu Asn Glu Leu Met Phe Leu Glu Thr Ser Ala Leu Thr Gly Glu Asn Val Glu Glu Ala Phe Met Gln Cys Ala Arg Lys Ile Leu Asn Lys Ile Glu Ser Gly Glu Leu Asp Pro Glu Arg Met Gly Ser Gly Ile Gln Tyr Gly Asp Ala Ala Leu Arg Gln Leu Arg Ser Pro Arg Arg Thr Gln Ala Pro Ser Ala Gln Glu Cys Gly Cys (2) INFORMATION FOR SEQ ID NO:21:
(i) SEQUENCE CHARACTERISTICS: ¦
(A) LENGTH: 203 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Caenorhabditis elegans CA 022327~0 l998-03-23 WO 97/10836 PCT~US96/15098 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
Met Ala Asp Phe Thr Asn Asn Ala Leu Lys Lys Phe Lys Leu Val Phe Leu Gly Glu Gln Ser Val Gly Lys Thr Ser Ile Ile Thr Arg Phe Met Tyr Asp Ser Phe Asp Asn Thr Tyr Gln Ala Thr Ile Gly Ile Asp Phe Leu Ser Lys Thr Met Tyr Leu Glu Asp Arg Thr Ile Arg Leu Gln Leu Trp Asp Thr Ala Gly Gln Glu Arg Phe Arg Ser Leu Ile Pro Ser Tyr Ile Arg Asp Ser Ser Val Ala Val Val Val Tyr Asp Ile Thr Asn Ala Asn Ser Phe His Gln Thr Thr Lys Trp Val Asp Asp Val Arg Asn Glu Arg Gly Cys Asp Val Ile Ile Val Leu Val Gly Asn Lys Thr Asp Leu Ala Asp Lys Arg Gln Val Ser Thr Glu Asp Gly Glu Lys Lys Ala Arg Asp Leu Asn Val Met Phe Ile Glu Thr Ser Ala Lys Ala Gly Tyr Asn Val Lys Gln Leu Phe Arg Lys Ile Ala Leu Pro Gly Ile Val Gln Glu Glu Thr Pro Glu Gln Pro Asn Ile Val Ile Met Asn Pro Pro Lys Asp Ala Glu Glu Ser Gln Gly Arg Gln Cys Pro Cys (2) INFORMATION FOR SEQ ID NO:22:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 207 amino acids (B) TYPE: amino acid (C) STR~Nn~n~S single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens . i (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Met Ser Thr Gly Gly Asp Phe Gly Asn Pro Leu Arg Lys Phe Lys Leu Val Phe Leu Gly Glu Gln Ser Val Gly Lys Thr Ser Leu Ile Thr Arg Phe Met Tyr Asp Ser Phe Asp Asn Thr Tyr Gln Ala Thr Ile Gly Ile CA 022327~0 l998-03-23 W O 97/10836 PCT~US96/15098 Asp Phe Leu Ser Lys Thr Met Tyr Leu Glu Asp Arg Thr Val Arg Leu Gln Leu Trp Asp Thr Ala Gly Gln Glu Arg Phe Arg Ser Leu Ile Pro Ser Tyr Ile Arg Asp Ser Thr Val Ala Val Val Val Tyr Asp Ile Thr Asn Val Asn Ser Phe Gln Gln Thr Thr Lys Trp Ile Asp Asp Val Arg Thr Glu Arg Gly Ser Asp Val Ile Ile Met Leu Val Gly Asn Lys Thr Asp Leu Ala Asp Lys Arg Gln Val Ser Ile Glu Glu Gly Glu Arg Lys Ala Lys Glu Leu Asn Val Met Phe Ile Glu Ser Ala Lys Ala Gly Tyr Asn Val Lys Gln Leu Phe Arg Arg Val Ala Ala Ala Leu Pro Gly Met Glu Ser Thr Gln Asp Arg Ser Arg Glu Asp Met Ile Asp Ile Lys Leu Glu Lys Pro Gln Glu Gln Pro Val Ser Glu Gly Gly Cys Ser Cys (2) INFORMATION FOR SEQ ID NO:23:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 203 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Canis ~amiliaris (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
Met Thr Ser Arg Lys Lys Val Leu Leu Lys Val Ile Ile Leu Gly Asp Ser Gly Val Gly Lys Thr Ser Leu Met Asn Gln Tyr Val Asn Lys Lys Phe Ser Asn Gln Tyr Lys Ala Thr Ile Gly Ala Asp Phe Leu Thr Lys Glu Val Met Val Asp Asp Ary Leu Val Thr Met Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Phe Gln Ser Leu Gly Val Phe Tyr Arg Gly Ala Asp Cys Cys Val Leu Val Phe Asp Val Thr Ala Pro Asn Thr Phe Lys CA 022327~0 1998-03-23 WO 97/10836 PCT~US96/15098 Thr Leu Asp Ser Trp Arg Asp Glu Phe Leu Ile Gln Ala Ser Pro Arg Asp Pro Glu Asn Phe Pro Phe Val Val Leu Gly Asn Lys Ile Asp Leu Glu Asn Arg Gln Val Ala Thr Lys Arg Ala Gln Ala Trp Cys Tyr Ser Lys Asn Asn Ile Pro Tyr Phe Glu Thr Ser Ala Lys Glu Ala Ile Asn Val Glu Gln Ala Phe Gln Thr Ile Ala Arg Asn Ala Leu Lys Gln Glu Thr Glu Val Glu Leu Tyr Asn Glu Phe Pro Glu Pro Ile Lys Leu Asp Lys Asp Ala Lys Thr Ser Ala Glu Cys Ser Cys (2) INFORMATION FOR SEQ ID NO:24:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 202 amino acids (B) TYPE: amino acid (C) STR~Nn~nM~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Dictyostelium discoideum (Xi) ~QU~N~ DESCRIPTION: SEQ ID NO:24:
Met Thr Lys Lys Lys Val Leu Leu Lys Val Ile Ile Leu Gly Asp Ser Gly Val Gly Lys Thr Ser Leu Met Asn Gln Tyr Val Asn Lys Lys Phe Ser Asn Gln Tyr Lys Ala Thr Ile Gly Ala Asp Phe Leu Thr Lys Glu Leu Met Val Asp Asp Arg Val Val Thr Met Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Phe Gln Ser Leu Gly Val Ala Phe Tyr Arg Gly Ala Asp Cys Cys Val Leu Cys Tyr Asp Val Asn Val Ala Lys Thr Phe Glu Asn Leu Asp Ser Trp Arg Asp Glu Phe Leu Ile Gln Ala Gly Pro Arg Asp Pro Asp Asn Phe Pro Phe Val Val Leu Gly Asn Lys Ile Asp Leu Glu Asn Gln Arg Val Val Ser Gln Lys Arg Ala Ala Ser Trp Cys Gln CA 022327~0 l998-03-23 Ser Lys Gly Asn Ile Pro Tyr Phe Glu Thr Ser Ala Lys Glu Ala Ile Asn Val Glu Gln Ala Phe Gln Thr Ile Ala Arg Asn Ala Ile Lys Leu Glu Asp Gly Leu Val Phe Pro Ile Pro Thr Asn Ile Gln Val Ile Pro Glu Pro Gln Pro Ala Ly5 Ser Gly Cys Cys (2) INFORMATION FOR SEQ ID NO:25:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 205 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Canis ~m; 1 l~is (xi) ~U~N~ DESCRIPTION: SEQ ID NO:25:
Met Lys Thr Tyr Asp Tyr Leu Phe Lys Leu Leu Leu Ile Gly Asp Ser Gly Val Gly Lys Thr Cys Val Leu Phe Arg Phe Ser Glu Asp Ala Phe Asn Ser Thr Phe Ile Ser Thr Ile Gly Ile Asp Phe Lys Ile Arg Thr Ile Glu Leu Asp Gly Lys Arg Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Phe Arg Thr Ile Thr Thr Ala Tyr Tyr Arg Ala Met Gly Ile Met Leu Val Tyr Asp Ile Thr Asn Glu Lys Ser Phe Asp Asn Ile Arg Asn Trp Ile Arg Asn Ile Glu Glu His Ala Ser Ala Asp Val Glu Lys Met Ile Leu Gly Asn Lys Cys Asp Val Asn Asp Lys Arg Gln Val Ser Lys Glu Arg Gly Glu Lys Leu Ala Leu Asp Tyr Gly Ile Lys Phe Met Glu Thr Ser Ala Lys Ala Asn Ile Asn Val Glu Asn Ala Phe Phe Thr Leu Ala Arg Asp Ile Lys Ala Lys Met Asp Lys Lys Leu Glu Gly Asn Ser Pro Gln Gly Ser Asn Gln Gly Val Lys Ile Thr Pro Asp CA 022327~0 1998-03-23 WO 97/10836 PCTAUS96/l5098 Gln Gln Lys Arg Ser Ser Phe Phe Arg Cys Val Leu Leu (2) INFORMATION FOR SEQ ID NO:26:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 191 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Dictyostelium discoideum (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
Met Glu Glu Glu Ile Leu Tyr Lys Ile Ile Leu Val Gly Glu Ser Gly Val Gly Lys Ser Ser Ile Leu Val Arg Phe Thr Asp Asn Thr Phe Ser Gln His Phe Ala Pro Thr Leu Gly Val Phe Val Lys Thr Ile Arg Asn Lys Glu Thr Gly Gln Thr Val Lys Leu Gln Leu Trp Asp Thr Ala Gly Gln Glu Arg Phe Lys Ser Ile Thr Gln Phe Tyr Arg Gly Ser His Gly Val Ile Val Val Tyr Asp Val Thr Asp Pro Lys Ser Phe Glu Arg Leu Lys Asn Trp Val Glu Asp Ile Asn Gln Tyr Thr Gln Asp Gly Met Ile Ile Ile Leu Val Gly Asn Lys Ser Asp Met Val Ala Gln Arg Lys Val Thr Phe Glu Gln Gly Gln Glu Met Ala Glu Gln Leu Lys Thr Lys Phe 130 135 1~0 Leu Glu Val Ser Ala Lys Glu Asn Asn Gly Val Thr Gln Val Phe Asp Leu Leu Val Gln Asp Ile Glu Ala Thr Met Lys Asn Ser Lys Val Ala Gln Asn Gln Leu Asn Leu Ser Val Gly Gln Glu Arg Gly Cys Cys (2) INFORMATION FOR SEQ ID NO:27: ~
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 189 amino acids (B) TYPE: amino acid (C) sTR~ND~nN~s: single (D) TOPOLOGY: linear I

CA 022327~0 l998-03-23 W O 97/10836 PCT~US96/15098 (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Caenorhabditis elegans .

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
Met Gln Ala Ile Lys Cys Val Val Val Gly Asp Gly Ala Val Gly Lys Thr Cys Leu Leu Ile Ser Tyr Thr Thr Asn Ala Phe Pro Gly Glu Tyr Ile Pro Thr Val Phe Asp Asn Tyr Ser Ala Asn Val Met Val Asp Gly Arg Pro Ile Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln Asp Tyr Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Asp Val Phe Leu Val Cys Phe Ala Leu Asn Asn Pro Ala Ser Phe Glu Asn Val Arg Ala Lys Trp Tyr Pro Glu Val Ser His His Cys Pro Asn Thr Pro Ile Ile Leu Val Gly Thr Lys Ala Asp Leu Arg Glu Asp Asp Thr Val Glu Arg Leu Arg Glu Arg Arg Leu Gln Pro Val Ser Gln Thr Gln Gly Tyr Val Met Ala Lys Glu Ile Lys Ala Val Lys Tyr Leu Glu Cys Ser Ala Leu Thr Gln Arg Gly Leu Lys Gln Val Phe Asp Glu Ala Ile Arg Ala Val Val Thr Pro Pro Gln Arg Ala Lys Lys Ser Lys Cys Thr Val Leu (2) INFORMATION FOR SEQ ID NO:28:
(i) ~u~ CHARACTERISTICS:
(A) LENGTH: 191 amino acids (B) TYPE: amino acid (C) STR~n~nN~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SO~RCE:
(A) ORGANISM: Dictyostelium discoideum (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
Met Gln Ala Ile Lys Cys Val Val Val Gly Asp Gly Ala Val Gly Lys CA 022327~0 1998-03-23 W O 97/10836 PCTAUS96/lS098 Thr Cys Leu Leu Ile Ser Tyr Thr Thr Asn Ala Phe Pro Gly Glu Tyr Ile Pro Thr Val Phe Asp Asn Tyr Ser Ala Asn Val Met Val Asp Gly Lys Pro Ile Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Asp Val Phe Leu Ile Cys Phe Ser Ile Ile Ser Pro Ser Ser Phe GlU Asn Val Asn Gly Lys Trp His Pro Glu Ile Cys Xis His Pro Asn Val Pro Ile Leu Val Gly Thr Lys Leu Asp Met Arg Asp Lys Glu Thr Gln Asp Arg Leu Lys Glu Lys Lys Leu Tyr Pro Ile Ser Tyr Glu Gln Gly Leu Ala Lys Met Lys Glu Ile Asn Ala Val Lys Tyr Leu Glu Cys Ser Ala Leu Thr Glu Lys Gly Leu Lys Thr Val Phe Asp Glu Ala Ile Arg Ala Val Ile Asn Pro Pro Leu Ser Lys Lys Lys Lys Ser Ser Gly Gly Cys Asn Ile Leu (2) INFORMATION FOR SEQ ID NO:29:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 192 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Dictyostelium discoideum (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:
Met Gln Ser Ile Lys Leu Val Val Val Gly Asp Gly Ala Val Gly Lys Thr Cys Leu Leu Ile Ser Tyr Thr Ser Asn Ser Phe Pro Thr Glu Tyr Val Pro Thr Val Phe Asp Asn Tyr Ser Ala Asn Val Met Val Asp Asn Lys Thr Val Ser Leu Gly Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Asp Val Phe Leu Ile CA 022327~0 l998-03-23 W 0 97/10836 PCTrUS96/15098 Cys Phe Ala Ile Ile Ser Gln Ser Tyr Thr Asn Val Lys Ser Lys Trp Trp Pro GlU Val Thr His His Cys Pro Asn Cys Thr Ile Leu Val Gly Thr Lys Cys Asp Leu Arg Asp Lys Glu Ser Leu Glu Lys Leu Arg Glu Lys His Gln Gln Pro Leu Thr Phe Gln Gln Gly Glu Gln Met Ala Lys Glu Ile Lys Ala Phe Cys Tyr Met Glu Cys Ser Ala Leu Thr Gln Lys Gly Leu Lys Gln Val Phe Asp Glu Ala Ile Lys Ala Val Ile Phe Pro Asp Arg Asp Lys Ala Thr Asn Lys Lys Asn Ser Lys Cys Ser Ile Leu (2) INFORMATION EOR SEQ ID NO:30:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 185 amino acids (B) TYPE: amino acid (C) STR~Nn~nN~.~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOUR OE :
(A) ORGANISM: Dictyostelium discoideum (xi) ~yu~ DESCRIPTION: SEQ ID NO:30:
Met Ser Ala Ala Glu Val Ile Lys Leu Val Val Ile Gly Gly Ala Val Gly Lys Thr Cys Leu Leu Ile Tyr Ala Asn Asn Arg Phe Pro Glu Asp Tyr Ile Pro Thr Val Phe Asp Asn Tyr Val Val Asn Leu Thr Ala Gly ~5 Asp Arg Asn Ile Glu Leu Gly Leu Trp Asp Thr Ala Gly Glu Tyr Asp Lys Leu Arg Pro Leu Ser Tyr Ala Asn Asn Val Phe Leu Ile Cys Phe Ser Ile Asn Pro Val Ser Phe Glu Asn Val Tyr Thr Lys Trp Tyr Pro Glu Val Met His Phe Cys Pro Glu Val Gln Ile Leu Val Gly Thr Lys Leu Asp Thr Arg Asp Asp Arg Gly Val Leu Asp Lys Leu Gln Gln Thr CA 022327~0 1998-03-23 Gly His Lys Pro Ile Thr Thr Glu Gln Gly Asn Asp Leu Ala Arg Arg Ile Lys Ala Ile Lys Tyr Met Glu Cys Ser Ala Lys Thr Ser Gln Asn 145 lS0 155 160 Leu Lys Gln Val Phe Asp Glu Ala Ile Lys Ser Val Leu Phe Ile Lys Lys Lys Lys Ser Lys Cys Ile Val Met (2) INFORM~TION FOR SEQ ID NO: 31:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 205 amino acids (B) TYPE: amino acid (C) STR~NT~nl~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:
Met Ala Ala Asn Lys Pro Lys Gly Gln Asn Ser Leu Ala Leu His Lys Val Ile Met Val Gly Ser Gly Gly Val Gly Lys Ser Ala Leu Thr Leu Gln Phe Met Tyr Asp Glu Phe Val Glu Asp Tyr Glu Pro Thr Lys Ala Asp Ser Tyr Arg Lys Lys Val Val Leu Asp Gly Glu Glu Val Gln Ile Asp Ile Leu Asp Thr Ala Gly Gln Glu Asp Tyr Ala Ala Ile Arg Asp Asn Tyr Phe Arg Ser Gly Glu Gly Phe Leu Cys Val Phe Ser Ile Thr Glu Met Glu Ser Phe Ala Ala Thr Ala Asp Phe Arg Glu Gln Ile Leu lO0 105 110 Arg Val Lys Glu Asp Glu Asn Val Pro Phe Leu Leu Val Gly Asn Lys Ser Asp Leu Glu Asp Lys Arg Gln Val Ser Val Glu Glu Ala Lys Asn Arg Ala Glu Gln Trp Asn Val Asn Tyr Val Glu Thr Ser Ala Lys Thr Arg Ala Asn Val Asp Lys Val Phe Phe Asp Leu Met Arg Glu Ile Arg Ala Arg Lys Met Glu Asp Ser Lys Lys Asn Gly Lys Lys Lys Arg Lys CA 022327~0 l998-03-23 WO 97/10836 PCTrUS96/l5098 Ser Leu Ala Lys Arg Ile Arg Glu Arg Cys Cys Ile Leu (2) INFORMATION FOR SEQ ID NO:32:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 204 amino acids (B) TYPE: amino acid (C) STRPNn~nNR-~S: single (D) TOPOLOGY: linear (ii) MOT.T~rTJT.~ TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
Met Ala Ala Asn Lys Ser Ly3 Gly Gln Ser Ser Leu Ala Leu His Lys Val Ile Met Val Gly Ser Gly Gly Val Gly Lys Ser Ala Leu Thr Leu Gln Phe Met Tyr Asp Glu Phe Val Glu Asp Tyr Glu Pro Thr Lys Ala Asp Ser Tyr Arg Lys Lys Val Val Leu Asp Gly Glu Glu Val Ile Asp Ile Leu Asp Thr Ala Gly Gln Glu Asp Tyr Ala Ile Arg Asp Asn Tyr Phe Arg Ser Gly Glu Gly Phe Leu Leu Val Phe Ser Ile Thr Glu His Glu Ser Phe Thr Ala Thr Ala Glu Phe Arg Glu Gln Ile Leu Arg Val Lys Ala Glu Glu Asp Lys Ile Pro Leu Leu Val Val Gly Asn Lys Ser Asp Leu Glu Glu Arg Arg Gln Val Pro Val Glu Glu Ala Arg Ser Lys Ala Glu Glu Trp Gly Val Gln Tyr Val Glu Thr Ser Ala Lys Thr Arg Ala Asn Val Asp Lys Val Phe Phe Asp Leu Met Arg Glu Ile Arg Thr Lys Lys Met Ser Glu Asn Lys Asp Lys Asn Gly Lys Lys Ser Ser Lys ~ 180 185 190 Asn Lys Lys Ser Phe Lys Glu Arg Cys Cys Leu Leu (2) INFORMATION FOR SEQ ID NO:33:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 200 amino acids (B) TYPE: amino acid (C) sTRpNnT~nN~s single CA 022327~0 1998-03-23 WO 97/10836 PCTnUS96/15098 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Discopyge ommata (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:
Met Ala Ala A5n Lys Asn Lys Asn Gln Ser Ser Leu Leu Lys Val Ile Met Val Gly Ser Gly Gly Val Gly Lys Ser Ala Leu Thr Leu Gln Phe Met Tyr Asp Glu Phe Val Glu Asp Tyr Glu Pro Thr Lys Ala Asp Ser Tyr Arg Lys Lys Val Val Leu Asp Gly Glu Val Gln Ile Asp Ile Leu Asp Thr Ala Gly Gln Glu Asp Tyr Ala Ile Arg Asp Asn Tyr Phe Arg Ser Gly Glu Gly Phe Leu Cys Val Phe Ser Ile Glu Gln Glu Ser Phe Thr Ala Thr Val Glu Phe Arg Glu Gln Ile Leu Arg Val Lys Glu Glu Asp Lys Ile Pro Leu Leu Leu Val Gly Asn Lys Ser Asp Leu Glu Asp Arg Arg Gln Val Ser Ile Glu Glu Ala Arg Ser Lys Ala Glu Glu Trp Gly Val Gln Tyr Val Glu Thr Ser Ala Lys Thr Arg Ala Asn Val Asp Lys Val Phe Phe Asp Leu Met Arg Glu Val Arg Ala Lys Lys Met Ser Glu Asn Lys Asp Lys Asn Gly Lys Lys Ser Ser Arg Asn Lys Lys Ser Leu Arg Glu Arg Cys Cys Ile Leu (2) INFORMATION FOR SEQ ID NO:34:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 194 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Discopyge ommata -CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:
Met Ala Lys Lys Thr Tyr Asp Leu Leu Phe Lys Leu Leu Leu Ile Gly Asp Ser Gly Val Gly Lys Thr Cys Val Leu Phe Arg Phe Ser Asp Asp Ala Phe Asn Thr Thr Phe Ile Ser Thr Ile Gly Ile Asp Phe Lys Ile Lys Thr Val Glu Leu His Gly Lys Lys Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Phe His Thr Ile Thr Ser Tyr Tyr Arg Gly Ala Met Gly Ile Met Leu Val Tyr Asp Ile Thr Asn Ala Lys Ser Phe Glu Asn Ile Ser Lys Trp Leu Arg Asn Ile Asp Glu His Ala Asn Glu Asp Val Glu Arg Met Leu Leu Gly Asn Lys Asp Met Glu Asp Lys Arg Val Val Leu Lys Ser Lys Gly Gln Ile Ala Glu His Ala Ile Arg Phe Phe Glu Thr Ser Ala Lys Ala Asn Ile Asn Ile Glu Lys Ala Phe Leu ~45 1~0 155 169 Thr Leu Ala Glu Asp Ile Leu Gln Lys Thr Pro Val Lys Glu Pro Asp Arg Glu Asn Val Asp Ile Ser Thr Gly Gly Gly Gly Leu Lys Lys Cys Cys Ser (2) INFORMATION FOR SEQ ID NO:35:
(i) SEQUENCE CH~RACTERISTICS-(A) LENGTH: 207 amino acids (B) TYPE: amino acid (C) STRANDEDNESS- single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE
(A) ORGANISM: Discopyge ommata (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:
Met Lys Thr Tyr Asp Tyr Leu Phe Lys Leu Leu Leu Ile Gly Asp Ser Gly Val Gly Lys Thr Cys Leu Leu Phe Arg Phe Ser Glu Asp Ala Phe CA 022327~0 l998-03-23 W O 97/10836 PCTnUS96/15098 Asn Thr Thr Phe Ile Ser Thr Ile Gly Ile Asp Phe Lys Ile Arg Thr Val Glu Leu Asp Gly Lys Lys Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Phe Arg Thr Ile Thr Ala Tyr Tyr Arg Gly Ala Met Gly Ile Met Ly9 Val Asp Ile Thr Asn Glu Lys Ser Phe Asp Asn Ile Lys Asn Trp Ile Arg Asn Ile Glu Glu His Ala Ser Ser Asp Val Glu Arg Met Ile Leu Gly Asn Lys Cys Asp Met Asn Glu Lys Arg Gln Val Ser Lys Glu Arg Gly Glu Lys Leu Ala Ile Asp Tyr Gly Ile Lys Phe Leu Glu Thr Ser Ala Lys Ser Ser Ile Asn Val Glu Glu Ala Phe Ile Thr Leu Ala Arg Asp Ile Met Thr Lys Leu Asn Lys Lys Met Asn Glu Asn Ser Leu Gln Glu Ala Val Asp Lys Leu Lys Ser Pro Pro Lys Lys Pro Ser Gln Lys Lys Lys Gln Leu Ser Phe Arg Cys Ser Leu Leu (2) INFORMATION FOR SEQ ID NO:36:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 213 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Discopyge ommata (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:
Met Gly Thr Arg Asp Asp Glu Tyr Asp Tyr Leu Phe Lys Val Val Leu Ile Gly Asp Ser Gly Val Gly Lys Ser Asn Leu Leu Ser Arg Phe Thr 20 25 30 ~ ;
Arg Glu Phe Asn Leu Glu Ser Lys Ser Thr Ile Gly Val Glu Phe Ala Thr Arg Ser Ile Gln Val Asp Gly Lys Thr Ile Lys Gln Ile Trp Asp Thr Gly Gln Glu Arg Tyr Arg Ala Ile Thr Ser Ala Tyr Tyr Arg Gly CA 022327~0 1998-03-23 W O 97/10836 PCT~US96/15098 Ala Val Gly Ala Leu Leu Val Tyr Asp Ile Ala Lys His Leu Thr Tyr Glu Asn Val Glu Arg Trp Leu Lys Glu Leu Arg Asp His Ala Asp Asn Asn Ile Val Ile Met Leu Val Gly Asn Lys Ser Asp Leu Arg His Leu Arg Val Pro Thr Asp Ala Arg Ala Phe Ala Glu Lys Asn Asn Leu Ser Phe Ile Glu Thr Ser Ala Leu Asp Ser Thr Asn Val Glu Glu Ala Phe Lys Asn Ile Leu Thr Glu Ile Tyr Arg Ile Val Ser Gln Lys Gln Ile Ser Asp Arg Ser Ala His Asp Glu Ser Pro Gly Asn Asn Val Val Asp Ile Ser Val Pro Pro Thr Thr Asp Gly Gln Lys Ser Asn Lys Leu Gln Cys Cys Gln Asn Met (2) INFORMATION FOR SEQ ID NO:37:
(i) S~U~ CHARACTERISTICS:
(A) LENGTH: 184 amino acids (B) TYPE: amino acid (C) sTR~Nn~nN~s: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Dictyostelium discoideum (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:
Met Pro Leu Arg Phe Lys Ile Val Val Leu Gly Ser Gly Gly Val Gly Lys Ser Ala Leu Thr Val Gln Phe Val Gln Gly Ile Phe Val Glu Lys Tyr Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Glu Val Asp Ser Asn Gln Cys Met Leu Glu Ile Leu Asp Thr Ala Gly Thr Glu Gln Phe Thr Met Arg Asp Leu Tyr Met Lys Asn Gly Gln Gly Phe Val Leu Val Tyr Ser Ile Ile Ser Asn Ser Thr Phe Asn Glu Leu Pro Asp Leu 9o 95 Arg Glu Gln Ile Leu Arg Val Lys Asp Cys Glu Asp Val Pro Met Val CA 022327~0 l998-03-23 Leu Val Gly Asn Lys Cys Asp Leu His Asp Gln Arg Val Ile Ser Thr Glu Gln Gly Glu GlU Leu Ala Arg Lys Phe Gly Asp Cys Tyr Phe Leu Glu Ala Ser Ala Lys Asn Lys Val Asn Val Glu Gln Ile Phe Tyr Asn Leu Ile Arg Gln Ile Asn Ary Lys Asn Pro Val Gly Pro Pro Ser Lys Ala Lys Ser Lys Cys Ala Leu Leu (2) INFORMATION FOR SEQ ID NO:38:
(i) ~U~ CHARACTERISTICS:
(A) LENGTH: 179 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
Met Arg Glu Tyr Lys Val Val Val Leu Gly Ser Gly Gly Val Gly Lys Ser Ala Leu Thr Val Gln Phe Val Thr Gly Thr Phe Ile Glu Lys Tyr Asp Pro Thr Ile Glu Asp Phe Tyr Arg Lys Glu Ile Glu Val Asp Ser Ser Pro Ser Val Leu Glu Ile Leu Asp Thr Ala Gly Thr Glu Gln Phe Ala Ser Arg Asp Leu Tyr Ile Lys Asn Gly Gln Gly Phe Ile Leu Val Tyr Ser Leu Val Asn Gln Gln Phe Gln Asp Ile Lys Pro Met Arg Asp Gln Ile Ile Arg Val Lys Tyr Glu Lys Val Pro Val Ile Leu Val Gly Asn Lys Val ASp Leu Glu Ser Glu Arg Glu Val Ser Ser Ser Glu Gly Arg Ala Leu Ala Glu Glu Trp Gly Cys Pro Phe Met Glu Thr Ser Ala 130 135 140 , Lys Ser Lys Thr Met Val Asp Glu Leu Phe Ala Glu Ile Val Arg Gln Met Asn Tyr Ala Ala Gln Pro Asp Lys Asp Asp Pro Cys Cys Ser Ala CA 022327S0 l998-03-23 WO 97/10836 PCT~US96/15098 Cys Asn Gln (2) INFORMATION FOR SEQ ID NO:39:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 183 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
Met Arg Glu Tyr Lys Val Val Val Leu Gly Ser Gly Gly Val Gly Lys Ser Ala Leu Thr Val Gln Phe Val Thr Gly Ser Phe Ile Glu Lys Tyr Asp Pro Thr Ile Glu Asp Phe Tyr Arg Lys Glu Ile Glu Val Asp Ser Ser Pro Ser Val Leu Glu Ile Leu Asp Thr Ala Gly Thr Glu Gln Phe Ala Ser Met Arg Asp Leu Tyr Ile Lys Asn Gly Gln Gly Phe Ile Leu Val Tyr Ser Leu Val Asn Gln Gln Ser Phe Gln Asp Ile Lys Pro Met Arg Asp Gln Ile Ile Arg Val Lys Arg Tyr Glu Arg Val Pro Met Ile Leu Val Gly Asn Lys Val Asp Leu Glu Gly Glu Arg Glu Val Ser Tyr Gly Glu Gly Lys Ala Leu Ala Glu Glu Trp Ser Cys Pro Phe Met Glu Thr Ser Ala Lys Asn Lys Ala Ser Val Asp Glu Leu Phe Ala Glu Ile Val Arg Gln Met Asn Tyr Ala Ala Gln Ser Asn Gly Asp Glu Gly Cys Cy8 Ser Ala Cys Val Ile Leu (2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 184 amino acids (B) TYPE: amino acid (C) sTR~Nn~nN~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein CA 022327~0 1998-03-23 (iii) HYPOTXETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Discopyge ommata (xi) SEQUENCE DESCRIPTION: SEQ ID MO:40:
Met Arg Glu Tyr Lys Leu Val Val Leu Gly Ser Gly Gly Val Gly Lys Ser Ala Leu Thr Val Gln Phe Val Gln Gly Ile Phe Val Glu Lys Tyr Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Glu Val Asp Cys Gln Pro Cys Met Leu Glu Ile Leu Asp Thr Ala Gly Thr Glu Gln Phe Thr Ala Met Arg Asp Leu Tyr Met Lys Asn Gly Gln Gly Phe Ala Leu Val Tyr Ser Ile Thr Ala Gln Ser Thr Phe Asn Asp Leu Gln Asp Leu Arg Glu Gln Ile Leu Arg Val Lys Asp Thr Glu Asp Val Pro Met Ile Leu Val Gly Asn Lys Cys Asp Leu Glu Asp Glu Arg Val Val Gly Lys Glu Gln Gly Gln Asn Leu Ala Arg Gln Trp Asn Asn Cys Ala Phe Leu Glu Ser Ser Ala Lys Ser Lys Ile Asn Val Asn Glu Ile Phe Tyr Asp Leu Val Arg Gln Ile Asn Arg Lys Ala Pro Val Glu Lys Cys Lys Lys Lys Lys Ser Gln Cys Thr Leu Leu (2) INFORMATION FOR SEQ ID NO:41:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 180 amino acids (B) TYPE: amino acid (C) STR~Nn~n~S single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
Met Arg Glu Tyr Lys Leu Val Val Gly Ser Gly Gly Val Gly Lys Ser CA 022327~0 l998-03-23 WO 97/10836 PCT~US96/15098 ~la Leu Thr Val Gln Phe Val Gln Gly Phe Val Glu Lys Tyr Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Glu Val Asp Cys Gln Gln Cy8 Met Leu Glu Asp Thr Ala Gly Thr Glu Gln Phe Thr Ala Met Arg Asp Leu Tyr Met Lyg Asn Gly Gln Gly Phe Ala Leu Val Tyr Ser Ile Thr Ala Gln Ser Thr Phe Asn Asp Leu Gln Asp Leu Arg Glu Gln Ile Leu Arg Val Lys Asp Thr Glu Asp Val Pro Met Ile Leu Val Gly Asn Lys Cys Asp Leu Glu Asp Glu Arg Val Val Gly Lys Glu Gln Gly Gln Asn Leu Ala Arg Gln Trp Cys Asn Cys Ala Phe Leu Glu Ser Ser Ala Lys Ser Lys Ile Asn Val Asn Glu Ile Phe Tyr Asp Leu Val Arg Gln Ile Asn Arg Lys Thr Pro Val Glu Lys Lys Lys Pro Lys Lys Lys Ser Cys Leu Leu Leu (2) INFORMATION FOR SEQ ID NO:42:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 179 amino acids (B) TYPE: amino acid (C) STRA~n~nNF~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:
Met Arg Glu Tyr Lys Leu Val Val Leu Gly Ser Gly Gly Val Gly Lys Ser Ala Leu Thr Val Gln Phe Val Gln Gly Ile Phe Val Glu Lys Tyr Agp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Glu Val Asp Ala Gln Gln Cys Met Leu Glu Ile Leu Asp Thr Ala Gly Thr Glu Gln Phe Thr Ala Met Arg Asp Leu Tyr Met Lys Asn Gly Gln Gly Phe Ala Leu CA 022327~0 1998-03-23 Val Tyr Ser Ile Thr Ala Gln Ser Thr Phe Asn Asp Leu Gln Asp Leu Arg Glu Gln Ile Leu Arg Val Lys Asp Thr Asp Asp Val Pro Met Ile Leu Val Gly Asn Lys Cys Asp Leu Glu Asp Glu Arg Val Val Gly Lys Glu Gln Gly Gln Asn Leu Ala Arg Gln Trp Asn Asn Cys Ala Phe Leu Glu Ser Ser Ala Lys Ser Lys Ile Asn Val Glu Ile Phe Tyr Asp Leu Val Arg Gln Ile Asn Arg Lys Thr Pro Val Pro Gly Lys Ala Arg Lys Lys Ser Ser (2) INFORMATION FOR SEQ ID NO:43:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 184 amino acids (B) TYPE: amino acid (C) STR~NDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Drosophila melanogaster (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:
Met Arg Glu Tyr Lys Ile Val Val Leu Gly Ser Gly Gly Val Gly Lys Ser Ala Leu Thr Val Gln Phe Val Gln Cys Ile Phe Val Glu Lys Tyr Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Glu Val Asp Gly Gln Gln Cys Met Leu Glu Ile Leu Asp Thr Ala Gly Thr Glu Gln Phe Thr Ala Met Arg Asp Leu Tyr Met Lys Asn Gly Gln Gly Phe Val Leu Val Tyr ser Ile Thr Ala Gln Ser Thr Phe Asn Asp Leu Gln Asp Leu Arg Glu Gln Ile Leu Arg Val Lys Asp Thr Asp Asp Val Pro Met Val Leu Val Gly Asn Lys Cys Asp Leu Glu Glu Glu Arg Val Val Gly Lys Glu Leu Gly Lys Asn Leu Ala Thr Gln Phe Asn Cys Ala Phe Met Glu CA 022327~0 l998-03-23 Thr Ser Ala Lys Ala Lys Val Asn Val Asn Asp Ile Phe Tyr Asp Leu Val Arg Gln Ile Asn Lys Lys Ser Pro Glu Lys Lys Gln Lys Lys Pro Lys Lys Ser Leu Cys Val Leu Leu (2) INFORMATION FOR SEQ ID NO:44:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTE: 182 amino acids (B) TYPE: amino acid (C) STR~Nn~n~s: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Dictyostelium discoideum (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:
Met Thr Glu Tyr Lys Leu Val Ile Val Gly Gly Gly Gly Val Gly Lys Ser Leu Thr Ile Gln Leu Ile Gln Asn His Phe Asp Glu Tyr Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Ser Ile Asp Asp Glu Thr Cys Leu Leu Ile Leu Asp Thr Ala Gly Gln Glu Glu Ser Ala Met Arg Asp Gln Tyr Met Arg Thr Gly Gln Gly Phe Leu Cys Val Tyr Ser Ile Thr Ser Arg Ser Ser Tyr Asp Glu Ile Ala Ser Phe Arg Glu Gln Ile Leu Arg Val Lys Asp Lys Asp Arg Val Pro Leu Ile Leu Val Gly Asn Lys Ala Asp Leu Asp His Glu Arg Gln Val Ser Val Asn Glu Gly Gln Glu Leu Ala Lys Asp Ser Leu Ser Phe His Glu Ser Ser Ala Lys Ser Arg Ile Asn Val Glu Glu Ala Phe Tyr Ser Leu Val Arg Glu Ile Arg Lys Glu Leu Lys Gly Asp Gln Ser Ser Gly Lys Ala Gln Lys Lys Lys Lys Gln Cys Leu Ile Leu (2) INFORMATION FOR SEQ ID NO:45:
(i) SEQUENCE CHARACTERISTICS:

CA 022327~0 l998-03-23 (A) LENGTH: 190 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPO~ L~AL: NO
(vi) ORIGINAL SOVRCE:
(A) ORGANISM: Dictyostelium discoideum (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:
Met Ser Val Ser Asn Glu Tyr Lys Leu Val Val Gly Gly Gly Gly Val Gly Lys Ser Ala Leu Thr Ile Gln Phe Gln Asn His Phe Ile Glu Glu Tyr Asp Pro Thr Ile Glu Asp Ser Tyr Arg Arg Gln Cys Gln Val Asp Glu Asp Thr Cys Leu Leu Asp Ile Leu Asp Thr Ala Gly Gln Asp Asp Tyr Ser Met Arg Asp Gln Tyr Met Arg Thr Gly Gln Gly Phe Leu Val Tyr A~p Val Ser Arg Thr Ser Phe Glu Glu Ile Asn Val Val Glu Gln Ile Arg Val Lys Asp Asn Asp Lys Val Pro Ile Val Leu Val Gly Asn Lys Cys Asp Leu Glu Asn Leu Arg Glu Val Thr Glu Gly Glu Gly Ser Glu Leu Ala Lys Ser Phe Ser Val Pro Phe Leu Glu Thr Ser Ala Lys Lys Arg Leu Asn Val Asp Glu Cys Phe Phe Glu Val Val Arg Glu Ile Lys Lys Ser Leu Lys Glu Pro Gly Arg Ser Lys Lys Asp Lys Lys Gly Gly Ile Leu Lys Lys Phe Lys Gly Gly Asp Cys Leu Ile Leu (2) INFORMATION FOR SEQ ID NO:46:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 188 amino acids (B) TYPE: amino acid .
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Dictyostelium discoideum CA 022327~0 l998-03-23 WO 97/10836 PCT~US96/15098 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:
Met Ser Lys Leu Leu Lys Leu Val Ile Val Gly Asp Gly Gly Val Gly Lys Ser Ala Leu Thr Ile Gln Leu Thr Gln Asn Gln Phe Ile Ala Glu Tyr Asp Pro Thr Ile Glu Asn Ser Tyr Arg Lys Gln Val Asn Ile Asp Glu Glu Val Tyr Met Leu Asp Ile Leu Asp Thr Ala Gly Gln Glu Glu Tyr Ser Ala Met Arg Asp Gln Tyr Ile Arg Ser Gly Arg Gly Phe Leu Ile Val Tyr Ser Ile Ile Ser Arg Ala Ser Phe Glu Ala Val Thr Thr Phe Arg Glu Gln Ile Leu Arg Val Lys Asp Leu Ser Thr Tyr Pro Ile Val Ile Ile Gly Asn Lys Ala Asp Leu Pro Asp Lys Asp Arg Lys Val Pro Pro Met Glu Gly Lys Glu Leu Ala Lys Phe Gly Ala Pro Phe Leu Glu Thr Ser Ala Lys Ser Arg Val Asn Val Glu Glu Ala Phe Phe Thr Leu Val Arg Glu Ile Lys Arg Trp Asn Gln Asn Pro Gln Asn Glu Glu Met Leu Pro Pro Lys Lys Arg Gly Cys Ile Ile Leu (2) INFORMATION FOR SEQ ID NO:47:
(i) SEQUENCE CEARACTERISTICS:
(A) LENGTH: 188 amino acids (B) TYPE: amino acid (C~ STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Dictyostelium discoideum (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:
Met Glu Tyr Lys Leu Val Ile Val Gly Gly Gly Gly Val Gly Lys Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe Ile Asp Glu Tyr Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Thr Ile Asp Glu Glu CA 022327~0 1998-03-23 WO 97/10836 PCT~US96/15098 Thr Cy9 Leu Leu Asp Ile Leu Asp Thr Ala Gly Gln Glu Glu Tyr Ser Ala Met Arg Asp Gln Tyr Met Arg Thr Gly Gln Gly Phe Leu Cys Val Tyr Ser Ile Thr Ser Arg Ser Ser Phe Asp Glu Ile Ala Ser Phe Arg Glu Gln Ile Leu Arg Val Lys Asp Lys Asp Arg Val Pro Met Ile Val Val Gly Asn Lys Cys Asp Leu Glu Ser Asp Arg Gln Val Thr Thr Gly Glu Gly Gln Asp Leu Ala Lys Ser Phe Gly Ser Pro Phe Leu Glu Thr Ser Ala Lys Ile Arg Val Asn Val Glu Glu Ala Phe Tyr Ser Leu Val Arg Glu Ile Arg Lys Asp Leu Lys Gly Asp Ser Lys Pro Glu Lys Gly Lys Lys Lys Ary Pro Leu Lys Ala Cys Thr Leu Leu t2) INFORMATION FOR SEQ ID NO:48:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 204 amino acids (B) TYPE: amino acid (C) sTR~Mn~nN~s: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Caenorhabditis elegans (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:
Met Ser Ser Ser Leu Gln Ser Asn Arg Gln Ser Leu Asn Arg Lys Val Ala Val Met Gly Tyr Pro His Val Gly Lys Ser Ala Leu Val Leu Arg Phe Thr Gln Asn Ile Phe Pro Glu Arg Tyr Glu Ser Thr Ile Glu Asp Gln His Ser Lys His Ile Ala Ala Phe His Arg Asp Tyr His Leu Arg Val Thr Asp Thr Ala Gly Gln Gln Glu Tyr Thr Val Phe Pro Arg Ser Cys Ser Leu Asp Ile Asn Gly Phe Ile Leu Val Tyr Ala Ile Asp Asp Ary Lys Ser Phe Glu Met Cys Ser Asn Ile Tyr Glu Lys Ile Val Arg CA 022327~0 l998-03-23 Thr Tyr Gly Asp Thr Ser Ile Pro Ile Val Ile Val Gly Lys Thr Asp Leu Ser Thr Gln Val Val Arg Ala Glu Glu Gly Glu Glu Leu Ala Arg Gln Trp Asp Ala Lys Phe Val Glu Ile Thr Ala Arg Glu Ser Asn Arg Val His Glu Val Phe Glu Leu Leu Leu Arg Glu Ile Glu Ile Ser Arg Gly Asn Leu Ser Pro Thr Glu Arg Pro Asn Gly Asn Ser Pro Lys Arg Pro Phe Lys Asp Asp Gly Lys Pro Cys Ser Ile Ser (2) INFORMATION FOR SEQ ID NO:49:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 215 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Coprinus cinereus (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:
Met Ala Ala Arg Ala Gln Phe Leu Arg Glu Tyr Lys Leu Val Val Val Gly Gly Gly Gly Val Gly Lys Ser Ala Leu Thr Ile Gln Phe Ile Gln Ser His Phe Val Asp Glu Tyr Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Cys Ile Ile Asp Asp Glu Val Ala Leu Leu Asp Val Leu Asp Thr Ala Gly Gln Glu Glu Tyr Gly Ala Met Arg Glu Gln Tyr Met Arg Thr Gly Glu Gly Phe Leu Leu Val Tyr Ser Ile Thr Ser Arg Asn Ser Phe Glu Glu Ile Ser Ile Phe His Gln Gln Ile Leu Arg Val Lys Asp Gln Asp Ser Phe Pro Val Ile Val Val Ala Asn Lys Cys Asp Leu Glu Tyr Glu Arg Gln Val Gly Met Asn Glu Gly Arg Asp Leu Ala Lys His Phe Gly Cys Lys Phe Ile Glu Thr Ser Ala Lys Gln Arg Ile Asn Val CA 022327~0 l998-03-23 WO 97/10836 PCT~US96/15098 Asp Glu Ala Phe Ser Asn Leu Val Arg Glu Ile Arg Lys Tyr Asn Arg Glu Gln Gln Thr Gly Arg Pro Ala Ile Ala Ala Gly Gly Gly Gly Pro Ala Gly Ser Tyr Thr Gln Asp Arg His His Asp Glu Ala Pro Gly Cys Cys Ala Gly Cys Val Ile Ala (2) INFORMATION FOR SEQ ID NO:50:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 206 amino acids (B) TYPE: amino acid tC) STR~Nn~nN~S: single (D) TOPO~OGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Geodia cydonium (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:
Met Thr Glu Tyr Lys Ile Val Val Gly Gly Gly Leu Val Gly Lys Ser Ala Leu Thr Leu Gln Leu Val Gln Val Cys Ile Lys Asp Gln Tyr Tyr Leu Ile Glu Phe Gln Asn Asn Gln Phe Gln Phe Glu Asn Leu Gln Asn His Tyr Ile Asp Tyr Asp Pro Thr Val Glu Asp Ser Arg Arg Glu Val Ser Ile Asp Asp Gln Thr Cys Leu Asn Ile Leu Asp Thr Ala Gly Gln Gln His Ser Asn Ala Gln Ser Met Asp Ala His Trp Ser Thr Val Phe Val Cys Leu Phe Asn Tyr Phe Asn Ile Thr Ser Met Tyr Asp Glu Ile Ala Ser Phe Arg Glu Gln Ile Leu Arg Val Lys Asp Gly Ala Lys Asp Leu Val Pro Leu Ile Leu Ile Ile Asn Lys Ala Asp Leu Asp His Glu Ser Gln Gly Ser Gly Asn Glu Gly Gln Leu Ala Lys Asp Ser Leu Ser 145 150 155 160 , Phe His Gln Ser Ser Ala Lys Ser Arg Ile Asn Leu Glu Glu Ile Pro Tyr Ser Leu Val Arg Glu Leu Arg Lys Glu Leu Lys Leu Asp Gln Ser CA 022327~0 1998-03-23 WO 97/10836 PCT~US96/15098 Ser Gly Lys Ala Gln Lys Lys Lys Lys Gln Cys Leu Ile Ile (2) INFORMATION FOR SEQ ID NO:51:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 198 amino acids (B) TYPE: amino acid (C) STR~Mn~N~S: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Canis ~m; 1 i~is (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:
Met Lys Lys Thr Tyr Asp Leu Leu Phe Lys Leu Leu Leu Ile Gly Asp Ser Gly Val Gly Lys Thr Cys Val Leu Phe Arg Phe Ser Asp Asp Ala Phe Asn Thr Thr Phe Ile Ser Ile Gly Ile Asp Phe Lys Ile Lys Thr Val Glu Leu Gln Gly Lys Lys Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Phe His Thr Ile Thr Thr Ser Tyr Tyr Arg Gly Ala Met Gly Ile Met Leu Val Tyr Asp Ile Thr Asn Gly Lys Ser Phe Glu Asn Ile Ser Lys Trp Leu Arg Asn Ile Asp Glu His Ala Asn Glu Asp Val Glu Arg Met Leu Leu Gly Asn Lys Cys Asp Met Asp Asp Lys Arg Val Val Pro Lys Gly Lys Gly Glu Gln Ile Ala Arg Glu His Gly Ile Arg Phe Phe Glu Thr Ser Ala Lys Val Asn Ile Asn Ile Glu Lys Ala Phe Leu Thr Leu Ala Glu Asp Ile Leu Arg Lys Thr Pro Val Lys Glu Pro Asn Ser Glu Asn Val Asp Ile Ser Ser Gly Gly Gly Val Thr Gly Trp Lys Ser Lys Cys Cys (2) INFORMATION FOR SEQ ID NO:52:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 214 amino acids (B) TYPE: amino acid (C) STR~Nn~M~.~s: single CA 022327~0 l998-03-23 W O 97/10836 PCT~US96/15098 (D) TOPOLOGY: linear (ii) MOLBCULE TYPE: protein (iii) HYPOTHETICAL: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:
Met Gly Thr Arg Asp Asp Glu Tyr Asp Tyr Leu Phe Lys Val Val Leu Ile Gly Asp Ser Gly Val Gly Lys Ser Asn Leu Leu Ser Arg Phe Thr Arg Asn Glu Phe Asn Leu Glu Ser Lys Ser Thr Ile Gly Val Glu Phe Ala Thr Arg Ser Ile Gln Val Asp Gly Lys Thr Ile Lys Ala Gln Ile Trp Asp Thr Ala Gly Gln Glu Arg Tyr Arg Ala Ile Thr Ser Ala Tyr Tyr Arg Gly Ala Val Gly Ala Leu Leu Val Tyr Asp Ile Ala Lys His Leu Thr Tyr Glu Asn Val Glu Arg Trp Leu Lys Glu Leu Arg Asp His Ala Asp Ser Asn Ile Val Ile Met Leu Val Gly Asn Lys Ser Asp Leu Arg His Leu Arg Ala Val Pro Thr Asp Glu Ala Arg Ala Phe Ala Glu Lys Asn Gly Leu Ser Phe Ile Glu Thr Ser Ala Leu Asp Ser Thr Asn Val Glu Ala Ala Phe Gln Thr Ile Leu Thr Glu Ile Tyr Arg Ile Val Ser Gln Lys Gln Met Ser Asp Arg Glu Asn Asp Met Ser Pro Ser Asn Asn Val Val Pro Ile His Val Pro Pro Thr Thr Glu Lys Pro Lys Val Gln Cys Cys Gln Asn Ile

Claims (9)

We claim:
1. A composition comprising at least one component selected from the group consisting of a peptide having an amino acid sequence selected from the group consisting of Val-Val-Ile, Ile-Lys-Arg-Val-Lys-Asp (SEQ ID NO:1), Lys-Cys-Asp-Leu-Ala (SEQ ID NO:2), Cys-Asp-Leu-Ala-Ala-Arg-Thr (SEQ ID NO:3) and Asp-Leu-Ala-Ala (SEQ ID NO:4) or a physiologically acceptable salt of said peptide, a cyclized peptide having a formula selected from the group consisting of cyclo [-R(1) R(2) Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Lys-Gln-Val-Val-Ile-Asp R(3) R(4)-], cyclo [-R(1) R(2) Val-Val-Ile R(3) R(4)-], cyclo [-R(1) R(2) Tyr-Arg-Glu-Gln-Ile-Lys-Arg-Val-Lys-Asp-Ser-Asp-Asp-Val-Pro R(3) R(4)-], cyclo [-R(1) R(2) Lys-Arg-Val R(3) R(4)-], cyclo [-R(1) R(2) Ile-Lys-Arg-Val-Lys-Asp R(3) R(4)-], cyclo [-R(1) R(2) Gly-Asn-Lys-Cys-Asp-Leu-A;
a-Ala-Arg-Thr-Val-Glu R(3) R(4)-], cyclo [-R(1) R(2) Lys-Cys-Asp-Leu-Ala R(3) R(4)-],-cyclo [-R(1) R(2) Cys-Asp-Leu-Ala-Ala-Arg-Thr R(3) R(4)-], cyclo [-R(1) R(2) Asp-Leu-A;a-Ala R(3) R(4)-], cyclo [- R(1) R(2) D-Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Lys-Gln-Val-D-Val-Ile-Asp R(3) R(4)-], cyclo [-R(1) R(2) D-Val-D-Val-D-Ile R(3) R(4)-], cyclo [-R(1) R(2) D-Tyr-Arg-Glu-Gln-Ile-Lys-Arg-Val-Lys-Asp-D-Ser-Asp-D-Asp-Val Pro R(3) R(4)-], cyclo [-R(1) R(2) D-Lys-D-Arg-D-Val-R(3) R(4)-], cyclo [-R(1) R(2) D-Ile-Lys-Arg-Val-Lys-D-Asp-R(3) R(4)-], cyclo [-R(1) R(2) Gly-D-Asn-Lys-Cys-Asp-Leu-D-Ala-Ala-Arg-Thr-D-Val-Glu R(3) R(4)-], cyclo [-R(1) R(2) D-Lys-Cys-Asp-Leu-D-Ala R(3) R(4)-], cyclo [-R(1) R(2) Cys-Asp-Leu-Ala-Ala-Arg-D-Thr R(3) R(4)-], cyclo [-R(1) R(2) Asp-D-Leu-D-Ala-D-Ala R(3) R(4)-], and wherein R(1) R(2), R(3) and R(4) represent independently alanine, ornithine, cysteine, lysine, glutamic and aspartic acid, and wherein there is a covalent bond between the carboxyl and amino termini by which R(1) and R(4) are interconnected to each other via a methylene bridge of type -- (CH2)m --or --(CH2)m--M--(CH2)m' --, wherein m and m' are integers from 1, 2, 3, or 4, and M is NH, N[R(5)], O, or S, and wherein R(5) is methyl, ethyl, n-propyl, isopropyl, cyclopropyl, or cyclobutyl, or the sidechain of any naturally occurring amino acid, and a physiologically acceptable salt thereof and a peptidomimetic falling within the structure wherein the sidechain R attached at the carbon atom numbered 6 on the sterol nucleus can be NH-CH2-CH2NH3+, alkylamino, arylamino, or aralkylamino group, and wherein the sidechain attached at the carbon number 3 can be replaced with -O-C(=O)--(CH2)m--COOH, where m is an integer from 1 to 6, inclusive, preferably from 1 to 3, inclusive, and more preferably 2, and one of X and Y at each position independently, can be one H, a small alkyl group of C1 to C3, preferably C1; a halogen, preferably F, or an amino group where the other of one of X and Y is H. Preferably, each of X and Y is H and a pharmaceutically acceptable salt thereof.
2. The composition of claim 1 wherein said component is a peptide has a structure having the structure
3. The composition of claim 1 wherein said peptidomimetic capable of inhibiting the oncogenic activity of p21 Ras has the structure wherein the sidechain R attached at the carbon atom numbered 6 on the sterol nucleus can be NH-CH2-CH2NH3+, alkylamino, arylamino, or aralkylamino group, and wherein the sidechain attached at the carbon number 3 can be replaced with -O-C(=O)--(CH2)m--COOH, where m is an integer from 1 to 6, inclusive, preferably from 1 to 3, inclusive, and more preferably 2, and one of X and Y at each position independently, can be one H, a small alkyl group of C1 to C3, preferably C1; a halogen, preferably F, or an amino group where the other of one of X and Y is H. Preferably, each of X and Y is H and a pharmaceutically acceptable salt thereof.
4. The composition of claim 1 wherein said peptidomimetic has the structure or a pharmaceutically acceptable salt thereof.
5. A method for inhibiting the oncogenic or transforming activity of p21 Ras, said method comprising the step of administering an amount of the composition of of claim 1 effective to achieve the result that the transforming and/or oncogenic activity of the p21 Ras protein is inhibited.
6. A method for inhibiting the oncogenic or transforming activity of p21 Ras, said method comprising the step of administering an amount of a composition comprising at least one cyclized peptide as set forth in claim 1, effective to achieve the result that the transforming and/or oncogenic activity of the p21 Ras protein is inhibited.
7. The method of claim 6 wherein the cyclized peptide has a structure
8. A method for inhibiting the oncogenic or transforming activity of p21 Ras, said method comprising the step of administering an effective amount of at least one peptidomimetic as set forth in claim 4, with the result that the transforming and/or oncogenic activity of the p21 Ras protein is inhibited.
9. The method of claim 8 wherein said peptidomimetic is 3-malonoxy-6-N-(2aminoethyl) aminocyclopentanoperhydrophenanthrene.
CA 2232750 1995-09-21 1996-09-20 Peptides and peptidomimetics inhibiting the oncogenic action of p21 ras Abandoned CA2232750A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US409195P 1995-09-21 1995-09-21
US08/531,525 US5840683A (en) 1995-09-21 1995-09-21 Peptides inhibiting the oncogenic action of p21 ras
US08/531,525 1995-09-21
US60/004,091 1995-09-21

Publications (1)

Publication Number Publication Date
CA2232750A1 true CA2232750A1 (en) 1997-03-27

Family

ID=26672587

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2232750 Abandoned CA2232750A1 (en) 1995-09-21 1996-09-20 Peptides and peptidomimetics inhibiting the oncogenic action of p21 ras

Country Status (3)

Country Link
AU (1) AU7366896A (en)
CA (1) CA2232750A1 (en)
WO (1) WO1997010836A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022326A (en) * 1998-10-30 2000-02-08 Lifepoint, Inc. Device and method for automatic collection of whole saliva
US20040082509A1 (en) 1999-10-12 2004-04-29 Christophe Bonny Cell-permeable peptide inhibitors of the JNK signal transduction pathway
US8183339B1 (en) 1999-10-12 2012-05-22 Xigen S.A. Cell-permeable peptide inhibitors of the JNK signal transduction pathway
FR2838741B1 (en) 2002-04-19 2006-01-27 Inst Nat Sante Rech Med STEROL DERIVATIVES, PROCESS FOR THEIR PREPARATION AND MEDICAMENTS COMPRISING THE SAME
US8080517B2 (en) 2005-09-12 2011-12-20 Xigen Sa Cell-permeable peptide inhibitors of the JNK signal transduction pathway
WO2007031098A1 (en) 2005-09-12 2007-03-22 Xigen S.A. Cell-permeable peptide inhibitors of the jnk signal transduction pathway
WO2009143864A1 (en) 2008-05-30 2009-12-03 Xigen S.A. Use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of chronic or non-chronic inflammatory digestive diseases
WO2009143865A1 (en) 2008-05-30 2009-12-03 Xigen S.A. Use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of various diseases
WO2010072228A1 (en) 2008-12-22 2010-07-01 Xigen S.A. Novel transporter constructs and transporter cargo conjugate molecules
WO2011160653A1 (en) 2010-06-21 2011-12-29 Xigen S.A. Novel jnk inhibitor molecules
WO2012048721A1 (en) 2010-10-14 2012-04-19 Xigen S.A. Use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of chronic or non-chronic inflammatory eye diseases
US9328142B2 (en) * 2011-05-25 2016-05-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Lipopeptide inhibitors of RAS oncoproteins
WO2013091670A1 (en) 2011-12-21 2013-06-27 Xigen S.A. Novel jnk inhibitor molecules for treatment of various diseases
KR20160023669A (en) 2013-06-26 2016-03-03 자이겐 인플라메이션 리미티드 New use of cell-permeable peptide inhibitors of the JNK signal transduction pathway for the treatment of various diseases
WO2015197097A1 (en) 2014-06-26 2015-12-30 Xigen Inflammation Ltd. New use for jnk inhibitor molecules for treatment of various diseases
WO2014206427A1 (en) 2013-06-26 2014-12-31 Xigen Inflammation Ltd. New use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of various diseases
CN114409737B (en) * 2022-02-24 2023-04-25 南阳师范学院 Novel antitumor peptide and application thereof

Also Published As

Publication number Publication date
WO1997010836A1 (en) 1997-03-27
AU7366896A (en) 1997-04-09

Similar Documents

Publication Publication Date Title
CA2232750A1 (en) Peptides and peptidomimetics inhibiting the oncogenic action of p21 ras
AU2008260326B2 (en) Cyclic peptide CXCR4 antagonists
AU746461B2 (en) Peptide parathyroid hormone analogs
JP7179241B1 (en) Pharmaceutical Uses of Cyclic Peptide Compounds
US20020183249A1 (en) Method of identifying inhibitors of CDC25
CN117279933A (en) Cyclic compounds having selective KRAS inhibition relative to HRAS and NRAS
US9982015B2 (en) Cyclin based inhibitors of CDK2 and CDK4
US5910478A (en) Peptidomimetics inhibiting the oncogenic action of p21 ras
CN105524139B (en) High-activity tumor inhibitor and its preparing process and application
AU6382096A (en) Peptides and compounds that bind to the il-1 receptor
US20090131306A1 (en) Chemically modified cyclic peptides containing cell adhesion recognition (car) sequences and uses therefor
US20130289240A1 (en) Cyclin Based Inhibitors of CDK2 and CDK4
AU4236393A (en) Peptides and compounds that bind to elam-1
EP3970801A1 (en) Ras inhibitory peptide
TW200410986A (en) Pharamaceutical comiposition comprising cyclic somatostatin analogs II
Jeremic et al. Synthesis of cyclohexapeptides containing Pro and Aib residues
US5840683A (en) Peptides inhibiting the oncogenic action of p21 ras
JP7123399B2 (en) Conjugates of tacrolimus, compositions thereof and uses thereof
AU7077400A (en) Method of identifying inhibitors of cdc25
AU2007233105B2 (en) Amino acid surrogates for peptidic constructs
US10167326B2 (en) Alpha-fetoprotein “ring and tail” peptides
Frączak et al. The Biological Consequences of Replacing d‐Ala in Biphalin with Amphiphilic α‐Alkylserines
WO2002070680A1 (en) Method of identifying inhibitors of cdc25
CZ9904022A3 (en) Peptide analogs of parathyroidal hormone

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead