CA2211524C - Connections between a toll network and multiple local networks - Google Patents

Connections between a toll network and multiple local networks Download PDF

Info

Publication number
CA2211524C
CA2211524C CA002211524A CA2211524A CA2211524C CA 2211524 C CA2211524 C CA 2211524C CA 002211524 A CA002211524 A CA 002211524A CA 2211524 A CA2211524 A CA 2211524A CA 2211524 C CA2211524 C CA 2211524C
Authority
CA
Canada
Prior art keywords
call
switch
ixc
carrier
local exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002211524A
Other languages
French (fr)
Other versions
CA2211524A1 (en
Inventor
Akinwale Ademola Akinpelu
Promod Kumar Bhagat
Dana Lee Garoutte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
American Telephone and Telegraph Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/203,110 external-priority patent/US5475749A/en
Application filed by American Telephone and Telegraph Co Inc filed Critical American Telephone and Telegraph Co Inc
Priority claimed from CA002137592A external-priority patent/CA2137592C/en
Publication of CA2211524A1 publication Critical patent/CA2211524A1/en
Application granted granted Critical
Publication of CA2211524C publication Critical patent/CA2211524C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Telephonic Communication Services (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

The present invention relates to a method of routing a call from an exchange carrier (IXC) to one of a plurality of local exchange carriers. In accordance with the present invention a called party of the call is identified by an office code that is shared by subscribers of the plurality of local exchange carriers.
The method is comprised of the steps of accessing a data base to determine an identity of a preferred terminating local exchange carrier for the called party of the call and routing the call to an IXC egress switch serving the preferred carrier for the code.

Description

CA 02211~24 1997-09-11 CONNECTIONS BETWEEN A TOLL NETWORK
AND MULTIPLE LOCAL NETWORKS

This is a division of copending C~n~ n Patent Application Serial No.
2,137,592 which was filed on December 8, 1994.

5 Technical Field This invention relates to methods and apparatus for serving competitive access providers from a toll network.

Problem The U.S. telecommunications network is in a state of transition. During the 10 next several years it is expected that the monopoly held by local exchange carriers will be substantially altered and that competitive access providers (CAPs) will begin to offer customer access to the interexchange carriers, local exchange service, or both. In order to accomplish this goal without creating an excessive burden on customers who wish to receive service from a CAP, it is expected that there will be 15 a requirement that the switch to a CAP need not be accompanied by a change oftelephone number. Accordingly, a problem is likely to arise because customers sharing the same numbering plan area (NPA) and office code are likely to be served from different local switching systems belonging to one or more CAPs and belonging to a predominant local exchange carrier. The change to such an 20 arrangement will require interexchange carriers (IXCs), also called toll carriers, to route traffic for telephone numbers having a common NPA and office code, at least initially, to one predominant local exchange carrier (LEC) and for a relatively small fraction of the numbers to one or more different CAPs. In order to provide proper billing of access charges to the CAPs, it is necessary to identify calls from and/or 25 to a CAP in the call record of a toll call. In some cases, the customers on a CAP
switch may not be connected to the same toll egress switch as the customers of another CAP or the predominant LEC (hereinafter referred to simply as the LEC) and such calls must also be properly routed. Some customers may choose to be served both from a CAP and an LEC with calls overflowing from the CAP to an 30 LEC if all connections between the CAP and the customer are busy, or if connections between the IXC and CAP are busy. Finally, the present method for CA 02211~24 1997-09-11 stopping all traffic to a hard to reach office code fails to protect CAP users against an LEC switch failure and LEC users against a CAP switch failure. Overall, therefore, a problem exists in the telecommunications network in that the basic assumptions of the public switched network routing plan are no longer valid and 5 that equipment designed to route according to such a plan must be modified at minimum expense in order to be able to serve CAPs.

Solution The above problems are solved and an advance is made over the prior art in accordance with our invention wherein the stored program controlled switches of an 10 IXC network are adapted to meet the new requirements in a cost effective manner.
The office code is translated to determine whether it is used by subscribers of more than one local exchange carrier. If so, the called number is tr:~n~l~ted to determine the identity of the local exchange carrier(s) for serving the call. The call is then routed by the identified local exchange carrier.
In accordance with one aspect of the applicants' invention, an exception table of telephone numbers served by CAPs and identifying the CAP serving that telephone number is provided in the toll egress switch serving the LEC that serves the bulk of the directory numbers of that office code. The default condition, incase a telephone number is not found in the exception list, is that the telephone 20 number is served from the predominant LEC. Advantageously, such an arrangement minimi7f~s the amount of storage required, especially when only a few customers are served from CAPs as is likely to be the case initially.
In accordance with another aspect of the invention, the incoming trunk translations to an ingress toll IXC switch are enhanced to provide a translation to 25 identify the CAP to which the incoming trunk of a call is connected. This data is then recorded by the ingress toll switch in the record of the toll call. The toll switch makes a billing/Automatic Message Accounting (AMA) record for the call.
If the egress toll switch routes a call via an outgoing trunk to a CAP switch, because it has recognized from the exception list translation that the call is to be 30 termin~te~l via a CAP, the egress toll switch sends a message over common channel ~ign~ling system of the toll network to the ingress toll switch to record the identity of the terrnin~tin~; CAP.

CA 02211~24 1997-09-11 In accordance with another aspect of applicants' invention, for cases in which the egress switch serving a CAP switch is not the same egress switch that serves the office code of the LEC, both egress switches contain the exception translations for the office code having some customers served by one or more 5 CAPs. It is the second egress switch which sends the billing report back to the ingress switch as described in the previous paragraph. If the second egress switch finds that it cannot complete the call either because there are no trunks available to the CAP switch, or because there are no available lines or PBX trunks connectingthe CAP switch to the customer, the second egress switch returns the call to the10 first egress switch with an applopliate message indicating that the first egress switch should try to complete the call via the predominant LEC.
For cases in which a common egress IXC switch serves both the predominant LEC and the CAP switch connected to a customer and where the customer is connected both to the CAP and the LEC, the IXC switch will first try15 to route the call via the CAP switch. If the CAP switch cannot be reached because all trunks to the CAP switch are unavailable, then the IXC immediately tries to route the call via the predominant LEC. If trunks to the CAP switch are available but no lines or trunks from the CAP switch to the customer are available, the CAP
switch returns a release message to the IXC with a cause code indicating line or20 trunk unavailability. The IXC then tries to route the call via the predominant LEC.
All of this requires that the translations in the exception table indicate not only the identity of the CAP, but whether the customer is reachable via the LEC.
In accordance with another aspect of the invention, the automatically applied, hard to reach control while initially being turned on in response signals 25 from an LECis turned off if the office code is served by both the LEC and one or more CAPs. A manual override is still possible in case the attempt to route calls to the few customers served by the CAP causes disruption because of the many attempts to route calls to customers served only by the LEC.
In accordance with another aspect of this invention, an ingress switch 30 queries a data base in order to determine the identity of the preferred, and,optionally, alternate termin~ting carriers serving the called customer. The call can then be routed directly to an IXC egress switch serving the preferred or alternate termin~ting local exchange carrier. A message, including the identity of the local CA 02211~24 1997-09-11 exchange carrier(s) and the switches for serving the called customer is sent to that IXC egress switch to route the call to the called customer. If the egress toll switch successfully routes a call via an outgoing trunk to a CAP switch, the egress toll switch sends a message over common channel ~i~n~ling system of the toll network 5 to the ingress toll switch which then records the identity of the terrnin~ting CAP.
In accordance with one aspect of the present invention there is provided a method of routing a call from an interexchange carrier (IXC) to one of a plurality of local exchange carriers, wherein a called party of said call is identified by an office code shared by subscribers of said plurality of local exchange carriers, 10 comprising the steps of: accessing a data base to determine an identity of a preferred termin~ting local exchange carrier for said called party of said call; and routing said call to an IXC egress switch serving said preferred carrier for said code.
Brief Description of the D. ,t~
The present invention taken in conjunction with the invention disclosed in parent copending C~n~ n Patent Application Serial No. 2,137,592 which was filed on December 8, 1994 will be described in detail hereinbelow with the aid of the accompanying drawings, in which:
FIG. 1 is a block diagram illustrating the operation of applicants' invention;
20 and FIGS. 2-7 are flow diagrams of programs used by switches in an interexchange carrier network for controlling the method of applicants' invention.
Detailed Des~ ;ylion FIG. 1 is an overall block diagram of the networks and switches used for 25 interconnecting customer premises equipment connected to CAP switches and connected to LEC switches. For convenience, the calls of this description are calls which are ori~in~ted by one of the Customer Premises Equipments (CPEs) 1, 3 or S and are terrnin~ted on one of the CPEs 25-29. The origin~ting CPE is connectedto an origin~ting CAP switch 7 or an origin~ting LEC switch 9 and the terrnin~ting 30 CPEs are connected to a termin~ting LEC switch 23 or one of the terrnin~ting CAP
switches 21, 22. In general, those CPEs which are connected to two switches are private branch exchanges (PBXs) with a plurality of facilities interconnecting the private branch exchange with one or more switches. The CPE shown connected to CA 02211~24 1997-09-11 a single switch may be either a private customer telephone station or PBX or keytelephone system. In rare instances it may be desirable to connect an emergency type single station or key telephone set or multiple telephone stations to two switches through applopfiate equipment (not shown) for automatically selecting one 5 of the switches so that, for example, the station may be connected to an LEC
switch normally and, in case the LEC switch fails, be connected to a CAP switch.The origin:~ting and termin~ting local switches shown in FIG. 1 are interconnected by an interexchange carrier (IXC) network which includes an ingress switch 12 connected to the origin~ting switches, and a pair of egress switches 14 10 and 16 connected to the termin~ting switches. Again, as in the case of the local switches 7, 9, 21, 22, and 23, switches 12, 14, and 16 are each both ingress andegress switches and have been labeled ingress and egress switches on FIG. 1 to illustrate the calls described herein. In accordance with applicants' invention, when a caller at CPE 1, 3, or 5 originates a call, the call is routed via one of the local 15 switches 7 and 9 to IXC ingress switch 12 which routes the call to IXC egressswitch 14 based on the routing translation of the numbering plan area (NPA) and office code (OC). In IXC egress switch 14, an exception translation is made to see if the called number is served from one of the CAP switches 21, 22. If the called customer is served from CAP switch 21, then the call is routed to that switch. If it 20 is served from CAP switch 22, the call is routed via egress switch 16 to CAP
switch 22. If the called number is not found in the exception translation, IXC
egress switch 14 will route the call via LEC switch 23; in effect the default translation, in case no specific translation is found for a particular called number, is that the called number is served from the LEC switch. If the destination is a 25 customer such as that served by CPE 27, which is connected to both termin~ting CAP switch 21 and termin~ting LEC switch 23, if all trunks between IXC egress switch 14 and termin~ting CAP switch 21 are busy, the call will automatically berouted via termin~ting LEC switch 23. If one or more trunks between egress switch 14 and CAP switch 21 are available, but no PBX trunks to CPE 27 are 30 available from CAP switch 21 then CAP switch 21 will send a release message to IXC egress switch 14 indicating as the cause of the release the unavailability of termin~ting PBX trunks. In response to this release message, IXC egress switch 14 CA 02211~24 1997-09-11 will route the call via LEC switch 23, whose identity is found in the translations of IXC egress switch 14, to the customer served by CPE 27.
Optionally, the IXC network can be arranged to have the ingress IXC
switch query a data base 8 in order to identify the preferred termin~ting carrier, and 5 optionally, alternate termin~ting carriers for serving the called customer.
Advantageously, the call can then be routed directly to an IXC egress switch, such as IXC egress switch 16 which serves the preferred termin~ting carrier (or, if all trunks to that IXC egress switch are busy, to an IXC egress switch serving an alternate termin~ting carrier).
FIG. 2 is a flow diagram of actions performed in the ingress IXC switch, a switch which also creates a billing (AMA) record for subsequently charging the customer. The incoming call is received from a CAP switch or an LEC switch (action block 201). Test 203 is used to determine whether the call was from a CAP switch. If not, test 205 is used to determined whether this is a received handoff call, i.e., a call handed off from the ingress IXC switch to handoff switch connected to an adjunct for access to the adjunct, and thereafter, for further access to the IXC network. The adjunct is used for prompting a caller, collecting DTMF
digits from a caller and for deriving information for the AMA record for a call, and is used when the caller has features such as subaccount billing which require special service processing. If this is a handoff call, test 207 determines whether the call originated from a CAP, indicated by the receipt of a CAP identity from the previous IXC switch, and if so the received CAP ID is recorded in the AMA
record for the call (action block 209). If the result of test 205 or 207 was negative, then no CAP ID is entered in the AMA record.
If the result of test 203 is positive, i.e., that the call is from a CAP, then test 211 is used to determine whether the call needs to go to a handoff switch, in this case a handoff switch in the IXC network, for h~nclling calls that need special service processing not available at the ingress IXC switch. The CAP identification is sent in the initial address message (IAM) (action block 215) because this is not the recording switch. The call is then processed conventionally and routed to the handoff switch for special service processing and for further routing to the destination. This is the end of actions on this call by the ingress IXC switch (end CA 02211~24 1997-09-11 block 219). If the call does not need to go to a handoff switch, then the ingress CAP identity is recorded in the AMA record for this call (action block 213).
Following execution of action block 213, or action block 209, or a negative result of test 205, test 214 is used to determine if a data base query has been 5 implemented in the ingress switch for this type of call. If not, the actions of FIG.
3, discussed hereinafter, are initiated. If a data base query has been implemented, then the data base (date base 8, in this case) is queried (action block 216). Data base 8 returns an answer identifying the preferred, and, optionally, alternate carriers for serving the called customer (action block 218). The purpose of the data base10 query is to route the call to an IXC egress switch for serving the called customer (for example, IXC egress switch 18) instead of automatically routing the call to the IXC egress switch 16 which serves the predominant LEC carrier. Additionally, data identifying the IXC egress switch, the preferred and alternate carriers, and the identity of the termin~ting switch(es) of these carriers for serving the call are 15 transmitted in common channel signaling messages to the egress switch, which then does not need to perform translations to identify these carriers and switches. After action block 218 has been executed, the actions illustrated in FIG. 3 are performed.
FIG. 3 illustrates further actions performed by the ingress IXC switch for routing the call toward the egress IXC switch. Test 221 is used to determine 20 whether the hard to reach control indicator is active for the called office code. If so, test 223 is used to determine whether the called office code is a shared group between multiple access switches. If so, then the network management hard to reach controls are inhibited in the ingress switch for this call (action block 225).
Following action block 225 or a negative result of tests 221 or 223, the call is25 routed to the egress IXC switch serving the predominant termin~ting LEC carrier, or, if the data base query has been implemented and performed, to the IXC switchserving the preferred or alternate termin~ting carriers serving the called customer (action block 227). The call is then further processed conventionally up to address complete (action block 227). Address complete signifies that the call has been 30 received and processed by the destination switch, that the customer line is available, but that the customer has not yet answered the call. Test 231 is thenused to determine whether a CAP identification was received in the backwards ~ign~ling message from the egress IXC switch. If so, the egress CAP identification CA 02211~24 1997-09-11 is entered in the AMA record for the call (action block 233) and if the call hasbeen served by an operator system such as the OSPS feature described, for example, in Paper 3, Session 22C, International Switching Symposium, May 1984, of the No. 5ESS~ described, for example, in AT&T Technical Journal, Vol. 64, No.6, part 2, pp. 1305-1564. The operator system will be sent the CAP identification (action block 235). Following action block 235 or a negative result of test 231, the call will continue to be processed conventionally (action block 237) until the call is completed (end block 239).
FIGS. 4-7 illustrate the actions performed in the egress switch of the IXC
10 network. Blocks 403-409 illustrate the case wherein the ingress IXC switch did not perform the data base query described in blocks 216 and 218 of FIG. 2. If such aquery has been made, the preferred and alternate termin:~ting local carriers for the call have already been selected and the initial address or other message would carry this data to the egress IXC switch, and blocks 403-409 are skipped. Alternatively, 15 even in that case, a translation may be made to select the proper switch of the selected carrier for serving the called customer if the identity of that switch has not been provided in the common channel signaling messages received by the egress IXC switch. The call is received (action block 401), digit translations are madeand tested to see whether the office code includes exception routing (test 403). If 20 not, then conventional routing treatment is used (action block 404) and test 413 (described hereinafter) is entered. If so, test 405 is used to determine whether the last four digits of the number are in the exception table. If so, the routing treatment is derived from the exception table (action block 409). Otherwise, default routing treatment is used (action block 407). In general, action block 407 is 25 likely to represent the situation wherein an LEC serves the termin~ting customer.
Although it is possible in the future that some CAP may handle the bulk of traffic and only a few exceptional customers are served by the LEC, in which case the default routing would be to the CAP that is handling the bulk of the traffic.
Next, test 411 is used to determine whether the hard to reach control is 30 active for the called office code. If so, test 413 is used to determine whether the office code is shared between multiple access switches and if so the network management hard to reach control is inhibited (action block 415). If either test 411 or 413 is negative, then the action block 415 is not performed. Thereafter, the call CA 02211~24 1997-09-11 is processed conventionally (action block 417) until the process of selecting anoutgoing trunk (starting with test 501) is entered.
Test 501 of FIG. 5 determines whether multiple routing treatments are available of the call. Multiple routing treatments are clearly available if the LEC
5 and CAP home on different IXC switches, and are also available even when the LEC and CAP home on the same switch. If not, action block 611 of FIG. 6, to be described hereinafter, is entered because the routing to the destination switch is straightforward. If multiple routing treatments are available for the call, then test 503 determines whether a routing control indicator has been received from a 10 previous switch. If not, this egress switch becomes the multiple routing controller because it is the first of the multiple egress switches (action block 505) and in either case test 603 of FIG. 6 is entered.
FIG. 6 relates to multiple routing treatments and is entered from FIG. 5 or from the loop resulting from the positive output of test 615 of FIG. 6. Action 15 block 601 indicates that a message has been received from another egress IXC
switch, indicating failure to complete the call. Test 603 determines whether thealternate routing treatments have been exhausted with a positive outcome indicating that untried routing treatments are still available. If that is the case, action block 605 is used to select the first or next routing treatment from the possible multiple 20 treatments for a call to the selected destination. Test 607 is used to determine whether the routing for this particular treatment is via another IXC egress switch.
If so, a routing control indicator is sent to the next switch and the peg count of such alternate routing is incremented. Thereafter, or following a negative result of test 607, action block 611 which is the beginning of the actions associated with the 25 process routing treatment is entered. An outgoing trunk is selected. The trunks to CAPs are selected before trunks to LECs if both are available because the trunks to the CAPs are direct. Test 613 is used to determine whether an outgoing trunk is available and can be selected. If so, indicator 701 (FIG. 7) which indicates that routing is now complete, is entered. If no outgoing trunk is available in test 613 30 then test 615 is used to determine whether multiple routing treatments are available for this call and, if so, test 603 is reentered. If multiple routing treatments are not available for this call, the call is processed conventionally to release the call (action CA 02211~24 1997-09-11 block 617) because the call is blocked. This is the end of the process for that call (end symbol 619).
If no more untried routing treatments are available, then test 631 is used to determine whether this is the multiple treatment control switch. If not, action block 5 633 is used to send an unable to complete message to the controlling switch and, in either case action block 635 is entered to release the call conventionally. Action block 635 is followed by the end symbol 637.
FIG. 7 illustrates the actions following the recognition that routing is now complete (action block 701). This is entered following the positive result of test 10 613, namely, the ability to select an outgoing trunk from the egress switch. The call is then processed conventionally to attempt call setup (action block 702). A
backward message is received from the switch in the termin~ting network (action block 704). Test 705 is used to determine whether the egress was to a CAP
switch. If not, the call is processed conventionally (action block 711) because this 15 is a call to an LEC switch. If the egress was to a CAP switch (positive result of test 705) test 707 is used to determine whether the egress from the CAP switch to the customer was successful. If so, then the CAP identification is sent back to the origin~ting/billing switch in a backward message (action block 709) and the call is setup conventionally using the CAP switch (action block 710). If the egress from20 the CAP switch to the customer was not successful (negative result of test 707) then the call is released (action block 722). If the received failure message had the cause value user busy (positive result of test 721) it is an indication that the final customer was not reachable using the primary route. Test 723 is then used to determine if multiple routing treatments are available. If not, then action block 611 25 used to select an outgoing trunk is directly entered. If the result of test 723 is positive, then test 603 used in the loop for multiple routing treatments is entered in order to try multiple routing treatments.
The actions performed in the CAP switches are conventional actions and are controlled, for example, by the software of the current generic program of a 5ESS
30 switch. CAP switches are required to have the ability to home on a plurality of IXC switches, for service by a plurality of IXCs. Translations in the CAP switchdetermine which IXC switch a particular customer may access for routing outgoingcalls. In addition, the treatment in CAP switches of AMA records is sometimes CA 02211~24 1997-09-11 different. For example, rated records, i.e., records for which the charge rates have been determined, generated within a CAP switch are sent directly to the IXC
billing systems for intra-LATA toll calls.
It is to be understood that the above description is only of one preferred S embodiment of the invention. Numerous other arrangements may be devised by one skilled in the art without departing from the scope of the invention. The invention is thus limited only as defined in the accompanying claims.

Claims (10)

Claims:
1. A method of routing a call from an interexchange carrier (IXC) to one of a plurality of local exchange carriers, wherein a called party of said call is identified by an office code shared by subscribers of said plurality of local exchange carriers, comprising the steps of:
accessing a data base to determine an identity of a preferred terminating local exchange carrier for said called party of said call; and routing said call to an IXC egress switch serving said preferred carrier for said code.
2. The method of claim 1 wherein the step of accessing a data base comprises accessing a data base shared by a plurality of IXC switches of said IXC.
3. The method of claim 1 wherein the step of accessing said data base comprises accessing said data base from an ingress IXC switch serving said call.
4. The method of claim 3 further comprising:
transmitting a message to said IXC egress switch identifying said preferred terminating carrier.
5. The method of claim 4 further comprising:
routing said call from said IXC egress switch to said preferred terminating carrier.
6. The method of claim 4 further comprising:
accessing said data base to determine an identity of alternate terminating local exchange carriers for a called party of said call; and transmitting the identity of said alternate carriers in said message.
7. The method of claim 6 further comprising:
if all trunks from said IXC egress switch to said preferred terminating carrier are busy, routine said call via one of the identified alternate terminating local exchange carriers for said office code.
8. The method of claim 6 further comprising:
if all lines or PBX trunks from said preferred terminating carrier to said called party are busy, returning a release message to said IXC egress switch andattempting to route said call via one of the identified alternate terminating local exchange carriers.
9. The method of claim 3 further comprising:
further accessing said data base to determined an identity of a terminating local exchange carrier switch for serving said call; and routing said call from said IXC egress switch to said terminating local exchange carrier switch.
10. The method of claim 3 further comprising:
translating an identity of an incoming trunk serving said call in said ingress IXC switch to determine an identity of an incoming local exchange carrier serving said call; and recording said identity of said incoming local exchange carrier in a billing record for said call.
CA002211524A 1994-02-28 1994-12-08 Connections between a toll network and multiple local networks Expired - Fee Related CA2211524C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US20310294A 1994-02-28 1994-02-28
US203,102 1994-02-28
US203,110 1994-02-28
US08/203,110 US5475749A (en) 1994-02-28 1994-02-28 Connections between a toll network and multiple local networks
CA002137592A CA2137592C (en) 1994-02-28 1994-12-08 Connections between a toll network and multiple local networks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002137592A Division CA2137592C (en) 1994-02-28 1994-12-08 Connections between a toll network and multiple local networks

Publications (2)

Publication Number Publication Date
CA2211524A1 CA2211524A1 (en) 1995-08-29
CA2211524C true CA2211524C (en) 2001-01-16

Family

ID=27169912

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002211524A Expired - Fee Related CA2211524C (en) 1994-02-28 1994-12-08 Connections between a toll network and multiple local networks

Country Status (1)

Country Link
CA (1) CA2211524C (en)

Also Published As

Publication number Publication date
CA2211524A1 (en) 1995-08-29

Similar Documents

Publication Publication Date Title
US5475749A (en) Connections between a toll network and multiple local networks
US5550912A (en) Connections between a toll network and multiple local networks
US5943397A (en) Network assisted callback system
EP0550975B1 (en) A method of redirecting a telephone call to an alternate destination
US5099509A (en) Integration of voice store and forward facility
US5432845A (en) Post answer telephone call redirection or rerouting
EP0631447B1 (en) Telecommunications network architecture and system
US5978450A (en) Personal dial tone
US6522743B1 (en) Routing calls to call centers
US5903639A (en) Custom routing for multiple carrier interconnection
US5892822A (en) Method of and system for call routing compliant with international regulatory routing requirements
CA1252185A (en) Pbx intercept and caller interactive attendant bypass system
US5459779A (en) Method for switching telephone calls to information service providers
EP0398183B1 (en) Carrier independent network services
EP0660573A2 (en) Revertive calling automatic call distributor
CA1252861A (en) Method and apparatus for disallowing the extension of a call through a network
US6330323B1 (en) Enhanced overflow call processing
US5329581A (en) Target area calling system
US4896350A (en) Arrangement for providing a call-connection service
US5521965A (en) Apparatus and method for handling busy calls in telephone network
US7457402B2 (en) Telecommunications system with centralized call redirection control logic and speed dial translation logic
US5889846A (en) Method and system for initiating a software defined network call via a network adjunct platform
EP0778712A2 (en) Telecommunications network for serving users from two switching systems
EP0893928B1 (en) Method for mediation of traffic in an advanced intelligent network
US6173051B1 (en) Custom routing for multiple carrier interconnection

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed