CA2151836A1 - Polymer compositions having improved melt strength - Google Patents
Polymer compositions having improved melt strengthInfo
- Publication number
- CA2151836A1 CA2151836A1 CA 2151836 CA2151836A CA2151836A1 CA 2151836 A1 CA2151836 A1 CA 2151836A1 CA 2151836 CA2151836 CA 2151836 CA 2151836 A CA2151836 A CA 2151836A CA 2151836 A1 CA2151836 A1 CA 2151836A1
- Authority
- CA
- Canada
- Prior art keywords
- polyester
- mol
- melt strength
- functional additive
- polycarbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Disclosed is a polymeric composition having improved melt strength comprising (a) a polyester containing repeat units from at least 90 mol % terephthalic acid and 90 to 100 mol % ethylene glycol, the polyester having a weight average molecular weight of 75,000-85,000, (b) a polymeric material containing at least 5 wt % polycarbonate and up to 95 wt % polyethylene terephthalate, and (c) a functional additive.
Description
~094/1~94 PCT~S93/11880 . 215183~
POLYMER COMPOSITIONS HAVING IMPROVED MELT STRENGTH
Technical Field - This invention relates to polymer compositions having improved melt strength which are useful for forming extrusion blow molded articles. The compositions contain a high molecular weight polyester such as polyethylene terephthalate, a functional additive which has the ability of changing at least one physical property of the polyester but has the disadvantage of lowering the melt strength thereof, and a polycarbonate.
Backqround of the Invention Patents relating to polycarbonate and polyester alloys include U.S. Patent No. 3,218,372. The alloys described in this patent contain 5 to 95 wt %
polycarbonate blended with 95 to 5 wt % PET. Other patents pertaining to polycarbonate and PET alloys include U.S. Patent Nos. 4,123,473; 4,175,147;
4,230,656; and 4,788,251. However, none of these patents disclose an extrusion blow molded article produced from a high molecular weight polyester having a weight average molecular weight of between 75,000 and 85,000 which contains a functional additive which has the ability to change at least one physical property of the polyester but has the disadvantage of lowering the melt strength thereof, and a polycarbonate.
High molecular weight PET homopolymer has sufficient melt strength for extrusion blow molding processes. However, it is sometimes desirable to incorporate certain functional additives in these polyesters to alter a physical property, such as incorporating pigment into the polyester to change its color. Ordinarily, such functional additives have the WO94/14894 PCT~S93111880 2~s~36 adverse effect of degrading some of the physical properties such as melt strength. In extrusion blow molding processes, such as in the production of bottles, it is very desirable for the polymer to have good melt strength, because the extrudate must be self-supporting while in the melt for a period of time.
In accordance with the present invention, it has been discovered that functional additives can be incorporated in certain polyesters while maintaining melt strength thereof, if a small amount of polycarbonate is also incorporated in the composition.
By the term "functional additive" it is meant a substance or material which has the ability of altering some property of the polyester, but when incorporated alone in the polyester, has the disadvantage of lowering the melt strength. Examples include pigments, dyes, stabilizers, reinforcing materials such as glass fiber, etc.
By the term polyethylene terephthalate tPET) used herein, it is meant polyethylene terephthalate or polyethylene terephthalate modified with up to lO mol %
of another conventional dicarboxylic acid or glycol, preferably 1,4-cyclohexanedimethanol (CHDM).
Description of the Invention - According to the present invention, there is provided a polymeric composition having improved melt strength comprising a) 90 to 99.5 wt % of a polyester containing repeat units from at least 90 mol % terephthalic acid and 90 to lO0 mol % ethylene glycol, said polyester having a weight average molecular weight of 75,000-85,000, b) 0.05 to 9.9 wt % of a polymeric material containing 5-lO0 wt % polycarbonate and O-95 wt % polyethylene terephthalate wherein the wt % of polymeric material is inversely proportional to polycarbonate level, an~
c) 0.005 to 6 wt ~ of a functional addi~ive.
wherein a), b), and c) total 100 wt %.
Also, according to the present invention there is provided a polymeric concentrate which comprises a) 95 to 0 wt % of a polyester containing repeat units from at least 90 mol % terephthalic acid and 90 to 100 mol % ethylene glycol, said polyester having a weight average molecular weight of 40,000-85,000, b) 5 to 99.5 wt % of a polymeric material containing 90 to 100 wt % polycarbonate, and c) 0.5 to 60 wt % of a functional additive, wherein a), b), and c) total 100 wt %.
While the polyester specified in a) above is a high molecular weight polyester (i.e., 75,000-85,000), the polyester if used in b) is a carrier resin and may be of lower molecular weight (i.e., 40,000-85,000).
PET which may be used in the blends of the present invention are well known and are available commercially.
Methods for their preparation are described, for example, in U.S. Patent No. 2,465,319 and U.S. Patent No. 3,047,539.
The dicarboxylic acid component may contain up to 10 mol % of other conventional aromatic, aliphatic or alicyclic dicarboxylic acids or polyfunctional anhydrides such as isophthalic acid, naphthalene-dicarboxylic acid, cyclohexanedicarboxylic acid, succinic acid, sebacic acid, adipic acid, glutaric acid, azelaic acid and the like.
The glycol component may contain up to 10 mol ~ of other conventional aliphatic or alicyclic glycols such as diethylene glycol, triethylene glycol, propanediol, butanediol, pentanediol, GCQ ~E-t~
hexanediol, 1,4-cyclohexanedimethanol and the like.
1,4-Cyclohexanedimethanol is preferred.
Higher molecular weight PET, i.e., weight a~erage of 75,000-~5,000 may be made by conventional me'nods such as melt phase polymerization followed by polymerization in the solid phase. I.V.s (inherent viscosity) representing these molecular weights are 0.9 to 1.1, preferably about 0.95. The PET may be modified up to 10 mol % with other conventional trifunctional or tetrafunctional alcohols, acids, and anhydrides.
Polycarbonate resins which are suitable for use in the present invention are well known in the art and are generally commercially available. These polycarbonates may be prepared by a variety of conventional and well known processes which include transesterification, melt polymerization, interfacial polymerization, etc. The polycarbonates are generally prepared by reacting a dihydric phenol with a carbonate precursor such as, for example, phosgene. Suitable processes for preparing the polycarbonates of the present invention are described in, for example, U.S. Patent Nos. 4,018,750, 4,123,436 and 3,153,008. However, other known processes for producing polycarbonates are suitable. Particularly preferred polycarbonates are aromatic polycarbonates, prepared by reacting bisphenol-A [2,2-bis(4-hydroxy-phenyl)propane] with phosgene.
- The compositions of the present invention may be subject to conventional processing methods such as injection molding, extrusion, etc. Prior to such processing, pellets of the PET, pellets of polycarbonate and the functional additive are mixed at the desired ratios. Specific industrial applications may require the addition of functional additives such as stabilizers, pigments, flame retardants, fillers, reinforcing agents, and~or processing aids.
WO94/1~94 PCT~S93/11880 ~- 2I~1836 Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which illustrate the invention and are not intended to be limiting thereof.
The polyester used in the examples is poly(ethylene terephthalate) modified with 3.5 mol % 1,4-cyclohexane-dimethanol having an I.V. of 0.95, which is 80,000 weight average molecular weight.
Exam~les Compositions of the following examples were extrusion blow molded into 18-ounce (510 g) wide mouth containers on a Bekum H-121S extrusion blow molding machine equipped with an 80-mm high density polyethylene screw and a single head with a 0.70-inch (1.78 cm) ID
die and a 0.675-inch (1.71 cm) OD mandrel. Melt strength improvements were evaluated by measuring the time and weight of an extruded parison from the extrusion blow molding machine to travel a distance of 24 inches (61 cm) below the die tip opening for a given die gap setting. The initial die gap setting, extruder screw speed and temperatures were established for a control sample and allowed to remain constant for all subsequent measurements on samples cont~; n; ng 3 wt % of the color concentrates.
Exam~le 1 (Control, PET only) - PET containing 3.5 mol % CHDM was dried at 350F (177C) for 4 hours in a dehumidifying dryer and extrusion blow molded on the extrusion blow molding machine at a melt temperature of around 450F (232C) to 500F (260C). The die gap was set at 52% on the electronic control panel and the extruder speed was maintained at around 7 rpm. An average parison drop time for the extruded parison to travel a distance of 24 inches (61 cm) was around 21 seconds. The average weight of the parison produced WO94/1~94 ~5 ~ PCT~S93/11880 during this time for the control was 92 grams for this set of conditions. The results were normalized by multiplying the parison weight times the drop time. The normalized value for the control was 1,932 grams-seconds.
Exam~le 2 (Control, PET and Functional Additive) -In this example, PET described above having a weight-average molecular weight between 75,000 and 85,000 was mixed with 3 wt % of a white color concentrate identify and having a weight-average molecular weight range of between 40,000 and 55,000, at the feed throat of the hopper on the extrusion blow molding machine with an additive feeder. After waiting 30 minutes to allow the system to equilibrate, average drop time for the molten parison to cover the same distance as described in Example 1 was 20 seconds and it weighed on the average 83 grams. The normalized results are 1,600 grams-seconds. In comparison with Example 1, these results are 14% lower than the control described in Example 1.
Exam~le 3 (According to Invention) - While continuing the extrusion of the extrusion blow moldable PET copolymer having a weight-average molecular weight between 75,000 and 85,000, a second white color concentrate prepared with 48.526 wt % of PET having a weight-average molecular weight of 40,000 to 55,000, 42.0 wt % Tio2, 9.3 wt % of a polycarbonate and 0.174 wt % of a blue pigment and stabilizer was added with the additive feeder at 3 wt % of the total composition. After waiting for a period of 30 minutes, the parison drop times and weights were measured again without changing the die gap and extruder speed settings that were established in Example 1. In this example, the average parison drop time was around 21 seconds.
The average parison weight was about 89 grams. The normalized value was determined to be 1869.
POLYMER COMPOSITIONS HAVING IMPROVED MELT STRENGTH
Technical Field - This invention relates to polymer compositions having improved melt strength which are useful for forming extrusion blow molded articles. The compositions contain a high molecular weight polyester such as polyethylene terephthalate, a functional additive which has the ability of changing at least one physical property of the polyester but has the disadvantage of lowering the melt strength thereof, and a polycarbonate.
Backqround of the Invention Patents relating to polycarbonate and polyester alloys include U.S. Patent No. 3,218,372. The alloys described in this patent contain 5 to 95 wt %
polycarbonate blended with 95 to 5 wt % PET. Other patents pertaining to polycarbonate and PET alloys include U.S. Patent Nos. 4,123,473; 4,175,147;
4,230,656; and 4,788,251. However, none of these patents disclose an extrusion blow molded article produced from a high molecular weight polyester having a weight average molecular weight of between 75,000 and 85,000 which contains a functional additive which has the ability to change at least one physical property of the polyester but has the disadvantage of lowering the melt strength thereof, and a polycarbonate.
High molecular weight PET homopolymer has sufficient melt strength for extrusion blow molding processes. However, it is sometimes desirable to incorporate certain functional additives in these polyesters to alter a physical property, such as incorporating pigment into the polyester to change its color. Ordinarily, such functional additives have the WO94/14894 PCT~S93111880 2~s~36 adverse effect of degrading some of the physical properties such as melt strength. In extrusion blow molding processes, such as in the production of bottles, it is very desirable for the polymer to have good melt strength, because the extrudate must be self-supporting while in the melt for a period of time.
In accordance with the present invention, it has been discovered that functional additives can be incorporated in certain polyesters while maintaining melt strength thereof, if a small amount of polycarbonate is also incorporated in the composition.
By the term "functional additive" it is meant a substance or material which has the ability of altering some property of the polyester, but when incorporated alone in the polyester, has the disadvantage of lowering the melt strength. Examples include pigments, dyes, stabilizers, reinforcing materials such as glass fiber, etc.
By the term polyethylene terephthalate tPET) used herein, it is meant polyethylene terephthalate or polyethylene terephthalate modified with up to lO mol %
of another conventional dicarboxylic acid or glycol, preferably 1,4-cyclohexanedimethanol (CHDM).
Description of the Invention - According to the present invention, there is provided a polymeric composition having improved melt strength comprising a) 90 to 99.5 wt % of a polyester containing repeat units from at least 90 mol % terephthalic acid and 90 to lO0 mol % ethylene glycol, said polyester having a weight average molecular weight of 75,000-85,000, b) 0.05 to 9.9 wt % of a polymeric material containing 5-lO0 wt % polycarbonate and O-95 wt % polyethylene terephthalate wherein the wt % of polymeric material is inversely proportional to polycarbonate level, an~
c) 0.005 to 6 wt ~ of a functional addi~ive.
wherein a), b), and c) total 100 wt %.
Also, according to the present invention there is provided a polymeric concentrate which comprises a) 95 to 0 wt % of a polyester containing repeat units from at least 90 mol % terephthalic acid and 90 to 100 mol % ethylene glycol, said polyester having a weight average molecular weight of 40,000-85,000, b) 5 to 99.5 wt % of a polymeric material containing 90 to 100 wt % polycarbonate, and c) 0.5 to 60 wt % of a functional additive, wherein a), b), and c) total 100 wt %.
While the polyester specified in a) above is a high molecular weight polyester (i.e., 75,000-85,000), the polyester if used in b) is a carrier resin and may be of lower molecular weight (i.e., 40,000-85,000).
PET which may be used in the blends of the present invention are well known and are available commercially.
Methods for their preparation are described, for example, in U.S. Patent No. 2,465,319 and U.S. Patent No. 3,047,539.
The dicarboxylic acid component may contain up to 10 mol % of other conventional aromatic, aliphatic or alicyclic dicarboxylic acids or polyfunctional anhydrides such as isophthalic acid, naphthalene-dicarboxylic acid, cyclohexanedicarboxylic acid, succinic acid, sebacic acid, adipic acid, glutaric acid, azelaic acid and the like.
The glycol component may contain up to 10 mol ~ of other conventional aliphatic or alicyclic glycols such as diethylene glycol, triethylene glycol, propanediol, butanediol, pentanediol, GCQ ~E-t~
hexanediol, 1,4-cyclohexanedimethanol and the like.
1,4-Cyclohexanedimethanol is preferred.
Higher molecular weight PET, i.e., weight a~erage of 75,000-~5,000 may be made by conventional me'nods such as melt phase polymerization followed by polymerization in the solid phase. I.V.s (inherent viscosity) representing these molecular weights are 0.9 to 1.1, preferably about 0.95. The PET may be modified up to 10 mol % with other conventional trifunctional or tetrafunctional alcohols, acids, and anhydrides.
Polycarbonate resins which are suitable for use in the present invention are well known in the art and are generally commercially available. These polycarbonates may be prepared by a variety of conventional and well known processes which include transesterification, melt polymerization, interfacial polymerization, etc. The polycarbonates are generally prepared by reacting a dihydric phenol with a carbonate precursor such as, for example, phosgene. Suitable processes for preparing the polycarbonates of the present invention are described in, for example, U.S. Patent Nos. 4,018,750, 4,123,436 and 3,153,008. However, other known processes for producing polycarbonates are suitable. Particularly preferred polycarbonates are aromatic polycarbonates, prepared by reacting bisphenol-A [2,2-bis(4-hydroxy-phenyl)propane] with phosgene.
- The compositions of the present invention may be subject to conventional processing methods such as injection molding, extrusion, etc. Prior to such processing, pellets of the PET, pellets of polycarbonate and the functional additive are mixed at the desired ratios. Specific industrial applications may require the addition of functional additives such as stabilizers, pigments, flame retardants, fillers, reinforcing agents, and~or processing aids.
WO94/1~94 PCT~S93/11880 ~- 2I~1836 Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which illustrate the invention and are not intended to be limiting thereof.
The polyester used in the examples is poly(ethylene terephthalate) modified with 3.5 mol % 1,4-cyclohexane-dimethanol having an I.V. of 0.95, which is 80,000 weight average molecular weight.
Exam~les Compositions of the following examples were extrusion blow molded into 18-ounce (510 g) wide mouth containers on a Bekum H-121S extrusion blow molding machine equipped with an 80-mm high density polyethylene screw and a single head with a 0.70-inch (1.78 cm) ID
die and a 0.675-inch (1.71 cm) OD mandrel. Melt strength improvements were evaluated by measuring the time and weight of an extruded parison from the extrusion blow molding machine to travel a distance of 24 inches (61 cm) below the die tip opening for a given die gap setting. The initial die gap setting, extruder screw speed and temperatures were established for a control sample and allowed to remain constant for all subsequent measurements on samples cont~; n; ng 3 wt % of the color concentrates.
Exam~le 1 (Control, PET only) - PET containing 3.5 mol % CHDM was dried at 350F (177C) for 4 hours in a dehumidifying dryer and extrusion blow molded on the extrusion blow molding machine at a melt temperature of around 450F (232C) to 500F (260C). The die gap was set at 52% on the electronic control panel and the extruder speed was maintained at around 7 rpm. An average parison drop time for the extruded parison to travel a distance of 24 inches (61 cm) was around 21 seconds. The average weight of the parison produced WO94/1~94 ~5 ~ PCT~S93/11880 during this time for the control was 92 grams for this set of conditions. The results were normalized by multiplying the parison weight times the drop time. The normalized value for the control was 1,932 grams-seconds.
Exam~le 2 (Control, PET and Functional Additive) -In this example, PET described above having a weight-average molecular weight between 75,000 and 85,000 was mixed with 3 wt % of a white color concentrate identify and having a weight-average molecular weight range of between 40,000 and 55,000, at the feed throat of the hopper on the extrusion blow molding machine with an additive feeder. After waiting 30 minutes to allow the system to equilibrate, average drop time for the molten parison to cover the same distance as described in Example 1 was 20 seconds and it weighed on the average 83 grams. The normalized results are 1,600 grams-seconds. In comparison with Example 1, these results are 14% lower than the control described in Example 1.
Exam~le 3 (According to Invention) - While continuing the extrusion of the extrusion blow moldable PET copolymer having a weight-average molecular weight between 75,000 and 85,000, a second white color concentrate prepared with 48.526 wt % of PET having a weight-average molecular weight of 40,000 to 55,000, 42.0 wt % Tio2, 9.3 wt % of a polycarbonate and 0.174 wt % of a blue pigment and stabilizer was added with the additive feeder at 3 wt % of the total composition. After waiting for a period of 30 minutes, the parison drop times and weights were measured again without changing the die gap and extruder speed settings that were established in Example 1. In this example, the average parison drop time was around 21 seconds.
The average parison weight was about 89 grams. The normalized value was determined to be 1869.
2~183~
Surprisingly, adding the small amount of polycarbonate to the white color concentrate brought the melt strength of the PET containing the white pigment within 3% of the neat PET.
Exam~le 4 (According to Invention) -- While continuing to extrude the PET copolymer under the conditions given in Example 1, 3 wt % of a red concentrate prepared in a base poly(ethylene terephthalate) having weight--average molecular weight of 40,000 to 55,000 and cont~;n;ng 9.3 wt 96 polycarbonate was added from the additive feeder attached to the feed hopper. The red concentrate was melt mixed in a Werner--Pfleiderer ZSK twin screw extruder and consisted of 76.643 wt % poly(ethylene terephthalate) having weight--average molecular weight of 40,000 to 55,000, 9.3 wt %
polycarbonate, 6.671 wt % Solvaperm (trademark) Red G
R--88 dye, 6.526 wt % Tio2 pigment, 0.750 wt % Solvaperm Red BB R--91 dye and 0.110 wt % Solvaperm Blue B--51 due.
After 30 minutes the parison weight and drop time were measured as described above. The parison drop time over the 24--inch(61 cm) distance was 21 seconds and the parison weight was determined to be 92 grams. The normalized value was found to be 1932 which is very similar to that described in Example 1. This clearly demonstrates that adding a small amount of polycarbonate to the red color concentrate prevents a reduction in the overall melt strength of PET copolymer during the extrusion blow molding process.
Example 5 -- In this Example, a black color concentrate was prepared by melt mixing in the twin screw extruder 20 wt % of Black Pigment BK S9 with 80 wt 96 of a poly(ethylene terephthalate) having a weight--average molecular weight of around 55,000. The concentrate was subsequently blended with the higher molecular weight PET in the Bekum H--121S extrusion blow WO94/14894 PCT~S93/11880 2~5i83~
molding machine as described previously. In this case, the parison drop time over the 24-inch (61 cm) distance was around 16 seconds and the parison weight was measured to be 77 grams. The normalized results were l,232 gm-seconds. Again, in comparison with the normalized value determined for Example l, the normalized value as a measure of melt strength for this Example was determined to be 36% lower than the control which, surprisingly, is a significant reduction in melt strength.
Exam~le 6 - A black concentrate was prepared by melt compounding in a twin screw extruder a mixture of 70 wt % polycarbonate, 20 wt % Black Pigment BK 59 and lO wt % a poly(ethylene terephthalate) copolyester lS modified with 3.5 mol % l,4-cyclohexanedimethanol which had a weight-average molecular weight between 40,000 and 55,000. As previously described, the concentrate was dried and added to the high molecular weight PET in the Bekum extrusion blow molding machine. Again, the average parison drop time and weight was determined without changing the conditions established in Example l. The average parison drop time was surprisingly observed to be significantly long, 3l seconds and average parison weight much heavier, 128 grams. The normalized value was found to be 3,960 which is over two times greater than the normalized value for the control sample described in Example l.
Again, this clearly demonstrates that adding the polycarbonate to the color concentrates will surprisingly overcome the reduction in melt strength usually observed if the concentrates are prepared without the polycarbonate.
The higher normalized values in the examples indicate higher melt strength.
~094/14894 PCT~S93/11880 ~15~8~
As used herein, inherent viscosity (I.V.) is measured at 25C using 0.50 gram of polymer per lO0 mL
of a solvent consisting of 60% by weight phenol and 40%
by weight tetrachloroethane.
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Surprisingly, adding the small amount of polycarbonate to the white color concentrate brought the melt strength of the PET containing the white pigment within 3% of the neat PET.
Exam~le 4 (According to Invention) -- While continuing to extrude the PET copolymer under the conditions given in Example 1, 3 wt % of a red concentrate prepared in a base poly(ethylene terephthalate) having weight--average molecular weight of 40,000 to 55,000 and cont~;n;ng 9.3 wt 96 polycarbonate was added from the additive feeder attached to the feed hopper. The red concentrate was melt mixed in a Werner--Pfleiderer ZSK twin screw extruder and consisted of 76.643 wt % poly(ethylene terephthalate) having weight--average molecular weight of 40,000 to 55,000, 9.3 wt %
polycarbonate, 6.671 wt % Solvaperm (trademark) Red G
R--88 dye, 6.526 wt % Tio2 pigment, 0.750 wt % Solvaperm Red BB R--91 dye and 0.110 wt % Solvaperm Blue B--51 due.
After 30 minutes the parison weight and drop time were measured as described above. The parison drop time over the 24--inch(61 cm) distance was 21 seconds and the parison weight was determined to be 92 grams. The normalized value was found to be 1932 which is very similar to that described in Example 1. This clearly demonstrates that adding a small amount of polycarbonate to the red color concentrate prevents a reduction in the overall melt strength of PET copolymer during the extrusion blow molding process.
Example 5 -- In this Example, a black color concentrate was prepared by melt mixing in the twin screw extruder 20 wt % of Black Pigment BK S9 with 80 wt 96 of a poly(ethylene terephthalate) having a weight--average molecular weight of around 55,000. The concentrate was subsequently blended with the higher molecular weight PET in the Bekum H--121S extrusion blow WO94/14894 PCT~S93/11880 2~5i83~
molding machine as described previously. In this case, the parison drop time over the 24-inch (61 cm) distance was around 16 seconds and the parison weight was measured to be 77 grams. The normalized results were l,232 gm-seconds. Again, in comparison with the normalized value determined for Example l, the normalized value as a measure of melt strength for this Example was determined to be 36% lower than the control which, surprisingly, is a significant reduction in melt strength.
Exam~le 6 - A black concentrate was prepared by melt compounding in a twin screw extruder a mixture of 70 wt % polycarbonate, 20 wt % Black Pigment BK 59 and lO wt % a poly(ethylene terephthalate) copolyester lS modified with 3.5 mol % l,4-cyclohexanedimethanol which had a weight-average molecular weight between 40,000 and 55,000. As previously described, the concentrate was dried and added to the high molecular weight PET in the Bekum extrusion blow molding machine. Again, the average parison drop time and weight was determined without changing the conditions established in Example l. The average parison drop time was surprisingly observed to be significantly long, 3l seconds and average parison weight much heavier, 128 grams. The normalized value was found to be 3,960 which is over two times greater than the normalized value for the control sample described in Example l.
Again, this clearly demonstrates that adding the polycarbonate to the color concentrates will surprisingly overcome the reduction in melt strength usually observed if the concentrates are prepared without the polycarbonate.
The higher normalized values in the examples indicate higher melt strength.
~094/14894 PCT~S93/11880 ~15~8~
As used herein, inherent viscosity (I.V.) is measured at 25C using 0.50 gram of polymer per lO0 mL
of a solvent consisting of 60% by weight phenol and 40%
by weight tetrachloroethane.
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Claims (7)
1. A polymeric composition having improved melt strength characterized by a) 90 to 99.5 wt % of a polyester containing repeat units from at least 90 mol %
terephthalic acid, 90 to 100 mol % ethylene glycol, said polyester having a weight average molecular weight of 75,000-85,000, b) 0.05 to 9.9 wt % of a polymeric material containing 5-100 wt % polycarbonate and up to 0-95 wt % polyethylene terephthalate, and c) 0.005 to 6 wt % of a functional additive which has the ability to change at least one physical property of said polyester including lowering the melt strength thereof, said functional additive containing at least one pigment, wherein the total of a), b) and c) is 100 wt %.
terephthalic acid, 90 to 100 mol % ethylene glycol, said polyester having a weight average molecular weight of 75,000-85,000, b) 0.05 to 9.9 wt % of a polymeric material containing 5-100 wt % polycarbonate and up to 0-95 wt % polyethylene terephthalate, and c) 0.005 to 6 wt % of a functional additive which has the ability to change at least one physical property of said polyester including lowering the melt strength thereof, said functional additive containing at least one pigment, wherein the total of a), b) and c) is 100 wt %.
2. A composition according to Claim 1 wherein the functional additive is a pigment.
3. A composition according to Claim 1 wherein the polyethylene terephthalate is modified with up to 10 mol % 1,4-cyclohexanedimethanol.
4. A polymeric concentrate characterized by a) 95 to 0 wt % of a polyester containing repeat units from at least 90 mol % terephthalic acid and 90 to 100-mol % ethylene glycol, said polyester having a weight average molecular weight of 40,000-85,000, b) 5 to 99.5 wt % of a polymeric material containing about 90 to 100 wt % polycarbonate, and c) 0.5 to 60 wt % of a functional additive which has the ability to change at least one physical property of said polyester including lowering the melt strength thereof, said functional additive containing at least one pigment, wherein the total of a), b) and c) is 100 wt %.
5. A polymeric concentrate according to Claim 4 wherein said functional additive is a pigment.
6. A polymeric concentrate according to Claim 4 wherein said polyethylene terephthalate is modified with up to 10 mol % 1,4-cyclohexanedimethanol.
7. A process for blow molding a polyester composition characterized by adding 0.05 to 9.9 wt % of a polymeric material containing 5-100 wt %
polycarbonate and 0-95 wt % polyethylene terephthalate, to 90 to 99.5 wt % of a polyester containing a) repeat units from at least 90 mol %
terephthalic acid, 90 to 100 mol % ethylene glycol, said polyester having a weight average molecular weight of 75,000-85,000, and b) 0.005 to 6 wt % of a functional additive which has the ability to change at least one physical property of said polyester including lowering the melt strength thereof, said functional additive containing at least one pigment;
- 11a -wherein the total of a), b) and polymeric material is 100 wt %, to form a polymer composition having a viscosity suitable for blow molding and blow molding said polymer composition.
polycarbonate and 0-95 wt % polyethylene terephthalate, to 90 to 99.5 wt % of a polyester containing a) repeat units from at least 90 mol %
terephthalic acid, 90 to 100 mol % ethylene glycol, said polyester having a weight average molecular weight of 75,000-85,000, and b) 0.005 to 6 wt % of a functional additive which has the ability to change at least one physical property of said polyester including lowering the melt strength thereof, said functional additive containing at least one pigment;
- 11a -wherein the total of a), b) and polymeric material is 100 wt %, to form a polymer composition having a viscosity suitable for blow molding and blow molding said polymer composition.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99695092A | 1992-12-28 | 1992-12-28 | |
US07/996,950 | 1992-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2151836A1 true CA2151836A1 (en) | 1994-07-07 |
Family
ID=25543463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA 2151836 Abandoned CA2151836A1 (en) | 1992-12-28 | 1993-12-30 | Polymer compositions having improved melt strength |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0675922A1 (en) |
AU (1) | AU5742994A (en) |
CA (1) | CA2151836A1 (en) |
MX (1) | MX9400006A (en) |
WO (1) | WO1994014894A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9908799A (en) * | 1998-04-17 | 2001-01-09 | Du Pont | Poly (ethylene terephthalate) and polymer of poly (alkylene arylate). |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3218372A (en) * | 1961-08-18 | 1965-11-16 | Kunoshima Kagaku Kogyo Kabushi | Molding material and molded articles |
DE2756925A1 (en) * | 1977-12-21 | 1979-06-28 | Gen Electric | Reinforced moulding compsn. resistant to hot distortion - contg. polyester(s) with polycarbonate and glass fibres |
JPS5787926A (en) * | 1980-11-25 | 1982-06-01 | Dainippon Printing Co Ltd | White bottle made of synthetic resin |
EP0149192A3 (en) * | 1983-12-29 | 1985-08-14 | General Electric Company | Epoxidized epdm as impact modifier for thermoplastic polyester |
DE3520661A1 (en) * | 1985-06-08 | 1986-12-11 | Bayer Ag, 5090 Leverkusen | IMPACT THERMOPLATIC POLYESTER MATERIALS WITH LOW MELT VISCOSITY, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR THE PRODUCTION OF MOLDED BODIES |
US5326793A (en) * | 1990-05-14 | 1994-07-05 | General Electric Company | Glass fiber reinforced polycarbonate/polyester blends |
JP2878854B2 (en) * | 1991-01-24 | 1999-04-05 | 出光石油化学株式会社 | Polycarbonate resin composition |
-
1993
- 1993-12-09 AU AU57429/94A patent/AU5742994A/en not_active Abandoned
- 1993-12-09 WO PCT/US1993/011880 patent/WO1994014894A1/en not_active Application Discontinuation
- 1993-12-09 EP EP94903511A patent/EP0675922A1/en not_active Withdrawn
- 1993-12-30 CA CA 2151836 patent/CA2151836A1/en not_active Abandoned
-
1994
- 1994-01-03 MX MX9400006A patent/MX9400006A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO1994014894A1 (en) | 1994-07-07 |
MX9400006A (en) | 1994-06-30 |
EP0675922A1 (en) | 1995-10-11 |
AU5742994A (en) | 1994-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69612296T2 (en) | POLYESTER / POLYAMIDE BLEND WITH IMPROVED FLAVOR PROPERTY AND CLARITY | |
DE69333538T2 (en) | Polyester / polyamide blend with improved flavor retention and clarity | |
US5283295A (en) | Polymer blends useful for forming extrusion blow molded articles | |
US4315882A (en) | Elastomeric shaped article and method for preparing the same | |
US4563508A (en) | Injection moldable aromatic polyesters compositions and method of preparation | |
US4080354A (en) | Thermoplastic polyester resin compositions | |
EP0748356B1 (en) | High impact strength articles from polyester blends | |
US4897453A (en) | Compatible blends of polyester-ethers and polycarbonates | |
US5420212A (en) | Polyester/polycarbonate/polycaprolactone blends | |
EP1298172A1 (en) | Metallized polyester composition | |
US5091459A (en) | Thermoplastic blow moldable polyethylene terephthalate compositions | |
US4185047A (en) | Thermoplastic molding compositions | |
US4290937A (en) | Thermoplastic molding compositions | |
JP2003020389A (en) | Thermoplastic resin composition | |
CA2151836A1 (en) | Polymer compositions having improved melt strength | |
US4271063A (en) | Thermoplastic molding compositions | |
GB1569229A (en) | Block copolyesters of polybutylene terephthalate | |
US4157997A (en) | Polyalkylene terephthalate and organopolysiloxane-polycarbonate block copolymer blends | |
WO1993022384A1 (en) | Clear copolyester/polycarbonate blends | |
JPH0453868A (en) | Polyester resin composition | |
EP0379255A2 (en) | Thermoplastic resin composition | |
US5062984A (en) | Polymer mixture which comprises an aromatic polycarbonate and a polyalkylene terephthalate, and articles formed therefrom | |
JP3590554B2 (en) | Method for producing molded article and method for improving melt viscosity | |
KR0123042B1 (en) | Polyester resin composition | |
KR100233156B1 (en) | Polyester/polyamide blend having improved flavor retaining property and clarity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Dead |