CA2169356C - Phosphate-binding polymers for oral administration - Google Patents
Phosphate-binding polymers for oral administration Download PDFInfo
- Publication number
- CA2169356C CA2169356C CA002169356A CA2169356A CA2169356C CA 2169356 C CA2169356 C CA 2169356C CA 002169356 A CA002169356 A CA 002169356A CA 2169356 A CA2169356 A CA 2169356A CA 2169356 C CA2169356 C CA 2169356C
- Authority
- CA
- Canada
- Prior art keywords
- crosslinking agent
- polymer
- composition
- solid
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 64
- 102000006335 Phosphate-Binding Proteins Human genes 0.000 title abstract description 6
- 108010058514 Phosphate-Binding Proteins Proteins 0.000 title abstract description 6
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 62
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 62
- 239000010452 phosphate Substances 0.000 claims abstract description 62
- 239000000203 mixture Substances 0.000 claims description 73
- 239000003431 cross linking reagent Substances 0.000 claims description 40
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 21
- 125000000217 alkyl group Chemical group 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 18
- 229920001577 copolymer Polymers 0.000 claims description 17
- 125000003282 alkyl amino group Chemical group 0.000 claims description 16
- 125000004429 atom Chemical group 0.000 claims description 14
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 claims description 12
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 claims description 11
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 claims description 11
- IRXBNHGNHKNOJI-UHFFFAOYSA-N butanedioyl dichloride Chemical compound ClC(=O)CCC(Cl)=O IRXBNHGNHKNOJI-UHFFFAOYSA-N 0.000 claims description 11
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 11
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 claims description 10
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 claims description 10
- VEFLKXRACNJHOV-UHFFFAOYSA-N 1,3-dibromopropane Chemical compound BrCCCBr VEFLKXRACNJHOV-UHFFFAOYSA-N 0.000 claims description 10
- SHKUUQIDMUMQQK-UHFFFAOYSA-N 2-[4-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COCCCCOCC1CO1 SHKUUQIDMUMQQK-UHFFFAOYSA-N 0.000 claims description 10
- 238000005342 ion exchange Methods 0.000 claims description 8
- 231100000252 nontoxic Toxicity 0.000 claims description 8
- 230000003000 nontoxic effect Effects 0.000 claims description 8
- YHRUOJUYPBUZOS-UHFFFAOYSA-N 1,3-dichloropropane Chemical compound ClCCCCl YHRUOJUYPBUZOS-UHFFFAOYSA-N 0.000 claims description 7
- HPILSDOMLLYBQF-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COC(CCC)OCC1CO1 HPILSDOMLLYBQF-UHFFFAOYSA-N 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 5
- 125000004103 aminoalkyl group Chemical group 0.000 claims 2
- 201000005991 hyperphosphatemia Diseases 0.000 abstract description 7
- 210000001035 gastrointestinal tract Anatomy 0.000 abstract description 2
- 239000007787 solid Substances 0.000 description 110
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 96
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 77
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 50
- -1 Ca3(P04)2 Chemical class 0.000 description 42
- 239000000243 solution Substances 0.000 description 41
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 34
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 30
- 238000003756 stirring Methods 0.000 description 26
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 22
- 238000001914 filtration Methods 0.000 description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 16
- 239000000499 gel Substances 0.000 description 15
- 229920002873 Polyethylenimine Polymers 0.000 description 14
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 13
- 239000011668 ascorbic acid Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 11
- 235000010323 ascorbic acid Nutrition 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 125000000031 ethylamino group Chemical group [H]C([H])([H])C([H])([H])N([H])[*] 0.000 description 10
- 239000012299 nitrogen atmosphere Substances 0.000 description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 10
- 238000010992 reflux Methods 0.000 description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 229940072107 ascorbate Drugs 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 9
- 229960005069 calcium Drugs 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 241000700159 Rattus Species 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 8
- 229940095064 tartrate Drugs 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 235000005911 diet Nutrition 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229920000083 poly(allylamine) Polymers 0.000 description 6
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 229940048053 acrylate Drugs 0.000 description 4
- 230000000378 dietary effect Effects 0.000 description 4
- 230000029142 excretion Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 239000011975 tartaric acid Substances 0.000 description 3
- 235000002906 tartaric acid Nutrition 0.000 description 3
- AUVALWUPUHHNQV-UHFFFAOYSA-N 2-hydroxy-3-propylbenzoic acid Chemical class CCCC1=CC=CC(C(O)=O)=C1O AUVALWUPUHHNQV-UHFFFAOYSA-N 0.000 description 2
- TURITJIWSQEMDB-UHFFFAOYSA-N 2-methyl-n-[(2-methylprop-2-enoylamino)methyl]prop-2-enamide Chemical compound CC(=C)C(=O)NCNC(=O)C(C)=C TURITJIWSQEMDB-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- QYPPJABKJHAVHS-UHFFFAOYSA-N Agmatine Natural products NCCCCNC(N)=N QYPPJABKJHAVHS-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- 208000037147 Hypercalcaemia Diseases 0.000 description 2
- 208000000038 Hypoparathyroidism Diseases 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- QYPPJABKJHAVHS-UHFFFAOYSA-P agmatinium(2+) Chemical compound NC(=[NH2+])NCCCC[NH3+] QYPPJABKJHAVHS-UHFFFAOYSA-P 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229940024545 aluminum hydroxide Drugs 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- RXKUYBRRTKRGME-UHFFFAOYSA-N butanimidamide Chemical compound CCCC(N)=N RXKUYBRRTKRGME-UHFFFAOYSA-N 0.000 description 2
- 230000002308 calcification Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 230000002550 fecal effect Effects 0.000 description 2
- 210000003608 fece Anatomy 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 230000000148 hypercalcaemia Effects 0.000 description 2
- 208000030915 hypercalcemia disease Diseases 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 229910001410 inorganic ion Inorganic materials 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 230000003907 kidney function Effects 0.000 description 2
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000002694 phosphate binding agent Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012453 sprague-dawley rat model Methods 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- UZNHKBFIBYXPDV-UHFFFAOYSA-N trimethyl-[3-(2-methylprop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)NCCC[N+](C)(C)C UZNHKBFIBYXPDV-UHFFFAOYSA-N 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- OTXHZHQQWQTQMW-UHFFFAOYSA-N (diaminomethylideneamino)azanium;hydrogen carbonate Chemical group OC([O-])=O.N[NH2+]C(N)=N OTXHZHQQWQTQMW-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- ARKDCHXUGNPHJU-UHFFFAOYSA-N 2,7-dimethylocta-2,6-dienediamide Chemical compound NC(=O)C(C)=CCCC=C(C)C(N)=O ARKDCHXUGNPHJU-UHFFFAOYSA-N 0.000 description 1
- JJBFVQSGPLGDNX-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)COC(=O)C(C)=C JJBFVQSGPLGDNX-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-L 2-(carboxymethyl)-2-hydroxysuccinate Chemical compound [O-]C(=O)CC(O)(C(=O)O)CC([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-L 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- VFZKVQVQOMDJEG-UHFFFAOYSA-N 2-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(=O)C=C VFZKVQVQOMDJEG-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-M 3-carboxy-2-(carboxymethyl)-2-hydroxypropanoate Chemical compound OC(=O)CC(O)(C(O)=O)CC([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-M 0.000 description 1
- WHSXTWFYRGOBGO-UHFFFAOYSA-N 3-methylsalicylic acid Chemical class CC1=CC=CC(C(O)=O)=C1O WHSXTWFYRGOBGO-UHFFFAOYSA-N 0.000 description 1
- XOJWAAUYNWGQAU-UHFFFAOYSA-N 4-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCOC(=O)C(C)=C XOJWAAUYNWGQAU-UHFFFAOYSA-N 0.000 description 1
- PTAYFGHRDOMJGC-UHFFFAOYSA-N 4-aminobutyl(diaminomethylidene)azanium;hydrogen sulfate Chemical compound OS(O)(=O)=O.NCCCCN=C(N)N PTAYFGHRDOMJGC-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- ZWAPMFBHEQZLGK-UHFFFAOYSA-N 5-(dimethylamino)-2-methylidenepentanamide Chemical compound CN(C)CCCC(=C)C(N)=O ZWAPMFBHEQZLGK-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 206010000599 Acromegaly Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 208000032274 Encephalopathy Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000699694 Gerbillinae Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010007979 Glycocholic Acid Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241001082241 Lythrum hyssopifolia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 201000009623 Myopathy Diseases 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033296 Overdoses Diseases 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229920002518 Polyallylamine hydrochloride Polymers 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 206010039020 Rhabdomyolysis Diseases 0.000 description 1
- 101100027103 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) NUP133 gene Proteins 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical compound C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229940024546 aluminum hydroxide gel Drugs 0.000 description 1
- SMYKVLBUSSNXMV-UHFFFAOYSA-K aluminum;trihydroxide;hydrate Chemical compound O.[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-K 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- QUZSUMLPWDHKCJ-UHFFFAOYSA-N bisphenol A dimethacrylate Chemical compound C1=CC(OC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OC(=O)C(C)=C)C=C1 QUZSUMLPWDHKCJ-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- ABBZJHFBQXYTLU-UHFFFAOYSA-N but-3-enamide Chemical compound NC(=O)CC=C ABBZJHFBQXYTLU-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 229960003340 calcium silicate Drugs 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940099352 cholate Drugs 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 239000012045 crude solution Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- IQIJRJNHZYUQSD-UHFFFAOYSA-N ethenyl(phenyl)diazene Chemical compound C=CN=NC1=CC=CC=C1 IQIJRJNHZYUQSD-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- RFDAIACWWDREDC-FRVQLJSFSA-N glycocholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 RFDAIACWWDREDC-FRVQLJSFSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229940110129 maalox plus Drugs 0.000 description 1
- ADKOXSOCTOWDOP-UHFFFAOYSA-L magnesium;aluminum;dihydroxide;trihydrate Chemical compound O.O.O.[OH-].[OH-].[Mg+2].[Al] ADKOXSOCTOWDOP-UHFFFAOYSA-L 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000150 monocalcium phosphate Inorganic materials 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- SJSZBOAQWPKFMU-UHFFFAOYSA-N n-(1-acetamidoethyl)acetamide Chemical compound CC(=O)NC(C)NC(C)=O SJSZBOAQWPKFMU-UHFFFAOYSA-N 0.000 description 1
- JRRUOOPFYPGMAE-UHFFFAOYSA-N n-[1-(prop-2-enoylamino)ethyl]prop-2-enamide Chemical compound C=CC(=O)NC(C)NC(=O)C=C JRRUOOPFYPGMAE-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 208000005368 osteomalacia Diseases 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 229940095591 phoslo Drugs 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- RWPGFSMJFRPDDP-UHFFFAOYSA-L potassium metabisulfite Chemical compound [K+].[K+].[O-]S(=O)S([O-])(=O)=O RWPGFSMJFRPDDP-UHFFFAOYSA-L 0.000 description 1
- 229940043349 potassium metabisulfite Drugs 0.000 description 1
- 235000010263 potassium metabisulphite Nutrition 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 208000006078 pseudohypoparathyroidism Diseases 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 210000002254 renal artery Anatomy 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012056 semi-solid material Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000012058 sterile packaged powder Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- WBWWGRHZICKQGZ-HZAMXZRMSA-N taurocholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)[C@@H](O)C1 WBWWGRHZICKQGZ-HZAMXZRMSA-N 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- IQJPRMIQVVYNGO-UHFFFAOYSA-M trimethyl(3-phenylprop-2-enyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC=CC1=CC=CC=C1 IQJPRMIQVVYNGO-UHFFFAOYSA-M 0.000 description 1
- TZYULTYGSBAILI-UHFFFAOYSA-M trimethyl(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC=C TZYULTYGSBAILI-UHFFFAOYSA-M 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/785—Polymers containing nitrogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/795—Polymers containing sulfur
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/12—Drugs for disorders of the metabolism for electrolyte homeostasis
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Medicinal Preparation (AREA)
- Epoxy Resins (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polyesters Or Polycarbonates (AREA)
- Polyurethanes Or Polyureas (AREA)
- Hydrogenated Pyridines (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Phosphate-binding polymers are provided for removing phosphate from the gastrointestinal tract. The polymers are orally administered, and are ureful for the treatment of hyperphosphatemia.
Description
WO 95/05184 ~ PCT/US94/09060 PHOSPHATE-BINDING POLYMERS FOR ORAL ADMINISTRATION
Backctround of the Invention This invention relates to phosphate-binding polymers for oral administration.
People with inadequate renal function, hypoparathyroidism, or certain other medical conditions often have hyperphosphatemia, meaning serum phosphate levels of over 6 mg/dL. Hyperphosphatemia, especially if present over extended periods of time, leads to severe abnormalities in calcium and phosphorus metabolism, often manifested by aberrant calcification in joints, lungs, and eyes.
Therapeutic efforts to reduce serum phosphate include dialysis, reduction in dietary phosphate, and oral administration of insoluble phosphate binders to reduce gastrointestinal absorption. Dialysis and reduced dietary phosphate are usually insufficient to adequately reverse hyperphosphatemia, so the use of phosphate binders is routinely required to treat these patients.
Phosphate binders include calcium or aluminum salts, or organic polymers such as ion exchange resins.
Calcium salts have been widely used to bind intestinal phosphate and prevent absorption. The ingested calcium combines with phosphate to form insoluble calcium phosphate salts such as Ca3(P04)2, CaHP04, or Ca(H2P04)2. Different types of calcium salts, including calcium carbonate, acetate (such as the pharmaceutical "PhosLo~"), citrate, alginate, and ketoacid salts have been utilized for phosphate binding.
The major problem with all of these therapeutics is the hypercalcemia which often results from absorption of the high amounts of ingested calcium. Hypercalcemia causes serious side effects such as cardiac arrhythmias, renal SUBSTITUTE SHEET (RULE 25;
Backctround of the Invention This invention relates to phosphate-binding polymers for oral administration.
People with inadequate renal function, hypoparathyroidism, or certain other medical conditions often have hyperphosphatemia, meaning serum phosphate levels of over 6 mg/dL. Hyperphosphatemia, especially if present over extended periods of time, leads to severe abnormalities in calcium and phosphorus metabolism, often manifested by aberrant calcification in joints, lungs, and eyes.
Therapeutic efforts to reduce serum phosphate include dialysis, reduction in dietary phosphate, and oral administration of insoluble phosphate binders to reduce gastrointestinal absorption. Dialysis and reduced dietary phosphate are usually insufficient to adequately reverse hyperphosphatemia, so the use of phosphate binders is routinely required to treat these patients.
Phosphate binders include calcium or aluminum salts, or organic polymers such as ion exchange resins.
Calcium salts have been widely used to bind intestinal phosphate and prevent absorption. The ingested calcium combines with phosphate to form insoluble calcium phosphate salts such as Ca3(P04)2, CaHP04, or Ca(H2P04)2. Different types of calcium salts, including calcium carbonate, acetate (such as the pharmaceutical "PhosLo~"), citrate, alginate, and ketoacid salts have been utilized for phosphate binding.
The major problem with all of these therapeutics is the hypercalcemia which often results from absorption of the high amounts of ingested calcium. Hypercalcemia causes serious side effects such as cardiac arrhythmias, renal SUBSTITUTE SHEET (RULE 25;
failure, and skin and visceral calcification. Frequent monitoring of serum calcium levels is required during therapy with calcium-based phosphate binders.
Aluminum-based phosphate binders, such as the aluminum hydroxide gel "Amphojel~", have also been used for treating hyperphosphatemia. These compounds complex with intestinal phosphate to form highly insoluble aluminum phosphate; the bound phosphate is unavailable for absorption by the patient. Prolonged use of aluminum gels leads to accumulations of aluminum, and often to aluminum toxicity, accompanied by such symptoms as encephalopathy, osteomalacia, and myopathy.
Organic polymers that have been used to bind phosphate have typically been ion exchange resins. Those tested include Dowex~ anion-exchange resins in the chloride form, such as XF 43311, XY 40013, XF 43254, XY
40011, and XY 40012. These resins have several drawbacks for treatment of hyperphosphatemia, including poor binding efficiency, necessitating use of high dosages for significant reduction of absorbed phosphate. In addition, the ion exchange resins also bind bile salts.
Summary of the Invention In general, the invention features a method of removing phosphate from a patient by ion exchange, which involves oral administration of a therapeutically effective amount of a composition containing at least one phosphate-binding polymer that is non-toxic and stable once ingested. The polymers of the invention may be crosslinked with a crosslinking agent. Examples of preferred crosslinking agents include epichlorohydrin, 1,4 butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-dichloropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, toluene diisocyanate, acryloyl WO 95/05184 ~ PCT/US94/09060 chloride, and pyromellitic dianhydride. The crosslinking agent is present in an amount ranging from about 0.5% to about 75% by weight, more preferably from about 2% to about 20% by weight.
By "non-toxic" it is meant that when ingested in therapeutically effective amounts neither the polymers nor any ions released into the body upon ion exchange are harmful .
By "stable" it is meant that when ingested in therapeutically effective amounts the polymers do not dissolve or otherwise decompose to form potentially harmful by-products, and remain substantially intact so that they can transport bound phosphate out of the body.
By "therapeutically effective amount" is meant an amount of the composition which, when administered to a patient, causes decreased serum phosphate.
In one aspect, the polymer is characterized by a repeating unit having the formula /R
N \
R (1) n or a copolymer thereof, wherein n is an integer and each R, independently, is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl (e. g., phenyl) group.
In a second aspect, the polymer is characterized by a repeating unit having the formula SUBSTITUTE SH~cT (RULE 26) 4 2 ~ ~ ~ 3 5 6 PCT/US94/09060 R
N-R (2) R
,n or a copolymer thereof, wherein n is an integer, each R, independently, is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl (e.g., phenyl) group, and each X- is an exchangeable negatively charged counterion.
One example of a copolymer according to the second aspect of the invention is characterized by a first repeating unit having the formula R X_ N~ R
(2) R
'n wherein n is an integer, each R, independently, is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e.g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl), and each X- is an exchangeable negatively charged counterion; and further characterized by a second repeating unit having the formula /R
' N \
R
(3) n SUBS'T(TUTE SHFEI (~~JLe 2 WO 95105184 '~' ~ PCT/US94/09060 wherein each n, independently, is an integer and each R, independently, is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl).
In a fourth aspect, the polymer is characterized by a repeating unit having the formula N ' R
n or a copolymer thereof, wherein n is an integer, and R is l0 H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e.g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl).
One example of a copolymer according to the second aspect of the invention is characterized by a first repeating unit having the formula N ~ ( R
n wherein n is an integer, and R is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl); and further characterized by a second repeating unit having the formula X
H
N+ ~ (5) R
n wherein each n, independently, is an integer and R is H
or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e.g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl).
In a fifth aspect, the polymer is characterized by a repeating group having the formula X-R~
(6) N+ v .
n or a copolymer thereof, wherein n is an integer, and each R1 and R2, independently, is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), and alkylamino (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl), and each X' is an exchangeable negatively charged counterion.
In one preferred polymer according to the fifth aspect of the invention, at least one of the R groups is a hydrogen group.
In a sixth aspect, the polymer is characterized by a repeat unit having the formula R~
N
n or a copolymer thereof, where n is an integer, each Rl and R2, independently, is H, an alkyl group containing 1 to 20 carbon atoms, an alkylamino group (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino), or an aryl group containing 1 to 12 atoms (e. g., phenyl).
In a seventh aspect, the polymer is characterized by a repeat unit having the formula X-to N R3 (s) n or a copolymer thereof, wherein n is an integer, each R1, R2 and R3, independently, is H, an alkyl group containing 1 to 20 carbon atoms, an alkylamino group (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino), or an aryl group containing 1 to 12 atoms (e. g., phenyl), and each X' is an exchangeable negatively charged counterion.
In all aspects, the negatively charged counterions may be organic ions, inorganic ions, or combination thereof. The inorganic ions suitable for use in this invention include the halides (especially chloride), phosphate, phosphite, carbonate, bicarbonate, sulfate, bisulfate, hydroxide, nitrate, persulfate, sulfite, and sulfide. Suitable organic ions include acetate, SUBSTfTUTE SMFET (RUSE 26) WO 95/05184 ~ (~ PCT/US94/09060 - g -ascorbate, benzoate, citrate, dihydrogen citrate, hydrogen citrate, oxalate, succinate, tartrate, taurocholate, glycocholate, and cholate.
The invention provides an effective treatment for decreasing the serum level of phosphate by binding phosphate in the gastrointestinal tract, without comcomittantly increasing the absorption of any clinically undesirable materials, particularly calcium or aluminum.
Other features and advantages will be apparent from the following description of the preferred embodiments and from the claims.
Description of the Preferred Embodiments Preferred polymers have the structures set forth in the Summary of the Invention, above. The polymers are preferably crosslinked, in some cases by adding a crosslinking agent to the reaction mixture during polymerization. Examples of suitable crosslinking agents are diacrylates and dimethacrylates (e. g., ethylene glycol diacrylate, propylene glycol diacrylate, butylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, butylene glycol dimethacrylate, polyethyleneglycol dimethacrylate, polyethyleneglycol diacrylate), methylene bisacrylamide, methylene bismethacrylamide, ethylene bisacrylamide, epichlorohydrin, toluene diisocyanate, ethylenebismethacrylamide, ethylidene bisacrylamide, divinyl benzene, bisphenol A dimethacrylate, bisphenol A
diacrylate, 1,4 butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-dichloropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, acryloyl chloride, or pyromellitic dianhydride. The amount of crosslinking agent is typically between about 0.5 and _ g _ about 75 weight %, and preferably between about 1 and about 25% by weight, based upon combined weight of crosslinking agent and monomer. In another embodiment, the crosslinking agent is present between about 2 and about 20% by weight.
In some cases the polymers are crosslinked after polymerization. One method of obtaining such crosslinking involves reaction of the polymer with difunctional crosslinkers , such as epichlorohydrin, succinyl dichloride, the diglycidyl ether of bisphenol A, pyromellitic dianhydride, toluene diisocyanate, and ethylenediamine. A typical example is the reaction of poly(ethyleneimine) with epichlorohydrin. In this example the epichlorohydrin (1 to 100 parts) is added to a solution containing polyethyleneimine (100 parts) and heated to promote reaction. Other methods of inducing crosslinking on already polymerized materials include, but are not limited to, exposure to ionizing radiation, ultraviolet radiation, electron beams, radicals, and pyrolysis.
Ssamples Candidate polymers were tested by stirring them in a phosphate containing solution at pH 7 for 3 h. The solution was designed to mimic the conditions present in the small intestine.
Solution Contents 10-20 mM Phosphate 80 mM Sodium Chloride mM Sodium Carbonate 30 The pH was adjusted to pH 7, once at the start of the test and again at the end of the test, using either WO 95/05184 ~ ~ PCTlUS94/09060 aqueous NaOH or HC1. After 3 h the polymer was filtered off and the residual phosphate concentration in the test solution was determined spectrophotometrically. The difference between the initial phosphate concentration and the final concentration was used to determine the amount of phosphate bound to the polymer. This result is expressed in milliequivalents per gram of starting polymer (meq/g).
The table below shows the results obtained for several polymers. Higher numbers indicate a more effective polymer.
Polymer Phosphate Bound (meq/g)*
Poly(allylamine/epichlorohydrin) 3.1 Poly(allylamine/butanediol diglycidyl ether) 2.7 Poly(allylamine/ethanediol diglycidyl ether) 2.3 Poly(allyltrimethylammonium chloride) 0.3 Poly(ethyleneimine)/acryloyl chloride 1.2 Polyethyleneimine "C" 2.7 Polyethyleneimine "A" 2.2 Poly(DET/EPI) 1.5 Polyethyleneimine "B" 1.2 Poly(dimethylaminopropylacrylamide) 0.8 Poly(PEH/EPI) 0.7 Poly(trimethylammoniomethyl styrene chloride) 0.7 Poly(pentaethylenehexaminemethacrylamide) 0.7~
Poly(tetraethylenepentaminemethacrylamide) 0.7 Poly(diethylenetriaminemethacrylamide) 0.5 Poly(triethylenetetraminemethacrylamide) 0.5 Poly(aminoethylmethacrylamide) 0.4 Poly(vinylamine) 0.4 Poly(MAPTAC) 0.25 Poly(methylmethacrylate/PEI) 0.2 Poly(dimethylethyleneimine chloride) 0.2 Poly(diethylaminopropylmethacrylamide) 0.1 Poly(guanidinoacrylamide) 0.1 Poly(guanidinobutylacrylamide) 0.1 Poly(guanidinobutylmethacrylamide) 0.1 WO 95!05184 2 i 6 ~ 3 5 0 PCT/US94/09060 * The values apply when the residual solution phosphate levels are - 5 mM.
The table below shows results obtained using various other materials to bind phosphate.
~~ Polymer Phosphate Bound )*
Calcium Chloride 4.0 Calcium Lactate 2.4 Ox-Absorb~ 0.5 Maalox Plus~ 0.3 Sephadex DEAE A-25, 40-125 m 0.2 Aluminum Hydroxide, Dried Gel 0.2 * The values apply when the residual solution phosphate levels are -- 5 mM.
The table below shows results obtained for a variety of salts made from polyethyleneimine and organic and inorganic acids.
WO 95/05184 2 ~ ~, ~ :~ 5 6 PCT/US94/09060 POhYMER PHOSPHATE BOUND
(meg/g)*
Poly(ethyleneimine sulfate A) p,g Poly(ethyleneimine sulfate B) 1.2 Poly(ethyleneimine sulfate C) 1.1 Poly(ethyleneimine sulfate D) 1,~
Poly(ethyleneimine tartrate A) Poly(ethyleneimine tartrate B) 0.9 Poly(ethyleneimine tartrate C) 1.1 Poly(ethyleneimine ascorbate 0.55 A) Poly(ethyleneimine ascorbate 0.65 B) Poly(ethyleneimine ascorbate O,g C) Poly(ethyleneimine citrate A) Poly(ethyleneimine citrate B) 1.0 Poly(ethyleneimine citrate C) p,g Poly(ethyleneimine succinate 1.1 A) Poly(ethyleneimine succinate 1.3 B) Poly(ethyleneimine chloride) 1.1 * The values apply residual when the solution phosphate levels are - 5mM.
Oxabsorb~ is an organic polymer that encapsulates calcium such that the calcium is available to bind to such ions as phosphate, but may not be released by the polymer and thus is not supposed to be absorbed by the patient.
The amount of phosphate bound by all of these materials, both polymers and inorganic gels, is expected to vary as the phosphate concentration varies. The graph below shows the relationship between the solution phosphate concentration and the amount of phosphate bound to poly(dimethylaminopropylacrylamide). Other polymers might be expected to show a similar relationship.
WO 95/05184 ~ PCT/US94/09060 Z
1.5 Phosphate Bound ( me q/=) 0.5 Soludan Phosphate Concentration (mM) In an alternate type of test, the polymer was exposed to an acidic environment prior to exposure to phosphate as might happen in a patient's stomach. The solid (0.1 g) was suspended in 40 mL of 0.1 M NaCl. This mixture was stirred for 10 min., and the pH was adjusted to 3.0 with 1 M HC1, and the mixture was stirred for 30 min. The mixture was centrifuged, the supernatant decanted, and the solid resuspended in 40 mL of 0.1 m NaCl. This mixture was stirred for 10 min., the pH was adjusted to 3.0 with 1 M HC1, and the mixture was stirred for 30 min. The mixture was centrifuged, the supernatant decanted, and the solid residue used in the usual phosphate assay. Results are shown below for a variety of polymers and for aluminum hydroxide dried gel. In most cases the values for the amount of phosphate bound are higher in this test than in the usual assay.
o z.s s ~.s io POLYMER PHOSPHATE BOUND (meg/g)*
Poly(ethyleneimine sulfate B) 1.2 Poly(ethyleneimine sulfate C) 1.3 Poly(ethyleneimine tartrate B) 1.3 Poly(ethyleneiminetartrate C) 1.4 Poly(ethyleneimine ascorbate B) 1.0 Poly(ethyleneimine ascorbate C) 1.0 Poly(ethyleneimine citrate B) 1.0 Poly(ethyleneimine citrate C) 1.3 Poly(ethyleneiminesuccinate A) 1.1 Poly(ethyleneimine succinate B) 1.3 Poly(ethyleneimine chloride) 1.4 Aluminum Hydroxide 0.7 * The values apply when the residual solution ~~ phosphate levels are - SmM.
RAT DIETARY PHOSPHORUS EXCRETION MODEL
Six 6-8 week old Sprague-Dawley rats were placed in metabolic cages and fed semi-purified rodent chow powder containing 0.28% inorganic phosphorus. The diets were supplemented wtih 11.7% RenaStatTM (i.e., poly(allylamine/epichlorohydrin)) or micro-crystalline cellulose; the animals served as their own controls by receiving cellulose or RenaStatTM in randomized order.
The rats were fed ad libitum for three days to acclimate to the diet. Feces excreted during the next 48 hours were collected, lyophilized, and ground into powder. The inorganic phosphate content was determined according to the method of Taussky and Shorr: Microdetermination of Inorganic P. One gram of powdered feces was burned to remove carbon, then ashed in a 600°C oven. concentrated HC1 was then added to dissolve the phosphorus. The phosphorus was determined with ferrous sulfate-ammonium molybdate reagent. Intensity of the blue color was WO 95/05184 ~ ~ ~ ~ ~ 5 6 determined at 700 nm on a Perkin-Elmer spectrophotometer through a 1 cm cell.
The results are shown in the following graph.
Fecal phosphate concentration increased in all animals.
EFFECT RENASTATT"
OF ON
FECAL
PHOSPHORUS
EXCRETION IN - (11.7~9o 0.28%
RATS RENASTAT, Pi) -fl- RAT
I
V
O ~- ~T
.
' ,.
' oc ..a..- RAT3 30 ,. ' ~
. ~~~-~ RAT
t .y x 2 ,.
0 -' ___~__ STS
V _.~._ RAT6 " ' U
Z
a c,a a TREAT.\T
IN PARTIALLY NEPHRECTOMIZED RATS
Sprague-Dawley rats, approximately 8 weeks old, were 75% nephrectomized. One kidney was surgically removed; approximately 50% of the renal artery flow to 10 the contralateral kidney was ligated. The animals were fed a semi-purified rodent chow containing 0.385%
inorganic phosphorus and either 10% RenaStat~ or cellulose. Urine was collected and analyzed for phosphate content on specific days. Absorbed dietary phosphate is excreted into the urine to maintain serum phosphate.
The results are shown in the following graph.
None of the animals became hyperphosphatemic or uremic, indicating that the residual kidney function was adequate to filter the absorbed phosphate load. The animals receiving RenaStatTM demonstrated a trend towards reduced phosphate excretion, indicative of reduced phosphate absorption.
EFFECT OF RENASTAT~ ON URINARY PIiOSPHATE EXCRETION
IN PARTIALLY NEPHRECTOMIZED RATS
aoo a o_ f-~00 O
a ~ ~o goo z 0 ; , , TREATMENT
SYNTHESES
Poly(allylamine) hydrochloride.
To a 5 L, water jacketed reaction kettle equipped with 1) a condenser topped with a nitrogen gas inlet and 2) a thermometer and 3) a mechanical stirrer was added concentrated hydrochloric acid (2590 mL). The acid was cooled to 5°C using circulating water in the jacket of the reaction kettle at 0°C. Allylamine (2362 mL; 1798 g) was added dropwise with stirring, maintaining a temperature of 5-10°C. After the addition was complete, 1338 mL of liquid was removed by vacuum distillation at 60-70°C. Azobis(amidinopropane) dihydrochloride (36 g) suspended in 8l mL water was added. The kettle was heated to 50°C under a nitrogen atmosphere with stirring for 24 h. Azobis(amidinopropane) dihydrochloride (36 g) suspended in 81 mL water was again added and the heating and stirring continued for an addition 44 h. Distilled water (720 mL) was added and the solution allowed to cool with stirring. The liquid was added dropwise to a SU8STITUT~ SH~tT iRLi! ~. % F
stirring solution of methanol (30 L). The solid was then removed by filtration, resuspended in methanol (30 L), stirred 1 hour, and collected by filtration. This methanol rinse was repeated once more and the solid was dried in a vacuum oven to yield 2691 g of a granular white solid (poly(allylamine) hydrochloride).
Poly(allylamine/epichlorohydrin).
To a 5 gall bucket was added poly(allylamine) hydrochloride (2.5 kg) and water 10 L). The mixture was stirred to dissolve and the pH was adjusted to 10 with a solid NaOH. The solution was allowed to cool to room temperature in the bucket and epichlorohydrin (250 mL) was added all at once with stirring. The mixture was stirred gently until it gelled after about 15 minutes.
The gel was allowed to continue curing for 18 h at room temperature. The gel was then removed and put into a blender with isopropanol (about 7.5 L). The gel was mixed in the blender with about 500 mL isopropanol for --3 minutes to form coarse particles and the solid was then collected by filtration. The solid was rinsed three times by suspended it in 9 gal of water, stirring the mixture for 1 h, and collecting the solid by filtration.
The solid was rinsed once by suspending it in isopropanol (60 L), stirring the mixture for 1 h, and collecting the solid by~filtration. The solid was dried in a vacuum oven for 18 h to yield 1.55 Kg of a granular, brittle, white solid.
Poly(allylamine/butanedioldiglycidyl ether).
To a 5 gallon plastic bucket was added poly(allylamine) hydrochloride (500 g) and water (2 L).
The mixture was stirred to dissolve and the pH was adjusted to 10 with solid NaOH (142.3 g). The solution was allowed to cool to room temperature in the bucket and PCT/US94/o9060 wo 9s/osisa 1,4-butanedioldiglycidyl ether (130 mL) was added all at once with stirring. The mixture was stirred gently until it gelled after 4 minutes. The gel was allowed to continue curing for 18 h at room temperature. The gel was then removed and dried in a vacuum oven at 75°C for 24 h. The dry solid was ground and sieved for -30 mesh and then suspended in 6 gallons on water. After stirring for 1 h the solid was filtered off and rinse process repeated twice more. The solid was rinsed twice in isopropanol (3 gallons), and dried in a vacuum oven at 50°C for 24 h to yield 580 g of a white solid.
Poly(allylamine/ethanedioldic.~lycidvl ether).
To a 100 mL beaker was added poly(allylamine) hydrochloride (10 g) and water (40 mL). The mixture was stirred to dissolve and the pH was adjusted to 10 with solid NaOH. The solution was allowed to cool to room temperature in the beaker and 1,2 ethanedioldiglycidyl ether (2.0 mL) was added all at once with stirring. The mixture was allowed to continue curing for 18 h at room temperature. The gel was then removed and blended in 500 mL of methanol. The solid was filtered off and suspended in water (500 mL). After stirring for 1 h the solid was filtered off and the rising process repeated.
The solid was rinsed twice in isopropanol (400 mL), and dried in a vacuum oven at 50°C for 24 h to yield 8.7 g of a white solid.
Poly(allvlamine/dimethylsuccinate).
To a 500 mL round bottom flask was added poly(allylamine) hydrochloride (10 g), methanol (100 mL), and triethylamine (10 mL). The mixture was stirred and dimethylsuccinate (1 mL) was added. The solution was heated to reflux and stirring turned off after 30 min.
After 18 h the solution was cooled to room temperature WO 95/05184 2 ~ 6 ~ 3 5 (~ PCT/US94/09060 and solid was filtered off and suspended in water (1 L).
After stirring for 1 h the solid was filtered off and the rinse process repeated twice more. The solid was rinsed once in isopropanol (800 mL), and dried in a vacuum oven at 50°C for 24 h to yield 5.9 g of a white solid.
Poles allyltrimethylammonium chloride).
To a 500 mL three necked flask equipped with a magnetic stirrer, a thermometer, and a condenser topped with a nitrogen inlet, was added poly(allylamine) crosslinked with epichlorohydrin (5.0 g), methanol (300 mL), methyl iodide (20 mL), and sodium carbonate (50 g). The mixture was then cooled and water was added to total volume of 2 L. Concentrated hydrochloric acid was added until no further bubbling resulted and the remaining solid was filtered off. The solid was rinsed twice in 10% aqueous NaCl (1 L) by stirring for 1 h followed by filtration to recover the solid. The solid was then rinsed three times by suspending it in water (2 L), stirring for 1 h, and filtering to recover the solid. Finally the solid was rinsed as above in methanol and dried in a vacuum over at 50°C for 18 h to yield 7.7 g of white granular solid.
Poly(ethyleneimine)/acrvloyl chloride.
Into a 5 L three neck flask equipped with a mechanical stirrer, a thermometer, and an additional funnel was added polyethyleneimine (510 g of a 50%
aqueous solution (equivalent to 255 g of dry polymer) and isopropanol (2.5 L). Acryloyl chloride (50 g) was added dropwise through the addition funnel over a 35 minute period, keeping the temperature below 29°C. The solution was then heated to 60°C with stirring for 18 h. The solution was cooled and solid immediately filtered off.
The solid was rinsed three times by suspending it in WO 95/05184 p PCT/iJS94/09060 water (2 gallons), stirring for 1 h, and filtering. to recover the solid. The solid was rinsed once by suspending it in methanol (2 gallons), stirring for 30 minutes, and filtering to recover the solid. Finally, the solid was rinsed as above in isopropanol and dried in a vacuum over at 50°C for 18 h to yield 206 g of light orange granular solid.
f ~~~
PolvldimethylaminopropYlacrylamide~.
Dimethylaminopropylacrylamide (10 g) and methylenebisacrylamide (l.l g) were dissolved in 50 mL of water in a 100 mL three neck flask. The solution was stirred under nitrogen for 10 minutes. Potassium persulfate (0.3 g) and sodium metabisulfite (0.3 g) were each dissolved in 2-3 mL of water and then mixed. After a few seconds this solution was added to the monomer solution, still under nitrogen. A gel formed immediately and was allowed to sit overnight. The gel was removed and blended with 500 mL of isopropanol. The solid was' filtered off and rinsed three times with acetone. The 2o solid white powder was filtered off and dried in a vacuum oven to yield 6.1 g.
~ O
H ~~ d l n WO 95/05184 216 9 3 5 ~ PCT/US94/09060 Poly(Methacrylamidopropyltrimethylammoniumchloride)-[Polv(MAPTAC~1. [3-(Methacryloylamino)propyl]
trimethylammonium chloride (38 mL of 50% aqueous solution) and methylenebismethacrylamide (2.2 g) were stirred in a beaker at room temperature. Methanol (10 mL
was added and the solution was warmed to 40°C to fully dissolve the bisacrylamide. Potassium persulfate (0.4 g) was added and the solution stirred for 2 min. Potassium metabisulfite (0.4 g) was added and stirring was continued. After 5 min the solution was put under a nitrogen atmosphere. After 20 min the solution contained significant precipitate and the solution was allowed to sit overnight. The solid was washed three times with isopropanol and collected by filtration. The solid was then suspended in water 500 (mL) and stirred for several hours before being collected by centrifugation. The solid was again washed with water and collected by filtration. The solid was then dried in a vacuum oven to yield 21.96 g.
n a , Poly(ethyleneiminey "A" Polyethyleneimine (50g of a 50% aqueous solution; Scientific Polymer Products) was dissolved in water (100 mL). Epichlorohydrin (4.6 mL) was added dropwise. The solution was heated to 55 °C
for 4 h, after which it had gelled. The gel was removed, blended with water (1 L) and the solid was filtered off.
It was resuspended in water (2 L) and stirred for 10 min.
The solid was filtered off, the rinse repeated once with water and twice with isopropanol, and the resulting gel was dried in a vacuum oven to yield 26.3 g of a rubbery solid.
WO 95105184 PCT/US94/0906(1 2~~~35a Polylethyleneimine) "B" and PolylethvleneimineZ
"C" were made in a similar manner, except using 9.2 and 2.3 mL of epichlorohydrin, respectively.
Polylmethvlmethacrvlate-co-divinylbenzeney Methylmethacrylate (50 g) and divinylbenzene (5 g) and azobisisobutyronitrile (1.0 g) were dissolved in isopropanol (500 mL) and heated to reflux for 18 h under a nitrogen atmosphere. The solid white precipitate was filtered off, rinsed once in acetone (collected by centrifugation), once in water (collected by filtration) and dried in a vacuum oven to yield 19.4 g.
o H ~ OR H
n ~ o Polvldiethylenetriaminemethacrylamidel Poly(methylmethacrylate-co-divinylbenzene) (20 g) was suspended in diethylenetriamine (200 mL) and heated to reflux under a nitrogen atmosphere for 18 h. The solid was collected by filtration, resuspended in water (500 mL), stirred 30 min, filtered off, resuspended in water (500 mL), stirred 30 min, filtered off, rinsed briefly in isopropanol, and dried in a vacuum oven to yield 18.0 g.
Polvlpentaethylenehexaminemethacrylamide), Polyltetraethylenepentaminemethacrylamide), and WO 95/05184 216 ~ ~ 5 ~ PCT/US94/09060 polv(triethylenetetraaminemethacrylamide) were made in a manner similar to polyldiethylenetriaminemethacrylamide~
from pentaethylenehexamine, tetraethylenepentamine, and triethylenetetraamine, respectively.
Polv(methvlmethacrylate/PE1~. Poly(methylmethacrylate-co-divinylbenzene) (1.0 g) was added to a mixture containing hexanol (150 mL) and polyethyleneimine (15 g in 15 g water). The mixture was heated to reflux under nitrogen for 4 days. The reaction was cooled and the solid was filtered off, suspended in methanol (300 mL), stirred 1 h, and filtered off. The rinse was repeated once with isopropanol and the solid was dried in a vacuum oven to yield 0.71 g.
O
p~N
n Poly(ami.noethylmethacrvlamideZ.
Poly(methylmethacrylate-co-divinylbenzene) (20 g) was suspended in ethylenediamine (200 mL) and heated to reflux under a nitrogen atmosphere for 3 days. The solid was collected by centrifugation, washed by resuspending it in water (500 mL), stirring for 30 min, and filtering off the solid. The solid was washed twice more in water, once in isopropanol, and dried in a vacuum oven to yield 17.3. g.
WO 95/05184 2 ~ 6 ~ 3 5 6 PCT/US94/09060 J~
Poly(diethylaminopropylmethacrylamide) Poly(methylmethacrylate-co-divinylbenz'ene) (20 g) was suspended in diethylaminopropylamine (200 mL) and heated to reflux under a nitrogen atmosphere for 18 h. The solid was collected by filtration, resuspended in water (500 mL), filtered off, resuspended in water (500 mL), collected by filtration, rinsed briefly in isopropanol, and dried in a vacuum oven to yield 8.2 g.
O
O
'O-N
O
NHS-acrylate. N-Hydroxysuccinimide (NHS, 157.5 g) was dissolved in chloroform (2300 mL) in a 5 L flask.
The solution was cooled to 0°C and acryloyl chloride (132 g) was added dropwise, keeping the temperature < 2°C.
After addition was complete, the solution was stirred for 1.5 h, rinsed with water (1100 mL) in a separatory funnel and dried over anhydrous sodium sulfate. The solvent was removed under vacuum and a small amount of ethyl acetate was added to the residue. This mixture was poured into hexane (200 mL) with stirring. The solution was heated to reflux, adding more ethyl acetate (400 mL). The insoluble NHS was filtered off, hexane (1 L) was added, the solution was heated to reflux, ethyl acetate (400 mL) was added, and the solution allowed to cool to <10°C.
The solid was then filtered off and dried in a vacuum oven to yield 125.9 g. A second crop of 80 g was subsequently collected by further cooling.
Polv(NHS-acr_ylate~~. NHS-acrylate (28.5 g), methylenebisacrylamide (1.5 g) and tetrahydrofuran (500 mL) were mixed in a 1 L flask and heated to 50°C under a nitrogen atmosphere. Azobisisobutyronitrile (0.2 g) was added, the solution was stirred for 1 h, filtered to remove excess N-hydroxysuccinimide, and heated to 50°C
for 4.5 h under a nitrogen atmosphere. The solution was then cooled and the solid was filtered off, rinsed in tetrahydrofuran, and dried in a vacuum oven to yield 16.1 g.
O _ N~ /NH
N C
H I
NH3~Cr n Polv(c~uanidinobutylacrvlamide) . Poly(NHS-acrylate) (1.5 g) was suspended in water (25 mL) WO 95/5184 2 y ~ 9 3 5 0 containing agmatine (1.5 g) which had been adjusted to pH
9 with solid NaOH. The solution was stirred for 4 days, after which time the pH had dropped to 6.3. Water was added to a total of 500 mL, the solution was stirred for 30 min, and the solid was filtered off. The solid was rinsed twice in water, twice in isopropanol, and dried in a vacuum oven to yield 0.45 g.
C~
CI
D
Fol~(methacrylovl chloride). Methacryloyl chloride (20 mL), divinyl benzene (4 mL of 80% purity) , AIBN (0.4 g), and THF (150 mL) were stirred at 60°C under a nitrogen atmosphere for 18 h. The solution was cooled and the solid was filtered off, rinsed in THF, then acetone, and dried in a vacuum oven to yield 8.1 g.
O H
_ N~ /NH
N C
H
( NH3'Ct' n Poly(uuanidinobutylmethacrylamide).
Poly(methacryloyl chloride) (0.5 g), agmatine sulfate (1.0 g), triethylamine (2.5 mL), and acetone (50 mL) were stirred together for 4 days. Water (100 mL) was added WO 95/5184 ~ ~ 6 ~ 3 5 6 PCT/US94/09060 and the mixture stirred for 6 h. The solid was filtered off and washed by resuspending in water (500 mL), stirring for 30 min, and filtering off the solid. The wash was repeated twice in water, once in methanol, and the solid was dried in a vacuum oven to yield 0.41 g.
o _ ~~ H
H-.H-C NH3' HC03 n Polv(cruanidinoacrvlamide) The procedure for poly(guanidinobutylacrylamide) was followed substituting aminoguanidine bicarbonate (5.0 g) for the agmatine, yielding 0.75 g.
Poly(PEHJEPIZ. Epichlorohydrin (21.5 g) was added dropwise to a solution containing pentaethylenehexamine (20 g) and water (10o mL), keeping the temperature below 65°C. The solution was stirred until it gelled and heating was continued for 4 h (at 65°C). After sitting overnight at room temperature the gel was removed and blended with water (1 L). The solid was filtered off, water was added (1 L), and the blending and filtration were repeated. The gel was suspended in isopropanol and the resulting solid was collected by filtration and dried in a vacuum oven to yield 28.2 g.
' \
H H
21~y356 Ethvlidenebisacetamide. Acetamide (118 g), acetaldehyde (44.06 g), copper acetate (0.2 g), and water (300 mL) were placed in a 1 L three neck flask fitted with condenser, thermometer, and mechanical stirrer.
Concentrated HC1 (34 mL) was added and the mixture was heated to 45-50°C with stirring for 24 h. The water was then removed in vacuo to leave a thick sludge which formed crystals on cooling to 5°C. Acetone (200 mL) was added and stirred for a few minutes after which the solid was filtered off and discarded. The acetone was cooled to 0°C and solid was filtered off. This solid was rinsed in 500 mL acetone and air dried 18 h to yield 31.5 g.
~,J
Vinvlacetamide Ethylidenebisacetamide (31.05 g), calcium carbonate (2 g) and celite 541 (2 g) were placed in a 500 mL three neck flask fitted with a thermometer, a mechanical stirrer, and a distilling head atop a vigroux column. The mixture was vacuum distilled at 35 mm Hg by heating the pot to 180-225°C. Only a single fraction was collected (10.8 g) which contained a large portion of acetamide in addition to the product (determined by NMR).
This solid product was dissolved in isopropanol (30 mL) to form the crude solution used for polymerization.
- WO 95/05184 216 9 3 5 6 pCT~S94/09060 Poly(vinylacetamide). Crude vinylacetamide solution (15 mL), divinylbenzene (1 g, technical grade, 55% pure, mixed isomers), and AIBN (0.3g) were mixed and heated to reflux under a nitrogen atmosphere for 90 min, forming a solid precipitate. The solution was cooled, isopropanol (50 mL) was added, and the solid was collected by centrifugation. The solid was rinsed twice in isopropanol, once in water, and dried in a vacuum oven to yield 0.8g.
(~~~~
Polyfvinylamine). Poly(vinylacetamide) (0.79 g) was placed in a 100 mL one neck flask containing water 25 mL
and concentrated HC1 25 mL. The mixture was refluxed for 5 days, the solid was filtered off, rinsed once in water, twice in isopropanol, and dried in a vacuum oven to yield 0.77g. The product of this reaction (-0.84 g) was suspended in NaOH (46 g) and water (46 g) and heated to boiling (--140°C). Due to foaming the temperature was reduced and maintained at -100°C for 2 h. Water (100 mL) was added and the solid collected by filtration. After rinsing once in water the solid was suspended in water.
(500 mL) and adjusted to pH 5 with acetic acid. The solid was again filtered off, rinsed with water, then the isopropanol, and dried in a vacuum oven to yield 0.51 g.
Polvltrimethylammoniomethylstvrene chloride, is the copolymer of trimethylammoniomethylstyrene chloride and divinyl benzene.
Poly(DET/EPIy is the polymer formed by reaction of diethylenetriamine and epichlorohydrin.
Polv(ethyleneimine) Salts. Polyethyleneimine (25 g dissolved in 25 g water) was dissolved in water (100 mL) and mixed with toluene (1 L). Epichlorohydrin (2.3 mL) was added and the mixture heated to 60°C with vigorous mechanical stirring for 18 h. The mixture was cooled and the solid filtered off, resuspended in methanol (2 L), stirred 1 h, and collected by centrifugation. The solid was suspended in water (2 L), stirred 1 h, filtered off, suspended in water (4 L), stirred 1 h, and again filtered off. The solid was suspended in acetone (4 L) and stirred 15 min., the liquid was poured off, acetone (2 L) was added, the mixture was stirred 15 min., the acetone was again poured off, and the solid was dried in a vacuum oven to form intermediate "D".
Poly(ethyleneimine sulfate A) Intermediate °D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with sulfuric acid (1.1 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethvleneimine sulfate B) Intermediate"D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with sulfuric acid (0.57 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polvlethyleneimine sulfate Cy Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with sulfuric acid (0.28 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethyleneimine sulfate D). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with sulfuric acid (0.11 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly_(ethyleneimine tartrate A). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with tartaric acid (1.72 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polylethyleneimine tartrate B1. Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with tartaric acid (0.86 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polylethvleneimine tartrate C). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with tartaric acid (0.43 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethyleneimine ascorbate A). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with ascorbic acid (4.05 g). The WO 95/05184 PCT/US94/09(160 mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polvlethyleneimine ascorbate B). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with ascorbic acid (2.02 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polv(eth~leneimine ascorbate C~. Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with ascorbic acid (1.01 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethyleneimine citrate A). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with citric acid (1.47 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polyfethyleneimine citrate B~~. Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with citric acid (0.74 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethyleneimine citrate C). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with citric acid (0.37 g). The WO 95/05184 '~ PCT/US94/09060 mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polylethyleneimine succinate A). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with succinic acid (1.36 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethyleneimine succinate By . Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with succinic acid (0.68 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polvlethyleneimine chloride~i. Polyethyleneimine (100 g in 100 g water) was dissolved in water (640 mL
additional) and the pH was adjusted to 10 with concentrated HC1. Isopropanol (1.6 L) was added, followed by epichlorohydrin (19.2 mL). The mixture was stirred under nitrogen for 18 h at 60°C. The solids were filtered off and rinsed with methanol (300 mL) on the funnel. The solid was rinsed by resuspending it in methanol (4 L), stirring 30 min., and filtering off the solid. The rinse was repeated twice with methanol, followed by resuspension in water (1 gallon). The pH was adjusted to 1.0 with concentrated HC1, the solid was filtered off, resuspended in water (1 gallon), the pH
again adjusted to 1.0 with concentrated HC1, the mixture stirred 30 min., and the solid filtered off. The methanol rinse was again repeated and the solid dried in a vacuum oven to yield 112.4 g.
WO 95/05184 ~ ~ ~ ~ ~ ~ 0 Poly(dimethylethyleneimine chloride,. Poly(ethyleneimine chloride) (5.0 g) was suspended in methanol (300 mL) and sodium carbonate (50 g) was added. Methyl iodide (20 mL) was added and the mixture heated to reflux for 3 days.
Water was added to reach a total volume of 500 mL, the mixture stirred for 15 min., and the solid filtered off.
The solid was suspended in water (500 mL), stirred 30 minutes, and filtered. The solid was suspended in water (1 L), the pH adjusted to 7.0 with concentrated HC1, and the mixture stirred for 10 min. The solid was filtered off, resuspended in isopropanol (1L), stirred 30 min., filtered off, and dried in a vacuum oven to yield 6.33 g.
Use The methods of the invention involve treatment of patients with hyperphosphatemia. Elevated serum phosphate is commonly present in patients with renal insufficiency, hypoparathyroidism, pseudohypoparathyroidism, acute untreated acromegaly, overmedication with phosphate salts, and acute tissue destruction as occurs during rhabdomyolysis and treatment of malignancies.
The term "patient" used herein is taken to mean any mammalian patient to which phosphate binders may be administered. Patients specifically intended for treatment with the methods of the invention include humans, as well as nonhuman primates, sheep, horses, cattle, goats, pigs, dogs, cats, rabbits, guinea pigs, hamsters, gerbils, rats and mice.
The compositions utilized in the methods of the inventions are orally administered in therapeutically effective amounts. A therapeutically effective amount of compound is that amount which produces a result or exerts an influence on the particular condition being treated.
As used herein, a therapeutically effective amount of a phosphate binder means an amount which is effective in decreasing the serum phosphate levels of the patient to which it is administered.
The present pharmaceutical compositions are prepared by known procedures using well known and. readily available ingredients. In making the compositions of the _ present invention, the polymeric phosphate binder may be present alone, may be admixed with a carrier, diluted by a carrier, or enclosed within a carrier which may be in the form of a capsule, sachet, paper or other container.
When the carrier serves as a diluent, it may be a solid, semi-solid or liquid material which acts as a vehicle, excipient or medium for the polymer. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, syrups, aerosols, (as a solid or in a liquid medium), soft or hard gelatin capsules, sterile packaged powders, and the like. Examples of suitable carriers, excipients, and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, methyl cellulose, methylhydroxybenzoates, propylhydroxybenzoates, propylhydroxybenzoates, and talc.
It should be understood, however, that the foregoing description of the invention is intended merely to be illustrative by way of example only and that other modifications, embodiments, and equivalents may be apparent to those skilled in the art without departing from its spirit.
Aluminum-based phosphate binders, such as the aluminum hydroxide gel "Amphojel~", have also been used for treating hyperphosphatemia. These compounds complex with intestinal phosphate to form highly insoluble aluminum phosphate; the bound phosphate is unavailable for absorption by the patient. Prolonged use of aluminum gels leads to accumulations of aluminum, and often to aluminum toxicity, accompanied by such symptoms as encephalopathy, osteomalacia, and myopathy.
Organic polymers that have been used to bind phosphate have typically been ion exchange resins. Those tested include Dowex~ anion-exchange resins in the chloride form, such as XF 43311, XY 40013, XF 43254, XY
40011, and XY 40012. These resins have several drawbacks for treatment of hyperphosphatemia, including poor binding efficiency, necessitating use of high dosages for significant reduction of absorbed phosphate. In addition, the ion exchange resins also bind bile salts.
Summary of the Invention In general, the invention features a method of removing phosphate from a patient by ion exchange, which involves oral administration of a therapeutically effective amount of a composition containing at least one phosphate-binding polymer that is non-toxic and stable once ingested. The polymers of the invention may be crosslinked with a crosslinking agent. Examples of preferred crosslinking agents include epichlorohydrin, 1,4 butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-dichloropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, toluene diisocyanate, acryloyl WO 95/05184 ~ PCT/US94/09060 chloride, and pyromellitic dianhydride. The crosslinking agent is present in an amount ranging from about 0.5% to about 75% by weight, more preferably from about 2% to about 20% by weight.
By "non-toxic" it is meant that when ingested in therapeutically effective amounts neither the polymers nor any ions released into the body upon ion exchange are harmful .
By "stable" it is meant that when ingested in therapeutically effective amounts the polymers do not dissolve or otherwise decompose to form potentially harmful by-products, and remain substantially intact so that they can transport bound phosphate out of the body.
By "therapeutically effective amount" is meant an amount of the composition which, when administered to a patient, causes decreased serum phosphate.
In one aspect, the polymer is characterized by a repeating unit having the formula /R
N \
R (1) n or a copolymer thereof, wherein n is an integer and each R, independently, is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl (e. g., phenyl) group.
In a second aspect, the polymer is characterized by a repeating unit having the formula SUBSTITUTE SH~cT (RULE 26) 4 2 ~ ~ ~ 3 5 6 PCT/US94/09060 R
N-R (2) R
,n or a copolymer thereof, wherein n is an integer, each R, independently, is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl (e.g., phenyl) group, and each X- is an exchangeable negatively charged counterion.
One example of a copolymer according to the second aspect of the invention is characterized by a first repeating unit having the formula R X_ N~ R
(2) R
'n wherein n is an integer, each R, independently, is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e.g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl), and each X- is an exchangeable negatively charged counterion; and further characterized by a second repeating unit having the formula /R
' N \
R
(3) n SUBS'T(TUTE SHFEI (~~JLe 2 WO 95105184 '~' ~ PCT/US94/09060 wherein each n, independently, is an integer and each R, independently, is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl).
In a fourth aspect, the polymer is characterized by a repeating unit having the formula N ' R
n or a copolymer thereof, wherein n is an integer, and R is l0 H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e.g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl).
One example of a copolymer according to the second aspect of the invention is characterized by a first repeating unit having the formula N ~ ( R
n wherein n is an integer, and R is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl); and further characterized by a second repeating unit having the formula X
H
N+ ~ (5) R
n wherein each n, independently, is an integer and R is H
or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), alkylamino (e.g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl).
In a fifth aspect, the polymer is characterized by a repeating group having the formula X-R~
(6) N+ v .
n or a copolymer thereof, wherein n is an integer, and each R1 and R2, independently, is H or a lower alkyl (e. g., having between 1 and 5 carbon atoms, inclusive), and alkylamino (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino) or aryl group (e. g., phenyl), and each X' is an exchangeable negatively charged counterion.
In one preferred polymer according to the fifth aspect of the invention, at least one of the R groups is a hydrogen group.
In a sixth aspect, the polymer is characterized by a repeat unit having the formula R~
N
n or a copolymer thereof, where n is an integer, each Rl and R2, independently, is H, an alkyl group containing 1 to 20 carbon atoms, an alkylamino group (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino), or an aryl group containing 1 to 12 atoms (e. g., phenyl).
In a seventh aspect, the polymer is characterized by a repeat unit having the formula X-to N R3 (s) n or a copolymer thereof, wherein n is an integer, each R1, R2 and R3, independently, is H, an alkyl group containing 1 to 20 carbon atoms, an alkylamino group (e. g., having between 1 and 5 carbons atoms, inclusive, such as ethylamino), or an aryl group containing 1 to 12 atoms (e. g., phenyl), and each X' is an exchangeable negatively charged counterion.
In all aspects, the negatively charged counterions may be organic ions, inorganic ions, or combination thereof. The inorganic ions suitable for use in this invention include the halides (especially chloride), phosphate, phosphite, carbonate, bicarbonate, sulfate, bisulfate, hydroxide, nitrate, persulfate, sulfite, and sulfide. Suitable organic ions include acetate, SUBSTfTUTE SMFET (RUSE 26) WO 95/05184 ~ (~ PCT/US94/09060 - g -ascorbate, benzoate, citrate, dihydrogen citrate, hydrogen citrate, oxalate, succinate, tartrate, taurocholate, glycocholate, and cholate.
The invention provides an effective treatment for decreasing the serum level of phosphate by binding phosphate in the gastrointestinal tract, without comcomittantly increasing the absorption of any clinically undesirable materials, particularly calcium or aluminum.
Other features and advantages will be apparent from the following description of the preferred embodiments and from the claims.
Description of the Preferred Embodiments Preferred polymers have the structures set forth in the Summary of the Invention, above. The polymers are preferably crosslinked, in some cases by adding a crosslinking agent to the reaction mixture during polymerization. Examples of suitable crosslinking agents are diacrylates and dimethacrylates (e. g., ethylene glycol diacrylate, propylene glycol diacrylate, butylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, butylene glycol dimethacrylate, polyethyleneglycol dimethacrylate, polyethyleneglycol diacrylate), methylene bisacrylamide, methylene bismethacrylamide, ethylene bisacrylamide, epichlorohydrin, toluene diisocyanate, ethylenebismethacrylamide, ethylidene bisacrylamide, divinyl benzene, bisphenol A dimethacrylate, bisphenol A
diacrylate, 1,4 butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-dichloropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, acryloyl chloride, or pyromellitic dianhydride. The amount of crosslinking agent is typically between about 0.5 and _ g _ about 75 weight %, and preferably between about 1 and about 25% by weight, based upon combined weight of crosslinking agent and monomer. In another embodiment, the crosslinking agent is present between about 2 and about 20% by weight.
In some cases the polymers are crosslinked after polymerization. One method of obtaining such crosslinking involves reaction of the polymer with difunctional crosslinkers , such as epichlorohydrin, succinyl dichloride, the diglycidyl ether of bisphenol A, pyromellitic dianhydride, toluene diisocyanate, and ethylenediamine. A typical example is the reaction of poly(ethyleneimine) with epichlorohydrin. In this example the epichlorohydrin (1 to 100 parts) is added to a solution containing polyethyleneimine (100 parts) and heated to promote reaction. Other methods of inducing crosslinking on already polymerized materials include, but are not limited to, exposure to ionizing radiation, ultraviolet radiation, electron beams, radicals, and pyrolysis.
Ssamples Candidate polymers were tested by stirring them in a phosphate containing solution at pH 7 for 3 h. The solution was designed to mimic the conditions present in the small intestine.
Solution Contents 10-20 mM Phosphate 80 mM Sodium Chloride mM Sodium Carbonate 30 The pH was adjusted to pH 7, once at the start of the test and again at the end of the test, using either WO 95/05184 ~ ~ PCTlUS94/09060 aqueous NaOH or HC1. After 3 h the polymer was filtered off and the residual phosphate concentration in the test solution was determined spectrophotometrically. The difference between the initial phosphate concentration and the final concentration was used to determine the amount of phosphate bound to the polymer. This result is expressed in milliequivalents per gram of starting polymer (meq/g).
The table below shows the results obtained for several polymers. Higher numbers indicate a more effective polymer.
Polymer Phosphate Bound (meq/g)*
Poly(allylamine/epichlorohydrin) 3.1 Poly(allylamine/butanediol diglycidyl ether) 2.7 Poly(allylamine/ethanediol diglycidyl ether) 2.3 Poly(allyltrimethylammonium chloride) 0.3 Poly(ethyleneimine)/acryloyl chloride 1.2 Polyethyleneimine "C" 2.7 Polyethyleneimine "A" 2.2 Poly(DET/EPI) 1.5 Polyethyleneimine "B" 1.2 Poly(dimethylaminopropylacrylamide) 0.8 Poly(PEH/EPI) 0.7 Poly(trimethylammoniomethyl styrene chloride) 0.7 Poly(pentaethylenehexaminemethacrylamide) 0.7~
Poly(tetraethylenepentaminemethacrylamide) 0.7 Poly(diethylenetriaminemethacrylamide) 0.5 Poly(triethylenetetraminemethacrylamide) 0.5 Poly(aminoethylmethacrylamide) 0.4 Poly(vinylamine) 0.4 Poly(MAPTAC) 0.25 Poly(methylmethacrylate/PEI) 0.2 Poly(dimethylethyleneimine chloride) 0.2 Poly(diethylaminopropylmethacrylamide) 0.1 Poly(guanidinoacrylamide) 0.1 Poly(guanidinobutylacrylamide) 0.1 Poly(guanidinobutylmethacrylamide) 0.1 WO 95!05184 2 i 6 ~ 3 5 0 PCT/US94/09060 * The values apply when the residual solution phosphate levels are - 5 mM.
The table below shows results obtained using various other materials to bind phosphate.
~~ Polymer Phosphate Bound )*
Calcium Chloride 4.0 Calcium Lactate 2.4 Ox-Absorb~ 0.5 Maalox Plus~ 0.3 Sephadex DEAE A-25, 40-125 m 0.2 Aluminum Hydroxide, Dried Gel 0.2 * The values apply when the residual solution phosphate levels are -- 5 mM.
The table below shows results obtained for a variety of salts made from polyethyleneimine and organic and inorganic acids.
WO 95/05184 2 ~ ~, ~ :~ 5 6 PCT/US94/09060 POhYMER PHOSPHATE BOUND
(meg/g)*
Poly(ethyleneimine sulfate A) p,g Poly(ethyleneimine sulfate B) 1.2 Poly(ethyleneimine sulfate C) 1.1 Poly(ethyleneimine sulfate D) 1,~
Poly(ethyleneimine tartrate A) Poly(ethyleneimine tartrate B) 0.9 Poly(ethyleneimine tartrate C) 1.1 Poly(ethyleneimine ascorbate 0.55 A) Poly(ethyleneimine ascorbate 0.65 B) Poly(ethyleneimine ascorbate O,g C) Poly(ethyleneimine citrate A) Poly(ethyleneimine citrate B) 1.0 Poly(ethyleneimine citrate C) p,g Poly(ethyleneimine succinate 1.1 A) Poly(ethyleneimine succinate 1.3 B) Poly(ethyleneimine chloride) 1.1 * The values apply residual when the solution phosphate levels are - 5mM.
Oxabsorb~ is an organic polymer that encapsulates calcium such that the calcium is available to bind to such ions as phosphate, but may not be released by the polymer and thus is not supposed to be absorbed by the patient.
The amount of phosphate bound by all of these materials, both polymers and inorganic gels, is expected to vary as the phosphate concentration varies. The graph below shows the relationship between the solution phosphate concentration and the amount of phosphate bound to poly(dimethylaminopropylacrylamide). Other polymers might be expected to show a similar relationship.
WO 95/05184 ~ PCT/US94/09060 Z
1.5 Phosphate Bound ( me q/=) 0.5 Soludan Phosphate Concentration (mM) In an alternate type of test, the polymer was exposed to an acidic environment prior to exposure to phosphate as might happen in a patient's stomach. The solid (0.1 g) was suspended in 40 mL of 0.1 M NaCl. This mixture was stirred for 10 min., and the pH was adjusted to 3.0 with 1 M HC1, and the mixture was stirred for 30 min. The mixture was centrifuged, the supernatant decanted, and the solid resuspended in 40 mL of 0.1 m NaCl. This mixture was stirred for 10 min., the pH was adjusted to 3.0 with 1 M HC1, and the mixture was stirred for 30 min. The mixture was centrifuged, the supernatant decanted, and the solid residue used in the usual phosphate assay. Results are shown below for a variety of polymers and for aluminum hydroxide dried gel. In most cases the values for the amount of phosphate bound are higher in this test than in the usual assay.
o z.s s ~.s io POLYMER PHOSPHATE BOUND (meg/g)*
Poly(ethyleneimine sulfate B) 1.2 Poly(ethyleneimine sulfate C) 1.3 Poly(ethyleneimine tartrate B) 1.3 Poly(ethyleneiminetartrate C) 1.4 Poly(ethyleneimine ascorbate B) 1.0 Poly(ethyleneimine ascorbate C) 1.0 Poly(ethyleneimine citrate B) 1.0 Poly(ethyleneimine citrate C) 1.3 Poly(ethyleneiminesuccinate A) 1.1 Poly(ethyleneimine succinate B) 1.3 Poly(ethyleneimine chloride) 1.4 Aluminum Hydroxide 0.7 * The values apply when the residual solution ~~ phosphate levels are - SmM.
RAT DIETARY PHOSPHORUS EXCRETION MODEL
Six 6-8 week old Sprague-Dawley rats were placed in metabolic cages and fed semi-purified rodent chow powder containing 0.28% inorganic phosphorus. The diets were supplemented wtih 11.7% RenaStatTM (i.e., poly(allylamine/epichlorohydrin)) or micro-crystalline cellulose; the animals served as their own controls by receiving cellulose or RenaStatTM in randomized order.
The rats were fed ad libitum for three days to acclimate to the diet. Feces excreted during the next 48 hours were collected, lyophilized, and ground into powder. The inorganic phosphate content was determined according to the method of Taussky and Shorr: Microdetermination of Inorganic P. One gram of powdered feces was burned to remove carbon, then ashed in a 600°C oven. concentrated HC1 was then added to dissolve the phosphorus. The phosphorus was determined with ferrous sulfate-ammonium molybdate reagent. Intensity of the blue color was WO 95/05184 ~ ~ ~ ~ ~ 5 6 determined at 700 nm on a Perkin-Elmer spectrophotometer through a 1 cm cell.
The results are shown in the following graph.
Fecal phosphate concentration increased in all animals.
EFFECT RENASTATT"
OF ON
FECAL
PHOSPHORUS
EXCRETION IN - (11.7~9o 0.28%
RATS RENASTAT, Pi) -fl- RAT
I
V
O ~- ~T
.
' ,.
' oc ..a..- RAT3 30 ,. ' ~
. ~~~-~ RAT
t .y x 2 ,.
0 -' ___~__ STS
V _.~._ RAT6 " ' U
Z
a c,a a TREAT.\T
IN PARTIALLY NEPHRECTOMIZED RATS
Sprague-Dawley rats, approximately 8 weeks old, were 75% nephrectomized. One kidney was surgically removed; approximately 50% of the renal artery flow to 10 the contralateral kidney was ligated. The animals were fed a semi-purified rodent chow containing 0.385%
inorganic phosphorus and either 10% RenaStat~ or cellulose. Urine was collected and analyzed for phosphate content on specific days. Absorbed dietary phosphate is excreted into the urine to maintain serum phosphate.
The results are shown in the following graph.
None of the animals became hyperphosphatemic or uremic, indicating that the residual kidney function was adequate to filter the absorbed phosphate load. The animals receiving RenaStatTM demonstrated a trend towards reduced phosphate excretion, indicative of reduced phosphate absorption.
EFFECT OF RENASTAT~ ON URINARY PIiOSPHATE EXCRETION
IN PARTIALLY NEPHRECTOMIZED RATS
aoo a o_ f-~00 O
a ~ ~o goo z 0 ; , , TREATMENT
SYNTHESES
Poly(allylamine) hydrochloride.
To a 5 L, water jacketed reaction kettle equipped with 1) a condenser topped with a nitrogen gas inlet and 2) a thermometer and 3) a mechanical stirrer was added concentrated hydrochloric acid (2590 mL). The acid was cooled to 5°C using circulating water in the jacket of the reaction kettle at 0°C. Allylamine (2362 mL; 1798 g) was added dropwise with stirring, maintaining a temperature of 5-10°C. After the addition was complete, 1338 mL of liquid was removed by vacuum distillation at 60-70°C. Azobis(amidinopropane) dihydrochloride (36 g) suspended in 8l mL water was added. The kettle was heated to 50°C under a nitrogen atmosphere with stirring for 24 h. Azobis(amidinopropane) dihydrochloride (36 g) suspended in 81 mL water was again added and the heating and stirring continued for an addition 44 h. Distilled water (720 mL) was added and the solution allowed to cool with stirring. The liquid was added dropwise to a SU8STITUT~ SH~tT iRLi! ~. % F
stirring solution of methanol (30 L). The solid was then removed by filtration, resuspended in methanol (30 L), stirred 1 hour, and collected by filtration. This methanol rinse was repeated once more and the solid was dried in a vacuum oven to yield 2691 g of a granular white solid (poly(allylamine) hydrochloride).
Poly(allylamine/epichlorohydrin).
To a 5 gall bucket was added poly(allylamine) hydrochloride (2.5 kg) and water 10 L). The mixture was stirred to dissolve and the pH was adjusted to 10 with a solid NaOH. The solution was allowed to cool to room temperature in the bucket and epichlorohydrin (250 mL) was added all at once with stirring. The mixture was stirred gently until it gelled after about 15 minutes.
The gel was allowed to continue curing for 18 h at room temperature. The gel was then removed and put into a blender with isopropanol (about 7.5 L). The gel was mixed in the blender with about 500 mL isopropanol for --3 minutes to form coarse particles and the solid was then collected by filtration. The solid was rinsed three times by suspended it in 9 gal of water, stirring the mixture for 1 h, and collecting the solid by filtration.
The solid was rinsed once by suspending it in isopropanol (60 L), stirring the mixture for 1 h, and collecting the solid by~filtration. The solid was dried in a vacuum oven for 18 h to yield 1.55 Kg of a granular, brittle, white solid.
Poly(allylamine/butanedioldiglycidyl ether).
To a 5 gallon plastic bucket was added poly(allylamine) hydrochloride (500 g) and water (2 L).
The mixture was stirred to dissolve and the pH was adjusted to 10 with solid NaOH (142.3 g). The solution was allowed to cool to room temperature in the bucket and PCT/US94/o9060 wo 9s/osisa 1,4-butanedioldiglycidyl ether (130 mL) was added all at once with stirring. The mixture was stirred gently until it gelled after 4 minutes. The gel was allowed to continue curing for 18 h at room temperature. The gel was then removed and dried in a vacuum oven at 75°C for 24 h. The dry solid was ground and sieved for -30 mesh and then suspended in 6 gallons on water. After stirring for 1 h the solid was filtered off and rinse process repeated twice more. The solid was rinsed twice in isopropanol (3 gallons), and dried in a vacuum oven at 50°C for 24 h to yield 580 g of a white solid.
Poly(allylamine/ethanedioldic.~lycidvl ether).
To a 100 mL beaker was added poly(allylamine) hydrochloride (10 g) and water (40 mL). The mixture was stirred to dissolve and the pH was adjusted to 10 with solid NaOH. The solution was allowed to cool to room temperature in the beaker and 1,2 ethanedioldiglycidyl ether (2.0 mL) was added all at once with stirring. The mixture was allowed to continue curing for 18 h at room temperature. The gel was then removed and blended in 500 mL of methanol. The solid was filtered off and suspended in water (500 mL). After stirring for 1 h the solid was filtered off and the rising process repeated.
The solid was rinsed twice in isopropanol (400 mL), and dried in a vacuum oven at 50°C for 24 h to yield 8.7 g of a white solid.
Poly(allvlamine/dimethylsuccinate).
To a 500 mL round bottom flask was added poly(allylamine) hydrochloride (10 g), methanol (100 mL), and triethylamine (10 mL). The mixture was stirred and dimethylsuccinate (1 mL) was added. The solution was heated to reflux and stirring turned off after 30 min.
After 18 h the solution was cooled to room temperature WO 95/05184 2 ~ 6 ~ 3 5 (~ PCT/US94/09060 and solid was filtered off and suspended in water (1 L).
After stirring for 1 h the solid was filtered off and the rinse process repeated twice more. The solid was rinsed once in isopropanol (800 mL), and dried in a vacuum oven at 50°C for 24 h to yield 5.9 g of a white solid.
Poles allyltrimethylammonium chloride).
To a 500 mL three necked flask equipped with a magnetic stirrer, a thermometer, and a condenser topped with a nitrogen inlet, was added poly(allylamine) crosslinked with epichlorohydrin (5.0 g), methanol (300 mL), methyl iodide (20 mL), and sodium carbonate (50 g). The mixture was then cooled and water was added to total volume of 2 L. Concentrated hydrochloric acid was added until no further bubbling resulted and the remaining solid was filtered off. The solid was rinsed twice in 10% aqueous NaCl (1 L) by stirring for 1 h followed by filtration to recover the solid. The solid was then rinsed three times by suspending it in water (2 L), stirring for 1 h, and filtering to recover the solid. Finally the solid was rinsed as above in methanol and dried in a vacuum over at 50°C for 18 h to yield 7.7 g of white granular solid.
Poly(ethyleneimine)/acrvloyl chloride.
Into a 5 L three neck flask equipped with a mechanical stirrer, a thermometer, and an additional funnel was added polyethyleneimine (510 g of a 50%
aqueous solution (equivalent to 255 g of dry polymer) and isopropanol (2.5 L). Acryloyl chloride (50 g) was added dropwise through the addition funnel over a 35 minute period, keeping the temperature below 29°C. The solution was then heated to 60°C with stirring for 18 h. The solution was cooled and solid immediately filtered off.
The solid was rinsed three times by suspending it in WO 95/05184 p PCT/iJS94/09060 water (2 gallons), stirring for 1 h, and filtering. to recover the solid. The solid was rinsed once by suspending it in methanol (2 gallons), stirring for 30 minutes, and filtering to recover the solid. Finally, the solid was rinsed as above in isopropanol and dried in a vacuum over at 50°C for 18 h to yield 206 g of light orange granular solid.
f ~~~
PolvldimethylaminopropYlacrylamide~.
Dimethylaminopropylacrylamide (10 g) and methylenebisacrylamide (l.l g) were dissolved in 50 mL of water in a 100 mL three neck flask. The solution was stirred under nitrogen for 10 minutes. Potassium persulfate (0.3 g) and sodium metabisulfite (0.3 g) were each dissolved in 2-3 mL of water and then mixed. After a few seconds this solution was added to the monomer solution, still under nitrogen. A gel formed immediately and was allowed to sit overnight. The gel was removed and blended with 500 mL of isopropanol. The solid was' filtered off and rinsed three times with acetone. The 2o solid white powder was filtered off and dried in a vacuum oven to yield 6.1 g.
~ O
H ~~ d l n WO 95/05184 216 9 3 5 ~ PCT/US94/09060 Poly(Methacrylamidopropyltrimethylammoniumchloride)-[Polv(MAPTAC~1. [3-(Methacryloylamino)propyl]
trimethylammonium chloride (38 mL of 50% aqueous solution) and methylenebismethacrylamide (2.2 g) were stirred in a beaker at room temperature. Methanol (10 mL
was added and the solution was warmed to 40°C to fully dissolve the bisacrylamide. Potassium persulfate (0.4 g) was added and the solution stirred for 2 min. Potassium metabisulfite (0.4 g) was added and stirring was continued. After 5 min the solution was put under a nitrogen atmosphere. After 20 min the solution contained significant precipitate and the solution was allowed to sit overnight. The solid was washed three times with isopropanol and collected by filtration. The solid was then suspended in water 500 (mL) and stirred for several hours before being collected by centrifugation. The solid was again washed with water and collected by filtration. The solid was then dried in a vacuum oven to yield 21.96 g.
n a , Poly(ethyleneiminey "A" Polyethyleneimine (50g of a 50% aqueous solution; Scientific Polymer Products) was dissolved in water (100 mL). Epichlorohydrin (4.6 mL) was added dropwise. The solution was heated to 55 °C
for 4 h, after which it had gelled. The gel was removed, blended with water (1 L) and the solid was filtered off.
It was resuspended in water (2 L) and stirred for 10 min.
The solid was filtered off, the rinse repeated once with water and twice with isopropanol, and the resulting gel was dried in a vacuum oven to yield 26.3 g of a rubbery solid.
WO 95105184 PCT/US94/0906(1 2~~~35a Polylethyleneimine) "B" and PolylethvleneimineZ
"C" were made in a similar manner, except using 9.2 and 2.3 mL of epichlorohydrin, respectively.
Polylmethvlmethacrvlate-co-divinylbenzeney Methylmethacrylate (50 g) and divinylbenzene (5 g) and azobisisobutyronitrile (1.0 g) were dissolved in isopropanol (500 mL) and heated to reflux for 18 h under a nitrogen atmosphere. The solid white precipitate was filtered off, rinsed once in acetone (collected by centrifugation), once in water (collected by filtration) and dried in a vacuum oven to yield 19.4 g.
o H ~ OR H
n ~ o Polvldiethylenetriaminemethacrylamidel Poly(methylmethacrylate-co-divinylbenzene) (20 g) was suspended in diethylenetriamine (200 mL) and heated to reflux under a nitrogen atmosphere for 18 h. The solid was collected by filtration, resuspended in water (500 mL), stirred 30 min, filtered off, resuspended in water (500 mL), stirred 30 min, filtered off, rinsed briefly in isopropanol, and dried in a vacuum oven to yield 18.0 g.
Polvlpentaethylenehexaminemethacrylamide), Polyltetraethylenepentaminemethacrylamide), and WO 95/05184 216 ~ ~ 5 ~ PCT/US94/09060 polv(triethylenetetraaminemethacrylamide) were made in a manner similar to polyldiethylenetriaminemethacrylamide~
from pentaethylenehexamine, tetraethylenepentamine, and triethylenetetraamine, respectively.
Polv(methvlmethacrylate/PE1~. Poly(methylmethacrylate-co-divinylbenzene) (1.0 g) was added to a mixture containing hexanol (150 mL) and polyethyleneimine (15 g in 15 g water). The mixture was heated to reflux under nitrogen for 4 days. The reaction was cooled and the solid was filtered off, suspended in methanol (300 mL), stirred 1 h, and filtered off. The rinse was repeated once with isopropanol and the solid was dried in a vacuum oven to yield 0.71 g.
O
p~N
n Poly(ami.noethylmethacrvlamideZ.
Poly(methylmethacrylate-co-divinylbenzene) (20 g) was suspended in ethylenediamine (200 mL) and heated to reflux under a nitrogen atmosphere for 3 days. The solid was collected by centrifugation, washed by resuspending it in water (500 mL), stirring for 30 min, and filtering off the solid. The solid was washed twice more in water, once in isopropanol, and dried in a vacuum oven to yield 17.3. g.
WO 95/05184 2 ~ 6 ~ 3 5 6 PCT/US94/09060 J~
Poly(diethylaminopropylmethacrylamide) Poly(methylmethacrylate-co-divinylbenz'ene) (20 g) was suspended in diethylaminopropylamine (200 mL) and heated to reflux under a nitrogen atmosphere for 18 h. The solid was collected by filtration, resuspended in water (500 mL), filtered off, resuspended in water (500 mL), collected by filtration, rinsed briefly in isopropanol, and dried in a vacuum oven to yield 8.2 g.
O
O
'O-N
O
NHS-acrylate. N-Hydroxysuccinimide (NHS, 157.5 g) was dissolved in chloroform (2300 mL) in a 5 L flask.
The solution was cooled to 0°C and acryloyl chloride (132 g) was added dropwise, keeping the temperature < 2°C.
After addition was complete, the solution was stirred for 1.5 h, rinsed with water (1100 mL) in a separatory funnel and dried over anhydrous sodium sulfate. The solvent was removed under vacuum and a small amount of ethyl acetate was added to the residue. This mixture was poured into hexane (200 mL) with stirring. The solution was heated to reflux, adding more ethyl acetate (400 mL). The insoluble NHS was filtered off, hexane (1 L) was added, the solution was heated to reflux, ethyl acetate (400 mL) was added, and the solution allowed to cool to <10°C.
The solid was then filtered off and dried in a vacuum oven to yield 125.9 g. A second crop of 80 g was subsequently collected by further cooling.
Polv(NHS-acr_ylate~~. NHS-acrylate (28.5 g), methylenebisacrylamide (1.5 g) and tetrahydrofuran (500 mL) were mixed in a 1 L flask and heated to 50°C under a nitrogen atmosphere. Azobisisobutyronitrile (0.2 g) was added, the solution was stirred for 1 h, filtered to remove excess N-hydroxysuccinimide, and heated to 50°C
for 4.5 h under a nitrogen atmosphere. The solution was then cooled and the solid was filtered off, rinsed in tetrahydrofuran, and dried in a vacuum oven to yield 16.1 g.
O _ N~ /NH
N C
H I
NH3~Cr n Polv(c~uanidinobutylacrvlamide) . Poly(NHS-acrylate) (1.5 g) was suspended in water (25 mL) WO 95/5184 2 y ~ 9 3 5 0 containing agmatine (1.5 g) which had been adjusted to pH
9 with solid NaOH. The solution was stirred for 4 days, after which time the pH had dropped to 6.3. Water was added to a total of 500 mL, the solution was stirred for 30 min, and the solid was filtered off. The solid was rinsed twice in water, twice in isopropanol, and dried in a vacuum oven to yield 0.45 g.
C~
CI
D
Fol~(methacrylovl chloride). Methacryloyl chloride (20 mL), divinyl benzene (4 mL of 80% purity) , AIBN (0.4 g), and THF (150 mL) were stirred at 60°C under a nitrogen atmosphere for 18 h. The solution was cooled and the solid was filtered off, rinsed in THF, then acetone, and dried in a vacuum oven to yield 8.1 g.
O H
_ N~ /NH
N C
H
( NH3'Ct' n Poly(uuanidinobutylmethacrylamide).
Poly(methacryloyl chloride) (0.5 g), agmatine sulfate (1.0 g), triethylamine (2.5 mL), and acetone (50 mL) were stirred together for 4 days. Water (100 mL) was added WO 95/5184 ~ ~ 6 ~ 3 5 6 PCT/US94/09060 and the mixture stirred for 6 h. The solid was filtered off and washed by resuspending in water (500 mL), stirring for 30 min, and filtering off the solid. The wash was repeated twice in water, once in methanol, and the solid was dried in a vacuum oven to yield 0.41 g.
o _ ~~ H
H-.H-C NH3' HC03 n Polv(cruanidinoacrvlamide) The procedure for poly(guanidinobutylacrylamide) was followed substituting aminoguanidine bicarbonate (5.0 g) for the agmatine, yielding 0.75 g.
Poly(PEHJEPIZ. Epichlorohydrin (21.5 g) was added dropwise to a solution containing pentaethylenehexamine (20 g) and water (10o mL), keeping the temperature below 65°C. The solution was stirred until it gelled and heating was continued for 4 h (at 65°C). After sitting overnight at room temperature the gel was removed and blended with water (1 L). The solid was filtered off, water was added (1 L), and the blending and filtration were repeated. The gel was suspended in isopropanol and the resulting solid was collected by filtration and dried in a vacuum oven to yield 28.2 g.
' \
H H
21~y356 Ethvlidenebisacetamide. Acetamide (118 g), acetaldehyde (44.06 g), copper acetate (0.2 g), and water (300 mL) were placed in a 1 L three neck flask fitted with condenser, thermometer, and mechanical stirrer.
Concentrated HC1 (34 mL) was added and the mixture was heated to 45-50°C with stirring for 24 h. The water was then removed in vacuo to leave a thick sludge which formed crystals on cooling to 5°C. Acetone (200 mL) was added and stirred for a few minutes after which the solid was filtered off and discarded. The acetone was cooled to 0°C and solid was filtered off. This solid was rinsed in 500 mL acetone and air dried 18 h to yield 31.5 g.
~,J
Vinvlacetamide Ethylidenebisacetamide (31.05 g), calcium carbonate (2 g) and celite 541 (2 g) were placed in a 500 mL three neck flask fitted with a thermometer, a mechanical stirrer, and a distilling head atop a vigroux column. The mixture was vacuum distilled at 35 mm Hg by heating the pot to 180-225°C. Only a single fraction was collected (10.8 g) which contained a large portion of acetamide in addition to the product (determined by NMR).
This solid product was dissolved in isopropanol (30 mL) to form the crude solution used for polymerization.
- WO 95/05184 216 9 3 5 6 pCT~S94/09060 Poly(vinylacetamide). Crude vinylacetamide solution (15 mL), divinylbenzene (1 g, technical grade, 55% pure, mixed isomers), and AIBN (0.3g) were mixed and heated to reflux under a nitrogen atmosphere for 90 min, forming a solid precipitate. The solution was cooled, isopropanol (50 mL) was added, and the solid was collected by centrifugation. The solid was rinsed twice in isopropanol, once in water, and dried in a vacuum oven to yield 0.8g.
(~~~~
Polyfvinylamine). Poly(vinylacetamide) (0.79 g) was placed in a 100 mL one neck flask containing water 25 mL
and concentrated HC1 25 mL. The mixture was refluxed for 5 days, the solid was filtered off, rinsed once in water, twice in isopropanol, and dried in a vacuum oven to yield 0.77g. The product of this reaction (-0.84 g) was suspended in NaOH (46 g) and water (46 g) and heated to boiling (--140°C). Due to foaming the temperature was reduced and maintained at -100°C for 2 h. Water (100 mL) was added and the solid collected by filtration. After rinsing once in water the solid was suspended in water.
(500 mL) and adjusted to pH 5 with acetic acid. The solid was again filtered off, rinsed with water, then the isopropanol, and dried in a vacuum oven to yield 0.51 g.
Polvltrimethylammoniomethylstvrene chloride, is the copolymer of trimethylammoniomethylstyrene chloride and divinyl benzene.
Poly(DET/EPIy is the polymer formed by reaction of diethylenetriamine and epichlorohydrin.
Polv(ethyleneimine) Salts. Polyethyleneimine (25 g dissolved in 25 g water) was dissolved in water (100 mL) and mixed with toluene (1 L). Epichlorohydrin (2.3 mL) was added and the mixture heated to 60°C with vigorous mechanical stirring for 18 h. The mixture was cooled and the solid filtered off, resuspended in methanol (2 L), stirred 1 h, and collected by centrifugation. The solid was suspended in water (2 L), stirred 1 h, filtered off, suspended in water (4 L), stirred 1 h, and again filtered off. The solid was suspended in acetone (4 L) and stirred 15 min., the liquid was poured off, acetone (2 L) was added, the mixture was stirred 15 min., the acetone was again poured off, and the solid was dried in a vacuum oven to form intermediate "D".
Poly(ethyleneimine sulfate A) Intermediate °D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with sulfuric acid (1.1 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethvleneimine sulfate B) Intermediate"D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with sulfuric acid (0.57 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polvlethyleneimine sulfate Cy Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with sulfuric acid (0.28 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethyleneimine sulfate D). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with sulfuric acid (0.11 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly_(ethyleneimine tartrate A). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with tartaric acid (1.72 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polylethyleneimine tartrate B1. Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with tartaric acid (0.86 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polylethvleneimine tartrate C). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with tartaric acid (0.43 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethyleneimine ascorbate A). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with ascorbic acid (4.05 g). The WO 95/05184 PCT/US94/09(160 mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polvlethyleneimine ascorbate B). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with ascorbic acid (2.02 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polv(eth~leneimine ascorbate C~. Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min., and partially neutralized with ascorbic acid (1.01 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethyleneimine citrate A). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with citric acid (1.47 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polyfethyleneimine citrate B~~. Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with citric acid (0.74 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethyleneimine citrate C). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with citric acid (0.37 g). The WO 95/05184 '~ PCT/US94/09060 mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polylethyleneimine succinate A). Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with succinic acid (1.36 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Poly(ethyleneimine succinate By . Intermediate "D" (1.0 g) was suspended in water (150 mL), stirred 30 min, and partially neutralized with succinic acid (0.68 g). The mixture was stirred an additional 30 minutes, the solid was filtered off, resuspended in methanol (200 mL), stirred 5 min., filtered off, and dried in a vacuum oven.
Polvlethyleneimine chloride~i. Polyethyleneimine (100 g in 100 g water) was dissolved in water (640 mL
additional) and the pH was adjusted to 10 with concentrated HC1. Isopropanol (1.6 L) was added, followed by epichlorohydrin (19.2 mL). The mixture was stirred under nitrogen for 18 h at 60°C. The solids were filtered off and rinsed with methanol (300 mL) on the funnel. The solid was rinsed by resuspending it in methanol (4 L), stirring 30 min., and filtering off the solid. The rinse was repeated twice with methanol, followed by resuspension in water (1 gallon). The pH was adjusted to 1.0 with concentrated HC1, the solid was filtered off, resuspended in water (1 gallon), the pH
again adjusted to 1.0 with concentrated HC1, the mixture stirred 30 min., and the solid filtered off. The methanol rinse was again repeated and the solid dried in a vacuum oven to yield 112.4 g.
WO 95/05184 ~ ~ ~ ~ ~ ~ 0 Poly(dimethylethyleneimine chloride,. Poly(ethyleneimine chloride) (5.0 g) was suspended in methanol (300 mL) and sodium carbonate (50 g) was added. Methyl iodide (20 mL) was added and the mixture heated to reflux for 3 days.
Water was added to reach a total volume of 500 mL, the mixture stirred for 15 min., and the solid filtered off.
The solid was suspended in water (500 mL), stirred 30 minutes, and filtered. The solid was suspended in water (1 L), the pH adjusted to 7.0 with concentrated HC1, and the mixture stirred for 10 min. The solid was filtered off, resuspended in isopropanol (1L), stirred 30 min., filtered off, and dried in a vacuum oven to yield 6.33 g.
Use The methods of the invention involve treatment of patients with hyperphosphatemia. Elevated serum phosphate is commonly present in patients with renal insufficiency, hypoparathyroidism, pseudohypoparathyroidism, acute untreated acromegaly, overmedication with phosphate salts, and acute tissue destruction as occurs during rhabdomyolysis and treatment of malignancies.
The term "patient" used herein is taken to mean any mammalian patient to which phosphate binders may be administered. Patients specifically intended for treatment with the methods of the invention include humans, as well as nonhuman primates, sheep, horses, cattle, goats, pigs, dogs, cats, rabbits, guinea pigs, hamsters, gerbils, rats and mice.
The compositions utilized in the methods of the inventions are orally administered in therapeutically effective amounts. A therapeutically effective amount of compound is that amount which produces a result or exerts an influence on the particular condition being treated.
As used herein, a therapeutically effective amount of a phosphate binder means an amount which is effective in decreasing the serum phosphate levels of the patient to which it is administered.
The present pharmaceutical compositions are prepared by known procedures using well known and. readily available ingredients. In making the compositions of the _ present invention, the polymeric phosphate binder may be present alone, may be admixed with a carrier, diluted by a carrier, or enclosed within a carrier which may be in the form of a capsule, sachet, paper or other container.
When the carrier serves as a diluent, it may be a solid, semi-solid or liquid material which acts as a vehicle, excipient or medium for the polymer. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, syrups, aerosols, (as a solid or in a liquid medium), soft or hard gelatin capsules, sterile packaged powders, and the like. Examples of suitable carriers, excipients, and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, methyl cellulose, methylhydroxybenzoates, propylhydroxybenzoates, propylhydroxybenzoates, and talc.
It should be understood, however, that the foregoing description of the invention is intended merely to be illustrative by way of example only and that other modifications, embodiments, and equivalents may be apparent to those skilled in the art without departing from its spirit.
Claims (34)
1. The use of a therapeutically effective amount of a composition comprising at least one polymer characterized by a repeat unit having the formula or a copolymer thereof, wherein n is an integer and each R, independently, is H or a lower alkyl, alkylamino, or aryl group, for removing phosphate from a patient by ion exchange, said polymers being non-toxic and stable once ingested.
2. The use of claim 1 wherein said polymer is crosslinked with a crosslinking agent wherein said crosslinking agent is present in said composition from about 0.5% to about 75% by weight.
3. The use of claim 2 wherein said crosslinking agent comprises epichlorohydrin, 1,4 butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-dichloropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, toluene diisocyanate, acryloyl chloride, or pyromellitic dianhydride.
4. The use of claim 3 wherein said crosslinking agent comprises epichlorohydrin.
5. The use of claim 2 wherein said crosslinking agent is present in said composition from about 2% to about 20% by weight.
6. The use of a therapeutically effective amount of a composition comprising at least one polymer characterized by a repeat unit having the formula or a copolymer thereof, wherein each n is an integer, each R, independently, is H or a lower alkyl, alkylamino, or aryl group, and each X- is an exchangeable negatively charged counterion, for removing phosphate from a patient by ion exchange, and wherein said polymer is non-toxic and stable once ingested.
7. The use of claim 6 wherein said polymer is crosslinked with a crosslinking agent, wherein said agent is present in said composition from about 0.5% to about 75% by weight.
8. The use of claim 7 wherein said crosslinking agent comprises epichlorohydrin, 1,4 butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-dichloropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, toluene diisocyanate, acryloyl chloride, or pyromellitic dianhydride.
9. The use of claim 7 wherein said crosslinking agent is present in said composition from about 2% to about 20% by weight.
10. The use of claim 6 wherein the polymer is a copolymer comprising a second repeat unit having the formula wherein each n, independently, is an integer and each R, independently, is H or a lower alkyl, alkylamino, or aryl group.
11. The use of claim 10 wherein said polymer is crosslinked with a crosslinking agent wherein said crosslinking agent is present in said composition from about 0.5% to about 75% by weight.
12. The use of claim 11 wherein said crosslinking agent comprises epichlorohydrin, 1,4 butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-dich,loropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, toluene diisocyanate, acryloyl chloride, or pyromellitic dianhydride.
13. The use of claim 11 wherein said crosslinking agent is present in said composition from about 2% to about 20% by weight.
14. The use of a therapeutically effective amount of a composition comprising at least one polymer characterized by a repeat unit having the formula or a copolymer thereof, wherein n is an integer, each R, independently, is H or a lower alkyl, alkylamino, or aryl group, for removing phosphate from a patient by ion exchange, and wherein said polymer is non-toxic and stable once ingested.
15. The use of claim 14 wherein said polymer is crosslinked with a crosslinking agent, wherein said agent is present in said composition from about 0.5% to about 75% by weight.
16. The use of claim 15 wherein said crosslinking agent comprises 1,4 butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-dichloropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, toluene diisocyanate, acryloyl chloride, or pyromellitic dianhydride.
17. The use of claim 15 wherein said polymer is crosslinked with a crosslinking agent, wherein said crosslinking agent is present in said composition from about 2% to about 20% by weight.
18. The use of claim 14 wherein the polymer is a copolymer comprising a second repeat unit having the formula wherein each n, independently, is an integer and R is a lower alkyl, alkylamino, or aryl group.
19. The use of claim 18 wherein said polymer is crosslinked with a crosslinking agent wherein said crosslinking agent is present in said composition from about 1% to about 75% by weight.
20. The use of claim 19 wherein said crosslinking agent comprises epichlorohydrin, 1,4.
butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-diclzloropropane, 1,2-dichloroethane, 1,3-dibromopropane,, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, toluene diisocyanate, acryloyl chloride, or pyromellitic dianhydride.
butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-diclzloropropane, 1,2-dichloroethane, 1,3-dibromopropane,, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, toluene diisocyanate, acryloyl chloride, or pyromellitic dianhydride.
21. The uses of claim 19 wherein said crosslinking agent is present in said composition from about 2% to about 20% by weight.
22. The use of a therapeutically effective amount of a composition comprising at least one polymer characterized by a repeat unit having the formula or a copolymer thereof, wherein n is an integer, and each R1 and R2, independently, is H or a lower alkyl, alkylamino, or aryl group, each X- is an exchangeable negatively charged counterion, for removing phosphate from a patient by ion exchange, and wherein said polymer is non-toxic and stable once ingested.
23. The use of claim 22 wherein at least one of said R groups is a hydrogen group.
24. The use of claim 22 wherein said polymer is crosslinked with a crosslinking agent, wherein said agent is present in said composition from about 0.5% to about 75% by weight.
25. The use of claim 24 wherein said crosslinking agent comprises 1,4 butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-dichloropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, toluene diisocyanate, acryloyl chloride, or pyromellitic dianhydride.
26. The use of claim 24 wherein said polymer is crosslinked with a crosslinking agent, wherein said crosslinking agent is present in said composition from about 2% to about 20% by weight.
27. The use of a therapeutically effective amount of a composition comprising at least one polymer characterized by a repeat unit having the formula or a copolymer thereof, wherein n is an integer, each R1 and R2, independently, is H, an alkyl group containing 1 to 20 carbon atoms, an aminoalkyl group, or an aryl group containing 1 to 12 atoms, for removing phosphate from a patient by ion exchange, and wherein said polymer is non-toxic and stable once ingested.
28. The use of claim 27 wherein said polymer is crosslinked with a crosslinking agent, wherein said agent is present in said composition from about -0.5% to about 75% by weight.
29. The use of claim 28 wherein said crosslinking agent comprises 1,4 butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-dichloropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, toluene diisocyanate, acryloyl chloride, or pyromellitic dianhydride.
30. The use of claim 28 wherein said polymer is crosslinked with a crosslinking agent, wherein said crosslinking agent is present in said composition from about 2% to about 20% by weight.
31. The use of a therapeutically effective amount of a composition comprising at least one polymer characterized by a repeat unit having the formula or a copolymer thereof, wherein n is an integer, each R1, R2 and R3, independently, is H, an alkyl group containing 1 to 20 carbon atoms, an aminoalkyl group, or an aryl group containing 1 to 12 atoms, each X- is an exchangeable negatively charged counterion, for removing phosphate from a patient by ion exchange, and wherein said polymer is non-toxic and stable once ingested.
32. The use of claim 31 wherein said polymer is crosslinked with a crosslinking agent, wherein said agent is present in said composition from about 0.5% to about 75% by weight.
33. The use of claim 32 wherein said crosslinking agent comprises 1,4 butanedioldiglycidyl ether, 1,2 ethanedioldiglycidyl ether, 1,3-dichloropropanea, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethylsuccinate, toluene diisocyanate, acryloyl chloride, or pyromellitic dianhydride.
34. The use of claim 32 wherein said polymer is crosslinked with a crosslinking agent, wherein said crosslinking agent is present in said composition from about 2% to about 20% by weight.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA002310960A CA2310960C (en) | 1993-08-11 | 1994-08-10 | Phosphate-binding polymers for oral administration |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10559193A | 1993-08-11 | 1993-08-11 | |
| US08/238,458 | 1994-05-05 | ||
| US08/238,458 US5496545A (en) | 1993-08-11 | 1994-05-05 | Phosphate-binding polymers for oral administration |
| US08/105,591 | 1994-05-05 | ||
| PCT/US1994/009060 WO1995005184A2 (en) | 1993-08-11 | 1994-08-10 | Phosphate-binding polymers for oral administration |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002310960A Division CA2310960C (en) | 1993-08-11 | 1994-08-10 | Phosphate-binding polymers for oral administration |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CA2169356A1 CA2169356A1 (en) | 1995-02-23 |
| CA2169356C true CA2169356C (en) | 2000-07-04 |
Family
ID=26802726
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002169356A Expired - Lifetime CA2169356C (en) | 1993-08-11 | 1994-08-10 | Phosphate-binding polymers for oral administration |
| CA002402590A Abandoned CA2402590A1 (en) | 1993-08-11 | 1994-08-10 | Phospate-binding polymers for oral administration |
| CA002310960A Expired - Lifetime CA2310960C (en) | 1993-08-11 | 1994-08-10 | Phosphate-binding polymers for oral administration |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002402590A Abandoned CA2402590A1 (en) | 1993-08-11 | 1994-08-10 | Phospate-binding polymers for oral administration |
| CA002310960A Expired - Lifetime CA2310960C (en) | 1993-08-11 | 1994-08-10 | Phosphate-binding polymers for oral administration |
Country Status (15)
| Country | Link |
|---|---|
| US (1) | US5496545A (en) |
| EP (3) | EP1676581A3 (en) |
| JP (2) | JP3113283B2 (en) |
| KR (1) | KR100346766B1 (en) |
| AT (2) | ATE324900T1 (en) |
| AU (1) | AU689797B2 (en) |
| CA (3) | CA2169356C (en) |
| DE (5) | DE69428122T2 (en) |
| DK (2) | DK1133989T3 (en) |
| ES (2) | ES2260154T3 (en) |
| LU (2) | LU90884I2 (en) |
| NL (2) | NL300080I1 (en) |
| NZ (1) | NZ271826A (en) |
| PT (2) | PT716606E (en) |
| WO (1) | WO1995005184A2 (en) |
Families Citing this family (157)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DK0684958T3 (en) * | 1993-02-17 | 1998-10-19 | Btg Int Ltd | Polymers containing guanidino groups for use in therapy |
| US5487888A (en) * | 1993-05-20 | 1996-01-30 | Geltex, Inc. | Iron-binding polymers for oral administration |
| US5667775A (en) * | 1993-08-11 | 1997-09-16 | Geltex Pharmaceuticals, Inc. | Phosphate-binding polymers for oral administration |
| GB9503061D0 (en) * | 1995-02-16 | 1995-04-05 | British Tech Group | Polymeric compounds |
| DE19528524C2 (en) * | 1995-08-03 | 1999-11-11 | Hans Dietl | Calcium-containing agent for intestinal phosphate binding and process for its preparation |
| EP0793960B1 (en) * | 1996-03-05 | 2001-08-01 | Mitsubishi Chemical Corporation | Use of anion exchange resins for the manufacture of a medicament for the treatment of hyperphosphatemia |
| EP0922461A4 (en) * | 1996-07-19 | 2002-07-17 | Nikken Chemicals Co Ltd | REMEDIES FOR HYPERPHOSPHATEMIA |
| DE69737688T2 (en) * | 1996-10-23 | 2008-01-31 | Dow Global Technologies, Inc., Midland | WATER-SOLUBLE POLYMERS FOR THE REDUCTION OF THE ABSORPTION OF DIETETICS PHOSPHATE OR OXALATE |
| WO1998042355A1 (en) * | 1997-03-25 | 1998-10-01 | Geltex Pharmaceuticals, Inc. | Phosphate-binding polymers combined with a calcium supplement for oral administration |
| TW592727B (en) | 1997-04-04 | 2004-06-21 | Chugai Pharmaceutical Co Ltd | Phosphate-binding polymer preparations |
| US6423754B1 (en) * | 1997-06-18 | 2002-07-23 | Geltex Pharmaceuticals, Inc. | Method for treating hypercholesterolemia with polyallylamine polymers |
| NZ516848A (en) * | 1997-06-20 | 2004-03-26 | Ciphergen Biosystems Inc | Retentate chromatography apparatus with applications in biology and medicine |
| US5985938A (en) * | 1997-11-05 | 1999-11-16 | Geltex Pharmaceuticals, Inc. | Method for reducing oxalate |
| US6566407B2 (en) | 1997-11-05 | 2003-05-20 | Geltex Pharmaceuticals, Inc. | Method for reducing oxalate |
| US6726905B1 (en) | 1997-11-05 | 2004-04-27 | Genzyme Corporation | Poly (diallylamines)-based phosphate binders |
| AU2682499A (en) * | 1998-02-17 | 1999-08-30 | Dimitri R. Kioussis | Anion binding polymers and the use thereof |
| AU3005599A (en) * | 1998-03-19 | 1999-10-11 | Geltex Pharmaceuticals, Inc. | Continuous crosslinking of polymer gels |
| US6294163B1 (en) | 1998-10-02 | 2001-09-25 | Geltex Pharmaceuticals, Inc. | Polymers containing guanidinium groups as bile acid sequestrants |
| TW568788B (en) * | 1998-10-12 | 2004-01-01 | Chugai Pharmaceutical Co Ltd | Polymer combining with phosphoric acid and preparation containing the same |
| JP4749649B2 (en) * | 1998-10-12 | 2011-08-17 | 中外製薬株式会社 | Phosphate-binding polymer |
| US6271264B1 (en) | 1998-12-01 | 2001-08-07 | Geltex Pharmaceuticals, Inc. | Polymers containing spirobicyclic ammonium moieties as bile acid sequestrants |
| CA2362410A1 (en) * | 1999-04-16 | 2000-10-26 | Abbott Laboratories | Process for producing cross-linked polyallylamine hydrochloride |
| US6190649B1 (en) | 1999-04-23 | 2001-02-20 | Geltex Pharmaceuticals, Inc. | Polyether-based bile acid sequestrants |
| US6362266B1 (en) | 1999-09-03 | 2002-03-26 | The Dow Chemical Company | Process for reducing cohesiveness of polyallylamine polymer gels during drying |
| US6180754B1 (en) | 1999-09-03 | 2001-01-30 | The Dow Chemical Company | Process for producing cross-linked polyallylamine polymer |
| WO2001025291A1 (en) * | 1999-10-07 | 2001-04-12 | University Of Maryland | Sugar binding polymers and the use thereof |
| EP1223985B1 (en) * | 1999-10-15 | 2005-11-30 | Dow Global Technologies Inc. | Dialysis solution including polyglycol osmotic agent |
| US20030202958A1 (en) * | 1999-10-15 | 2003-10-30 | Strickland Alan D. | Dialysis solution including polyglycol osmotic agent |
| US6733780B1 (en) * | 1999-10-19 | 2004-05-11 | Genzyme Corporation | Direct compression polymer tablet core |
| ATE286386T1 (en) * | 1999-10-19 | 2005-01-15 | Genzyme Corp | DIRECT COMPRESSED POLYMER-BASED TABLET CORE |
| US20020054903A1 (en) * | 1999-10-19 | 2002-05-09 | Joseph Tyler | Direct compression polymer tablet core |
| WO2001066606A1 (en) * | 2000-03-09 | 2001-09-13 | Hisamitsu Pharmaceutical Co., Inc. | Crosslinked anion-exchange resin or salt thereof |
| WO2001066607A1 (en) * | 2000-03-09 | 2001-09-13 | Hisamitsu Pharmaceutical Co., Inc. | Crosslinked anion-exchange resin or salt thereof and phosphorus adsorbent comprising the same |
| AU2001241095A1 (en) | 2000-03-13 | 2001-09-24 | Hisamitsu Pharmaceutical Co. Inc. | Preventives and/or remedies for hyperphosphatemia |
| WO2002032974A2 (en) * | 2000-10-18 | 2002-04-25 | Fujisawa Pharmaceutical Co., Ltd. | Polymer and its use for the treatment and/or prevention of hyperphosphoremia |
| WO2002043744A1 (en) * | 2000-11-28 | 2002-06-06 | Mitsubishi Pharma Corporation | Excretion accelerator for accumulative chlorine compound |
| JPWO2002043761A1 (en) * | 2000-11-28 | 2004-04-02 | 三菱ウェルファーマ株式会社 | Anti-obesity agent and health food |
| AT409630B (en) * | 2000-12-13 | 2002-09-25 | Dsm Fine Chem Austria Gmbh | ALKYLATION OF N-BZW. CROSSLINKED POLYMERS CONTAINING AMINO OR AMMONIUM GROUPS |
| DE10065710A1 (en) * | 2000-12-29 | 2002-07-04 | Bayer Ag | Medicament containing a polyamine as an active substance |
| US6710162B2 (en) | 2001-02-16 | 2004-03-23 | Genzyme Corporation | Method of drying a material having a cohesive phase |
| BR0209124A (en) * | 2001-04-18 | 2005-02-09 | Genzyme Corp | Method for treating a syndrome x or inhibiting the onset of symptoms of syndrome x and use of a therapeutically effective amount of a salt of at least one aliphatic amine polymer |
| EP1923064B1 (en) | 2001-04-18 | 2017-06-28 | Genzyme Corporation | Use of amine polymer for lowering serum glucose |
| DE60212819T2 (en) * | 2001-04-18 | 2006-11-23 | Genzyme Corp., Cambridge | SALT FORM POLYALLYLAMINE |
| WO2002085379A1 (en) * | 2001-04-18 | 2002-10-31 | Geltex Pharmaceuticals, Inc. | Method for improving vascular access in patients with vascular shunts |
| EP1392331B1 (en) * | 2001-04-18 | 2008-04-02 | Genzyme Corporation | Use of colesevelam or sevelamer hydrogen chloride for lowering serum glucose |
| MX2008011686A (en) * | 2001-05-25 | 2010-05-27 | Marathon Oil Co | Method and system for performing operations and for improving production in wells. |
| US7041280B2 (en) * | 2001-06-29 | 2006-05-09 | Genzyme Corporation | Aryl boronate functionalized polymers for treating obesity |
| JP2003033651A (en) * | 2001-07-24 | 2003-02-04 | Chisso Corp | Oral phosphorus adsorbent and food containing it |
| TWI324519B (en) | 2001-07-30 | 2010-05-11 | Mitsubishi Tanabe Pharma Corp | Drugs for ameliorating postcibal hyperglycemia |
| US6600011B2 (en) | 2001-10-09 | 2003-07-29 | Genzyme Corporation | Process for purification and drying of polymer hydrogels |
| FR2833169B1 (en) * | 2001-12-07 | 2004-07-16 | Oreal | FILTERING COMPOSITION CONTAINING A 1,3,5-TRIAZINE DERIVATIVE, A DIBENZOYLMETHANE DERIVATIVE, AND AMINOSUBSTITUTED 2-HYDROXYBENZOPHENONE DERIVATIVE |
| US7119120B2 (en) * | 2001-12-26 | 2006-10-10 | Genzyme Corporation | Phosphate transport inhibitors |
| EP2316468A1 (en) | 2002-02-22 | 2011-05-04 | Shire LLC | Delivery system and methods for protecting and administering dextroamphetamine |
| AU2003218270A1 (en) * | 2002-03-19 | 2003-10-08 | Genzyme Corporation | Phosphate transport inhibitors |
| AT411463B (en) | 2002-09-03 | 2004-01-26 | Dsm Fine Chem Austria Gmbh | High yield production of alkylated nitrogen containing crosslinked polymer gels, e.g. epichlorohydrin crosslinked poly allylamine hydrochloride, comprises washing with methanol, sodium chloride and water |
| US7220406B2 (en) * | 2002-10-22 | 2007-05-22 | Genzyme Corporation | Method for promoting bone formation |
| AT412473B (en) | 2003-01-15 | 2005-03-25 | Dsm Fine Chem Austria Gmbh | METHOD FOR THE CONTINUOUS DRYING OF N- BZW. AMINO, AMMONIUM OR SPIROBICYCLIC AMMONIUM GROUPS OF POLYMERS |
| US7608674B2 (en) * | 2003-11-03 | 2009-10-27 | Ilypsa, Inc. | Pharmaceutical compositions comprising cross-linked small molecule amine polymers |
| US7767768B2 (en) * | 2003-11-03 | 2010-08-03 | Ilypsa, Inc. | Crosslinked amine polymers |
| US7335795B2 (en) * | 2004-03-22 | 2008-02-26 | Ilypsa, Inc. | Crosslinked amine polymers |
| US7385012B2 (en) * | 2003-11-03 | 2008-06-10 | Ilypsa, Inc. | Polyamine polymers |
| US7459502B2 (en) * | 2003-11-03 | 2008-12-02 | Ilypsa, Inc. | Pharmaceutical compositions comprising crosslinked polyamine polymers |
| US7449605B2 (en) * | 2003-11-03 | 2008-11-11 | Ilypsa, Inc. | Crosslinked amine polymers |
| WO2005082977A1 (en) * | 2004-02-23 | 2005-09-09 | E.I. Dupont De Nemours And Company | Crosslinked polymers containing biomass derived materials |
| WO2005082978A1 (en) * | 2004-02-23 | 2005-09-09 | E.I. Dupont De Nemours And Company | Preparation of crosslinked polymers containing biomass derived materials |
| US20070212325A1 (en) | 2004-03-26 | 2007-09-13 | Mitsubishi Pharma Corporation | Insulin Resistance-Improving Agent |
| EP2269589B1 (en) | 2004-03-30 | 2013-12-25 | Relypsa, Inc. | Ion binding polymers and uses thereof |
| US20050276781A1 (en) * | 2004-06-09 | 2005-12-15 | Ross Edward A | Molecularly imprinted phosphate binders for therapeutic use |
| CA2579612A1 (en) * | 2004-09-24 | 2006-04-06 | Biosphere Medical, Inc. | Microspheres capable of binding radioisotopes, optionally comprising metallic microparticles, and methods of use thereof |
| CA2583634C (en) * | 2004-10-13 | 2013-03-19 | Ilypsa, Inc. | Crosslinked amine polymers |
| US20060177415A1 (en) * | 2004-11-01 | 2006-08-10 | Burke Steven K | Once a day formulation for phosphate binders |
| US7985418B2 (en) | 2004-11-01 | 2011-07-26 | Genzyme Corporation | Aliphatic amine polymer salts for tableting |
| JP4547620B2 (en) * | 2004-12-02 | 2010-09-22 | 日東紡績株式会社 | Method for producing crosslinked allylamine polymers |
| ITME20040015A1 (en) * | 2004-12-07 | 2005-03-07 | Vincenzo Savica | CHEWING GUM, RUBBER CANDIES, TABLETS, SLOW TABLETS OF CHELANTI PHOSPHATE AND / OR PHOSPHORUS SALIVAR AND CAPSULES WITH SLOW RELEASE OF CHELANTS PHOSPHATE AND / OR PHOSPHORUS AT GASTROENTERIC LEVEL. |
| JP2008526771A (en) * | 2004-12-30 | 2008-07-24 | ジェンザイム コーポレーション | Zinc-containing treatment for hyperphosphatemia |
| EP1858955A1 (en) * | 2005-02-23 | 2007-11-28 | E.I. Dupont De Nemours And Company | Processes using alpha, omega-difunctional aldaramides as monomers and crosslinkers |
| WO2006097942A1 (en) * | 2005-03-16 | 2006-09-21 | Council Of Scientific And Industrial Research | An improved process for the preparation of crosslinked polyallylamine polymer. |
| US8492432B2 (en) | 2005-08-17 | 2013-07-23 | Hill's Pet Nutrition, Inc. | Methods for the treatment of kidney disease |
| CA2620406A1 (en) * | 2005-09-02 | 2007-03-08 | Genzyme Corporation | Method for removing phosphate and polymer used therefore |
| AR056499A1 (en) * | 2005-09-06 | 2007-10-10 | Serapis Farmaceuticals Ltd | COMPOUNDS |
| AU2012205214B2 (en) * | 2005-09-15 | 2015-05-21 | Genzyme Corporation | Formulation for Amine Polymers |
| PT1924246E (en) * | 2005-09-15 | 2016-02-10 | Genzyme Corp | Sachet formulation for amine polymers |
| DE112006002617T5 (en) | 2005-09-30 | 2008-08-28 | Ilypsa Inc., Santa Clara | Process for the preparation of core-shell composites or core-shell composites with crosslinked shells and resulting core-shell composites |
| BRPI0616604A2 (en) * | 2005-09-30 | 2012-12-25 | Ilypsa Inc | Method for Removing and Composition for Selectively Removing Potassium Ion from a Mammal's Gastrointestinal Tract, Method for Selectively Removing Potassium Ion from an Environment, Pharmaceutical Composition, Core-Wrap Particle, and, Uses of a Core-Wrap Particle and a pharmaceutical composition |
| US20090162314A1 (en) * | 2005-11-08 | 2009-06-25 | Huval Chad C | Magnesium-Containing Polymers for the Treatment of Hyperphosphatemia |
| CA2647325C (en) * | 2005-12-12 | 2015-03-24 | Allaccem, Inc. | Methods and systems for preparing antimicrobial bridged polycyclic compounds |
| ITRM20060204A1 (en) * | 2006-04-10 | 2007-10-11 | Vincenzo Savica | PHARMACEUTICALS AND PHARMACEUTICALS FOR HYPERPROTIC HYPROPROSTICAL NORMOPROTEIC DIETS ALL HYPOPHOSPHORIC AND HYPOFOSPHORIC DRINKS |
| US20080085259A1 (en) * | 2006-05-05 | 2008-04-10 | Huval Chad C | Amine condensation polymers as phosphate sequestrants |
| EP2039363B1 (en) | 2006-06-16 | 2013-01-02 | Mitsubishi Tanabe Pharma Corporation | Agent for prevention and/or treatment of glomerulopathy |
| EP2043627A2 (en) * | 2006-07-05 | 2009-04-08 | Genzyme Corporation | Iron(ii)-containing treatments for hyperphosphatemia |
| EP2049014A2 (en) * | 2006-07-18 | 2009-04-22 | Genzyme Corporation | Amine dendrimers |
| US20090252794A1 (en) | 2006-08-09 | 2009-10-08 | Tetsuya Suzuki | Tablet |
| US7964182B2 (en) * | 2006-09-01 | 2011-06-21 | USV, Ltd | Pharmaceutical compositions comprising phosphate-binding polymer |
| BRPI0717008A2 (en) * | 2006-09-01 | 2014-01-21 | Usv Ltd | PROCESS FOR PREPARING SEVELAMER CHLORIDE AND FORMULATING IT |
| BRPI0717545A2 (en) | 2006-09-29 | 2013-10-22 | Gezyme Corp | PHARMACEUTICAL COMPOSITION, METHOD FOR TREATING A DISEASE, AMIDE POLYMER, POLYMER NETWORK, AND METHOD FOR PREPARING AN AMIDE POLYMER |
| AU2007309029B2 (en) | 2006-10-25 | 2013-05-09 | Aovatechnologies, Inc. | Methods of reducing phosphate absorption |
| AU2007325459A1 (en) | 2006-10-26 | 2008-06-05 | Aovatechnologies, Inc. | Methods for reducing phosphate absorption |
| EP2120972A1 (en) * | 2006-12-14 | 2009-11-25 | Genzyme Corporation | Amido-amine polymer compositions |
| JP2008169758A (en) * | 2007-01-11 | 2008-07-24 | Bosch Corp | Turbocharger drive control method and device thereof |
| EP2125026B1 (en) | 2007-02-21 | 2014-09-24 | AllAccem, Inc. | Bridged polycyclic compound based compositions for the inhibition and amelioration of disease |
| EP2114376A1 (en) * | 2007-02-23 | 2009-11-11 | Genzyme Corporation | Amine polymer compositions |
| EP2131820A1 (en) * | 2007-03-08 | 2009-12-16 | Genzyme Corporation | Sulfone polymer compositions |
| US8034833B2 (en) * | 2008-03-20 | 2011-10-11 | Biolink Life Sciences, Inc. | Phosphorus binder for treatment of renal disease |
| EP2152277A1 (en) * | 2007-04-27 | 2010-02-17 | Genzyme Corporation | Amido-amine dendrimer compositions |
| RU2010104673A (en) | 2007-07-11 | 2011-08-20 | Торэй Индастриз, Инк. (Jp) | Crosslinked polyallyl amine or its acid addition salt and its use for medical purposes |
| EP2016947A1 (en) * | 2007-07-17 | 2009-01-21 | Chemo Ibérica, S.A. | Novel one step process for preparing cross-linked poly(allylamine) polymers |
| US8188068B2 (en) * | 2007-08-10 | 2012-05-29 | Allaccem, Inc. | Bridged polycyclic compound based compositions for coating oral surfaces in pets |
| US8153617B2 (en) * | 2007-08-10 | 2012-04-10 | Allaccem, Inc. | Bridged polycyclic compound based compositions for coating oral surfaces in humans |
| US8153618B2 (en) * | 2007-08-10 | 2012-04-10 | Allaccem, Inc. | Bridged polycyclic compound based compositions for topical applications for pets |
| WO2009023544A2 (en) * | 2007-08-10 | 2009-02-19 | Ilypsa, Inc. | Dosage unit anion-exchange polymer pharmaceutical compositions |
| US20090074833A1 (en) * | 2007-08-17 | 2009-03-19 | Whiteford Jeffery A | Bridged polycyclic compound based compositions for controlling bone resorption |
| TWI592159B (en) | 2007-11-16 | 2017-07-21 | 威佛(國際)股份有限公司 | Pharmaceutical compositions |
| EP2217215A1 (en) * | 2007-12-14 | 2010-08-18 | Genzyme Corporation | Coated pharmaceutical compositions |
| US8389640B2 (en) * | 2008-04-15 | 2013-03-05 | Lupin Limited | Process for the preparation of cross-linked polyallylamine polymer |
| US20100004218A1 (en) * | 2008-06-20 | 2010-01-07 | Whiteford Jeffery A | Bridged polycyclic compound based compositions for renal therapy |
| WO2009154747A1 (en) * | 2008-06-20 | 2009-12-23 | Genzyme Corporation | Pharmaceutical compositions |
| US20100016270A1 (en) * | 2008-06-20 | 2010-01-21 | Whiteford Jeffery A | Bridged polycyclic compound based compositions for controlling cholesterol levels |
| DE102008030046A1 (en) | 2008-06-25 | 2009-12-31 | Ratiopharm Gmbh | Preparation of tablets comprising polyallylamine polymer, useful for treating e.g. hyperphosphatemia, comprises mixing polyallylamine polymer and additives, compacting to slug, granulating the slug and compressing the granules into tablets |
| US8404784B2 (en) * | 2008-12-03 | 2013-03-26 | Navinta Llc | Manufacturing process of making polymeric amine salts |
| US20100166861A1 (en) * | 2008-12-29 | 2010-07-01 | Kelly Noel Lynch | Pharmaceutical formulations of sevalamer, or salts thereof, and copovidone |
| AU2010209293A1 (en) | 2009-01-22 | 2011-09-08 | Usv Limited | Pharmaceutical compositions comprising phosphate-binding polymer |
| BRPI1012076A2 (en) | 2009-06-16 | 2019-04-16 | Watson Pharma Private Ltd | processes for preparation of sevelamer carbonate |
| US8673272B2 (en) * | 2009-07-27 | 2014-03-18 | Isp Investments Inc. | Ultraviolet-absorbing compounds |
| GB0921951D0 (en) * | 2009-12-16 | 2010-02-03 | Fujifilm Mfg Europe Bv | Curable compositions and membranes |
| JP5377265B2 (en) * | 2009-12-16 | 2013-12-25 | 一般財団法人川村理化学研究所 | Polymer / tartaric acid crystalline nanocomposite and method for producing the same |
| ES2414383T5 (en) | 2010-01-15 | 2016-12-12 | Graphic Packaging International, Inc. | Continuous chain claw for octagonal cardboard boxes |
| JP5865847B2 (en) | 2010-02-24 | 2016-02-17 | レリプサ, インコーポレイテッド | Cross-linked polyvinylamine, polyallylamine and polyethyleneimine for use as bile acid scavengers |
| JP5717422B2 (en) * | 2010-11-30 | 2015-05-13 | 株式会社パイロットコーポレーション | Method for producing gel composition |
| IT1404163B1 (en) * | 2011-02-01 | 2013-11-15 | Chemi Spa | PROCESS FOR THE PREPARATION OF RETICULATED POLYALLYLAMINS OR THEIR PHARMACEUTICAL ACCEPTABLE SALTS |
| EP2672945B1 (en) | 2011-02-09 | 2016-02-03 | Synthon BV | Stabilized package forms of sevelamer |
| CN102796262B (en) * | 2011-05-24 | 2014-11-12 | 北大方正集团有限公司 | Preparation method of sevelamer carbonate |
| EP2773329B1 (en) | 2011-11-04 | 2016-01-13 | Synthon BV | Pharmaceutical compositions comprising sevelamer |
| US20130123433A1 (en) | 2011-11-14 | 2013-05-16 | Formosa Laboratories, Inc. | Method for preparing poly(allylamine) hydrochloride and derivatives therefrom |
| WO2013087237A1 (en) | 2011-12-13 | 2013-06-20 | Synthon Bv | Purification of sevelamer and related polyallylamines |
| EP2791183A1 (en) | 2011-12-13 | 2014-10-22 | Synthon BV | Preparation of sevelamer with reduced content of allylamine |
| CN102675510B (en) * | 2012-05-28 | 2014-04-02 | 诚达药业股份有限公司 | Synthesis process of Sevelamer |
| ES2471340B1 (en) | 2012-12-21 | 2015-08-17 | Laboratorios Rubió, S.A. | Oral pharmaceutical composition for high dosage drugs |
| CN105263477B (en) | 2013-03-13 | 2019-01-15 | 生物领域医疗公司 | Composition and correlation technique for radioactive isotope combination particle |
| CN103446179B (en) * | 2013-05-14 | 2017-03-15 | 厦门绿洲安源投资管理有限公司 | The application of the tree-shaped crosslinking polycation gel of the poly- fullerene of parents of binding chelating agent as phosphate, aliphatic acid and bile acid |
| RS59033B1 (en) | 2013-06-05 | 2019-08-30 | Tricida Inc | Proton-binding polymers for oral administration |
| RS61409B1 (en) | 2014-12-10 | 2021-03-31 | Tricida Inc | Proton-binding polymers for oral administration |
| MA41202A (en) | 2014-12-18 | 2017-10-24 | Genzyme Corp | CROSS-LINKED POLYDIALLYMINE COPOLYMERS FOR THE TREATMENT OF TYPE 2 DIABETES |
| CA2980468C (en) | 2015-03-20 | 2023-09-26 | Howard University | Polysaccharide-polyamine copolymers for removal of phosphate |
| CN107530370B (en) | 2015-03-20 | 2021-01-26 | 杨达志 | Microcarriers, substrates and scaffolds for culturing mammalian cells and methods of making same |
| US10245284B2 (en) | 2015-08-19 | 2019-04-02 | Alpex Pharma S.A. | Granular composition for oral administration |
| EP3426608B1 (en) | 2016-03-08 | 2021-05-19 | Technion Research & Development Foundation Limited | Disinfection and removal of nitrogen species from saline aquaculture systems |
| MY197091A (en) | 2016-05-06 | 2023-05-24 | Tricida Inc | Compositions for treating acid-base disorders |
| JP6792640B2 (en) | 2016-12-28 | 2020-11-25 | 富士フイルム株式会社 | An emulsion of a nitrogen atom-containing polymer or a salt thereof, a method for producing the same, and a method for producing particles thereof. |
| CN107412166B (en) * | 2017-08-08 | 2020-03-24 | 同济大学 | Nano composite phosphorus adsorption material and preparation and application thereof |
| US10934380B1 (en) | 2017-09-25 | 2021-03-02 | Tricida, Inc. | Crosslinked poly(allylamine) polymer pharmaceutical compositions |
| EP3698799B1 (en) * | 2017-10-16 | 2022-01-26 | FUJIFILM Corporation | Hyperphosphatemia treatment agent |
| WO2019078198A1 (en) | 2017-10-16 | 2019-04-25 | 富士フイルム株式会社 | Hyperphosphatemia treatment agent, and particles |
| US10479865B2 (en) | 2017-11-01 | 2019-11-19 | Strides Shasun Limited | Process for the preparation of sevelamer carbonate |
| US11266684B2 (en) | 2017-11-03 | 2022-03-08 | Tricida, Inc. | Compositions for and method of treating acid-base disorders |
| CN112047854B (en) * | 2020-10-20 | 2021-07-02 | 中国科学院长春应用化学研究所 | A kind of preparation method of N-vinyl alkyl amide |
| EP4295836A1 (en) | 2022-06-22 | 2023-12-27 | Labomed Pharmaceutical Company S.A. | Sachet comprising a liquid suspension of a sevelamer salt |
| EP4605439A1 (en) * | 2022-10-20 | 2025-08-27 | Universiteit Gent | Method to prepare amidated polymers |
Family Cites Families (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BE580490A (en) * | 1958-07-15 | 1960-01-08 | Merck & Co Inc | Compositions and methods for lowering the cholesterol content of the blood |
| US3308020A (en) * | 1961-09-22 | 1967-03-07 | Merck & Co Inc | Compositions and method for binding bile acids in vivo including hypocholesteremics |
| US3332841A (en) * | 1961-10-04 | 1967-07-25 | Lilly Co Eli | Method of treating hyperacidity |
| DE1927336A1 (en) * | 1968-06-17 | 1969-12-18 | Upjohn Co | Oral dosage form for the prevention of hypercholesterolemia |
| US3980770A (en) * | 1971-06-04 | 1976-09-14 | Pharmacia Aktiebolag | Polymerization products containing amino groups useful in serum cholesterol level control |
| DK136015B (en) * | 1973-02-09 | 1977-08-01 | Sandoz Ag | Process for the preparation of an aluminum hydrogel for use as a phosphate binder. |
| AR206115A1 (en) * | 1973-06-11 | 1976-06-30 | Merck & Co Inc | PROCEDURE TO PREPARE A NON-BRANCHED AND NON-CROSSLINK LINEAR POLYMER |
| US4205064A (en) * | 1973-06-11 | 1980-05-27 | Merck & Co., Inc. | Bile acid sequestering composition containing poly[{alkyl-(3-ammoniopropyl)imino}-trimethylenedihalides] |
| US4016209A (en) * | 1975-04-23 | 1977-04-05 | Merck & Co., Inc. | 3-[N'-(3-Halopropyl)-N-'-methylamino]-N,N,N-trimethyl-1-propanaminium halide and acid addition salts thereof |
| US4181718A (en) * | 1975-12-29 | 1980-01-01 | Mason Norbert S | Polyanion-stabilized aluminum hydrogels |
| US4071478A (en) * | 1976-06-07 | 1978-01-31 | Merck & Co., Inc. | Controlled partially cross-linked 3,3-ionenes |
| DE2741323A1 (en) * | 1977-03-10 | 1978-09-14 | Werner Klaus Konzack | Hand propelled vehicle e.g. pram - has wheels mounted on pivoted arms allowing tracks to be used on rough ground or steps |
| US4143130A (en) * | 1977-08-29 | 1979-03-06 | Warren-Teed Laboratories, Inc. | Method for treating kidney stones |
| JPS5566513A (en) * | 1978-11-14 | 1980-05-20 | Ono Pharmaceut Co Ltd | Drug for arteriosclerosis comprising high polymer compound as active constituent |
| US4247393A (en) * | 1979-01-11 | 1981-01-27 | Wallace Richard A | Hemodialysis assist device |
| IE52006B1 (en) * | 1980-12-12 | 1987-05-13 | Smith & Nephew Ass | Polymers of diallyl ammonium monomers pharmaceutical compositions thereof |
| JPS6090243A (en) * | 1983-10-25 | 1985-05-21 | Nitto Boseki Co Ltd | Method for producing small spherical monoallylamine cross-linked polymer |
| EP0162388B1 (en) * | 1984-05-11 | 1989-09-13 | Bristol-Myers Company | Novel bile sequestrant resin and uses |
| US4631305A (en) * | 1985-03-22 | 1986-12-23 | The Upjohn Company | Polymeric material as a disintegrant in a compressed tablet |
| JPS62132830A (en) * | 1985-12-05 | 1987-06-16 | Teijin Ltd | Slow-releasing medicinal drug composition |
| EP0350714B1 (en) * | 1988-07-13 | 1994-03-09 | Collaborative Biomedical Products Inc. | Tissue immobilization and cell culturing system and method for affixing biologically active moieties to a substrate |
| DE68911146T2 (en) * | 1988-08-26 | 1994-04-14 | Upjohn Co | FINE-GRAINED COLESTIPOL HYDROCHLORIDE. |
| GB8829835D0 (en) * | 1988-12-21 | 1989-02-15 | Smith Kline French Lab | Compounds |
| DE3901527A1 (en) * | 1989-01-20 | 1990-07-26 | Hoechst Ag | ALKYLATED POLYETHYLENE IMIN DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF, THEIR USE AS MEDICINAL PRODUCTS AND PHARMACEUTICAL PREPARATIONS |
| US5053423A (en) * | 1990-03-22 | 1991-10-01 | Quadra Logic Technologies Inc. | Compositions for photodynamic therapy |
| JPH0687974B2 (en) * | 1990-03-27 | 1994-11-09 | 忠一 平山 | Adsorption material for heat generating substances |
| JPH0424180A (en) * | 1990-05-16 | 1992-01-28 | Daikin Ind Ltd | Crawler type small transporter |
| AU659106B2 (en) * | 1990-11-06 | 1995-05-11 | Fgn, Inc. | Method for treating colonic polyps by the use of esters and amides of substituted phenyl and pyridyl amino carboxylates |
| IE914179A1 (en) * | 1990-12-07 | 1992-06-17 | Ici Plc | Nitrogen derivatives |
| JP2785529B2 (en) * | 1991-08-21 | 1998-08-13 | 日東紡績株式会社 | Ethanol sustained release agent and food preservation composition using the same |
| EP0534304A1 (en) * | 1991-09-21 | 1993-03-31 | Hoechst Aktiengesellschaft | Cycloalkylated polyethylenimines and their use as hypolipemic agents |
| SE470006B (en) * | 1991-09-26 | 1993-10-25 | Corline Systems Ab | New conjugate, its preparation and use, and substrates prepared with the conjugate |
| AU3592693A (en) * | 1992-01-21 | 1993-08-03 | University Of Utah, The | Method and composition for heparin binding using polyaminocations covalently immobilised on polymeric surfaces with polyethylene oxide spacers |
| AU4225993A (en) * | 1992-05-06 | 1993-11-29 | Isp Investments Inc. | Polymers of vinyl-pyrrolidone and aminoalkyl acrylamides |
| DE4227019A1 (en) * | 1992-08-14 | 1994-02-17 | Geckeler Kurt E Priv Doz Dr | Modified amine or amide polymers - prepd. by reaction with functionalising component and crosslinker |
| NZ255758A (en) * | 1992-08-20 | 1997-10-24 | Du Pont | Crosslinked polymeric ammonium salts useful as bile sequestrants |
| US5302531A (en) * | 1992-10-22 | 1994-04-12 | Miles Inc. | Composition for the semiquantitative determination of specific gravity of a test sample |
| DK0684958T3 (en) * | 1993-02-17 | 1998-10-19 | Btg Int Ltd | Polymers containing guanidino groups for use in therapy |
| JPH09500368A (en) * | 1993-06-02 | 1997-01-14 | ジェルテックス ファーマシューティカルズ,インコーポレイテッド | Compositions and methods for removing bile salts |
-
1994
- 1994-05-05 US US08/238,458 patent/US5496545A/en not_active Expired - Lifetime
- 1994-08-10 PT PT94925819T patent/PT716606E/en unknown
- 1994-08-10 DK DK01200604T patent/DK1133989T3/en active
- 1994-08-10 CA CA002169356A patent/CA2169356C/en not_active Expired - Lifetime
- 1994-08-10 NZ NZ271826A patent/NZ271826A/en not_active IP Right Cessation
- 1994-08-10 DE DE69428122T patent/DE69428122T2/en not_active Expired - Lifetime
- 1994-08-10 DE DE1994628122 patent/DE10299003I2/en active Active
- 1994-08-10 AU AU75607/94A patent/AU689797B2/en not_active Expired
- 1994-08-10 PT PT01200604T patent/PT1133989E/en unknown
- 1994-08-10 EP EP06008495A patent/EP1676581A3/en not_active Ceased
- 1994-08-10 DK DK94925819T patent/DK0716606T3/en active
- 1994-08-10 JP JP07507065A patent/JP3113283B2/en not_active Expired - Lifetime
- 1994-08-10 DE DE69434726T patent/DE69434726T2/en not_active Expired - Lifetime
- 1994-08-10 EP EP01200604A patent/EP1133989B1/en not_active Expired - Lifetime
- 1994-08-10 AT AT01200604T patent/ATE324900T1/en active
- 1994-08-10 AT AT94925819T patent/ATE204756T1/en active
- 1994-08-10 KR KR1019960700650A patent/KR100346766B1/en not_active Expired - Lifetime
- 1994-08-10 ES ES01200604T patent/ES2260154T3/en not_active Expired - Lifetime
- 1994-08-10 DE DE2002199003 patent/DE10299003I1/en active Pending
- 1994-08-10 WO PCT/US1994/009060 patent/WO1995005184A2/en active IP Right Grant
- 1994-08-10 ES ES94925819T patent/ES2161780T3/en not_active Expired - Lifetime
- 1994-08-10 CA CA002402590A patent/CA2402590A1/en not_active Abandoned
- 1994-08-10 DE DE122009000081C patent/DE122009000081I1/en active Pending
- 1994-08-10 EP EP94925819A patent/EP0716606B1/en not_active Expired - Lifetime
- 1994-08-10 CA CA002310960A patent/CA2310960C/en not_active Expired - Lifetime
-
2000
- 2000-07-03 JP JP2000201107A patent/JP2001055336A/en not_active Withdrawn
-
2002
- 2002-01-25 LU LU90884C patent/LU90884I2/en unknown
- 2002-01-29 NL NL300080C patent/NL300080I1/en unknown
-
2009
- 2009-12-09 NL NL300428C patent/NL300428I1/en unknown
- 2009-12-09 LU LU91629C patent/LU91629I2/en unknown
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2169356C (en) | Phosphate-binding polymers for oral administration | |
| US6083495A (en) | Method of making phosphate-binding polymers for oral administration | |
| US6605270B1 (en) | Iron-binding polymers for oral administration | |
| US6726905B1 (en) | Poly (diallylamines)-based phosphate binders | |
| WO1996021454A1 (en) | Phosphate-binding polymers for oral administration | |
| WO1998042355A1 (en) | Phosphate-binding polymers combined with a calcium supplement for oral administration | |
| US20020182168A1 (en) | Method for reducing copper levels and treating copper toxicosis | |
| HK1036753B (en) | Polymer compositions for use in therapy | |
| HK1009243B (en) | Phosphate-binding polymers for oral administration | |
| MXPA97005305A (en) | Phosphate fixing polymers for administration or | |
| CN1108801C (en) | Phosphate-binding polymers for oral administration | |
| HK1009088A (en) | Phosphate-binding polymers for oral administration | |
| CN1187131A (en) | Phosphate-binding oral polymers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request | ||
| MKEX | Expiry |
Effective date: 20140811 |