CA2154141A1 - Endothelin-antagonizing peptide - Google Patents

Endothelin-antagonizing peptide

Info

Publication number
CA2154141A1
CA2154141A1 CA 2154141 CA2154141A CA2154141A1 CA 2154141 A1 CA2154141 A1 CA 2154141A1 CA 2154141 CA2154141 CA 2154141 CA 2154141 A CA2154141 A CA 2154141A CA 2154141 A1 CA2154141 A1 CA 2154141A1
Authority
CA
Canada
Prior art keywords
compound
endothelin
tyr
asn
pharmaceutically acceptable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2154141
Other languages
French (fr)
Inventor
Motoo Yamasaki
Kenji Shibata
Takeo Tanaka
Yuzuru Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Publication of CA2154141A1 publication Critical patent/CA2154141A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Disclosed is a peptide compound represented by the following formula (I):

(I) wherein X represents or

Description

2 l 5 ~

TITLE OF THE INVENTION
ENDOTHELIN-ANTAGONIZING PEPTIDE

Background of the Invention The present invention relates to a peptide which has endothelin-antagonizing activity. The peptide of the present invention has excellent endothelin-antagonizing activity, and is therefore useful for treatment of hypertension, asthma, cerebral apoplexy, angina pectoris, acute renal failure, cardiac infarction, cerebral vasospasm, etc.
Endothelin is a cyclic peptide which possesses a strong, long-lasting vasoconstricting effect, and is thought to be one of the substances responsible for hypertension, asthma, cerebral apoplexy, angina pectoris, acute renal failure, cardiac infarction, and cerebral vasospasm.
Consequently, a substance which antagonizes endothelin and inhibits its effects is expected to be useful for the treatment and prevention of these diseases.
It is known that the peptide represented by the following formula (A):

LGly-Asn-Tr~His-Gly-Thr-Ala-Pro-As~Tr~ (A) Ph~Ph~Asn-Tyr-Tyr-Z
wherein Z represents a naturally-occurring amino acid residue, exhibits the endothelin antagonism (WO93/13218).
However, there is no disclosure about peptides having a non-naturally-occurring amino acid residue.

Summary of the Invention According to the present invention, there is provided a peptide compound represented by the following formula (I):

LGly-Asn-Tr~His-Gly-Thr-Ala-Pro-As~Tr~ (I) Ph~Ph~Asn-Tyr-Tyr-X

2 21541~1 wherein X represents CH2CH2NH-CH2~ or -NHCHC~Y H

(wherein Y represents hydroxy, lower alkoxy, benzyloxy, benzhydryloxy, or amino), or a pharmaceutically acceptable salt thereof.
The peptide compound represented by the above formula (I) is hereinafter referred to as Compound (I), and the same applies to the compounds of other formula numbers.

Detailed Description of the Invention In the definitions for the above formula (I), the alkyl moiety of lower alkoxy means a straight-chain or branched alkyl group having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, and isohexyl.
The pharmaceutically acceptable salts of Compound (I) include pharmaceutically acceptable acid addition salts, metal salts, and organic base addition salts.
Examples of the pharmaceutically acceptable acid addition salts are inorganic acid addition salts such as hydrochloride, sulfate, and phosphate, and organic acid addition salts such as acetate, maleate, fumarate, tartrate, and citrate. Examples of the pharmaceutically acceptable metal salts are alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salts, and zinc salts.
Examples of the pharmaceutically acceptable organic base addition salts are salts with primary amines such as methylamine, ethylamine, and aniline, secondary amines such as dimethylamine, diethylamine, pyrrolidine, piperidine, morpholine, and piperazine, and tertiary amines such as trimethylamine, triethylamine, N,N-dimethylaniline, and pyridine, and ammonium salts.
The present invention is described in detail below.
The abbreviations for the amino acids and their protective groups used in this specification follow the recommendations of the IUPAC-IUB Joint Commission relating to biochemical nomenclature [Eur. J. Biochem., 138, 9 (1984)].
Unless otherwise provided, the following abbreviations indicate the corresponding amino acids and protective groups.
Gly: glycine Ala: L-alanine Thr: L-threonine Pro: L-proline Asp: L-aspartic acid Asn: L-asparagine Asx: L-aspartic acid or L-asparagine His: L-histidine Phe: L-phenylalanine Tyr: L-tyrosine Trp: L-tryptophan Nal: L-~-(2-naphthyl)alanine (Nal) Trn: 2-(3-indolyl)ethylamine H
(Trn) Fmoc: 9-fluorenylmethyloxycarbonyl The following abbreviation indicates the corresponding side-chain-protected amino acid.
H-Nal-OBzl(N02): L-~-(2-naphthyl)alanine 4-nitrobenzyl ester 4 2ls~

The following abbreviations indicate the corresponding reaction solvents and reagents.
PyBOP: benzotriazol-1-yloxytripyrrolidinophosphonium-hexafluorophosphate HOBt: N-hydroxybenzotrlazole NMM: N-methylmorpholine DMF: N,N-dimethylformamide TFA: trifluoroacetic acid The processes for producing Compound (I) of the present invention are described below.
Compound (I) can be prepared according to the following reaction scheme.
LGly-Asn-Tr~His-Gly-Thr-Ala-Pro-As~Tr~
Ph~Ph~Asn-Tyr-Tyr-Tr~OH
(RE~701-1) 2 oLGly-Asn-Tr~His-Gly-Thr-Ala-Pro-As~Tr~ (B) Ph~Ph~Asn-Tyr-Tyr-OH

H-X (II) 2 5LGly-Asn-Tr~His-Gly-Thr-Ala-Pro-As~Tr~ (I) Ph~Ph~Asn-Tyr-Tyr-X
(In the formulae, X has the same meaning as defined above.) Compound (B) can be obtained by treating RES-701-1 30(WO93/13218) with protease such as carboxypeptidase.
Then, Compound (I) can be obtained by condensing Compound (B) with Compound (II) or appropriately protected Compound (II) using a condensing agent (for example, PyBOP/HOBt/NMM) and then, if necessary, deprotecting the 35 product according to the conventional method (for example, "Fundamentals and Experiments in Peptide Synthesis", Nobuo Izumiya et al., Maruzen).

- 215~141 The thus obtained Compound (I) may be purified by high pressure liquid chromatography (referred to as HPLC
hereinafter) using a C-4, C-8, or C-18 reverse phase silica gel column, column chromatography such as partition, adsorption resin, silica gel, chemically modified silica gel, reverse phase silica gel, alumina, diatomaceous earth, magnesium silicate, ion-exchange resin, and gel filtration, or thin layer chromatography.
A conventional method is used to obtain a pharmaceutically acceptable salt of Compound (I). That is, an acid addition salt or an organic base addition salt of Compound (I) can be obtained by dissolving Compound (I) in an aqueous solution of a corresponding acid or organic base, and freeze-drying the resultant solution. In addition, a metal salt of Compound (I) can be obtained by dissolving Compound (I) in an aqueous solution containing a corresponding metal ion, and purifying the solution by gel filtration or HPLC.
Examples of Compound (I) are shown in Table 1.
Table 1 Compd. No. Structure (I-l) LGly-Asn-Tr~His-Gly-Thr-Ala-Pro-As~Tr~
Ph~Ph~Asn-Tyr-Tyr-Trn L
(I-2) Gly-Asn-Tr~His-Gly-Thr-Ala-Pro-As~Tr~
Ph~Ph~Asn-Tyr-Tyr-Nal-OH

The pharmacological activities of Compound (I) are described below by test examples.

Test Fxample 1: Endothelin Receptor-Antagonizing Activity Bovine cerebellum tissue was homogenized at 4C by using POLYTRON (type PT10/35, manufactured by Kinematica Gmbh Co.) in a buffer solution A (lmM NaHCO3, 5 mM
ethylenediaminetetraacetic acid, 5 ~g/ml leupeptin, 5 ~g/ml 6 215~

pepstatin A, 40 ~M phenylmethylsulfonyl fluoride, pH 8.3).
The obtained suspension was centrifuged for 10 minutes at 8,000 G and 4C, and the resulting supernatant was centrifuged for 60 minutes at 40,000 G and 4C to give pellets. The obtained pellets were suspended in a buffer solution A and again centrifuged for 60 minutes at 40,000 G
and 4C. The resulting solid substance was prepared as a suspension containing 2 mg/ml of protein, and the suspension was used as a membrane fraction liquid. A membrane fraction solution was prepared by adding 7 ~l of the membrane fraction liquid per 1 ml of a buffer solution B (50 mM Tris-HCl, 1 mM ethylenediaminetetraacetic acid, 0.2% bovine serum albumin, pH 7.6). 125I-Endothelin-1 (approx. 30,000 cpm) was added to the membrane fraction solution containing unlabelled endothelin-1 (final concentration 100 nM) or any one of the test compounds, or containing neither of them.
These mixtures were incubated at 25C for 2 hours, and then filtered with a GF/B glass filter (produced by Whatman Co.).
After washing the filter with a buffer solution C (50 mM
Tris-HCl, 1 mM ethylenediaminetetraacetic acid, pH 7.6), the radioactivity on the glass filter was measured to determine the amount of the receptor and the non-specific bound 125I-endothelin. The inhibition rate against endothelin receptor binding was calculated according to the following equation:
Inhibition rate (%) = (C - A/C - B) x 100 A: Radioactivity in the presence of one of the test compounds B: Radioactivity in the presence of unlabelled endothelin-1 C: Radioactivity in the absence of both of the test compound and unlabelled endothelin-1 The results are shown in Table 2.

7 21~4141 Table 2 Compound No.IC50 ( nM) (I-1) 50 5(I-2) 6.3 ICso: Concentration causing 50 % inhibition of endothelin-1 binding Test Example 2: Endothelin Receptor-Antagonizing Activity The inhibition rate against endothelin receptor binding was calculated by the same method as in Test Example 1, except for using bovine lung tissue instead of the bovine cerebellum tissue used in Test Example 1, and adding RES-701-1 to the membrane fraction solution at the concentration of 1.5 ~g/ml.

Table 3 Compound No. ICso (nM) 20(I-l) 300 (I-2) >440 ICso: Concentration causing 50 % inhibition of endothelin-1 binding Examples and Reference Example of the present invention are described below.

Example 1: Synthesis of Compound (I-1) 0.1 ml of a DMF solution containing 0. 84 mg of 30 PyBOP, 0.1 ml of a DMF solution containing 0.22 mg of HOBt, and 0.1 ml of a DMF solution containing 0.3 ~l of NMM were added to 0. 5 ml of a DMF solution containing 1 mg of Compound (B) obtained in Reference Example 1, followed by standing at 0C for 10 minutes. Then, 0.1 ml of a DMF
35 solution containing 0.53 mg of H-Trn HCl and 0.3 ~l of NMM
was added thereto, and the mixture was stirred for 16 hours at 4C. 0.1 ml of 2M acetic acid was added thereto, and the 8 2ls4l4l crude product was subjected to HPLC using a reverse phase column (CAPCELL PACK C18, 250 mm x 30 mm I.D., manufactured by Shiseido). The elution was carried out with a linear concentration gradient pattern using a 0 to 90% aqueous acetonitrile solution containing 0.1% TFA, and upon detection at 220 nm, to give fractions containing the entitled Compound (I-l). These fractions were lyophilized to give 0.1 mg of Compound (I-l).

MS analysis [FABMS]: 1998 (M + H) Amino acid analysis: Found (Theoretical) Gly 2.2 (2), Ala 1.0 (1), Asx 2.0 (3), His 1.0 (1), Pro 1.1 (1), Thr 1.1 (1), Tyr 1.9 (2), Phe 1.9 (2), Trp and Trn not analyzed Example 2: Synthesis of Compound (I-2) Step 1: Synthesis of H-Nal-OBzl(NO2) 43.75 mg of Fmoc-Nal-OH was dissolved in 1 ml of DMF, and 16.8 mg of sodium bicarbonate and 108 mg of 4-nitrobenzyl bromide were added thereto, followed by stirringfor 17 hours at room temperature. 30 ml of ethyl acetate and 70 ml of water were added thereto followed by shaking, and the ethyl acetate layer was recovered and dried over sodium sulfate. The mixture was filtered, and the solvent was distilled off from the filtrate. The residue was subjected to silica gel column chromatography (Kieselgel 60, manufactured by Merck Co., eluent: ethyl acetate/hexane) to give Fmoc-Nal-OBzl(NO2) as a white powder. The obtained powder was dissolved in a 20% DMF solution of piperidine followed by standing at room temperature for 20 minutes.
The solvent was distilled off under reduced pressure, and the residue was purified by HPLC in the same manner as in Example 1 to give 33.6 mg of H-Nal-OBzl(NO2).

MS analysis [FABMS]: 351 (M + H) 21551~1 Step 2: Synthesis of Compound (I-2) 10~1 of a DMF solution containing 84 ~g of PyBOP, 10~1 of a DMF solution containing 22 ~g of HOBt, and 10 ~1 of a DMF solution containing 0.03 ~1 of NMM were added to 55 ~1 of a DMF solution containing 100 ~g of Compound (B) obtained in Reference Example 1, followed by standing at 0C
for 10 minutes. Then, 10 ~1 of a DMF solution containing 125 ~g of H-Nal-OBzl(NO2) obtained in Step 1 and 0.03 ~1 of NMM was added thereto, and the mixture was stirred for 50 hours at 4C. 100 ~1 of 90% acetic acid was added thereto, and then about 5 mg of zinc powder was added thereto under ice cooling, followed by standing for 10 minutes. The temperature of the mixture was brought back to room temperature followed by stirring for one hour. After centrifugation, the resulting supernatant was purified by HPLC in the same manner as in Example 1 to give 14 ~g of Compound (I-2).

MS analysis [FABMS]: 2053 (M + H) Amino acid analysis: Found (Theoretical) Gly 2.3 (2), Ala 1.0 (1), Asx 2.0 (3), His 1.0 (1), Pro 1.1 (1), Thr 1.0 (1), Tyr 1.9 (2), Phe 1.9 (2), Trp and Nal not analyzed Reference Fxample 1: Synthesis of Compound (B) 7.1 mg of RES-701-1 was dissolved in 2.84 ml of methanol, and 25.56 ml of a 0.lM Tris-HCl buffer solution (pH 8.0) and then about 0.3 mg of carboxypeptidase A (C-9762, produced by Sigma Co.) were added thereto, followed by stirring at 37C for one night. The reaction mixture was acidified by addition of an appropriate amount of hydrochloric acid, and the crude product was subjected to reverse phase HPLC equipped with a NUCLEOSIL 5C18 (250 x 20 mm I.D., manufactured by Chemco Inc.) with a linear concentration gradient pattern wherein an increase in the concentration of acetonitrile in the 0.1% TFA solution from 0% to 50% was effected in 30 minutes, at a flow rate of 10 lo 2154141 ml/min, to give 3.5 mg of Compound (B).

MS analysis [FABMS]; 1858 (M + H) Amino acid analysis: Found (Theoretical) Gly 2.2 (2), Ala 1.0 (1), Asx 2.6 (3), His 0.9 (1), Pro 1.1 (1), Thr 1.0 (1), Tyr 1.8 (2), Phe 1.9 (2), Trp not analyzed

Claims (3)

1. A peptide compound represented by the following formula (I):

(I) wherein X represents or (wherein Y represents hydroxy, lower alkoxy, benzyloxy, benzhydryloxy, or amino), or a pharmaceutically acceptable salt thereof.
2. A peptide compound according to Claim 1 wherein X
is , or a pharmaceutically acceptable salt thereof.
3. A peptide compound according to Claim 1 wherein X
is , or a pharmaceutically acceptable salt thereof.
CA 2154141 1994-07-25 1995-07-18 Endothelin-antagonizing peptide Abandoned CA2154141A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17269894 1994-07-25
JP172698/94 1994-07-25

Publications (1)

Publication Number Publication Date
CA2154141A1 true CA2154141A1 (en) 1996-01-26

Family

ID=15946696

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2154141 Abandoned CA2154141A1 (en) 1994-07-25 1995-07-18 Endothelin-antagonizing peptide

Country Status (1)

Country Link
CA (1) CA2154141A1 (en)

Similar Documents

Publication Publication Date Title
CA1262550A (en) Dipeptide compounds having pharmaceutical activity and compositions containing them
US4522752A (en) Retro-inverso analogues of the bradykinin potentiating peptide BPP5a and methods for their preparation
US20040142876A1 (en) Peptides and their use as inhibitors of hepatitis c virus ns3 protease
Gacel et al. Evidence of the preferential involvement of. mu.-receptors in analgesia using enkephalins highly selective for peripheral. mu. or. delta. receptors
US6995177B1 (en) HCV NS3 protease inhibitors
CS204011B2 (en) Process for preparing substituted pentapeptides
US5100874A (en) Hydroxamic acid tetrapeptide derivatives
KR0121793B1 (en) L-proline derivatives, their preparation and biological applications
US5013723A (en) New thymopentin retro-inverso analogs and fragments thereof, a process of preparation of the new compounds and the intermediates obtained therein
US4638046A (en) Retro-inverso C-terminal hexapeptide analogues of substance P
US6184345B1 (en) Branched building units for synthesizing cyclic peptides
Marastoni et al. Synthesis and activity profiles of new dermorphin-(1-4) peptide analogs
Roubini et al. Pseudopeptide analogs of substance P and leucine enkephalinamide containing the. psi.(methyleneoxy) modification: synthesis and biological activity
EP0698613B1 (en) Endothelin-antagonizing peptide
CA2154141A1 (en) Endothelin-antagonizing peptide
IE55836B1 (en) Substituted dipeptides,methods for their production pharmaceutical compositions containing them,method for making such pharmaceutical compositions
US4713367A (en) Retro-inverso analogs of the bradykinin potentiating peptide BPP5a
CA2154129A1 (en) Endothelin-antagonizing peptide
US4456594A (en) N-Carboxyalkylproline-containing tripeptides
JPH10505575A (en) Method for synthesizing peptidyl argininal
JPH0892283A (en) Peptide having antagonism to endothelin
WO1998045262A1 (en) Pseudo-peptide compounds as antagonists of neurokinines
Ranjalahy‐Rasoloarijao et al. Synthesis and ionic channels of a linear gramicidin containing naphthylalanine instead of tryptophan
JP3119674B2 (en) New peptides, their production methods and applications
Day et al. Synthesis of several chemotactic peptide antagonists

Legal Events

Date Code Title Description
FZDE Dead