CA2220641A1 - A data stream conversion system and method - Google Patents

A data stream conversion system and method Download PDF

Info

Publication number
CA2220641A1
CA2220641A1 CA002220641A CA2220641A CA2220641A1 CA 2220641 A1 CA2220641 A1 CA 2220641A1 CA 002220641 A CA002220641 A CA 002220641A CA 2220641 A CA2220641 A CA 2220641A CA 2220641 A1 CA2220641 A1 CA 2220641A1
Authority
CA
Canada
Prior art keywords
format
data
transducer
data stream
client
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002220641A
Other languages
French (fr)
Inventor
Arthur Julian Patterson Craddock
Ramzan A. Khuwaja
Ian Alexander Macfarlane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks Ltd
Original Assignee
Northern Telecom Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Telecom Ltd filed Critical Northern Telecom Ltd
Priority to CA002220641A priority Critical patent/CA2220641A1/en
Priority to EP98954080A priority patent/EP0970429A2/en
Priority to CN98803208A priority patent/CN1122230C/en
Priority to CA002275300A priority patent/CA2275300A1/en
Priority to JP52508599A priority patent/JP2001510667A/en
Priority to PCT/CA1998/001047 priority patent/WO1999025071A2/en
Publication of CA2220641A1 publication Critical patent/CA2220641A1/en
Priority to HK00106350A priority patent/HK1027184A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer And Data Communications (AREA)

Abstract

A data conversion system and method for a distributed service network provides telecommunications and other services to users transparently of the service and the particular client used to access the network. A set of transducers are employed by a transducer matrix switch which operate to make communications between services and clients transparent to the actual client used to connect to the service by converting data streams from a first format to a desired format. The client format can be further modified according to user selected preferences.

Description

A DATA STREAM CONVERSION SYSTEM AND METHOD

FIELD OF THE INVENTION
The present invention relates to a data stream conversion system and method .
More specifically, the present invention relates to a data stream conversion system and method 5 which converts a data stream from a first format to a desired format.

BACKGROUND OF THE INVENTION
Recent developments in telecommunications have resulted in networks for a wide variety of services. From conventional voice or data networks to wireless packet and enhanced paging networks, the variety of telecommunications options available to individuals and business 10 is staggering. This variety of options has lead to a revolution in how people live and work and mobile and/or nomadic workers are becoming increasingly common.

While the available telecommunications services have been adopted to various degrees, to a large extent these services, and the networks that support them, remain separate 15 from each other reducing the overall potential of these services. For example, it may not be possible to send email from a personal computer client in an of fice to a pager client used by a salesman, even though both are connected to respective telecommunications networks.

This lack of integration and/or communication between networks and clients is a 20 recognized problem and a variety of "middleware" products have been proposed and/or produced to transfer data between one network/system and another network/system. For example, Chapter 5 of the publication, "Underst~ndin~ the Next Phase of Mobile Commuting", 1997, by the Yankee Group is entitled, "Evolving Middleware Solutions for Wireless Remote Access" and discusses middleware solutions for communications with mobile users via wireless 25 communications.

While middleware can be configured to provide the desired interconnectivity for many specific situations, to date no general solution exists to interconnect various telecol~ lications networks. Further, no solution exists to provide a distributed network to 30 supply a variety of desired services at multiple sites in an essentially transparent and convenient , .

manner for users and service providers. Thus, the long sought goal of communication from any client or service to any other client between any two locations is still largely an unachieved goal.

SUMMARY OF THE INVENTION
It is an object of the present invention to provide a novel data stream conversion system and method which obviates or mitigates at least one disadvantage of the prior art.

According to a first aspect of the present invention, there is provided a data stream conversion system comprising:
at least two transducers, each operable to receive an input stream of data in a first format and to create an output stream of said data in a format other than said first format; and a transducer matrix switch operable to select at least one of said transducers and to provide said first input stream of data thereto and to receive said output stream of data therefrom, said selection being based upon an input signal to said transducer matrix switch indicating said first format and a desired different data format.
According to another aspect of the present invention, there is provided a methodof converting a data stream transferred between a communication client connecting a user to a distributed service network and a service connected to said network, comprising the steps of:
(i) determining the type of said communications client and the required data characteristics of said client;
(ii) determining the required data characteristics of said service;
(iii) selecting at least one conversion means operable to convert a data stream between said required data characteristics of said client and said required data characteristics of said service;
(iv) applying said at least one conversion means to a data stream transferred through said network.

The present invention provides a data stream conversion system and method which allows communications clients to connect to a network and access any service thererlo~
such that the data streams from the service to the communications client are converted to a desired format for the client without requiring specific input from the user of the client. The data conversion system and method receives information relating to the type of communications client, and any user defined preferences for data streams sent thereto, and information relating to the service being accessed through the network. The data conversion system and method then employs one or more transducers to convert the data stream accordingly. The data conversion system and method also employs one or more transducers to convert a data stream received from the communications client from the received format to a format required for the service.

BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the present invention will now be described, by way of 10 example only, with reference to the attached Figures, wherein:
Figure 1 shows a schematic representation of a distributed service network in accordance with the present invention;
Figure 2 shows a schematic representation of a region in the distributed servicenetwork of Figure l; and Figure 3 shows a schematic representation of the replication of a personal agentfrom a home region in a distributed service network to a persistent cache in a remote region in that network.

DETAILED DESCRIPTION OF THE INVENTION
A distributed service network in accordance with an embodiment of the present 20 invention is indicated generally at 14 in Figure 1. The types of data carried by network 14 is not particularly limited and can include analog and/or digital voice, computer network communications, email, messages for paging systems, etc. and, as will be appal~lll from the discussion below, network 14 can simultaneously carry multiple types of data, as desired.

As shown in Figures 1 and 2, network 14 comprises one or more regions 18, each of which comprises a region manager 22 and one or more region servers 24. Each region manager 22 is connected to each region server 24 in its region 18 and each region server 24 is connected to other region servers 24, both those in its region 18 and those in other regions 18, by a communications backbone 28, which can be any suitable communications link, such as T3 30 lines, high bandwidth fibre optic links, satellite links, etc.

, ~

As shown in Figure 2, each region server 24 includes a suitable communications host 32 for cornmunications backbone 28 and a plurality of bridges 36 to which clients 40 of network 14 can be connected by dedicated telecommunications lines, dial-up access, wireless 5 services, a public packet network such as the internet, or any other suitable means. For clarity, Figure 1 shows three region servers 24 in each region 18, but it is contemplated that the number of region servers 24 will vary according to contemplated load for the region and/or the services provided at the region. It is contemplated that at least one region 18 will be created for each geographic area where it is desired to provide a local "point of presence" where a client 40 can 10 connect to network 14. However, network 14 is very flexible and it is also contemplated that two or more regions 18 can be located in a single geographic area with a relatively high number of clients 40, etc., if desired, and in such a circumstance, regions 18 and their respective region servers 24 can be interconnected via backbone 28 or any other suitable means and region managers 22 can perform load and/or service balancing between regions 18.
As is also shown in Figure 2, region servers 24 include a data stream conversionsystem comprising set 44 of transducers 46 and a transducer matrix switch 48 to convert data streams between various formats, protocols and standards as required. Region servers 24 also include a set 52 of adapters and service agents, which can communicate with other external 20 services and/or networks 56, such as the internet, to communicate with servers running POP3, SMTP, etc., to perform email tasks, faxing, web browsing, etc.

Each adapter in set 52 provides a layer of transparency between the protocols and/or API's used by the external service or services to which it connects. Specifically, the 25 adapter operates to convert any service specific protocol or API into a simple "post" and "get"
protocol understood by the region server 24. For example, the IMAP4 email protocol is converted by the adapter to and from a "get information from an email server" and a "post information on an email server" syntax used by the region server 24 to the IMAP4 service protocol. Thus, the region server 24 and services local to that region server need only employ 30 the simple "get" and "put" protocol and not the complexity of the IMAP4 protocol. This also allows new services and/or amended services to added to region servers 24, as desired, by merely adding additional protocol conversion adapters.

Clients 40 can comprise a wide variety of telecommunications and/or computing devices including, without limitation, personal COlllp.l~el~, cellular or PCS handsets, pagers, wireless-capable personal digital ~Si~t~nt~ (PDAs) and any other device or system which 5 requires voice or data telecommunications services.

Region manager 22 includes a database engine 38, which m~int~in~ a variety of information regarding the users of network 14 and which m~int~in.~ a registry of information relating to clients 40 which can connect to network 14. This client registry includes information 10 on how to establish and m~int~in a connection to each client 40, as well as the capabilities and limitations of each client 40. Region manager 22 monitors each region server 24 to perform load balancing between region servers 24, and to manage the establishment of connections, as described below in more detail.

When a client 40 wishes to connect to network 14, either by a dial up line, wireless connection or other data link, a connection, referred to herein as a preliminary connection, is established between the client and one of bridges 36. The region server 24 which is connected to the bridge 36 to which the preliminary connection has been made notifies the region manager 22 which determines the type of client 40. In some circumstances, such as 20 wherein the preliminary connection is established with a GSM cellular telephone employing the SMS protocol, the bridge 36 with which the preliminary connection is established will implicitly identify to the region manager 22 the type of client 40. In other cases, such as the case of a dial up line, region manager 22 and the bridge 36 with which the preliminary connection is established must determine the type of client 40 employed with the connection, such as a digital 25 voice telephone, analog voice telephone, html browser employing http, etc. This determination can be effected by analyzing initialization procedures, by querying the client 40, or by any other suitable method as will occur to those of skill in the art.

Once the type of client 40 is identified, region manager 22 checks the client 30 registry in database engine 38 for the characteristics of client 40 and ensures that the preliminary connection is transferred to an ~plol~liate bridge 36, either at the region server 24 to which the preliminary connection was originally made, or to another region server 24, as appropriate. The ..

selection of which region server 24 is to handle the connection can be based upon a number of criteria, including the present workload of each of the region servers 24, the type of client 40, etc. For example, one or more region servers may be configured with specific hi3ldw~e or otherwise optimized to handle connections to http browser clients 40 and another for voice mail.
s If a user changes the type of client 40 being employed while connected to a region server 24, for example ch~nging from a POP3 email client to a web browser client, or if a region server 24 has an excessive load, region manager 22 can transfer control of the connection, if a~lopl;ate, to a dirrerelll region server 24 in region 18.

Next the identity of the user of client 40 is verified. This verification can comprise: an explicit step, such as the user inputting a user ID and password; or an implicit step, such as the connection being to a known IP address; etc. and can be performed by the region manager 22, or one or more region servers 24 within region 18 which have capacity allocated for 15 this task. In Figures 1 and 2, the former alternative is illustrated and verification information is compared to information in database engine 38 to verify the identity of the user. Once the identity of the user has been verified, the preliminary connection becomes a complete connection and data access requests from the user are serviced.

In one embodiment of the present invention, once the identity of a user is verified and a complete connection is established, a personal agent for the user is accessed from database engine 38, onto a server 24. The personal agent m~in~in~ a record, referred to herein as a user profile, of the services to which the user subscribes, user preferences for various possible client devices employed by that user and any other pl~rerellces of the user and billing information for the user. In addition to the user profile and prefel~llces, the personal agent also provides access to all relevant services data for user data access requests, including Email services for the user, passwords and user identifications for other services, etc.

While the use of a personal agent is presently pr~f~ d, network 14 is not limited to the use of a personal agent, and user profiles and related information can be stored in network 14 in any suitable manner as will occur to those of skill in the art.

, If the user has connected to a region 18 which is not the "home" region 18 of the user, the verification is performed by either: consulting a registry of users m~int~ined in database engine 38 to identify the home region 18 of the user; by sending a query to a centralized user registry server (not shown) which is connected to network 14 via communications backbone 28, or by sending a query from the connected (local) region manager 22 to the region managers 22 of neighboring regions 18 via backbone 28 to locate the database engine 38 with required information to verify the user. In this last case, if none of the neighboring regions 18 are the home region 18 of the user and thus do not have the necessary information for the user on their database engine 38, the query is relayed to additional regions 18 until either the home region 18 is identified. If at any point it is determined that the user is not an authorized user for network 14, the preliminary connection between client 40 and bridge 36 is t~rmin:~te~l Once the home region 18 has been identified for the user and the user's identityhas been confirmed and a complete connection established, the personal agent at the home region 18 can be accessed, via communication backbone 28, by the remote region 18 or the personal agent can be replicated to the local region 18 from the home region 18, via back bone 28. The determination of whether to access the personal agent via backbone 18 or whether to replicate the personal agent at the remote region 18 is based upon a suitable preselected quality of service (QoS) metric and can include a consideration of: the communications latency between the remote region 18 and the home region 18 over communications backbone 28; the length of the time the user is expected to require access to the data at the local region 18; the amount of data the user requires access to; and other relevant factors as will occur to those of skill in the art.

If the personal agent for a user is replicated to remote region 18, the entire personal agent is not necessarily replicated and, preferably, only information which is immediately required, or which is likely to be required imminently, is replicated to reduce the transfer and/or storage of unnecessary data. To further reduce the storage of unnecessary data, the replication of the personal agent in a local region 18 is stored in a persistent cache, as will be described in more detail below.
Once a full connection is established with a region server 24, the user has complete access to all services through network 14 which the user is authorized to access, as . .

determined from the user's personal agent or other user profile information, essentially independent of the client 40 he has employed to connect to the network and all authorized data access requests are served by network 14 to client 40. This client independence is accomplished via the client registry and set 44 of transducers 46 and transducer matrix switch 48 Specifically, as mentioned above, region manager 22 and bridge 36 determine what type of client 40 is communicating with bridge 36. This information is used to identify the entry for that client in the client registry and the characteristics of that client, including its requirements, capabilities and limitations are provided to transducer matrix switch 48, as are the 10 characteristics of the type of service being accessed which is deterrnined from the adapter 52 making the connection to the service. The user profile is also accessed to determine any user specified prcfe,cllces for that type of client.

Tr~n~ cer matrix switch 48 arranges, configures and/or connects one or more 15 transducers 46 in set 44, as necessary, to convert between the data formats (types and/or protocols) employed by client 40 and the data formats employed by the service being accessed.
If no single transducer 46 exists in set 44 which can effect the necessary conversion, then transducer matrix switch 48 will chain two or more transducers 46 together, with the output of one transducer being the input to the next, to accomplish the necessary conversion. In one 20 embodiment, transducer matrix switch 48 receives an input from bridge 36 as to the format employed by client 40 and receives an input from set of adapters 52 as to the data format employed by the external service and these two inputs are used as indices to a look up table in matrix switch 48 of all possible conversions. The indicated entry in this table defines the required transducer 46, or combination of transducers 46, to effect the desired conversion. As 25 new transducers 46 are added to set 44, the conversion look up table is updated accordingly.

Further, in some circumstances two or more transducers 46, or chains of transducers 46, can be employed in parallel. For example, a Group IV facsimile message can be received by one of set 52 of adapters for access by a PCS telephone client 40. In such a case, a 30 first transducer 46 can be employed to perform an optical character recognition (OCR) conversion from the facsimile format to ASCII text and then a pair of transducers 46 can simultaneously examine the resulting text, one to locate to locate the facsimile sender's name . .

and/or telephone number, and the other to locate the subject matter of the facsimile from a "subject" line. The located "from" and "subject" information is then sent to the user's PCS
telephone, in accordance with the client registry information for PCS clients and the users preferences for that client, from the user's profile.

As will be a~alelll to those of skill in the art, in order to efficiently utilize transducers 46, kansducer matrix switch 48 only employs transducers 46 as needed and thus, a transducer 46 performing a conversion for one client connection will be immediately available for reuse in another connection when the first conversion is complete. As set 44 can contain 10 redllnd~nt transducers 46, i.e. - two or more transducers 46 which perform the same conversion, a connection which employs one transducer 46 for conversion of a first data stream can employ a different transducer 46 for a subsequent, but identical, conversion.

As an example of the use of a data conversion system in accordance with the 15 present invention, if a user has connected to network 14 via an analog voice telephone client 40 and wishes to access email services, a touch tone response transducer 46 and a text to speech transducer 46 are selected and configured by transducer matrix switch 48 and portions of the email messages will be read to the user. Depending upon the plefelellces and/or set-up defined by the user for the client 40, as stored in the user's personal agent or other user profile, the user 20 can be provided with the email in a variety of manners. For example, the user can be provided with a prompt, via the text to speech transducer 46, informing the user of the number of new Email messages which have been received and/or the messages or their subject lines can be read to the user via the text to speech transducer 46. A touch tone response transducer 46 can allow the user to select messages of interest to be read or messages to be deleted, etc. by pressing keys 25 on a touch tone phone. A speech recognition transducer 46 can also be employed, either in instead of or in addition to, the touch tone response transducer 46. In such a case, the user can dictate responses to Email, etc. Alternatively, the user can have set their preferences in their personal agent or user profile such that they are only informed of the number of new email messages, and their time of receipt.
As will be apparent, the user's personal agent or user profile can include dirrelelll preferences for each service when delivered on each different client 40. For example, when the user connects to network 14 via a dial up line with a personal computer running an email program as client 40, the user's email will be fully available to them from the email program in a conventional manner, rather than being read to them via text to speech transducer 46. If that personal computer has connected to network 14 via a cellular modem, with a limited and/or costly bandwidth, the email can be presented as subject lines only, except for messages flagged as urgent. Many other possible configurations and/or options will occur to those of skill in the art.

As mentioned above, transducers 46 can be chained, as necessary, by tr~nsdllcer 10 matrix switch 48 to provide required conversions. For example, if a user wishes to access a web page from an analog voice telephone, transducer matrix switch 48 can employ an HTML to ASCII transducer to receive the HTML definition of the web page and to convert it to ASCII text which would then be passed to a text to speech transducer 46 to convert that ASCII text to speech that the user can receive on their telephone. Similarly, speech recognition or touch tone 15 response tr~nsdllcers can be employed to receive input from the user as to hot links to be followed or other inputs desired.

Set 44 of transducers 46 and transducer matrix switch 48 provide transparent conversion of services within network 14. It is contemplated that, at least to some extent, all 20 services will be transparent or accessible, in accordance with user defined plerelellces stored in the users' personal agents and that such transparency will not require any steps on the part of the service provider. For example, a user can define that only a count of new Email messages received be downloaded to their pager, or that a count of all new messages received and the subject lines of messages marked urgent be downloaded, etc. and yet the sender of the email 25 message need not concern themselves with such details.

It is contemplated that, in some circumstances, dirrelellt region servers 24 in a region 18 can have different transducers 46 in their set 44. For example, a region server 24 can have one or more transducers 46 for text to speech conversions which require special purpose 30 hardware in region server 24. In such a case, only one region server 24 in a region 18 may be equipped with such special purpose hardware and a connection to a client 40 which requires a text to speech transducer 46 can either be transferred, as necessary, by region manager 22 to the . .

region server 24 which has the necessary transducer or matrix transducer switch 48 in the region server 24 h~nl1ling the connection can access the necessary transducer 46 in another region server 24 in region 18 via region manager 22.

In addition to performing service to client conversions, network 14 can also perform transport protocol conversions as well. An adapter in set 52 can receive data in one transport protocol and can forward it to another adapter in set 52 wherein it is re-transmitted via another transport protocol. For example, data can be received via TCP/IP by a first adapter in set 52 and transmitted from a second adapter in ATM or Frame Relay protocol. It is contemplated that set 52 can also include encryption and/or decryption engines as well. It is also contemplated that, in some circumstances, transducers 46 can be employed to perform protocol conversions and/or encryption and decryption if desired.

As mentioned above, there is preferably a personal agent defined for each user which accomplishes several tasks. For example, the personal agent provides access to the information necessary to identify the user to network 14, by a user ID and password, a known IP
address, a pager number, a cellular EIN, etc. Additionally, the personal agent can provide access to information such as account and/or password information for third party services to which the user subscribes. For example, for the user can subscribe to a stock quotation and information service which requires the user to identify themselves to the service before being allowed to access the desired the information. While such uses of the personal agent provide convenience to the user, in not having to remember account numbers, passwords, etc., the personal agent can in fact do much more.

Specifically, the user can instruct their personal agent to perform a variety oftasks, ranging from the simple to the quite sophisticated. For example, the user can have defined that their personal agent contact the above-mentioned stock quotation service once every hour to determine the current price of one or more stocks and, if the prices reach a certain price, to contact the user in a defined manner, such as by sending them an email, or paging them, providing them with a synthesized voice message in a voice mailbox or by contacting them on their analog cellular telephone. As will be ~pa~ t, set 44 of transducers 46 and transducer matrix switch 48 will be employed, as necessary, in contacting the user via an appropriate client 40, such as by employing a text to speech transducer 46 to provide them with a voice notification on their cellular telephone. It is contemplated that a PC-based graphical user interface will be available to users to allow them to select and define tasks for their personal agents which tasks are then transferred to the personal agent via network 14. The construction and operation of such a PC-based interface, or other suitable means for defining tasks and options for a personal agent, will be apparent to those of skill in the art.

As also mentioned above, the present invention includes a persistent caching system for personal agents. As shown in Figure 3, the home region 18a for a user includes a 10 master personal agent 80 stored in database engine 38a. When a user connects to network 14 through a remote region 18b, and if a predefined QoS metric is not met by accessing the master personal agent 80 via communications backbone 28, master personal agent 80 is replicated, as replicated personal agent 80r, via communications backbone 28 to remote region 18b where it is placed in the persistent cache of database engine 38b. As mentioned above, in the initial 15 replication only a minimum portion of the personal agent is replicated. For example, only the information required to identify the user, the services to which the user is subscribed and the user's billing information is transferred.

Once a complete connection is established, depending upon the user' s activities, 20 additional information can be transferred to replicated personal agent 80r and/or updates from replicated agent 80r are transmitted to master personal agent 80. For consistency, master personal agent 80 is always updated by a replicated personal agent 80r to reflect all changes and some changes which occur at master personal agent 80 are automatically updated to replicated personal agent 80r. This minim~l replication reduces bandwidth and mess~ging requirements by 25 keeping as much activity as possible within the local region 18b, reducing communications through colnmunications backbone 28.

For example, a user can connect to remote region 18b and the region manager in 30 region 18b locates the master personal agent 80 for the user in region 18a, the user's home region. A replicated personal agent 80r for the user is transferred to region 18b from region 18a and is employed to verify the identity of the user. At this point, depending upon the activities of the user, a variety of transfers can occur between the persistent cache in database engine 38b of region 18b and master personal agent 80. If the user merely places a voice mail message in another user's voice mail box, a billing entry can be added to replicated personal agent 80r and an update transferred to master personal agent 80 to reflect this billing entry.

In a more interesting example, the user can conduct an email session, reading, replying, deleting and creating various messages as desired. In such a case, the user's inbox and address list will be replicated at personal agent 80r and ~plopl;ate updates transmitted to master personal agent 80 to flag messages as having been read and/or to remove messages which have been deleted and to update the address list to reflect any changes made by the user. When the user creates new email messages, those messages are sent in a conventional manner and placed in the user's outbox in the persistent cache and updates are sent to master personal agent 80 to be placed in the users' outbox therein. Any email messages received at master personal agent 80 can be automatically replicated to replicated personal agent 80r, if desired. As will be a~palelll to those of skill in the art, this replication technique can also be employed for GSM voice services to accommodate the Home Location Registry and the Visitor Location Registry employed therein.

Further, in some circumstances data will be transferred from a personal agent (either master personal agent 80 or replicated personal agent 80r) to a client 40 and subsequently changed in that client 40. When that client 40 next connects to network 14, master personal agent 80 can be updated to reflect those changes, either directly or via an update from replicated personal agent 80r. For example, a list of telephone numbers can be downloaded into a client 40 such as a personal digital :~si.ct~nt (PDA) or cellular telephone and the user can subsequently add, delete or amend entries in that list. When that client 40 is again connected to network 14, the copy of that list in master personal agent 80 is updated from client 40 to reflect the additions, deletion and amendments made by the user.

As will be al~palt;lll to those of skill in the art, the operation of the persistent cache is transparent to the user and is employed to enhance performance of network 14 by reducing latency time, and in conjunction with the replication strategies, to reduce bandwidth consumption too, where possible. The persistent cache can employ any suitable caching . .

strategy, as will occur to those of skill in the art, but it is contemplated that a FIFO (first in first out) strategy will be employed wherein replicated personal agents 80r in the persistent cache are ranked according to their age in the cache and, when a portion of the cache must be flushed, the oldest entries are removed. This strategy can be enhanced by also tracking for each entry in the persistent cache whether its corresponding master personal agent 80 has been accessed at the home region 18a, or replicated to another remote region, after the last access time of the replicated personal agent 80r in the persistent cache. Replicated personal agents 80r at a region 18b whose corresponding master personal agents 80 have been accessed or replicated since the last access to the replicated personal agent 80r, are flushed from the cache in region 18b.
As will be a~palent to those of skill in the art, once a complete connection is established between a client 40 and a region 18, security is m~int~ined by network 14. All connections through communications backbone 28 are secure and/or encrypted to ensure that the identity of the user is authenticated and that the data communications within network 14 are private. Further, communications via set 52 of adapters and service agents with other services can be encrypted and decrypted, as required.

Regions 18 have been constructed of components which are preferably implemented in software, where apl)lopl;ate, to allow for easy upgrading, enhancement and to provide "hot-plugability", i.e.- the ability to add or remove services and/or hardware while network 14 is in operation. Specifically, bridges 36 comprise the necessary hardware to establish connections to client 40 and comprise a software-implemented control which manages the communication with region servers 24. Similarly, database engine 38 includes a suitable database engine and a software-implemented control which manages the persistent cache and other functions of the database engine 38. Set 44 of transducers 46, and transducer matrix switch 48 also comprise software-implemented components which either control hardware and/or firmware to perform their necessary functions, or which perform these functions themselves.
Similarly, set 52 of adapters and service agents include the necessary hardw~ to perform appropliate communications tasks and a software-implemented control which manages and controls these tasks.

In a pr~r~ ed aspect of the present invention, these software-implemented controls are constructed as Java servlets, Java Beans and Java Enterprise Beans, as documented in Sun's JavaSoft Java Servlet documentation and in the JavaSoft V1.1 documentation and inter-servlet coml"ullications is accomplished by way of Java's RMI services, also documented therein.
s In an embodiment of the present invention, a wrapper has been added the conventional Java servlets to provide rapid synchronous and asynchronous communications.
Specifically, the wrapper extends the functionality of the servlets from their conventional http-based "post" and "get" API to a fully functional asynchronous messaging API by which 10 messages can be sent to any servlet and received from any servlet via a sustained connection, or by a connection which is asynchronous. A servlet extended with this wrapper can communicate synchronously with any other servlet (extended or non-extended) and can also communicate asynchronously with any other extended servlet.

Essentially the wrapper comprises methods which the servlet must implement.
The first method is "perform()" which is the synchronous event handler. It is called with an event, returns a value when complete and is blocked while an event is being processed. The second method is "performAsynch()" which is the asynchronous event handler. This method returns a "FutureReply" placeholder object as soon as possible. When event processing is complete, the method then sends an asynchronous reply event to the caller servlet. The FutureReply placeholder includes a unique identifier which allows the receiving servlet to match a subsequently received reply event to the original event. With this method, the caller servlet is free to perform other processing while the event is being processed.

To accommodate these two types of event handling, two different types of events are defined. Specifically, "ServletEvent" and "ServletAsynchEvent" are employed, the former being used for synchronous events and the latter for asynchronous events. In this system, events comprise an identifier of type String, an argument, which can be any Object, and a Session.
Because more than one servlet can send an event to an extended servlet, a Session, which is an object that includes a unique identification, is provided to assist the extended servlet in processing synchronous events by allowing the servlet to identify the ordering of events.

While Java servlets, Java Beans, Java Enterprise Beans and the Java RMI
interface is presently preferred for implementing the software components of network 14, it will be apparent to those of skill in the art that the present invention is not limited to such an implementation and CORBA (Common Object Request Broker) or other suitable 5 implementations can be employed, in part or in whole, if desired.

As will be apparent to those of skill in the art, several advantages are realized with the use of software-implemented controls. Specifically, regions 18 can have components added or removed while the network is in operation, without requiring network 18 to be shut down with the result that network 14is scalable and network 14, regions 18 and region servers 24 remain operational while such component changes are being effected. Thus, for example, additional bridges 36 or dirrel~nt transducers 46 can be added to or removed from a region 18 as desired. Further, new services and/or capabilities can also be added to regions 18 and merely requires that ~lopl;ate servlets be registered in the regions 18.
To implement this "hot-plugability", a layer of indirection is employed between components of region 18 and requests for services of these components. In a presently preferred embodiment of the invention, region manager 22 m~int~ins a record, or availability list, indicating the available components within a region 18 and each request for services of a 20 component is made by accessing this list to determine the available components. To add new components and/or services to a region 18, an a~propliate addition is made to this availability list when the component/service is available. To remove a component for preventative maintenance, etc., the component is removed from the availability list and the component can be removed or "downed" when it has completed its present task.
This also allows for hardware and/or license balancing to be performed. For example, a region 18 may include one or more text to speech transducers 46 which rely upon special purpose hal.lw~e or software which is capable of p~lrOl~ g (or which is only licensed to perform) a fixed number of simultaneous transformations. In such a case, the service list can identify services/components which are to be employed before others and can also refer to components/service in other regions which can be accessed via communications backbone 28.

In the text to speech example, once the fixed number of simultaneous text to speech transformations is being performed, additional requests for text to speech transformations can be referred, via references in the service list, to another region 18 which has similar special purpose haldw~, or which has additional licenses. In such a case, the service list can instead indicate an alternative transducer 46 which is less efficient than the licensed system, and which can be employed only once all of the special purpose hardware transducers 46 are occupied. In this manner, requests for text to speech are met and the license, if any, is not exceeded and/or utilization of hardware is improved. As will be apparent, if a transducer 46 is not fully occupied, region manager 22 can permit other regions 18 to employ the surplus capacity, by reporting 10 available capacity to these other regions 18 via backbone 28, thus p~llni~ g efficient use of the hardware and/or licensed capacity of network 14.

In a similar fashion, the level of utilization of each region server 24 can be monitored by the region manager 22 and the service list can be appropriately updated by the 15 region manager 22 to indicate that components at under utilized region servers 24 be employed before similar components at regions servers 24 with higher utilization levels.

Thus, efficient use can be made of existing network resources and resources can be added or removed, as desired. While it is presently preferred that region manager 22 m~int~in 20 the service list for all components available in a region 18, it is also contemplated that in some circumstances service lists may be m~int~ined at each region server 24 for some or all services provided therein. For example, it is contemplated that one or more region servers 24 m:~int:~in a list of transducers 46 available at the region server 24. It is also contemplated that, if a region server 24 does not find a required component available in its list, a request can be sent to other 25 region servers 24, either directly or via region manager 22, via communications backbone 28 for access to the required component.

Another advantage of network 14 is its ability to provide tunneling for IP
addresses (or similar addressing schemes). Specifically, many network security models include 30 the recognition of a user's IP address, as contained in the IP header on each IP packet, as part of the security model. A message received from an unrecognized IP address is generally refused by the network. While this model can provide reasonable results in many cases, it fails with mobile or nomadic users. For example, the IP packets sent by a salesman trying to access his employers' network from a remote location will have a different IP address, once the packet is routed, than they would when sent from the salesman's home location, and the messages will thus be reffised by the employers' network. With a network in accordance with the present 5 invention, such as network 14, IP packets are "tunneled" between the home region and the remote region. A packet sent from the remote region will be sent as an encapsulated packet to the home region, to preserve its IP address, and the home region will de-encapsulate the received packet and forward it to the desired service with the original IP header/address intact. Similarly, packets received at the home region from the service will be encapsulated and sent to the remote 10 region where they will be de-encapsulated and transmitted to the user. This tunneling is performed transparently to the user whenever a user connects to a remote region and is presently believed to provide significant advantages for users of networks employing IP address-based security models.

While only specific combinations of the various features and components of the present invention have been discussed herein, it will be al)paren~ to those of skill in the art that desired sub-sets of the disclosed features and components and/or alternative combinations of these features and components can be utilized, as desired.

The present invention provides a data stream conversion system and method which allows communications clients to connect to a network and access any service therefrom, such that the data streams from the service to the communications client are converting to a desired format for the client without requiring specific input form the user of the client. The data conversion system and method receives information relating to the type of communications client, and any user defined prererellces for data sent thereto, and information relating to the service being accessed through the network. The data conversion system and method then employs one or more transducers to convert the data stream accordingly. The data conversion system and method also employs one or more tr~n~ cers to convert a data stream received from the communications client from the received format to a format required for the service. These services are provided transparently to the user. For example, the user need take no special steps to access an HTML document from a PCS telephone. These services are also provided transparently to the service provider, for example the author of the HTML document does not need to alter the document to allow the user to access it via a PCS telephone. The system and method can be customized for each type of communications client using parameters known for that client, as defined in a client registry, and can be customized for each user's preferences, as defined in the user's profile.

Claims (18)

We claim:
1. A data stream conversion system comprising:
at least two transducers, each operable to receive an input stream of data in a first format and to create an output stream of said data in a format other than said first format; and a transducer matrix switch operable to select at least one of said transducers and to provide said first input stream of data thereto and to receive said output stream of data therefrom, said selection being based upon an input signal to said transducer matrix switch indicating said first format and a desired different data format.
2. A data stream conversion system according to claim 1 wherein said transducer matrix switch is operable to select at least first and second transducers and to provide said input data stream to said first transducer and to provide said output stream of said first transducer as an input stream to said second transducer, said first transducer converting said input data from said first format to an output stream in a second format and said second transducer converting said input stream from said second format to said desired format.
3. A data stream conversion system according to claim 1 wherein said transducer matrix switch maintains a list of transducers and their input and output formats and additional transducers can be added to said data conversion system and said list updated accordingly as required.
4. A data stream conversion system according to claim 1 wherein said matrix transducer switch includes a look up table indexed by each input and output format of each transducer and wherein entries in said look up table define the selection of at least one transducer to accomplish a conversion between said input format and said desired output format.
5. A data stream conversion system according to claim 1 wherein at least a first transducer is employed to convert a data stream received from a first communications device to a desired format for a second communications device and wherein at least a second transducer is employed to convert a data stream from said second communications client to a desired format for said first communications device.
6. A data stream conversion system according to claim 5 wherein at least one of said first and second communication devices is a communications client employed by a user.
7. A data stream conversion system according to claim 6 wherein the other of said at least one of said first and second communications devices is a service being accessed by said user.
8. A data stream conversion system according to claim 5 wherein said first transducer performs an inverse of the conversion performed by said second transducer.
9. A data stream conversion system according to claim 1 wherein said matrix transducer switch employs at least two transducers in parallel, each of said at least two transducers converting said data stream in a first format to a different respective desired output format.
10. A data stream conversion system according to claim 1 wherein said first input stream is received from a communications service and said input signal includes a first signal received from said service indicating said first data format and further including a second signal received from a bridge to which a communications client is connected, said second signal indicating said desired format.
11. A data stream conversion system according to claim 10 wherein said input signal further includes a third signal indicating one or more preferences of a user of said communications client, said third signal further defining said desired format.
12. A data stream conversion system according to claim 5 wherein said input signal includes a first signal from said first communications client and a second signal from said second communications client, said first and second signals defining said input data format and desired format of each of said first and second communication clients.
13. A data stream conversion system according to claim 12 wherein at least one of said first and second communications clients is a service.
14. A distributed communications network including a data stream conversion system as defined in claim 1 to convert data streams transmitted through said network between communications clients and services.
15. A method of converting a data stream transferred between a communication client connecting a user to a distributed service network and a service connected to said network, comprising the steps of:
(i) determining the type of said communications client and the required data characteristics of said client;
(ii) determining the required data characteristics of said service;
(iii) selecting at least one conversion means operable to convert a data stream between said required data characteristics of said client and said required data characteristics of said service;
(iv) applying said at least one conversion means to a data stream transferred through said network.
16. A method according to claim 15 where in step (iii) at least two conversion means are selected, one of said at least two conversion means receiving data streams transferred through said network in a first format corresponding to a first one of said required data characteristics and converting it to a second format and the other of said at least two conversion means receiving said converted data stream in said second format and converting it to a third format corresponding to the other of said required data characteristics and transferring said data in said third format through said network.
17. A method according to claim 15 wherein said selection in step (iii) is performed by consulting a lookup table indexed by said first and second required data characteristics.
18. A method according to claim 15 where in step (i) the determination of the characteristics of said client further comprises the step of determining any user defined preferences for said characteristics.
CA002220641A 1997-11-10 1997-11-10 A data stream conversion system and method Abandoned CA2220641A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002220641A CA2220641A1 (en) 1997-11-10 1997-11-10 A data stream conversion system and method
EP98954080A EP0970429A2 (en) 1997-11-10 1998-11-09 Distributed service network
CN98803208A CN1122230C (en) 1997-11-10 1998-11-09 Distributed service network
CA002275300A CA2275300A1 (en) 1997-11-10 1998-11-09 Distributed service network
JP52508599A JP2001510667A (en) 1997-11-10 1998-11-09 Distributed service network
PCT/CA1998/001047 WO1999025071A2 (en) 1997-11-10 1998-11-09 Distributed service network
HK00106350A HK1027184A1 (en) 1997-11-10 2000-10-09 Distributed service network and method of processing datas access requests

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002220641A CA2220641A1 (en) 1997-11-10 1997-11-10 A data stream conversion system and method

Publications (1)

Publication Number Publication Date
CA2220641A1 true CA2220641A1 (en) 1999-05-10

Family

ID=29275187

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002220641A Abandoned CA2220641A1 (en) 1997-11-10 1997-11-10 A data stream conversion system and method

Country Status (1)

Country Link
CA (1) CA2220641A1 (en)

Similar Documents

Publication Publication Date Title
US6351771B1 (en) Distributed service network system capable of transparently converting data formats and selectively connecting to an appropriate bridge in accordance with clients characteristics identified during preliminary connections
US6310889B1 (en) Method of servicing data access requests from users
AU744143B2 (en) Messaging application having a plurality of interfacing capabilities
TW394876B (en) A system and method for personal multimedia communication over a packet switched network
US6278532B1 (en) Apparatus and method for reception and transmission of information using different protocols
DE69924386T2 (en) Immediate messaging
US8065363B2 (en) Electronic mail communications system with client email internet service provider (ISP) polling application and related methods
US7822191B2 (en) Multi-modal address book
KR100585781B1 (en) File transfer method for mobile instant messaging service
JP2001211200A (en) Message transmitting method and distributed system
WO2008138241A1 (en) A customer service server, method and system based on the instant messaging
JP2003536129A (en) System, computer product and method for processing wireless instructions in a dedicated communication portal
US20040254996A1 (en) Apparatus and method for forwarding e-mail
JP2984620B2 (en) Email system with incoming call notification function
EP1519600A2 (en) Providing property data on mobile terminal for services
WO1999025071A2 (en) Distributed service network
JP4050666B2 (en) Communication method and apparatus
US20020128003A1 (en) Telecommunication gateway between a private network and mobile network
CA2220641A1 (en) A data stream conversion system and method
CA2220580A1 (en) Method of servicing data access requests from users connecting to a distributed service network
CA2220579A1 (en) Reconfigurable distributed service network
KR20040061225A (en) Multimedia message service method and system
CA2275300A1 (en) Distributed service network
KR100361775B1 (en) An e-mail service system and a service method using a network
JP2003150512A (en) E-mail distributing method, e-mail distributing system, mail server, mail sever program, user terminal and pre- inquiry program

Legal Events

Date Code Title Description
FZDE Discontinued