CA2135285C - Vibratory screening apparatus - Google Patents

Vibratory screening apparatus Download PDF

Info

Publication number
CA2135285C
CA2135285C CA002135285A CA2135285A CA2135285C CA 2135285 C CA2135285 C CA 2135285C CA 002135285 A CA002135285 A CA 002135285A CA 2135285 A CA2135285 A CA 2135285A CA 2135285 C CA2135285 C CA 2135285C
Authority
CA
Canada
Prior art keywords
motors
shafts
vibratory
vibrator
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002135285A
Other languages
French (fr)
Other versions
CA2135285A1 (en
Inventor
Ola Bjorklund
Alexander Ritchie
George Souter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydralift ASA
Original Assignee
Alfa Laval Separation AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfa Laval Separation AB filed Critical Alfa Laval Separation AB
Publication of CA2135285A1 publication Critical patent/CA2135285A1/en
Application granted granted Critical
Publication of CA2135285C publication Critical patent/CA2135285C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/42Drive mechanisms, regulating or controlling devices, or balancing devices, specially adapted for screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Sorting Of Articles (AREA)
  • Photographic Developing Apparatuses (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Dry Shavers And Clippers (AREA)
  • Jigging Conveyors (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

A vibratory screening apparatus has two vibrator motors (19, 20, 19', 20') having respective out-of-balance weights ar-ranged to produce substantially linear vibratory movement when, in use, these motors (19, 2U, 19', 20') are running in mutually opposite directions, an electrical control means (37) connected to the motors (19, 20, 19', 20') and selectively operable between a non-running mode in which both motors (19, 20) (19', 20') are stopped and two running modes in one of which both vibrator mo-tors (19, 20, 19', 20') run in mutually opposite directions to produce substantially linear vibratory movement and in the other of which at least one of the motors ( 19, 20, 19', 20') is rotationally reversed and both motors ( 19, 20, 19', 20') run to produce orbital vibratory movement. In a preferred arrangement, the out-of-balance weights (39, 42) in at least one (20) of the vibrator motors (19, 20) are adapted so that in one of the running modes the respective out-of-balance forces are mutually substantially equal, and in the other of the running modes the out-of-balance forces are mutually unequal. Alternatively, there is provided coupling means (47, 48), (49) for imposing rotational synchronisation of the vibrator motors (19', 20') as required.

Description

VIBRATORY SCREENING APPARATUS
This invention relates to vibratory screening apparatus suitable for use in screening drilling muds returned from a bore hole.
Hitherto, in connection with the screening of drilling muds, vibratory screening apparatus generally was constructed to operate in a single vibratory mode with orbital (circular/elliptical) movement.
The expression "drilling mud" embraces a variety of substances; and the need for screening in this context relates to th= saparation, from returned mud, of various particles of differing sizes and compositions. This variety has led to the realisation that efficiency of screening drilling muds is related to, inter alia, choosing between orbital and linear vibratory movements.
Therefore, there has emerged a demand foY vibr_ator~J
screening apparatus constructed to operate with linear movement.
Generally, it is accepted that out-of-balance vibrator motors provide the best practical and cost-effective means for producing vibratory motion. A single vibrator motor produces orbital movement which is circular or ellint~.cal depending upon the relative positions of the motor and the centre of mass of the apparatus. Two vibrator motors appropriately arranged and rotating in mutually opposite directions produce linear movement. However, whereas two such vibrator motors will self-sychronise to produce , linear movement when rotating oppositely, they will not do when rotating uni-directionally.
There is now a need for vibratory screening apparatus operable selectively to perform orbital and linear vibratory movements. One solution for such a selectively-operable or "dual motion" apparatus might be to isolate (switch off) either one of the vibrator motors in a two-motor arrangement, thus converting from linear movement to orbital movement. De-isolating (switching on) the said one vibrator motor would accomplish reversion to linear motion. However, this solution would have the disadvantage that one vibrator motor would be idle during orbital movement and this undesirably would introduce a significant power-rating differential between the respective modes of operation.
According to the present invention, in one aspect there is provided vibratory screening apparatus comprising: a substantially horizontal screen; two vibrator motors adapted to vibrate the screen in a feeding direction for material maintained on the screen; and electrical control means connected to the motors; the motors having respective rotatable shafts, each of which forms an angle with the feeding direction and is disposed in non-alignment with the other rotatable shafts, so that the two shafts may be rotated in mutually opposite directions; out-of-balance weights being mounted on the shafts and adapted to provide substantially equal out-of-balance forces from the two motors when the shafts are rotated in the mutually opposite directions; wherein the electrical control means is selectively operable between two running modes for the motors, in one of which modes the shafts of the motors rotate in the mutually opposite directions, producing a linear vibratory movement of the screen in the feeding direction, and in the other one of which modes the shaft of one of the motors is rotationally reversed, so that the two motor shafts rotate uni-directionally, causing orbital vibratory movement of the screen in the feeding direction.

-2a-The two vibrator motors may be mounted on a horizontal cross-beam of the vibratory apparatus with their shafts normal to the feeding direction, the cross-beam having a rectangular or square hollow cross-section, and further the vibrator motors may be arranged respectively on mutually adjacent faces of the cross-beam. As viewed in cross-sectional elevation, the rotational axis of each vibrator motor may lie substantially on one or other of the principal axes of inertia of the cross-beam.
The vibrator motors may be arranged with their shafts normal to the feeding direction, or with their shafts mutually parallel. Also, the vibrator motors may be arranged with their shafts substantially horizontal.
In a further aspect, the invention provides vibratory screening apparatus, comprising: a substantially horizontal screen; two vibrator motors adapted to vibrate the screen in a feeding direction for material maintained on the screen;
and electrical control means connected to the motors; the motors having respective rotatable shafts, each of which forms an angle with the feeding direction and is disposed in non-alignment with the other rotatable shaft, so that the two shafts may be rotatable in mutually opposite directions, out-of-balance weights being mounted on the shafts and adapted to provide substantially equal out-of-balance forces from the two motors when the shafts are rotated in the mutually opposite directions; wherein the electrical control means is selectively operable between two running modes for the motors, in one of which modes the shafts of the motors rotate in the mutually opposite directions, producing a linear vibratory movement of the screen in the feeding direction, and in the other one of which modes the shafts of both the motors are rotationally reversed to cause orbital vibratory movement of the screen in the feeding direction, the shaft of one of the motors carrying a first weight fixed rotationally with respect to the shaft and a second weight free on the shaft and engageable by angularly spaced stops disposed for driving the second weight with a first angular -2b-relationship with the first weight in one direction of rotation and with a different angular relationship with the first weight in the opposite direction of rotation.
Coupling means may be provided for imposing synchronization of the vibratory motors in the other running mode, the coupling means being removable or releasable to permit self-synchronization of the vibratory motors in the one running mode. The coupling means may comprise a removable or disengageable mechanical drive connected to the shafts.

Embodiments of the present invention will now be described, by way of example, with reference to the accompanying drawings in which:-Fig. 1 is a side elevation of vibratory screening apparatus in accordance with the present invention;
Fig. 2 is an end elevation in the direction of arrow A in Fig. 1;
Figs. 3 and 4 are respectively cross-sectional and elevational views of part of a cross-beam in Figs. 1 and 2 - Fig. 3 being a section on the line III-III in Fig. 4;
Fig. 5 is a cross-sectional view detailing the construction of one end of the cross-beam in Figs. 1 and 2, and to a larger scale;
Figs. 6 and 7 are partly diagrammatic elevations of part of Fig. 2 concerning vibrator motors;
Figs. 8, 9 and 10 are views showing the construction and operation of a self-adjustable out-of-balance weight incorporated in one of the vibrator motors of Figs. 6 and 7 and to a larger scale;
Figs. 11 and 12 are partly diagrammatic elevations of . part of Fig. 2 concerning vibrator motors, and showing a different embodiment of the invention; and Figs. 13 and 14 are partly diagrammatic elevations of part of Fig. 2 concerning vibrator motors, and showing a further embodiment of the present invention;
In Figs. 1 and 2 of the drawings, vibratory screening apparatus, simply known as a "shaker", consists of a base on which is mounted a shaker basket 11 by means of flexible suspension elements 12. The basket 11 carries upper and lower screen assemblies 13, 14 which are supplied with material to be screened from a tank 15 which is mounted firmly on the base 10 and which communicates with the screen assemblies 13, 14 by way of a flexible connecting duct 16. The basket 11 carries a vibrator head assembly 17 which consists principally of a rigid cross-beam 18 which carries two vibrator motors 19, 20 and which is secured at each end to respective side cheeks 21, 22 of the vibratory head assembly 17. The side cheeks 21, 22 are firmly fixed to the basket 11. The cross-beam 18 is a hollow rolled steel section of square cross-sectional configuration and the principal axes of inertia of the cross-beam 18 are indicated by the reference numerals 23 and 24. The rotational axes of the motors 19, 20 are indicated by reference numerals 25, 26 respectively.
The motors 19, 20 are arranged respectively on mutually adjacent faces of the cross-beam 18 centrally of the cross-beam as shown in Fig. 2 and with the rotational axis of each motor lying substantially on one or other of the principal axes of inertia 23, 24. As is shown more clearly in Figs. 3 and 4, the motors 19, 20 are secured to respective bridge plates 27 which themselves are welded to ~13~~28~
WO 93/23179 PGT/SE93l00437 support flanges 28 each of which is welded to the cross-beam 18. These arrangements for mounting of the vibrator motors 19, 20 have been found to be capable of transmitting satisfactorily each of the different vibrational modes described herebelow.
The cross-beam 18 is mounted to the side cheeks 21, 22 by means of flanges 29 which are welded to the ends of the cross-beam 18. The flanges 29 are bolted to the side cheeks 21, 22 as can be seen in Fig. 2 and the bolted connections effectively transmit at least some of the .vibratory movements generated by the vibe°-or motors 19, 20. However, the flanges 29 are additio:v~: iy coupled with the side cheeks 21,~ 22 by way of stub shafts 30 each of which is welded to a flange 29 and each of which extends into a tapered comp:~ssion coupling assembly 31 as shown in Fi 5. The st:. shafts 3~7 are arranged on th.= central longitudinal axis of the cross-beam 18. Each coupling 31 has an outer member 32 securely fitted to one of the side cheeks 21, 22 and an inner member 33 in the form of a collet which can be urged into tight locking engagement with its stub shaft 30 by means of screws 3~. In addition to the transmission of vibratory movements into the side cheeks 21, 22, the stub shafts 30 conveniently support the cross-beam 18 in the event of making angular position adjustments thereof about the longitudinal axis of the cross-beam. Such adjustments may be required in order to "fine-tune" the vibratory performance of the screening 21~ i~8~
WO 93/23179 PCf/SE93/00437 apparatus.
Each of the vibrator motors 19, 20 consists of an electric motor within a motor housing 35 and out-of-balance weights within weight housings 36 located at opposite ends of the motor housing 35. In Figs. 6 and 7, the electric motors within the motor housings 35 are rotatable in either direction of rotation under the control of electrical control means in the form of reversing switchgear 37 in which respectively opposite directional conditions are represented by blank and shaded portions. In each switchgear 37, the active condition is represented by the shaded portion; and the direcaions of rotation of the vibrator motors 19, 20 are indicated by arrows 19A and 20A. The switchgear 37 is capable of stopping the motors 19, 20 as is indicated diagrammatically by the full-line switch position at 38.
In the embodiment of Figs. 6 and 7, the vibrator motor 20 is different from the vibrator motor 19 in that the out-of-balance weights incorporated in the vibrator motor 20 are self-adjustable according to the construction illustrated in Figs. 8, 9 and 10. In these ffigures, the out-of-balance weight at each end of the vibrator motor r shaft consists of a first weight 39 which is driven by the motor shaft 40 by means of a key 41, and a second weight 42 which is free on the shaft 40 and retained by a circlip 43. The driven weight 39 is associated with two angularly spaced stops 44, 45 for driving the weight~42. The stop sa,,, " . ; ~'S ~ ~,~i;' ", ,.,,1y. .. . ,~i~~'. . ~ ~.::, . , ~ ... '.
. . . .. ...... . . . ~,d.,. .
~~~ ~~gt~

44 i :jttached ;~.... ~~ctly to the driven weight 39, and the stop 45 is carried by an arcuate member 46 which is attached to the weight 39. T!~us, when the shaft 40 (as seen in Fig. 8) rotates counter-clockwise, the stop 44 drives the weight 42 with the latter in registration with the weight 39 providing a relatively high out-of-balance weight value. With the shaft 40 rotating clockwise (as seen in Fig. 10), the alternative stop 45 drives the weight 42 with the latter displaced from registration with the weight 39 providing a relatively lower out-of-balance weight value. Referring now to Figs. 6 and 7, in a first running mode (Fig. 6) to produce linear vibratory motion, the switchgear 37 runs the vibrator motors 19, 20 in opposite directions and with the effective out-of-balance weight value for the motor 20 equal to that of the motor 19. In a second running mode (Fig. 7) to produce orbital vibratory motion, the switchgear 37 reverses the directions of rotation of both vibrator motors 19, 20 so that these motors again run in opposite directions, but this time with the automatic adjustment of the out-of-balance weights in motor 20. xn this condition, the vibrator motors 19, 20 are no longer equal in terms of out-of-balance masses with the result that orbital vibratory motion is produced.
In Figs. 11 and 12, parts corresponding with those in Figs. 6 and 7 are given the reference numerals used in these figures; and the same diagrammatic representations 21~~~8 WO 93/23179 ~ PCT/SE93100437 _g _ are used. In Figs. 11 and 12, vibrator motors 19', 20' are mounted on the cross-beam 18 in the same manner as shown in Figs. 1 to 4. The vibrator motors 19', 20' are mutually identical. The shafts of the vibrator motors 19', 20' are extended to project beyond one of the weight housings 36 and these shafts are mechanically coupled with respective rotary encoders 47 which provide data in the form of electrical signals as to the angular positions of the shafts of the vibrator motors 19', 20'. The encoders 47 have outputs connected to an extension of the switchgear 37 in the form of data processing means 48 which can be set to run the vibrator motors 19', 20' angularly synchronised within close limits. Thus, the encoders 4? together with the data processing means 48 constitute a form of coupling means which can be activated to impose rotational synchronisation of the vibrator motors. In a first running mode (Fig. 11) to produce linear vibratory motion, the switchgear 37 runs the vibrator motors 19', 20' in opposite directions of rotation and the data processing means 48 is inactive. In this condition, the operation corresponds with that of Fig. 6. In a second running mode (Fig. 12) for producing orbital vibratory motion, the switchgear 37 runs the vibrator motors 19', 20' uni-directionally; and the data processing means 48 is now activated to use data from the encoders 47 to impose angular synchronisation of the motors 19', 20'. In a modification of the embodiment of _g _ Figs. 11 and 12, the switchgear 37 and the data processing means 48 are used to impose angular synchronisation of the motors 19', 20' in both running modes.
In Figs. 13 and 14, parts corresponding with those in Figs. 11 and 12 are given the same reference numerals as are used in in Figs. 11 and 12; and the vibrator motors 19', 20' are mounted on the cross-beam 18 in the same manner as is described for Figs. 1 to 4. In Figs. 13 and 14, the shafts of the vibrator motors 19', 20' are ' provided with removable or releasable coupling means in the forn of a positive or non-slip drive 49. In Fig. 13, the drive 49 is illustrated diagrammatically as a belt drive. However, it will be understood that the drive 49 may be chosen from a variety of known drives including the use of gears and/or clutches. In a first running mode (Fig. 13) to produce orbital vibratory motion, the control means 37 runs the motors 19', 20' uni-directionally and these motors are constrained to remain angularly sychronised by means of the drive 49. In a second running mode (Fig. 14) to produce linear vibratory motion, the control means 37 runs the motors 19', 20' in opposite directions or rotation with the drive 49 removed or disabled. In this condition, the motors 19', 20' self-sychronise in known manner.

Claims (9)

1. Vibratory screening apparatus comprising a substantially horizontal screen, two vibrator motors adapted to vibrate the screen in a feeding direction for material maintained on the screen and electrical control means connected to the motors, said motors having respective rotatable shafts, each of which forms an angle with said feeding direction and is disposed in non-alignment with the other rotatable shaft, so that the two shafts may be rotated in mutually opposite directions, out-of-balance weights being mounted on said shafts and adapted to provide substantially equal out-of-balance forces from the two motors when said shafts are rotated in said mutually opposite directions, wherein said electrical control means is selectively operable between two running modes for the motors, in one of which modes the shafts of the motors rotate in said mutually opposite directions, producing a linear vibratory movement of the screen in said feeding direction, and in the other one of which modes the shaft of one of the motors is rotationally reversed, so that the two motor shafts rotate uni-directionally, causing orbital vibratory movement of the screen in said feeding direction.
2. The vibratory screening apparatus according to claim 1, wherein the two vibrator motors are mounted on a horizontal cross-beam of the vibratory apparatus with their shafts normal to said feeding direction, the cross-beam having a rectangular or square hollow cross-section, and further wherein the vibrator motors are arranged respectively on mutually adjacent faces of the cross-beam.
3. The vibratory screening apparatus according to claim 2, wherein as viewed in cross-sectional elevation the rotational axis of each vibrator motor lies substantially on one or other of the principal axes of inertia of the cross-beam.
4. The vibratory screening apparatus according to claim 1, wherein the vibrator motors are arranged with their shafts normal to said feeding direction.
5. The vibratory screening apparatus according to claim 1, wherein the vibratory motors are arranged with their shafts mutually parallel.
6. The vibratory screening apparatus according to claim 1, wherein the vibrator motors are arranged with their shafts substantially horizontal.
7. Vibratory screening apparatus comprising a substantially horizontal screen, two vibrator motors adapted to vibrate the screen in a feeding direction for material maintained on the screen and electrical control means connected to the motors, said motors having respective rotatable shafts, each of which forms an angle with said feeding direction and is disposed in non-alignment with the other rotatable shaft, so that the two shafts may be rotated in mutually opposite directions, out-of-balance weights being mounted on said shafts and adapted to provide substantially equal out-of-balance forces from the two motors when said shafts are rotated in said mutually opposite directions, wherein said electrical control means is selectively operable between two running modes for the motors, in one of which modes the shafts of the motors rotate in said mutually opposite directions, producing a linear vibratory movement of the screen in said feeding direction, and in the other one of which modes the shafts of both the motors are rotationally reversed to cause orbital vibratory movement of the screen in said feeding direction, the shaft of one of the motors carrying a first weight fixed rotationally with respect to the shaft and a second weight free on the shaft and engageable by angularly spaced stops disposed for driving said second weight with a first angular relationship with the first weight in one direction of rotation and with a different angular relationship with the first weight in the opposite direction of rotation.
8. The vibratory screening apparatus according to claim 7, wherein coupling means is provided for imposing synchronization of the vibratory motors in said other running mode, said coupling means being removable or releasable to permit self-synchronization of the vibratory motors in said one running mode.
9. The vibratory screening apparatus according to claim 8, wherein said coupling means comprises a removable or disengageable mechanical drive connected to said shafts.
CA002135285A 1992-05-19 1993-05-18 Vibratory screening apparatus Expired - Fee Related CA2135285C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9210624.4 1992-05-19
GB929210624A GB9210624D0 (en) 1992-05-19 1992-05-19 Vibratory screening apparatus
PCT/SE1993/000437 WO1993023179A1 (en) 1992-05-19 1993-05-18 Vibratory screening apparatus

Publications (2)

Publication Number Publication Date
CA2135285A1 CA2135285A1 (en) 1993-11-25
CA2135285C true CA2135285C (en) 2003-01-14

Family

ID=10715687

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002135285A Expired - Fee Related CA2135285C (en) 1992-05-19 1993-05-18 Vibratory screening apparatus

Country Status (8)

Country Link
EP (1) EP0726815B1 (en)
AT (1) ATE182282T1 (en)
CA (1) CA2135285C (en)
DE (1) DE69325724T2 (en)
DK (1) DK0726815T3 (en)
GB (1) GB9210624D0 (en)
NO (1) NO303868B1 (en)
WO (1) WO1993023179A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19631849C1 (en) * 1996-08-07 1998-01-08 Svedala Gfa Aufbereitungsmasch Vibration drive for a screening machine
GB9727261D0 (en) * 1997-12-23 1998-02-25 Courtaulds Coatings Holdings Fouling inhibition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2200724A (en) * 1937-01-18 1940-05-14 Samuel D Robins Means for producing gyratory motion
SE445090B (en) * 1978-09-12 1986-06-02 Morgaardshammar Ab SETTING TO ADJUST THE TURN ANGLE BY A VIBRATING DEVICE
NZ194594A (en) * 1979-09-06 1984-08-24 Rexnord Inc Directionally variable vibration generator
US4882054A (en) * 1988-08-22 1989-11-21 Derrick Manufacturing Corporation Vibratory screening machine with tiltable screen frame and adjustable discharge weir

Also Published As

Publication number Publication date
NO944418L (en) 1995-01-18
CA2135285A1 (en) 1993-11-25
DK0726815T3 (en) 2000-01-17
NO944418D0 (en) 1994-11-18
GB9210624D0 (en) 1992-07-01
EP0726815B1 (en) 1999-07-21
DE69325724D1 (en) 1999-08-26
ATE182282T1 (en) 1999-08-15
NO303868B1 (en) 1998-09-14
EP0726815A1 (en) 1996-08-21
DE69325724T2 (en) 2000-02-17
WO1993023179A1 (en) 1993-11-25

Similar Documents

Publication Publication Date Title
US5896998A (en) Vibratory screening apparatus
EP0841264B1 (en) Belt driven vibratory apparatus
AU719552B2 (en) Vibratory drive for a screening machine
US5979640A (en) Vibrating conveyor drive with continuously adjustable stroke
US4590814A (en) Vibration dampening apparatus for motor actuated eccentric forces
WO1999054062A1 (en) Vibratory screen separator
US6263750B1 (en) Device for generating directed vibrations
CA1173405A (en) Dual frequency screen for classifying granular material
CA2135285C (en) Vibratory screening apparatus
US6808384B1 (en) Internal vibration device with variable vibration amplitude
EP0600526B1 (en) Vibrating arrangement for machinery
HU199715B (en) Mass balancing device
CA1077303A (en) Vibrator with eccentric weights
US4289042A (en) Vibrator with eccentric weights
US5123292A (en) Motivational generator
JP3731169B2 (en) Vibration pile punching control method
WO2003097940A1 (en) Drum of vibratory roller provided with vibratory mechanism with directed vibration
CA1220955A (en) Mechanism for maintaining constant belt tension of sheaves with a non-fixed center distance
EP0025408A2 (en) Directionally variable vibration generator
CA1054976A (en) Four shafted eccentric weight vibration device
USRE30932E (en) Vibrator device
KR200220037Y1 (en) Transmission Apparatus for Oscillation Equipment of Oscillation-type Screen
GB2071808A (en) A sifting machine
SU1507435A1 (en) Vibrating mixer
JP2797350B2 (en) Variable vibration angle drive unit for vibrator

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed