CA2154799C - Method for the pyrolysis of polymers - Google Patents

Method for the pyrolysis of polymers Download PDF

Info

Publication number
CA2154799C
CA2154799C CA002154799A CA2154799A CA2154799C CA 2154799 C CA2154799 C CA 2154799C CA 002154799 A CA002154799 A CA 002154799A CA 2154799 A CA2154799 A CA 2154799A CA 2154799 C CA2154799 C CA 2154799C
Authority
CA
Canada
Prior art keywords
evaporator
reaction mixture
polymer
pyrolysis
pyrolysis reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002154799A
Other languages
French (fr)
Other versions
CA2154799A1 (en
Inventor
Eigo Miura
Takashi Yamanaka
Ryoji Ohori
Akio Ohdaira
Kenichi Nishiwaki
Yoshikuni Itoh
Yoshinori Morita
Hajime Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2094498A external-priority patent/JPH03292305A/en
Priority claimed from JP2123865A external-priority patent/JP3020555B2/en
Priority claimed from JP2170438A external-priority patent/JP2991463B2/en
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority claimed from CA002058992A external-priority patent/CA2058992C/en
Publication of CA2154799A1 publication Critical patent/CA2154799A1/en
Application granted granted Critical
Publication of CA2154799C publication Critical patent/CA2154799C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

Disclosed is a method for the pyrolysis of a polymer comprising the steps of: introducing a reaction mixture resulting from pyrolytic reaction of a polymer in a pyrolysis reactor into an evaporator connected to the pyrolysis reactor at a high temperature, causing the reaction mixture to evaporate in the evaporator while blowing an inert gas into the evaporator, withdrawing volatile components separated from the reaction mixture from the evaporator, and withdrawing the reaction mixture from the evaporator. When the polymer is an olefin polymer, by this method, a pyrolytic wax of quality having satisfactory hue and a minimal content of contaminants is continuously produced in a stable manner for a long period.

Description

y DESCRIPTION
TITLE OF THE TNVENTTON
Method for the Pyrolysis of Polymers RELATED APPLTCATION
This application is a divisional of Canadian Applica-tion Serial No. 2,058,992 filed April 10, 1991.
FIELD. OF THE INVENTION
This invention relates to a method for pyrolytically decomposing a polymer to continuously produce a low molecular weight polymer of quality in a simplified apparatus through simple steps, and more particularly, to a method for producing a pyrolytic wax by pyrolytically decomposing an olefin polymer and effectively removing volatile components resulting from the pyrolytic reaction from the reaction mixture using a simplified apparatus whereby a pyrolytic wax of quality having satisfactory hue and a minimal content of contaminants is continuously produced in a stable manner for a long period.
BACKGROUND OF THE INVENTION
Heretofore, low molecular weight polymers, for example, low molecular weight polyolefins such as polyethylene and polypropylene have- been widely used as waxes in a variety of applications, for example, such as pigment dispersants, rubber processing aids, resin processing aids, additives to ink and coating compositions, fiber treating agents, and electro-statographic toners. In the recent years, the demand far such low molecular weight polymers in these applications 72736-~4D

~.~~~'~9~
is increasing and more strict requirements are imposed on their quality.
Known methods for producing low molecular weight polyolefins include telomerization of olefins, thermal degradation of high molecular weight polymers, and separation and purification of 'low molecular weight polymers by-produced during the preparation of high molecular weight polymers.
However, the previously proposed processes based on thermal degradation suffer from several problems in that the IO size of reactor is increased when a tank type reactor is used for batchwise mass production, and that control of reaction conditions such as temperature is difficult when a tubular reactor is used.
In the pyrolytic processes,~volatile components including low molecular weight hydrocarbons are produced during pyrolysis of polyolefins, and if such volatile components, even in minor amounts, are left in the final product of pyrolytic wax, the pyrolytic wax becomes deteriorated in quality with respect to residual volatile content, smell, 2 0 flash point, molecular weight distribution and the like.
Further, the low molecular weight hydrocarbons can be oxidized with air entrained with the polyolefin feed and air incidentally admitted on the way of the process to thereby produce oxygenated hydrocarbons which will adversely affect 2 5 the hue of the pyrolytic wax product, and the degree of 2~~~~~~
_3_ separation of such hydrocarbons varies among separating techniques. It is thus necessary to effectively remove the volatile components in the production process.
Moreover, since the thermal degradation processes generally use severe reaction conditions, it is likely that low molecular weight fractions of the resulting polyolefin have poor hue due tothermal history and thermally deteriorated contaminants are formed in the reactor, and consequently, a continuous mode of production is difficult. To overcome this problem, a method of carrying out pyrolysis in the presence of steam-containing inert gas was proposed (Japanese Patent Fublication No. 9368/1968). This method, however, imposes substantial limitations on the protection of apparatus against corrosion and the selection of apparatus material and adds complexity to reaction operation, leaving practical problems.
SUMMARY OF THE TNVENTION
The present invention provides a method for the pyrolysis of apolymer comprising the steps of: introducing a reaction mixture resulting from pyrolytic reaction of a polymer in a pyrolysis reactor into an evaporator connected to the pyrolysis reactor at a high temperature, causing the reaction mixture to evaporate in the evaporator while blowing an inert gas into the evaporator, withdrawing volatile components separated from the reaction mixture from the evaporator, and withdrawing the reaction mixture from the evaporator.

The above-mentioned method of the present invention is employed, in a preferred embodiment, for producing a pyrolytic wax using_an olefin polymer as a starting polymer.
In a preferred embodiment, the pyrolysis of the polymer may be conducted by feeding the polymer to an extruder -where the polymer is melted, metering the molten polymer from the extruder to a tubular pyrolysis reactor through metering means connected to the extruder, and pyrolytically decomposing the polymer in the tubularpyrolysis reactor to produce low molecular weight polymers.
In another preferred embodiment, for producing a pyrolytic wax, the pyrolysis of an olefin polymer may be conducted in the presence.of a higher fatty acid and/or a hydrochloric acid acceptor.
Preferably, an insert is disposed in the interior of the evaporator for promoting separation of volatile components from the reaction mixture in the evaporator interior.
BRIEF DESCRIPTION OF THE DRAWTNGS
FIG. 1 is a view illustrating a pyrolysis reactor that may be used in the method of the present invention.
FIG. 2 is a view illustrating an evaporator that may be used in the method of the present invention.
BEST MODE FOR CARRYING OUT-_THE TNVENTTON
Now the method for the pyrolysis of polymers accord-ing to the present invention is described in detail.

The polymer pyrolysis method of the invention is not limited to a certain particular type of polymer, but applicable to all types of polymers as long as they are pyrolytically decomposable. Examples of the polymer include homopolymers or copolymers of a-olefins generally containing 2 to 20 carbon atoms such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, etc.; copolymers of these a-olefins with monomers copolymerizable therewith; and polymers of styrene, (meth)acrylic acid, (meth)acrylates, vinyl acetate, etc. and all thermoplastic polymers excluding vinyl halide monomers such as polyvinyl chloride and polyvinylidene chloride, and any of these polymers can be pyrolytically decomposed into corresponding low molecular weight polymers.
Examples of the monomers copolymerizable with a-olefins include acrylic acid, methacrylic acid, acrylates, methacrylates, vinyl acetate, polybasic unsaturated carboxylic acids such as malefic acid and anhydrides and esters thereof, etc. The method of the invention is particularly useful in the pyrolysis of olefin polymers, for example, homopolymers of a-olefins such as polyethylene, polypropylene, poly-1-butene, and poly-4-methyl-1-pentene and polymers based on a-olefins into lower molecular weight ones, thereby producing a pyrolytic wax consisting of low molecular weight polymers. The invention is illustrated below with respect to the preparation of pyrolytic wax.

Referring to FIG. l, there are illustrated an extruder 1, a tubular pyrolysis reactor 2, heater means 3 for heating the tubular pyrolysis reactor 2, and metering means 4.

_7_ In the apparatus, a polymer feed is supplied to the extruder 1 from a hopper 5 connected to a feed inlet 11 of the extruder 1, melted and milled in the extruder 1 at a predetermined temperature, and extruded out of an extruder outlet 12.
The extruder is'not particularly limited to a certain type, but all types of extruders can be used, for example single or twin screw type, as long as it can melt and extrude r a polymer feed..
For melting the polymer feed in the extruder, the extruder is heated to a temperature which may be properly selected in accordance with a particular type of polymer feed to be melted.
For example, temperatures of about 200 to 350°C, preferably about 270 to 330°C are used when olefin polymers such as polyethylene and polypropylene are used as. the polymer feed for preparing pyrolytic wax consisting of lower molecular weight olefin polymers. .
The rate of extrusion of the polymer through the extruder 2 0 may be properly selected in accordance with the type, form (pellet, powder or the like), quantity, and melting temperature of the polymer feed used. The~diameter and length of the extruder screw may be similarly selected. When olefin polymers such as polyethylene and polypropylene are used as 2 5 the polymer feed for preparing pyrolytic wax consisting of - ~ ~ ~1~='~~~
- . _8_ lower molecular weight olefin polymers, for example, a single screw extruder with a screw having a length to diameter ratio (L/D) of from 15 to 40 is operated at a heating temperature of 200 to 350°C and at a feed rate of about 10 kg/hr for D = 40 S mm.
On delivery of a polymer feed to the.extruder, it is preferred to use an inert gas atmosphere as the atmosphere extending from the feed inlet 11 through the extruder to the w tubular pyrolysis reactor to be described later in detail, because such an atmosphere is effective for preventing oxidation of the polymer feed, oxidation and coloring of the resulting low molecular weight polymers, and formation of carbonaceous contaminants. An inert gas atmosphere may be established, for example, by passing an inert gas such as nitrogen through the feed inlet 11 from the hopper S.
After the polymer feed is melted in the extruder 1 and discharged from the extruder outlet 12 in this way, the molten polymer feed is delivered to the tubular pyrolysis reactor 2 through a polymer flowpath 6.
In the practice of the present invention, midway the flowpath 6 through which the molten polymer is delivered from the extruder 1 to the tubular pyrolysis reactor 2, the metering means 4 is preferably disposed for quantitatively controlling the delivery of the molten polymer from the 2 5 extruder 1 to the tubular pyrolysis reactor 2 because the _g_ controlled delivery ensures uniform progress of pyrolytic reaction, succeeding in.obtaining homogeneous low molecular weight polymers with a narrow molecular weight distribution and therefore, in higher yields.
. The metering~means 9 may be a gear pump or screw pump, for example, and any desired one may be selected in accordance with the feed rate of molten polymer to be pumped, viscosity of molten polymer, required precision of feed rate, operating r temperature and.pressure, and the like. Gear pumps are preferred especially because of their ability to pump even ..
high viscosity molten polymers, precise feed rate, and pressure increase capacity.
,. Then in the tubular pyrolysis reactor 2, the molten polymer feed is heated by the heater means 3 around the reactor whereby it is pyrolytically decomposed.
The tubular pyrolysis reactor, which is effective for efficiently heating the reaction mixture passing therethrough for pyrolytically decomposing the molten polymer, may be of any desired structure including the single tube type, double 2 0 tube type having an inner tube for passage'of the reaction mixture and an outer tube for passage of heating medium, and mufti-tube type-having a plurality of reaction tubes for passage of the reaction mixture. Preferably the tubular pyrolysis reactor is longitudinally inclined such that its 2 S outlet 22 is at a higher level because gas components resulting from pyrolytic reaction of the polymer can be smoothly discharged from within the pyrolytic reactor, the pyrolytic reactor can be reduced in volume, and the generation of carbonaceous contaminants can be suppressed.
~5 It is preferred to incline the tubular pyrolysis reactor at an inclination angle of about 2 to about 10 degrees since the apparatus can assume a normal arrangement.
If the tubular pyrolysis reactor is too long so that it is disposed in a folded arrangement rather than a linear IO arrangement, it is preferred for the above-mentioned reason to arrange the pyrolysis reactor so as to uniformly elevate from the inlet to the outlet.
Further preferably, a so-called static mixer, for example, is disposed in the interior of the tubular pyrolysis IS reactor in order to properly control the flow, agitation, and mixing of the reaction mixture for achieving effective pyroiysis of the polymer feed with concomitant advantages including reduction of the necessary reaction volume of the reactor, increased yields of the resulting low molecular 2 0 weight polymers, and minimized generation of carbonaceous contaminants. The static mixer is commercially available as the KENICS type from Kenics Co., USA, the SULZER type from Sulzer A.G., Germany, SQUARE mixer from Sakura Seisakusho K.K, Japan, HI-MIXER from Toray K.K., Japan, and T.K.-ROSS LDD
2 5 mixer from Dow Chemical Co., USA_ *Trade-mark t The tubular pyrolysis reactor is equipped with heater means which is not particularly limited and may be of any desired heating type including those based on an electric heater, low frequency induction heating, and molten salt heating medium. In particular, heating by an electric heater is easy to precisely control the longitudinal temperature distribution over the tubular pyrolysis reactor, thus resulting in low molecular weight polymers of higher quality.
The heating temperature of the tubular pyrolysis reactor may be properly selected in accordance with the polymer feed tb be pyrolytically decomposed. For example, a temperature of about 350 to 450°C, preferably about 360 to 430°C is selected when polyethylene is used as the polymer feed and a temperature is selected in the same range when polypropylene is used.
Further, the residence time of the reaction mixture in the tubular pyrolysis reactor, that is, pyrolytic time of the polymer, the pressure, and the inner diameter of the tubular pyrolysis reactor are generally about 10 minutes to 5 hours, preferably from about 30 minutes to 3 hours, more preferably 2 0 from about 30 to 100 minutes, about 5 Torr to 50 kg/cm2G, more preferably from about 500 Torr to 1.8 kg/cm2G, and from about 1/2 to 10 inches, preferably about 4 to 8 inches for single and double tube type pyrolysis reactors and about 3/4 to 1-1/2 inches for mufti-tube type pyrolysis reactors, respectively.

~.~~~7~9 The reaction mixture containing low molecular weight polymers resulting from pyrolysis is taken. out of the tubular pyrolysis reactor 2 through the outlet 22 and further processed in subsequent steps.
Also preferably, pyrolysis of polymers, especially pyrolysis of olefin polymers into lower molecular weight pyrolytic waxes is carried out in the presence of a higher fatty acid and/or a hydrochloric acid acceptor.
Examples of the higher fatty acid used herein include IO fatty acids having 10 or more carbon atoms such as capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, 12-hydroxystearic acid, ricinoleic acid, arachidinic acid, behenic acid, and montanic acid.
Examples of the hydrochloric~acid acceptor include metal IS salts of higher fatty acids, epoxidized higher fatty acid esters, hydrotalcite, and calcium oxide.
Exemplary of the metal salts of higher fatty acids are metal salts of the above-mentioned higher fatty acids, with exemplary metals being lithium, sodium, potassium, magnesium, 2 0 calcium, strontium, barium, zinc, cadmium, aluminum; tin, and lead.
Examples of the epoxidized higher fatty acid ester include epoxidized octyl stearate, etc.-In the method of the invention, the higher fatty acids and hydrochloric acid acceptors may be used alone or in admixture of two or more.
Preferred inter alia are stearic acid, palmitic acid, and 12-hydroxystearic acid among the higher fatty acids and calcium stearate, aluminum stearate, and magnesium stearate among the hydrochloric acid acceptors.
In the method of the invention, the higher fatty acid and/or'hydrochloric acid acceptor is generally used in an amount of about 0.001 to 1 part by weight, preferably about 0.01 to 0.5 parts by weight per 100 parts~by weight of the olefin polymer.
.. If desired, the method of the invention may utilize thermal stabilizers, weathering stabilizers, surfactants, lubricants, nucleating agents, and anti-blocking agents as long as the benefits of the invention are not lost.
Examples of the thermal stabilizer used herein include phenolic stabilizers and organic phosphorus stabilizers.
Exemplary of the phenolic stabilizers are 2,6-di-t-butyl-2 0 4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, 2,6-dicyclohexyl-4-methylphenol, 2,6-diisopropyl-4-ethylphenol, 2,6-di-t-amyl-4-methylphenol, 2,6-di-t-octyl-4-n-propylphenol, 2,6-dicyclohexyl-4-n-octylphenol, 2-isopropyl-4-methyl-6-t-butylphenol, 2-t-butyl-4-ethyl-6-t-octylphenol, 2-isobutyl-9-2 5 ethyl-6-t-hexylphenol, 2-cyclohexyl-4-n-butyl-6-. -14-isopropylphenol, dl-Ct-tocopherol, t-butylhydroquinone, 2,2'-methylenebis(4-methyl-6-t-butylphenol), 4,4'-butylidenebis(3-methyl-6-t-butylphenol), 4,4'-thiobis(3-methyl-6-t-butylphenol), 2,2'-thiobis(4-methyl-6-t-butylphenol), 4,4'-S methylenebis(2,6-di-t-butylphenol), 2,2'-methylenebis[6-(1-methylcyclohexyl)-p-cresol], 2,2'-ethylidenebis(2,4-di-t-butylphenol), 2,2'-butylidenebis(2-t-butyl-4-methylphenol), 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, ,..
triethyleneglycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,2-thiodiethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], N,N'-hexamethylenebis(3,5-di-t-butyl-4-hydro~:y-hydrocinnamide), 3,5-di-t-butyl-4-hydroxybenzylpho~sphonate diethyl ester, 1,3,5-tris(2,6-dimethyl-3-hydroxy-4-t-butylbenzyl)isocyanurate, 1,3,5-tris[(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxyethyl]isocyanurate, tris(4-t-butyl-2,5-dimethyl-3-hydroxybenzyl)isocyanurate, 2,4-bis(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, 2 0 tetrakisjmethylene-3-(3,5-di-t-butyl-4-hydroxy-phenyl)propionate]methane, bis(3,5-di-t-butyl-4-hydroxybenzyl ethyl phosphonate) calcium, bis(3,5-di-t-butyl-4-hydroxybenzyl ethyl phosphonate) nickel, bis[3,3-bis(3-t-4-hydroxyphenyl)butyric acid] glycol ester, r7,N'-bis[(3,5-di-t- -2 S butyl-4-hydroxyphenyl)propionyl]hydrazine, 2,2'-oxamido-' -15-bisjethyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,2'-methylenebis(4-methyl-6-t-butylphenol)terephthalate, 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, 3,9-bas[1,1-dimethyl-2-{(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy}ethyl]-2,4,8,10-tetraoxaspiro[5,5]-undecane, 2,2-bas[4-(2-(3,5-di-t-butyl-4-hydroxy-hydrocinnamoyloxy))ethoxyphenyl]propane, and ~3-(3,5-di-t-butyl.-4-hydroxyphenyl)propionic acid alkyl esters. Preferred among these are.2,6-di-t-butyl-4-methylphenol, tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)-propionate]methane, and n-octadecyl-(3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate belonging to the ~3-(3,5-di-t-butyl-9-hydroxyphenyl)propionic acid alkyl esters.
Exemplary of the organic phosphorus stabilizers are 1$ trioctyl phosphate, trilauryl phosphate, tridecyl phosphate, octyl diphenyl phosphate, tris(2,4-di-t-butylphenyl) phosphate, triphenyl phosphate, tris(butoxyethyl) phosphate, tris(nonylphenyl) phosphate, distearyl pentaerythritol diphosphite, tetra(trisdecyl)-1,1,3-tris(2-methyl-5-t-butyl-4-2 0 hydroxyphenyl) butane diphosphite, tetra (C12_15 mixed alkyl) -4,4'-isopropylidene diphenyl.diphosphite, tetra(tridecyl)-4,4'-butylidenebis(3-methyl-6-t-butylphenol)diphosphite, tris(3,5-di-t-butyl-4-hydroxyphenyl) phosphate, tris(mono-, di- mixed nonylphenyl) phosphate, hydrogenated 4,4'-2 5 isopropylidenediphenol polyphosphate, bas(octylphenyl)~bis[9,4'-butylidenebis(3-methyl-6-t-butylphenyl)]~1,6-hexanediol diphosphite, phenyl 4,4'-isopropylidenediphenol pentaerythritol diphosphite, tris[4,4'-isopropylidenebis(2-t-butylphenyl)] phosphate, phenyl diisodecyl phosphate, di(nonylphenyl) pentaerythritol diphosphite, tris(1,3-distearoylo>:yisopropyl) phosphate, 4,4'-isopropylidenebis(2-t-butylphenol) di(nonylphenyl) phosphate, 9,10-dihydro-9-oxa-9-oxa-10-phosphaphenanthrene-10-oxide, and bas(dialkylphenyl)pentaerythritol diphosphite esters.
The last-mentioned bas(dialkylphenyl)pentaerythritol diphosphite esters include spiro and cage types of the following formulae (1) and (2), respectively. Most often, mixtures of isomers are used for economical reason because conventional methods produce phosphate esters as an isomeric mixture.
R' O-P~OCH=~ ~ CHz' /C\ /P O ~ C~l ) OCI-I=/ \OCH /_ F' r, 1~
O OCH, P-OCH, C OCH= p R' OCH=
O
R=

In the formulae, R1 and R2 are selected from alkyl groups having 1 to 9 carbon atom's, preferably branched alkyl groups, and are most preferably tert-butyl groups, and they are most preferably attached to the phenyl group at 2-, 4- and 6-positions.
Illustrative examples of the bis(dialkylphenyl)-pentaerythritol diphosphite esters are bis(2,4-di-t-butylphenyl)pentaerythritol diphosphite and bis(2,6-di-t-...
butyl-4-methylphenyl)pentaerythritol diphosphite.
Also included in the organic phosphorus stabilizers are phosphonites having a structure in which carbon is~directly attached to phosphorus, for example, tetrakis(2,4-di-t-butylphenyl)-4,4'-biphenylene diphosphonite.
Preferred among the above-mentioned organic phosphorus stabilizers are bis(2,6-di-t-butyl-4-methylphenyl)-pentaerythritol diphosphite and tetrakis(2,4-di-t-butylphenyl)-4,4'-biphenylene diphosphonite.
In the embodiment of the invention wherein the thermal stabilizer is used, the above-mentioned phenolic and organic 2 0 phosphorus stabilizers may be used alone or in admixture of two or more.
When used, the amount of the thermal stabilizer is generally about 0.1 to 30 parts by weight, preferably about 0:5 to 10 parts by weight per part by weight of the higher 2 5 fatty acid and/or hydrochloric acid acceptor.

_ 2~~=~'~~~
_~8_ In the method of the invention, the higher fatty acid and/or hydrochloric acid acceptor and optionally used additives are supplied to the pyrolytic reaction of olefin polymers in any desired manner, for example, by incorporating them in the olefin polymer feed during pelletization thereof;
by batchwise or continuously adding them to the olefin polymer feed at the same time or separately when the olefin polymer feed is admitted into the reactor; or by supplying an olefin ...
polymer feed commercially available as a blend previously containing such higher fatty acid and/or hydrochloric acid acceptor and optional additives.
The above-mentioned pyrolytic reaction in the pyrolysis reactor yields a reaction mixture which generally contains volatile components resulting from pyrolytic reaction. Often, I5 the volatile components are mainly composed of hydrogen and hydrocarbons having 1 to about 35 carbon atoms although the exact composition varies with a particular type of olefin polymer as the starting feed. Illustratively, the volatile components are mainly composed of hydrocarbons having about 25 2 0 to 35 carbon atoms when the starting feed is polyethylene and hydrocarbons having about 8 to 13 carbon atoms when the starting feed is polypropylene. In addition to the hydrocarbons, incidental impurities in the starting feed and oxygenated hydrocarbons resulting from air incidentally 2 5 admitted during the process are present in minor amounts and _ -19-if any, they can adversely affect the hue of the end product or pyrolytic wax. It is to be noted that the presence of oxygenated hydrocarbons is ascertained by subjecting all the volatile components to silica gel fractionation and thin film chromatography, and then to infrared absorption analysis whereupon the presence of hydroxyl, carbonyl and carboxyl groups is observed.
Illustrated in FIG. 2 are an evaporator 7, an inlet 8 for reaction mixture, located near a top, an inlet 9 for inert gas, located near a bottom, an outlet 10 for volatile components, located at the top, an outlet 13 for reaction mixture located at the bottom and an insert 14 disposed in the evaporator. A reaction mixture resulting from pyrolytic reaction of an olefin polymer in a pyrolysis reactor (not shown) as previously described is admitted into the evaporator 7 through the inlet 8. The evaporator 7 may be of any desired shape including tower, tube, and tank shapes although a tower shaped evaporator is especially preferred because of promcted contact of the reaction mixture with inert gas, consistent degree of decomposition of the olefin polymer feed, and stable operation.
The evaporator is adjusted to a high temperature of about 250 to 430°C, preferably about 300 to 400°C because volatile components do not condense or dissolve in the end product o r pyrolytic wax, because oxygenated hydrocarbons which would otherwise cause coloring of the wax and be difficult to subsequently separate from the wax do not dissolve in the wax and are thus easy to separate, and because the reaction S mixture can be treated at the high temperature as in the pyrolysis reactor with saved energy. The pressure in the evaporator is adjusted to about 500 Torr to 1.8 kg/cm2G, preferably about 750 Torr to 0.5 kg/cm2G. These conditions r are advantageous in that any extra equipment such as a vacuum pump and pressure control system is not required and stable operation is facilitated by a simple process.
The volatile components separated from the reaction mixture are withdrawn from the vapor outlet 10 and provided to a condenser (not shown) where they are condensed into a liquid 1S to be discharged as waste oil while the remaining non-condensible gases may be burned in order to prevent the smell from spreading.
In the method of the invention, an inert gas is blown into the evaporator 7 through the gas inlet 9 so as to provide 2 0 counterflow contact with the reaction mixture for assisting in discharging the volatile components through the vapor outlet 10. The inert gases used herein include nitrogen gas, carbon dioxide gas, steam and the like, with nitrogen gas being preferred. The blowing rate of inert gas may be properly 2 S adjusted in accordance with the flow rate of the reaction mixture incoming from the pyrolysis reactor, that is, processing quantity, as well as the type of an olefin polymer used and the degree of pyrolysis although the inert gas is often used in an amount of about 0.1 to 20 mol, preferably about 1 to 5 mol per kg of the reaction mixture.
For the evaporator of tower or tubular type, it is preferably equipped with plates or a static mixer, loaded with packings, or provided with wetted walls, because the contact between the reaction mixture and inert gas is promoted and more effective separation of volatile components from the reaction mixture is achieved.
The plates used herein are not particularly limited and their examples include bubble cap trays, uniflux trays, perforated trays, valve trays (flexible trays, Natta*=loat valve trays, ballast trays, etc.), cascade trays, Venturi*
trays, Kitter trays, recycling trays, jet trays, turbo grid trays, ripple t rays, dual flow trays, baffle trays, and ring and doughnut trays.
Included in the static mixer which is not particularly 2 0 limited are KENICS*type, SULZER type, SQUARE mixer, and T.K.-ROSS LPD mixer.
The packings are generally formed of porcelain or metallic materials capable of withstand high temperatures prevailing in the evaporator. Since the shape is not 2 5 particularly limited, exemplary packings include spherical *Trade-mark _2?_ *
packings, ring type packings (Raschig rings, Lessing*rings, spiral rings, cross partition rings, and pole rings), saddle type packings (bevel saddles and interlocking saddles), spray packings, Pana*packings, Goodloe*packings, Stedman packings, Dicksori packings, MacMahon*packings, cannon protruded met31 packings, helix, tellerette, and perpendicular plate packings.
The wetted wall may be obtained by utilizing the inner wall of the tower itself or providing a multi-tube structure.
Utilization of the tower itself offers the most simple tubular structure because no insert is present in the evaporator interior.
While a variety of inserts are mentioned above, the method of the invention favors the use of perforated trays, jet trays, ripple trays, dual flora trays, baffle trays, and ring-and-doughnut trays among the plates, the above-mentioned ones among the static mixers, spherical packings, ring packings and saddle packings among the packings, and the above-mentioned two structures among the wetted walls because they are applicable to reaction mixtures which are highly 2 0 viscous and can contain contaminants and because of simple structure.
Preferably, the quantity of inserts disposed in the evaporator corresponds to about 2 or 3 theoretical stages in view of the size of evaporator and separation capacity.
*Trade-mark ~~~~.~'~~9 F~

The reaction mixture exiting from the outlet 13 after removal of volatile components in the evaporator is provided to later stage steps where decomposition reaction is terminated by cooling and contaminants are removed by filtration. Finally the reaction mixture is cooled and solidified into a solid pyrolytic wax.
EXAMPLE
Examples of the.present invention are given below by way I 0 of illustration.
A polymer was pyrolytically decomposed in a system constructed as shown in FIG. 1 by~using polypropylene having an ultimate viscosity ['t'[] of 1.6 dl/g as measured in decalin at 135°C as the polymer feed and operating an extruder and a tubular pyrolysis reactor of the following specifications under the following conditions.
Fxt ruder 2 0 Screw diameter: 39.85 mm Cylinder diameter: 40.0 mm Extruder temperature (at outlet): 300°C
Extrusion rate: 10.5 kg/hr.
Tubular ~yroly~is a or 2 5 Reactor tube diameter: 50 mm Heating temperature: 360°C and 902°C
Internal pressure: atmospheric Residence time: 33 min.
(based on polymer feed rate) Meter,'_nQ m_an (gear pump, 20 cc/revolution, gear revolution: 13 rpm) Feed rate: 10.5 kg/hr.
The resulting reaction mixture was subjected to gas-liquid separation for removing volatile components, then filtered and purified, obtaining low molecular weight polymers. The low molecular weight polymers were evaluated or measured for melt viscosity, volatile content, powder hue, melt color, molecular weight distribution (Mw/Mn), and number of terminal double bonds by the following methods. The results are shown in Table 1.
a) Melt viscosity A low molecular weight polymer sample was heated and melted at 180°C and the melt viscosity was measured by means of a Brookfield*viscometer.
0 b) Volatile content A low molecular weight polymer sample, about 2 grams, was kept for 2 hours in a constant temperature hot air dryer at 150°C and a loss of weight was considered as the volatile content.
*Trade-mark c) Powder hue A sample was ground into a powder having a mean particle size of about 300 ~tm which was measured for hue by means of a Hunter*Laboratory color difference meter.
d) Melt color A sample was melted at 180°C and the color of the molten sample was compared with a HAZEN colorimetric standard solution using color comparison tubes.
e) Molecular weight distribution 1 0 Measurement was made by Gel Permeation Chromatography (GPC) .
f) Number of terminal double bonds An infrared absorption spectrum was measured whereby the number of terminal double bonds was determined from the characteristic absorption peak of double bond at 1640 cm'1 Table 1 Melt Volatile Heating viscosity, content, Powder hue 2 ~ ~~ a t emp . . °C'. cep a 180°c' ~ L,' a h 1 360 2200 < 0.01 94.0 0.2 1.5 2 402 45 0.15 93.8 0.0 2.2 Melt Molecular weight Number of terminal ~ 5 color, distribution double bonds, Example APHA (Mw/Mn1 /~ Ot' 1 50 2.7 0.5 2 75 2.5 2.6 *Trade-mark Examples 3-5 & Comparative Example 1 Preparation of pyro~lytic wax was continued for 9 days by means of a system shown in FIG. 1 by admitting a polymer feed consisting of 100 parts by weight of polypropylene having an ultimate viscosity [1'~] of 1.6 dl/g and an amount of the additives) shown in Table 2 to the extruder 1 through the inlet 11 and continuously delivering the feed to the tubular pyrolysis reactor 2 equipped with the heater 3 through the flocapath 6 under the~~following conditions. In Comparative ' Example 1, the operation was stopped on the second day.
Ext- ri~dPr Screw diameter: 39.85 mm Cylinder diameter: 40.0' mm 1 5 Extruder temperature (at outlet) : 300°C
Extrusion rate: 10.5 kg/hr.
Tubular py~7ysi~ r a o Reactor tube diameter: 50 mm Heating temperature: 402°C
2 0 Internal pressure: atmospheric Residence time: 33 min.
(based on polymer feed rate) The continuously outflowing reaction mixture was subjected to gas-liquid separation for removing volatile _ - -27-components, obtaining pyrolytic wax. Samples were taken out everyday over the process:
The pyrolytic wax sample obtained everyday was measured for hue as in Example 1 and measured for contaminant content by the following method. The results are shown in Table 2.
Content of _onaminant~
It was indirectly judged from the L value associated with the colorimetric measurement of the powder. Larger the r contaminant content, the lower became the degree of whiteness and hence, the L value.

O c-1M tn r-IN ~ M c-i M O N O M O N ~'OM O M

O O1 O a1 n7 r1 r-i r-1 N tn c-IN O M r-i N M O N O M O N O M O M

O al O O1 N

r1 i-1 .-i O

O N w-I O fl O O C N

t~ ~ O N O v~ O N O M O M
O Ol O 01 N N
7 .-i ,-i _ ~ N V' u~ r1 .-i tn M 01 N

M O N M O N M O N n rt5 ,~ ~ O 01 O 01 , n7 O

N N tn M r-1 O O
M O N O M O ~ J-~
O N M O M ~i O 01 O 01 N ~1 C~
~ I

c-i ,-1 O
-r-1 .-i ~ M N O fl CD O M O
'1 O O U O C
' M O N ~ O ~ v' O M 7 N U
O dl p 61 N U i~.
U -i ~ G I O..
~ h N N v~ O ~-iO u~ M o0 ~ ~ O
O '~ h M M O N O ~ O N O M O N t~ -'~ ~ a N 01 O 61 O ~ N 1-) O T3 '-'t '-1 '-a~ S~.
.C

O O ~ f-t O N O tn M ~tl~ U ~ 1 .--i N ~ O N 00~ O N O M O N O .~ O I
O al O S-1 r-i T5 9, O N O O N OO O N N O r-f0 j Q
~

v' 1 r-t~ O N O v~ O ~ O v~ O N O ~ O ~ O 1 O 01 O ~ O c0I tn r-i '-1 '--101 '-f N I
?~ --i I
a a a a . .c?
~ ~ ~ ~o I
.~z ,~ s~ .sz ~

a) U N U -1~
x ,.C M
sa 5a ~ -~-1 sa a a ~ 1 a a~ ~ ' ~3 a~ .c .c U M
.c .c 3 3 g ~ a~
,..a'., ~ " +~ N c'i Q. ~ ~ ~. N
E ~ ~ ~ s-~t ~~

.
U * ~ -x .
? u~ o o ~ .-1 . , +> >, p O tn U
-.1 o m ~ , ~ TS
o -rt ~ 0 ~ cc~
O ~ -r-1 t(7 O +~
II U c~
II U U
to ~ I
O

U ~

<v :a '~ E ~C W
-.-~t U
w ~ .~ N
'--i M
o * *
+~ *
x U
~
w ~~~~7~~~

Example 6 Using a series of an~extruder and a tubular pyrolysis reactor, polypropylene having an ultimate viscosity of [1'~] of 1.6 dl/g was pyrolytically decomposed under the following conditions.
Ex .r ~d .r Screw diameter: 39.85 mm Cylinder diameter: 40.0 mm Extruder temperature (at outlet),: 300°C
Extrusion rate: 10.5 kg/hr.
TubL~ar ~yrol_vs~~ r a tar Reactor tube diameter: 50 mm Heating temperature.: 402°C
Internal pressure: atmospheric IS Residence time: 33 min.
(based on polymer feed rate) The resulting reaction mixture (pyrolysis reactor outlet temperature: 400°C) was admitted into the evaporator connected to the tubular pyrolysis reactor as outlined in FIG. 2 through 2 0 the inlet 8 schematically illustrated therein.
FVaT~oratnr Size: tubular, inner diameter 2 inches, length 1 mm Insert: KENICS type static mixer 2 5 Temperature : 380°C

At the same time, nitrogen gas was blown into the evaporator 7 through the gas inlet 9 at a flow rate of 350 N-liter/hr. for evaporation. volatile components separated from the reaction mixture were continuously withdrawn through the vapor outlet 10 and cooled in a subsequent step tnot shown). In turn, the reaction mixture from which volatile components had been separated was withdrawn through the outlet 13, rapidly cooled to 200°C for completely terminating pyrolytic reaction, filtered, and then cooled and solidified into a pyrolyLic wax.
The pyrolytic wax was measured for melt viscosity, volatile content, powder hue, melt color, and ratio (Mw/Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) representative of molecular weight distribution as in Example 1 and further evaluated or measured 1J for flash point and smell by the following methods. The results are shown in Table 3.
Flash point Measurement was made with a Pensky-Martens flash point taster (closed type).
An organoleptic test used persons having a normal sense of smell.
*Trade-mark Y

Pyrolytic wax was obtained by the same procedure as in Example 6 except that the reaction mixture exiting.from the tubular pyrolysis reactor was not admitted into the evaporator and instead, volatile components were separated by cooling to 200°C .
The pyrolytic wax was measured or evaluated for melt viscosity, volatile content, flash point, powder hue, melt color, ratio (Mw/Mn) of weight average molecular weight (Mw) , to number average molecular weight (Mn) representative of .
molecular weight distribution, and smell as in Example 1 or 5.
The results are shown in Table 3.
C'.omparafi i.v xamp~
Pyrolytic wax was obtained by the same procedure as in Example 6 except that no nitrogen gas was blown into the evaporator.
The pyrolytic wax was measured or evaluated for melt viscosity, volatile content, flash point, powder hue, melt 2 0 color, ratio (Mw/Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) representative of molecular weight distribution, and smell as in E:~ample 1 or 6.
The results are shown in Table 3.

~~v~~v~
Comparative Example 4 Pyrolytic wax was obtained by the same procedure as in Examgle 6 except that no insert was disposed in the evaporator.
The pyrolytic wax was measured or evaluated for melt viscosity, volatile~content, flash point, powder hue, melt color, ratio (Mw/Mn) of weight average molecular weight (Mw) to number average molecular weight (rin) representative of molecular weight distribution, and smell as.in Example 1 or 6.
The results are shown in Table 3.
Table 3 Melt Volatile Flash viscosity, content, point Powder hue Example c at 180C C L a b 6 45 0.15 220 93.8 0.0 2.2 CE2 30 6.0 <140 91.5 -0.1 5.0 CE3 40 2.0 150 92.5 -0.1 4.0 CE4 44 0.30 210 93.5 0.0 2.6 Melt Molecular weight color, distribution Example APHA tMw/Mn) Smell 6 75 2.5 none CE2 200 3.8 strong CE3 150 2.9 weak CE4 100 2.6 none INDUSTRIAL APPLICABILITY
The present invention provides a method capable of continuously producing low molecular weight polymer of quality by pyrolytically decomposing a polymer with a simplified apparatus in a simple step. The invention is of great industrial value in practice because the polymer to which the invention is applicable is not particularly limited and a variety of polymers can be pyrolytically decomposed into~low molecular weight polymers of quality.
The method of the invention is also of great industrial value in practice when pyrolytic reaction is carried out in the presence of a higher fatty acid and/or a hydrochloric acid acceptor because there is obtained a ~ pyrolytic wax which is improved in quality with respect to hue and contaminant - 32a -V

content and preparation of such pyrolytic wax of quality can be continued for a long period in a stable manner.
Further the third embodiment of the method of the invention allows volatile components to be immediately and effectively removed from the reaction mixture resulting from pyrolysis of an olefin polymer, thus producing a pyrolytic wax which is improved in quality with respect volatile content, powder and melt hue, smell, flash point, molecular weight distribution and the like. Since oxygenated hydrocarbons which would largely detract from the hue of the end product or pyrolytic wax among the volatile components, are prevented from mixing with or dissolving in the end pyrolytic wax, there is.obtained a pyrolytic wax having a minimal content of oxygenated hydrocarbons and good flue.
According to the method of the invention, any desired pyrolytic wax can be obtained depending on the heating temperature in a tubular pyrolysis reactor, an olefin polymer used and the like, and the pyrolytic wax is a homogeneous one having a narrow molecular weight distribution and improved in 2 0 quality with respect to volatile content, hue, heat resistance, flash point, smell, and thermal stability.
Consequently, the pyrolytic wax obtained by the method of the invention finds a wide variety of applications including usages as pigment dispersants requiring color (chromatic 2 5 color) clearness, copying machine toners requiring image .. .
_" -34-visibility and release property, resin modifiers for,_food and medical agents requiring odorless and hygienic features, hot-melt adhesives requiring heat~resistance and thermal stability, heat resistant ink, and the like.

Claims (12)

CLAIMS:
1. A method for purifying a reaction mixture resulting from a pyrolytic reaction of a polymer in a pyrolysis reactor, which method comprises the steps of:
introducing the reaction mixture into an evaporator connected to the pyrolysis reactor at a high temperature;
causing the reaction mixture to evaporate in the evaporator while blowing an inert gas into the evaporator;
withdrawing volatile components separated from the reaction mixture from the evaporator; and withdrawing the reaction mixture from the evaporator.
2. A method for purifying a reaction mixture resulting from a pyrolytic reaction of an olefin polymer in a pyrolysis reactor to produce a pyrolytic wax, which method comprises the steps of:
introducing the reaction mixture into an evaporator connected to the pyrolysis reactor at a high temperature;
causing the reaction mixture to evaporate in the evaporator while blowing an inert gas into the evaporator;
withdrawing volatile components separated from the reaction mixture from the evaporator; and withdrawing the reaction mixture from the evaporator.
3. A method according to claim 1, wherein the polymer which is subjected to the pyrolysis is a homopolymer of a C2-C20 .alpha.-olefin; a copolymer of C2-C20 .alpha.-olefins; a copolymer of a C2-C20 .alpha.-olefin with another monomer copolymerizable herewith; or a polymer of styrene, (meth)acrylic acid, (meth)acrylate or vinyl acetate.
4. A method according to claim 2, wherein the olefin polymer which is subjected to the pyrolysis is a homopolymer of a C2-C20 .alpha.-olefin.
5. A method according to claim 2, wherein the polymer which is subjected to the pyrolysis is polyethylene or polypropylene and is heated to 350-450°C in the pyrolysis reactor.
6. A method according to claim 1 or 3, wherein the pyrolytic reaction is conducted by:
feeding the polymer to an extruder where the polymer is melted, metering the molten polymer from the extruder to a tubular pyrolysis reactor through metering means connected to the extruder, and pyrolytically decomposing the polymer in the tubular pyrolysis reactor to produce low molecular weight polymers.
7. A method according to claim 6, wherein the pyrolysis is conducted in the presence of a higher fatty acid or a hydrochloric acid acceptor or both.
8. A method according to claim 2, 4 or 5, wherein the pyrolytic reaction is conducted by:

feeding the olefin polymer to an extruder where the polymer is melted, metering the molten olefin polymer from the extruder to a tubular pyrolysis reactor through metering means connected to the extruder, and pyrolytically decomposing the olefin polymer in the tubular pyrolysis reactor to produce low molecular weight olefin polymers.
9. A method according to claim 8, wherein the pyrolysis is conducted in the presence of a higher fatty acid or a hydrochloric acid acceptor or both.
10. A method according to any one of claims 1 through 5, wherein an insert is disposed in the interior of the evaporator for promoting separation of the volatile components from the reaction mixture.
11. A method according to any one of claims 1 to 10, wherein:
the evaporator is a tower shaped evaporator operated at a temperature of 250 to 430°C and at a pressure of 500 Torr to 1.8 kg/cm2 G;
the reaction mixture resulting from pyrolytic reaction of the polymer is introduced through a reaction mixture inlet located near a top of the evaporator;
the inert gas is blown into the evaporator through an inert gas inlet located near a bottom of the evaporator so as to provide a counter flow contact of the inert gas with the reaction mixture for assisting in discharging the volatile components through a vapour outlet located at the top of the evaporator;

the reaction mixture from which the volatile components have been separated is withdrawn from a reaction mixture outlet located at the bottom of the evaporator and then rapidly cooled; and the method is conducted continuously.
12. The method according to claim 11, wherein:
the inert gas is introduced into the evaporator in an amount of 1 to 5 mol per kg of the reaction mixture; and the evaporator is operated at a temperature of 300 to 400°C.
CA002154799A 1990-04-10 1991-04-10 Method for the pyrolysis of polymers Expired - Fee Related CA2154799C (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2094498A JPH03292305A (en) 1990-04-10 1990-04-10 Thermal degradation of polymer
JP2-94498 1990-04-10
JP2123865A JP3020555B2 (en) 1990-05-14 1990-05-14 Method for producing pyrolytic wax
JP2-123865 1990-05-14
JP2-170438 1990-06-28
JP2170438A JP2991463B2 (en) 1990-06-28 1990-06-28 Method for producing pyrolytic wax
CA002058992A CA2058992C (en) 1990-04-10 1991-04-10 Method for the pyrolysis of polymers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002058992A Division CA2058992C (en) 1990-04-10 1991-04-10 Method for the pyrolysis of polymers

Publications (2)

Publication Number Publication Date
CA2154799A1 CA2154799A1 (en) 1991-10-11
CA2154799C true CA2154799C (en) 2002-12-10

Family

ID=27426887

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002154799A Expired - Fee Related CA2154799C (en) 1990-04-10 1991-04-10 Method for the pyrolysis of polymers

Country Status (1)

Country Link
CA (1) CA2154799C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9714385B2 (en) 2015-01-07 2017-07-25 Council Of Scientific & Industrial Research Process for the conversion of low polymer wax to paraffin wax, microcrystalline wax, lube and grease base stocks using organic peroxides or hydroperoxides and metal oxides

Also Published As

Publication number Publication date
CA2154799A1 (en) 1991-10-11

Similar Documents

Publication Publication Date Title
CA2058992C (en) Method for the pyrolysis of polymers
JPH0446983B2 (en)
EP1084158A1 (en) Blocky chlorinated polyolefins, process for making and use as impact modifier compatibilizer for pvc or cpvc
US20120245297A1 (en) Modified propylene polymer
Okamoto et al. Phase separation mechanism and structure development in poly (butylene terephthalate)/polycarbonate blends
US6433133B1 (en) Process for reducing the weight average molecular weight and melt index ratio of polyethylenes and polyethylene products
US11566103B2 (en) Hyperbranched polylactide resin compositions
CA2154799C (en) Method for the pyrolysis of polymers
US5708133A (en) Process for purifying polymer
US3412080A (en) Thermal treatment of high-density polyolefins
CN109438603B (en) Special transparent impact-resistant polypropylene random copolymer resin for blow molding and preparation method thereof
KR100601148B1 (en) Polyethylene resin composition for pipe
CN105461960A (en) Additive for polymer, preparation method of additive and polymer composition composed of additive
FR2548198A1 (en) COMPOSITIONS COMPRISING LINEAR POLYETHYLENE AND ETHYLENE AND ACRYLATE COPOLYMERS
BE1008959A4 (en) Propylene polymer, method for obtaining and use.
KR100324986B1 (en) Purification Method of Polymer
US3700632A (en) Readily extruded chlorinated copolymers and process of preparing same
KR19980702092A (en) Copolymers of propylene and 1-pentene, methods of making copolymers, and polymer compositions comprising copolymers
JP3020555B2 (en) Method for producing pyrolytic wax
EP1273596B1 (en) Flexible polypropylene resin
JP2991463B2 (en) Method for producing pyrolytic wax
JPS624704A (en) Production of polymer having six-membered imide ring
WO1993009150A2 (en) Polypropylene extrusion coating resins and process for the production thereof
RU2176249C1 (en) Method of production of polyethylene
JPH0517547A (en) Production of oxymethylene copolymer

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed