CA2145004A1 - Impact-absorbing barriers for highways - Google Patents

Impact-absorbing barriers for highways

Info

Publication number
CA2145004A1
CA2145004A1 CA002145004A CA2145004A CA2145004A1 CA 2145004 A1 CA2145004 A1 CA 2145004A1 CA 002145004 A CA002145004 A CA 002145004A CA 2145004 A CA2145004 A CA 2145004A CA 2145004 A1 CA2145004 A1 CA 2145004A1
Authority
CA
Canada
Prior art keywords
tires
whole
tire
wall
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002145004A
Other languages
French (fr)
Inventor
Normand Bernaquez
Ivan Sabourin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA002145004A priority Critical patent/CA2145004A1/en
Publication of CA2145004A1 publication Critical patent/CA2145004A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F15/00Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact
    • E01F15/14Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact specially adapted for local protection, e.g. for bridge piers, for traffic islands
    • E01F15/141Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact specially adapted for local protection, e.g. for bridge piers, for traffic islands for column or post protection
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F15/00Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact
    • E01F15/14Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact specially adapted for local protection, e.g. for bridge piers, for traffic islands
    • E01F15/145Means for vehicle stopping using impact energy absorbers

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)

Abstract

The road-guard construction comprises a first wall of superimposed whole tires disposed horizontally in vertical rows and horizontal columns. A second wall of superimposed half tires - which are cut circumferentially along their tread path, is also disposed in vertical rows and horizontal columns. Each half-tire defines a toroidal chamber, facing upwardly. Tie-bands interconnect the whole tires to the half-tires, whereby a single integral wall unit is achieved. Sand is poured into the toroidal chambers of the half-tires, whereby the first and second walls become firmly anchored to the ground. The road-guard will therefore remain substantially immobile over ground even after repeated vehicle impacts.

Description

21~0~
FTT'T~n OF q'~TT~ TN~N,TION
This invention relates to upright wall constructions, and particularly road-6ide ramps, tidal river Pmhsnl ?ntS, and the like upright ground-anehored barricades .
BACKGROUND QF TT~T TNVT'NTION
United States patent No 5,238,228 issued in August 1993 to Daniel MOON, diseloses the idea of using spent motor vehiele tires as road guards, with the tires being eut in halves by cutting each complete tire circumferentially along its tread path. The tire halves are nested into one another and vertically stacked, and are vertically interconnected by vertically extending tie bands.
United States patent No 4,142,821 issued in March 1979 to Erich Doring, diseloses the concept of a planar horizontal arrangement of a plurality of spent motor vehicle tires, with each pair of adjacent tires being interconnected at their circumferential sections by horizontally extending tie-bands.
One problem with these road-guards is that they have no inherent means for ground anchoring, so that they are liable to accidental displacement over ground.
OBJECTS OF 'lrfJT~ TNvENTIgN
The main object of the invention is therefore to improve upon existing road guards, by providing anchoring means for the spent tires used as road guards, which are integral thereto.
A corollary object of the invention is provide such tire-based road guards, which are of very low manuf acturing cost .
S~n~MARV OF Tl~T TNVT~NTION
In accordance with the objects of the invention, there is disclosed a road-guard construction for absorbing blows from accidentally impacting vehicles, comprising:
(a) a f irst wall of superimposed whole tires disposed 21~D~
in vertical rows and horizontal columns, each said whole tire def ining a tread band, the planes intersecting said tread bands thereof of all said whole tires being oriented horizontally, said firSt wall adapted to be directly impacted by said vehicles about free outer tread band sections thereof;
(b) a second wall of superimposed half tires eut circumferentially along their tread path, also disposed in vertical rows and horizontal columns, each said half-tire defining a toroidal chamber, said toroidal chamber facing upwardly;
(c) means for interconnecting said first and second walls a6 a single integral wall unit; and (d) means for filling at least several of said upwardly facing half-tire toroidal chamber8 with a high-density material, whereby said first and second walls become firmly anchored to the ground; wherein said road-guard will remain substantially immobile over ground even after repeated vehicle impacts.
Preferably, at least some of said whole tires and of said half-tires are spent tires with thin worn-out tread bands .
Said tire interconnecting means could include first tie-band means, for intereonneeting in substantial 2s contacting engagement each pair of adjacent said whole tire and said half-tire from a horizontally registering horizontal column of whole tires and half-tires; second tie-band means, for interconnl~r~ i ng in substantial contacting engagement each pair of adjacent said whole tires from a horizontally registering horizontal column thereof to one another; as well as third tie-band means, for interconnecting in substantial contacting engagement each pair of adjacent said half tires from a horizontally registering horizontal column thereof to one another.
Alternately, with each whole tire defining a pair of opposite side walls and each pair of successive said whole tires from a vertical row of whole tires defining ~ 21~5~0~
therebetween a frusto-conical annular cavity therebetween, 6aid tire interconnecting means could include the engagement of a circumferential section of an ad~acent said half-tire from a horizontally registering horizontal column thereof, edgewisely and frictionally into a cuLL"~ J~ n~
section of said annular cavity.
The high density material could be a granular material, for example, sand.
Preferably, at least a third wall is provided, being made up of superimposed tires at least some of which are whole tires, and at least some other of which are half-tires filled with high-density ground-anchoring material;
the location of said at least third wall being selected from the group consisting of: a location in between said first and second walls; and a location against said second wall opposite said first wall.
The present invention also relates to a method of construction of a ground-anchored road-guard, said road-guard being made of a first wall of whole tires and of a second wall of sand-filled half-tires; wherein the method of construction includes the following steps:
(a) laying a f irst lowermost horizontal row of half-tires over ground;
(b) filling the toroidal chamber of said half-tires 2 5 with sand;
(c) laying a second lowermost horizontal row of half-tires over said first horizontal row;
(d) filling the toroidal chamber of said half-tires of the second row with sand;
(e) laying at least one additional horizontal row of half-tires over said second lowermost horizontal row of half -tires;
(f) filling with sand the toroidal chamber of said half-tires of said at least one additional horizontal row;
(g) vertically stacking a plurality of horizontal rows of whole tires against the vertically stacked said horizontal rows of half-tires; and 214~
(h) attaching selected said whole tires from a given horizontal row of whole tires to selected said half-tires from a horizontally registering horizontal row of half-tires; whereby a unitary immobile double wall construction is achieved.
RRTr1~ DEs(~RrpTIoN OF T~ nRAwTNc~s Figure 1 is a perspective view of a road guard according to the invention, before sand filling;
Figure 2 is an elevational view of part of the road guard of f igure l;
Figure 3 is a top plan view of the road guard of f igure 1;
Figure 4 is a view similar to figure 3, but after sand f illing of the tire halves; and Figures 5 and 6 are top plan views of two dif f erent road guard layouts according to the invention .
Dri~ATrlr~n UF~cRTpTIDN OF Tr~r~ DI~AWINGS
The road guard 10 illustrated in figures 1, 2 and 3 consists of a first leading wall of vertically stacked, spent, whole tires, 12, and a second trailing wall of vertically stacked, spent, half-tires, 14. Each of the whole tires 12 and half tires 14 is horizontally disposed, i.e. laying flat against one side wall thereof. The nu~ber of vertically stacked horizontal layers of whole tires 16 may be for example nine, as illustrated.
The tire arrangement for first wall 12 preferably consists of:
- whole tires 16al, 16a2, 16a3, ..., which form the uppermost horizontal layer of whole tires;
- whole tires 16bl, 16b2, 16b3, ..., which form the second U~ L horizontal layer of half tires;
- whole tires 16cl, 16c2, 16c3, ..., which form the third uppermost horizontal layer of half tires;
- and so on until the ninth (lowermost) layer of whole tires is reached.
Each pair of horizontally successive tires, e.g.

~14500~
16bl and 16b2, abut against each other by a tangential section of their~ adjacent circumferential tread band 18, along a single generally horizontal plane. Each triplet of successive vertically stacked whole tires, e.g. 16b2, 16c2, and 16c3, are horizontally offset, as shown, so that the overlying tire 16b2 be supported at two opposite sections of its side wall 20, by registering sections of the side walls 20 of the pair of underlying tires 16c2, 16c3.
The second wall 14 includes several vertically stacked half tires and horizontally spaced apart half tires, 22, each half tire 22 being cut in half by cutting a complete (preferably worn-out) tire circumferentially along its tread path, wherein a toroidal cavity or open chamber 24 is obtained within the half tire 22. The mouth of annular chamber 24 should face upwardly; or alternately, vertically stacked half-tires 24 would alternate successively, the uppermost facing upwardly, the next one downwardly, the next one upwardly, the next one downwardly, ..., so that an internesting arrangement be achieved. A
tire arrangement similar to first wall 12 is achieved, whereby:
- half tires 22al, 22a2, 22a3, .-- form the "rP~
horizontal layer of half tires;
- tires 22bl, 22b2, 22b3, ... form the second uppermost horizontal layer of half tires;
- tires 22cl, 22c2, 22c3, ... form the third uppermost horizontal layer of half tires;
- and so on until the 1U.:~L ~L layer is reached.
As clearly illustrated in figure 2, the half tires of each horizontal row, e.g. 22al, 22a2, .. of the aft wall 14, are positioned relative to whole tires 16 of the second wall 12 so as to complementarily engage and nest within a portion of the generally annular horizontal cavity 25 formed by the self-abutting side walls 20 of a successive pair of vertically stacked, registering whole tires 16al, 16b2. Cavity 25 is generally frusto-conical in cross-section. First tie bands 26 int~L~u~ uL each pair 21~5~0~
of horizontally successive whole tires 16, e.g. 16al and 16a2, by extending around the corresponding side wall sections of the two tires before being tied tightly in place. Second tie bands 28 interconnect each pair of horizontally succes6ive half-tires 22, e.g. 22al and 22a2, by extending around the tread band and over the single re--inin~ side wall of each half tire and tied tightly in place. Third tie bands 30 interconnect each pair of horizontally registering whole tire 16 and half tire 22, e . g . 16al and 22al, and tied tightly in place.
Tie bands 26, 28, 30, may be of the same construction and tire interconnection arrangement as those disclosed in the Doring patent, ~upra.
As suggested in figure 4, the annular chambers 24 of the half tires 22 - which should all face upwardly - are filled with sand S, or other granular material, to substantially increase the overall weight of each half tire 22. Moreover, sand S is also poured through the circular radially inner mouth of each whole tire 16, where at least some sand remains trapped, whereby the weight of front wall 12 is increased. Accordingly, both the front tire wall 12, and especially the aft half-tire wall 14 - that is to say, the whole road guard 10 - becomes anchored to the ground.
The loaded sand inside the half tires and into the central through-bores of the whole tires should be of such total weight as to anchor the road guard 10 to ground and to maintain such road guard anchored to ground, even after high-load impact from a motorist hitting the road guard at high speed.
It is preferable that the toroidal chamber formed in each of the whole tires 16 from the first tire wall 12 be empty of sand, so that the sandless tire wall provide a resilient shock absorbing layer that will minimize structural damages to the vehicle hitting the road guard.
Sand filling can be achieved in a simple fashion, simply through operation of a dump truck:
1. the f irst lo~r~ - layer of half tires 22 is laid 214~00 ,~
over ground;
2. 6and is poured thereover;
3. the second lowermost layer of half tires 22 i8 laid over the f irst layer;
4. sand is again poured thereover;
5. the third lowermost layer of half tires 22 is laid over the second layer;
6. sand is again poured thereover;
and so on until the uppermost layer of half tires 22 is laid, whereupon the aft wall 14 becomes completely erected.
Substantially all toroidal chambers 24 of half tires 22 should preferably be filled with sand, to ensure firm anchoring of wall 14 to the ground.
Figures 5 and 6 show various road-guard tire arrangements, with more than two walls of tires 16 and half tires 22.
In Figure 5, for example, four tire and half tire walls 12, 14, are formed concentrically to a lamp post 32.
The tires or half-tires are of varying fl i tPrs . Some sectors of the multiple wall assembly, which would be estimated as being more susceptible of sustaining multiple impacts, could be denser with tires than others, e.g. along the radially outermost wall of the top end portion of Figure 5. Again, the radially outermost layer should be made of whole tires 16; the second radially outermost layer should also preferably be made of whole tires 16, although at least some of the tires could be sand-f illed ground anchoring half tires 22; the third radially outermost layer may also be made of whole tires 16, although at least a number if not all of the tires could be sand-filled ground anchoring half tires 22; and the last radially ;nnf _~
wall of tires should preferably be made of whole tires, so as not to unduly damage the lamp post 32, although at least some sand-filled ground-anchoring half tires 22 would not be excluded as possible elements of the radially innermost wall of tires.
Figure 6 is similar to Figure 5, except that the 2~45~0~
tire distribution around lamp post is more of the type described in f igures 1-3, with a f irst outer layer of whole tires 16 and a second inner wall of sand-filled, ground anchoring half tires 22.
Since the tires used are preferably spent i . e.
worn-out ones, the materials used for the construction of the road guard are ' ' free' ', since worn-out tires have no intrinsic value, and sand can usually be found on the premises where the road-guard is to be erected. Moreover, any structural damage to the road-guard can therefore easily repaired, since sand as well as tire fragments can still be recycled; only the tie-bands linking the tires in pairs may need to be replaced by new ones.
The wall assembly made of whole tires and half tires, according to the invention, is not limited to road-guards. Other industrial applications are considered to be well within the scope of the present invention. For example, it is envisioned to use such a wall assembly as:
(a) the median raised strip of ground defining the intP ~ te separating section of divided motorhighways;
(b) a raised barricade along the side of a mountainous road, adjacent a steep-sloped, rock-fall prone or snow avalanche prone cliff, for shielding motorists against falling boulders or snow avalanche;
(c) as an upright F~mh~nk~-nt or breakwater along a shore, to control water movements in tidal rivers or to shield shore bll;ld;n~c against pack ice during unthawing seasons in temperate winter-freezing climates.
Accordingly, whenever the expression ' 'road-guard' ' is used herein, it should be understood to extend to any one of the upright wall structures disclosed above (highway median dividing strip, boulder controlling road barricade, tidal and unthawing river f:)mh:~n~ nt).
~his wall construction could in some cases be used as a yL~ulld-stabilizing horizontal boardwalk, being partly or totally embedded into ground, to prevent accidental landslides or subsidence (the half-tires being internested in single pairs relative to one another along the horizontal layer).

Claims (12)

The embodiments of the invention for which an exclusive property or privilege is claimed, are defined as follows:
1. An upright wall construction for absorbing transverse impacting blows, comprising:
(a) a first wall of superimposed whole tires disposed horizontally in vertical rows and horizontal columns, each said whole tire defining a tread band, said first wall adapted to directly sustain the impact blows about free outer tread band sections thereof;
(b) a second wall of superimposed half tires cut circumferentially along their tread path, also disposed horizontally in vertical rows and horizontal columns, each said half-tire defining a toroidal chamber, said toroidal chamber opening upwardly;
(c) means for interconnecting said whole tires and said half-tires, whereby said first and second walls form a single integral wall unit; and (d) means for filling at least several of said upwardly facing half-tire toroidal chambers with a high-density material, whereby said first and second walls become firmly anchored to the ground;
wherein said wall construction will remain substantially immobile over ground even after repeated impact blows.
2. An upright wall construction as defined in claim 1, wherein at least some of said whole tires and of said half-tires are spent tires with thin worn-out tread bands.
3. An upright wall construction as defined in claim 1, wherein said tire interconnecting means includes first tie-band means, for interconnecting in substantial contacting engagement the tread bands of each pair of adjacent said whole tire and said half-tire from a horizontally registering horizontal column of whole tires and half-tires.
4. An upright wall construction as defined in claim 1, wherein said high density material is a granular material.
5. An upright wall construction as defined in claim 4, wherein said granular material is sand.
6. An upright wall construction as defined in claim 3, wherein said tire interconnecting means further includes second tie-band means, for interconnecting in substantial contacting engagement the tread bands of each pair of adjacent said whole tires from a horizontally registering horizontal column thereof to one another.
7. An upright wall construction as defined in claim 6, wherein said tire interconnecting means further includes third tie-band means, for interconnecting in substantial contacting engagement the tread bands of each pair of adjacent said half tires from a horizontally registering horizontal column thereof to one another.
8. An upright wall construction as defined in claim 1, with each whole tire defining a pair of opposite side walls, and each pair of successive said whole tires from a vertical row of whole tires defining therebetween an annular cavity therebetween; wherein said tire interconnecting means further includes the engagement of a circumferential section of an adjacent said half-tire from a horizontally registering horizontal column thereof, edgewisely and frictionally into a corresponding section of said annular cavity.
9. An upright wall construction as defined in claim 1, further including at least a third wall made up of superimposed tires at least some of which are whole tires, and at least some other of which are half-tires filled with high-density ground-anchoring material; the location of said at least third wall being selected from the group consisting of: a location in between said first and second walls; and a location against said second wall opposite said first wall.
10. An upright wall construction as defined in claim 1, wherein said second wall of superimposed half tires further includes another set of half-tires, each with its said toroidal chamber opening downwardly and mounted between each pair of successive first mentioned vertically stacked half-tires, whereby all said half-tires internest with one another.
11. A method of construction of a ground-anchored wall construction, said wall construction being made of a first wall of whole tires and of a second wall of upwardly facing, sand-filled half-tires; wherein the method of construction includes the following steps:
(a) laying a first lowermost horizontal row of half-tires over ground;
(b) filling the upwardly facing toroidal chambers of said half-tires with sand;
(c) laying a second lowermost horizontal row of half-tires over said first horizontal row;
(d) filling the upwardly facing toroidal chambers of said half-tires of the second row with sand;
(e) laying at least one additional horizontal row of half-tires over said second lowermost horizontal row of half -tires;
(f) filling with sand the toroidal chambers of said half-tires of said at least one additional horizontal row;
(g) vertically stacking a plurality of horizontal rows of whole tires against the vertically stacked said horizontal rows of half-tires; and (h) attaching selected said whole tires from a given horizontal row of whole tires to selected horizontally registering said half-tires;
wherein a unitary immobile double wall construction is achieved.
12. A method of construction of a road-guard as in claim 11, further including the additional step of filling with sand at least some of the circular radially inward channels formed by said whole tires.
CA002145004A 1995-03-20 1995-03-20 Impact-absorbing barriers for highways Abandoned CA2145004A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002145004A CA2145004A1 (en) 1995-03-20 1995-03-20 Impact-absorbing barriers for highways

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002145004A CA2145004A1 (en) 1995-03-20 1995-03-20 Impact-absorbing barriers for highways

Publications (1)

Publication Number Publication Date
CA2145004A1 true CA2145004A1 (en) 1996-09-21

Family

ID=4155462

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002145004A Abandoned CA2145004A1 (en) 1995-03-20 1995-03-20 Impact-absorbing barriers for highways

Country Status (1)

Country Link
CA (1) CA2145004A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910029A1 (en) * 2006-12-19 2008-06-20 Ims Rn Ingenierie Des Mouvemen Protective structure e.g. barricade, for e.g. mountain area, has dissipative system with slab defining volume with ground and upstream face of retaining structure, and including deformable elements defining air and gravel filled spaces
CN106192814A (en) * 2016-08-31 2016-12-07 北京中水长固液分离技术有限公司 A kind of public safety isolation buffer and restriction device and buffer zone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910029A1 (en) * 2006-12-19 2008-06-20 Ims Rn Ingenierie Des Mouvemen Protective structure e.g. barricade, for e.g. mountain area, has dissipative system with slab defining volume with ground and upstream face of retaining structure, and including deformable elements defining air and gravel filled spaces
CN106192814A (en) * 2016-08-31 2016-12-07 北京中水长固液分离技术有限公司 A kind of public safety isolation buffer and restriction device and buffer zone

Similar Documents

Publication Publication Date Title
US5480255A (en) Impact-absorbing barriers for highways
EP0378309A1 (en) Vented cell material for confinement of concrete and earth materials
US4661010A (en) Concrete block
US3928701A (en) Helix of a series of discarded vehicle tires
ES2372490T3 (en) CIVIL ENGINEERING WORK, INDIVIDUAL CONSTRUCTION ELEMENT AND REINFORCEMENT PROCEDURE FOR THIS WORK.
AU613619B2 (en) Collapsible gridworks for forming structures by confining fluent materials
US6517279B1 (en) Traffic divider for calibrating the deceleration of vehicles upon impact
US5156485A (en) Low profile concrete road barrier
EP0937823B1 (en) Erosion control or revetment construction method and construction method of preventing hillside collapse
JPH02157308A (en) Concrete protecting wall
CN110984193A (en) Severe cold mountain area highway cutting side slope ecological protection system
CA2145004A1 (en) Impact-absorbing barriers for highways
CN213740837U (en) River course bank protection for hydraulic engineering
SK3422000A3 (en) Method and device for processing tires
EP1144762B1 (en) Safety barrier made of steel and/or plastics and earth
EP0537261B1 (en) Structures incorporating used vehicle tyres
US6637972B1 (en) Inertial barrier module
US6835024B1 (en) Inertial barrier module array and methods
CN113389159A (en) Frame type concrete guardrail for central separation belt
CN112064651A (en) Collapse rock cushion energy dissipation protection device and construction method thereof
EP0319512B1 (en) Protective mound, in particular a noise barrier
US7175361B1 (en) Inertial barrier module array and methods
RU2802202C1 (en) Barrier safety fence
WO2023275814A1 (en) Hybrid system for vehicle impact resistance and motion diversion
Lokken Concrete safety barrier design

Legal Events

Date Code Title Description
FZDE Discontinued
FZDE Discontinued

Effective date: 19980320

FZDE Discontinued

Effective date: 19980320