CA2133540A1 - Beverage dispenser - Google Patents

Beverage dispenser

Info

Publication number
CA2133540A1
CA2133540A1 CA002133540A CA2133540A CA2133540A1 CA 2133540 A1 CA2133540 A1 CA 2133540A1 CA 002133540 A CA002133540 A CA 002133540A CA 2133540 A CA2133540 A CA 2133540A CA 2133540 A1 CA2133540 A1 CA 2133540A1
Authority
CA
Canada
Prior art keywords
tank
cold plate
inlet
vertical portion
sensing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002133540A
Other languages
French (fr)
Inventor
Craig A. Swanson
David A. Hassell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornelius Inc
Original Assignee
IMI Cornelius Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMI Cornelius Inc filed Critical IMI Cornelius Inc
Priority to CA002133540A priority Critical patent/CA2133540A1/en
Publication of CA2133540A1 publication Critical patent/CA2133540A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/80Arrangements of heating or cooling devices for liquids to be transferred
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/0042Details of specific parts of the dispensers
    • B67D1/0057Carbonators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/0042Details of specific parts of the dispensers
    • B67D1/0057Carbonators
    • B67D1/0061Carbonators with cooling means
    • B67D1/0066Carbonators with cooling means outside the carbonator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0857Cooling arrangements

Abstract

An ice cooled beverage dispensing apparatus including an L-shaped cold plate having a horizontal portion and a vertical portion. The cold plate includes a plurality of beverage lines extending there through and, in particular, extending in a serpentine fashion through the horizontal portion and vertically through the vertical portion thereof. The beverage lines providing for fluid connecting between a plurality of beverage dispensing valves and liquid sources of beverage constituents. The dispenser of the present invention includes a carbonator integral with the cold plate and located generally at the juncture of the vertical and horizontal portions. The integral carbonator provides for a reservoir of cooled carbonated water thereby lessening the thermal demand on the cold plate.

Description

IN THE CANADIAN PATENT OFFICE

TITLE: BEVERAGE DISPENSER

Field of the Invention.

The present invention relates generally to ice cooled post-mix beveragedispensers, and particularly to such dispensers having improved casual drink performance.

Background of the Invention.

Ice cooled beverage dispensers are well known in the art. Such dispensers incorporate cold plates for cooling beverage components as they flow through serpentine pathways therein. A problem has long been recognized with what has been referred to as "casually" drawn drinks, wherein, if there exists a long interval of time between the drawing of individual ~lrink~, the beverage constituents in the line between the beverage valve and the cold plate, can become warmed and result in a drink having an lm.c~ti~factorally high temperature. Various strategies are known for periodically purging the warmed beverage constituent, based upon a predetermined time period or sensed temperature. Alternatively, systems are known for continuously bleeding off such beverage constituent liquid. However, such purging systems can require the use of additional solenoid operated valves for releasing such warmed drink constituents, thereby adding cost and complexity, and potentially reducing the reliability of such beverage dispensers. Additionally, providing for the continuous release of liquid is wasteful and energy inef~lcient.

Accordingly, it would be highly desirable to have an ice cooled beverage dispenser that provides for maintaining of the beverage constituents at a 2133S~O

satisfactory temperature without the necessity of additional expensive hardware, and that is not wasteful or energy inefficient.

Sllmm~ry ofthe Invention.

The ice cooled beverage dispenser of the present invention includes an L-shaped cold plate located within an ice ret~inin~ bin. The cold plate is one integral unit having a horizontal portion and a vertical portion. The horizontal portion includes a plurality of beverage constituent lines extending there through for providing heat exchange with ice retained in the bin. In one embodiment of the present invention a carbonated water manifold is ret~ined within the ice plate, generally at the junction of the vertical and horizontal portions thereof. A plurality of carbonated water lines extend from the manifold in one-to-one correspondence with beverage dispensing valves secured to a tower extending above the vertical portion of the cold plate. The carbonated water lines extend through the vertical portion of the cold plate and are connected individually to each beverage dispensing valve. The vertical portion also includes a plurality of syrup lines extending there through and connected individually to each of the beverage dispensing valves.

In a further embodiment, the present invention includes a heat tube extending substantially vertically, with a lower portion extending into a bore drilled into the vertical portion of the cold plate. An upper portion of the heat tube extends above the vertical portion of the cold plate and exists in close physical contact with a carbonated water manifold extending substantially horizontally and adjacent the beverage dispensing valves. The heat tube is a sealed unit having, in cross-section, an exterior tube and an interior tube and wic~ material there between. The heat tube terrnin~tes adjacent the manifold with an expansion tube portion.

In a further embodiment, a carbonator is cast within the cold plate at the intersection of the vertical and horizontal portions of the cold plate. The carbonator includes an access tube extending therefrom around which the vertical cold plate portion is formed. A carbonator level sensing means is inserted through the tube after casting for providing level sensing means in the carbonator. A gas pressure relief valve is secured to the top of the tube through which the level sensing means is inserted as well as means for introducing carbon dioxide gas into the carbonator through the access tube.

The present in~ention also includes a pair of clips for ret~inin~ the plurality of serpentine beverage coils prior to formation of the cold plate. The clips provide for retaining the beverage coils in a particular orientation so that in the resulting cast cold pla~e the coils are always at a particular desired and consistent distance from the top surface of the cold pl~te.

In operation, the carbonator, or manifold, within the cold plate provides for locating a reserve of cold carbonated water therein. Also, the vertical portion of the cold plate provides for cooling a majority of the beverage constituents that exist behveen the carbonator or manifold and the dispensing valves.
Thus, very little volume thereof can become heated, and if it does, will not subst~nti~lly increase the temperature ofthe casually drawn drink.

It can be understood th~t the fluid within the sealed heat tube will rise upwardly from the cold plate by a wicking action through the wick material.
Thus, when the operating fluid reaches the expansion chamber it can vaporize thereby causing a cooling of the immediately adjacent carbonated water manifold. This evaporated gas can then flow down the inner heat tube, located within the vertical portion of the cold plate, and re-condense as it reaches towards the bottom thereof. Thus, the heat tube provides a strategy for cooling the carbonated water immediately adjacent the valves in a manner that does not reguire the addition of moving parts, such as solenoids and valves.

In a further embodiment of the present invention, portions of the beverage constituent lines extending between the top of the vertical portion of the cold plate and the beverage valves are each enclosed in metal jacket halves. In particular, a jacket half provides for a mass of metal, such as aluminum, which fit together on each side of the beverage tube and are then held in place by a clip means. The bottoms of each jacket half are fitted in close contact into recesses contained in the top of the ice plate vertical portion. Inthis manner, the portions of the beverage constituent tubes between the top of the vertical portion of the cold plate and the valves are themselves contained in a mass of metal which provides for additional heat exchange cooling thereof.

Description of the Drawings.

A fur~her understanding of the structure and operation, objects and advantages of the present invention can be had by referring to the following detailed description which refers to the following figures, wherein:
Fig. 1 shows a side plan partial cross-sectional view of an embodiment of the present invention.
Fig. 2 shows a top plan cross-sectional view along lines 2.2 of Fig. 1.
Fig. 3 shows a front plan view of the embodiment of Fig. 1.
Fig. 4 shows an enlarged cross sectional top plan view of the structure of the joining of the ice bin to the cold plate vertical portion.
Fig. ~ shows a detailed cross-sectional view of a heat tube.
Fig. 6 shows a side plan partial cross-sectional view of a further embodiment of the present invention.
Fig. 7 shows a rear plan partial cross-sectional view along lines 7-7 of Fig. 6.Fig. 8 shows a detailed cross-sectional view of the embodiment of Fig. 6.
Fig. 9 shows a front plan partial cross-sectional view of a further embodiment of the present invention.
Fig. 10 shows a cross-sectional view along lines 9-9 of Fig. 8.

2133~40 Fig. 11 shows a front plan partial cross-sectional view of a further embodiment of the present invention.
Fig. 12 shows a cross-sectional view along line 11-11 of Fig. 10.

DETAILED DESCRIPTION

An embodiment of the beverage dispenser of the present invention is seen in Fig. 1 and generally designated by the numeral 10. Dispenser 10 is ofthe "drop-in" type wherein dispenser 10 is inserted below and rests upon a counter top 12, in a beverage retail area. Dispenser 10 includes an L-shaped cold plate 14 having a horizontal portion 14h and a vertical portion 14v.
Cold plate 14 includes a top surface 16 which is angled downwardly in both a rear-to-front direction away from vertical portion 14v towards a drain 18, and in a side-to-side direction from right to left, as viewed in Fig. 3. A sheetme~al piece 20 forms three of four sides of an ice retainin~ bin space 22, and cold plate vertical portion 14v forms the fourth side. Piece 20 is bent forming two vertical radiused edges ~Oa for defining the three sides of the bin space 22, and is bent along to vertical edges 20b forming tabs 20c. In the pre~erred form of the present invention, the bottom edge of piece 20 is secured to horizontal plate portion 14h in the manner described in U.S.
Patent 4,g5~,505, the contents of which are incorporated herein by r~rel~ellce.
Specifically, plate portion 14h includes an upstanding lip 24 having a top shou~der edge 26 and an inclined por~ion 27. Thus, the bottom edge of piece 20 is press fit within lips 24 and down onto inclined portions 27. A sealent is used along this bottom edge and between it and lip 24, and is secured thereto by, for example, brackets 28 secured to that bottom edge and to shoulder 26. As seen ~y referring to Fig. 4, the vertical edges of tabs 20c are inserted into vertical relieved or shoulder areas 30 extending along portion 14-v ar~.d are secured thereto by a sealent/adhesive.

Cold plate 14 is held within an outer housing 32, and as known in the art, foam insulation 34 is injected beh~een cold plate 14 and bin sides 22, and 2133S'10 outer housing 32. As is also understood in the a~t, cold plate 14 can include a plurality of beverage lines 36 and water lines 38 extending there through in a serpentine fashion. A combination of lines 36 and 38 forms what is gener~lly referred to as a coil pack 40. In the present invention a pair of coilpack positioning strips 42 extend through the cold pack 40 on opposite ends thereof. Strips 42 include an elongate flat portion 42a extending through the coil pack 40 and vertical spacer leg ends 42b.

Beverage dispenser 10 includes a beverage dispensing tower 44 having a plurality of valves 46 secured thereto. Tower 44 includes an interior space 48, defined by a tower housing 49, for cont~inin~ beverage and water lines 36 and 38 as they extend out of and above vertical portion 14v. In one fo~n of the present invention, an insulated water manifold 50 includes an outer housing SOa and a manifold 52 to which all the carbonated water lines 38 are connected and from which the car~onated water lines extend and connect to each of the valves 46. ~urther ~oam insulation 34 is injected between manifold housing 50 and manifold 5~.

In one embodiment of the present invention, a heat tube is employed forpurposes of cooling manifold 52. As seen in Fig. 5, heat tubes, as are known in the art, include an outer tube housing 56 and an inner tube 58 and a wickin~ material 60 there between. An evaporative fluid, such as a suitable alcohol, is also contained within tubes 58 and wick material 60. Tubes 56 and 58 are in fluid communication with an evaporative chamber 62 defined by a horizontal tubular housing ~4. The vertical portion 56 of heat tube 44 is inserted into a vertical l~ore 66 located centrally of vertical plate portion 14v.
Tube 54 extends upwardly through tower area 48 wherein horizontal expansion chamber 54 extsnds in in~im~te physical heat exchange contact with w~ter manifold 52. A water manifold 68 is shown in ghost outline and extends hori~ontally within cold plate 14 at the junction of portions 14h and 14v. Manifold 68 is fluidly connected to lines 38 within plate 14, and lines 38 emanate tllere from and extend u~ward through plate portion 14v. Such manifold 68 can be used in conjunction with a manifold 52, or in an embodiment not having a heat tube 54, can be the sole provider of a reservoir of the cooled carbonated water delivered to valves 46.

As seen by referring to Fig.'s 6, 7 and 8, a further embodiment of the present invention includes a carbonator 70 extending horizontally at the junction of cold plate portions 14h and 14v. Carbonator 70 includes an access tube 72, a plurality of water lines 74, and a water supply J-tube 76, secured thereto and extending vertically therefrom. It will be appreciated by those of skill that carbonator 70 is cast within cold plate 14 with tubes 72, 74, and 76 extending vertically through vertical portion 14v and above the top surface thereof. After formation of cold plate 14, a water level sensor 78 is inserted through access tube 72 and threadably secured a top end 80 thereof. Sensor 78 includes high and lo~ level sensor contacts 82 and 84, respectively, which are mail1tained at a ~esired position within carbonator 70. A carbon dioxide gas fitting 86 is in fluid contact with ~he interior of tube 72 through an extension 88 extending vertically from top tube portion 80. Extension portion 88 also includes a pressure release safety valve 90. Fitting 86 provides for con~ection to a source of pressurized carbon dioxide, not shown. ~later inlet J-tube 76 is connected to a source of water, also not shown. As is understood in the art, carbonated water lines 74 are, in turn, connected tO the plurality of valve 46.

As seen by referring to ~ig.'s 9 and 10, a further embodiment of the present invention includes metal jackets 92 comprised of jacket halves 92a and 92b.
~alves 92a and 92b include interlocking means are secured around water lines 38 and syrup lines 36 as they extend upwardly above of cold plate ve~.ical portion 14v. Il~ particular7 recesses 94 are formed in vertical portion14\~ and serve to receive a portion of the lower ends of metal jackets 92.
Fach half of jacket 92 is secured around the respective syrup lines 36 and water lines 38 by clip means 96. All of the jaekets 9 ~ are contained within a housirl~ 98, which hou~in~ is iniected with fur~her foam insulation 34.

2l33~a Housing 98 can form the tower housing 49 itself, or can alternatively be held within an area 48 of a tower housing.

As seen in Fig.'s 11 and 12, a further embodiment of the present invention is shown wherein, in addition to cold plate horizontal portion 14h and vertical portion 14v, there is a fùrther cold plate vertical portion 102. Vertical portions 102 and 14v and horizontal portion 14h are integral and cast in the same mold. It will be appreciated that the further vertical portion 102 is lesser width than vertical portion 14v and is cast to extend around syrup lines 36 and carbonated water lines 38 that have been grouped together to minimi~e the width of portion 102. Portion 102 is retained within an insulated housing 104. As with the embodiment mentioned above, housing 104 can fo~n the vertical housing portion 49 of a tower 44 or can be contained within a f-urtller tower housing.

The operation of the present invention can be understood, wherein cold plate 14 provides for coolin~ of carbonated water lines 38 and syrup lines 36 in the horizontal portion and vertical portion thereof. Thus, unlike a traditional holizontal cold plate as would be represented by portion 14v, the syrup and water lines are cooled ~Iso by passage through vertical portion 14v, which provides for additional thermal exchange by physical contact with ice contained witl~ bin area 22. Additionally~ heat tube 54 provides for cooling o~manifold 52. ln particular, the ev~porative fluid is transported throu h wick materiaT 60 upwardly towards horizontal expansion chamber 64 In chamber ~4~ the wicking fluid can expand into a gaseous state which ex~ansion results in ev~porative cooling of the surrounding area. As tube 64 is ~n heat exchange conl-act with manifold 52, evaporative cooling of carbonated w.~ter held therein i~s accomplished. In completion of the cycle, the working fluid car. travel down tubes 58 and re-condense at the bottom thereof as it becomes cooled by thermal cont~cl with vertical cold plate porti<)ll 14v. Thus, i~e working ~uid can contimle this evaporating and condellsing cy.~le as long as sufficient ice is contained within bin area 22.

21335~0 Therefore, it can be appreciated that a constantly cooled reserve of carbonated water is held within manifold 52 closely adjacent valves 46 so that casually drawn drinks will be maintained at a reasonably low and desirable temperature. Moreover, it can be seen that this evaporative cooling of manifold 52 is accomplished without the addition of any moving parts.

In the embodiment as shown in Fig.'s 6, 7 and 8, the use of a carbonator cast within a cold plate provides for a large reserve of cold carbonated water that can be provided to valves 46. This large reserve of carbonated water can help to reduce somewh~t casual drawn drink temperature problems and, of course, provi~es for a lar~e supply of carbonated water under high draw situations. The embodiment wherein the carbonator 70 cast within cold plate 14 also uses a manifold 52 cooled by an evaporative heat tube 54 provides for further assuranc~ that interrnittently drawn drinks will be of a sufficient low temperature. Also, it can be understood that the forming of a carbonator ha~-ing the tu~es 72, 74 and 76 secured thereto and extending therefrom prior to the castirg of` car`~onator within cold plate 14, provides a reasonable means for gaining access to ca~onator 70 after the casting process. Such access is needed for inserting level sensor 78 and for providing means for inlet ca1~on dJoxide g~; and flat water. Such a formation technique is much more desirable, energ~ ~fficient and less costl~ than, for example, drilling bores tllroug~l vertica~ ~ortio~ 14 after the casting ~rocess in order to gain access to carbonator ~.

In the embodiment as sl1own in Fig.'s 9 and 10, it can be understood that Metal ~ackets 92 provide ior thermal heat excl1ange cooling of tubes 36 and 38. In such ~n em~oclimell~ jaekets halves 92a and 92b can be secured around tube~ 36 and ~ after the casting of cold plate 14. In addition, jackets 92~ and ~2b represent somewhat less metal mass and therefore present an advantage of lighter weight and the use of less ma~erial. In this manner, the e~ odiment of Fig.'s 9 and lO provides for cooling of tubes 36 and 38 up to 2133~

the point of securing with valves 46. Thus, only a small volume of liquid can warm between drinks, which volume can not reduce appreciably the resulting drawn drink temperature.

As seen in the embodiment described in Fig.'s 11 and 12, the further addition of cold plate extension 102 provides for a simplified means of filrther casting cold plate heat exchange material ~round tubes 36 and 38. Thus, as opposed to the embodiment shown in Fig.'s 9 and 10~ somewhat more cold plate metal material is used, however the construction thereof is simplified as there is no need to assemble jacket halves 92a and 92b secured together with clips 96.

As is kno~A~n in the art, cold plates are formed in clam shell type molds.
There has been a iong ~roblem with the coil packs contained therein varying as lo their ~ositiori with respect to the surfaces ofthe cold plate. This occurswhen the coil pac;k ~oats ~r otherwise moves before the casting has solidifled. Thus, in the present invention, coil pack spacers 42 extend throug~l coil packs 4() wherein the foot ends 46 provide for holding the coil pack ill a particular ~osition within the clam sl1ell mold when it is closed there~n. Th~is~ when rr;~lten aluminum is poured into the mold, spacers 42 provide for s~ curing c-~il pack 40 at a desired and consistent distance, particularly fro-m lhe to~ surface 16 of horizontal portion 14h. In this manner, cold plates can be formed that preform consistently as their coil ~ack is positioned a~ substantially the same desired location within the final cast plate .

V~r~ous modif-ications and additions to the present invention can be made by those of s~ill in the a~t, ~ cll~ exceeding the spirit and scope thereof. In pai-ticular, it ca~.l be understood th~t various aspects of the embodiment sh~wrl in here can be us~d in dif~erent combinations. Thus, heat tube 54 can ~e used in the embodimen~s shown in Fig.'s 8~ vherein a manifold 52 is aiso incluaed adjacent val~es 44.

1~

Claims (17)

1. An ice cooled beverage dispenser comprising:
an L-shaped cold plate having a bottom horizontal portion and a vertical portion, the cold plate secured to a bin liner so that the cold plate and bin liner form an ice retaining bin, and a tank held within the cold plate at a juncture of the vertical and horizontal portions thereof, and the cold plate bottom portion having one or more water lines extending there through and fluidly connected to the tank for providing fluid communication therein of water from source thereof; and the tank having a first inlet fitting for providing fluid securing of the tank to a source of pressurized carbon dioxide gas, and the tank having one or more carbonated water outlet lines secured thereto for providing fluid securing of the tank to one or more beverage dispensing valves.
2. The dispenser as defined in claim 1, and the tank having a first tube secured thereto and extending therefrom through the cold plate vertical portion and terminating at a top surface thereof with the first inlet.
3. The dispenser as defined in claim 1, and the tank having a first tube secured thereto and extending therefrom through the cold plate vertical portion and terminating at a top surface thereof with a first fitting, the first fitting including the first inlet and including a sensing means opening through which a liquid level sensing means can be inserted down the first tube and into the tank for providing the sensing of liquid levels therein and the sensing means sealably securable with the sensing means opening.
4. An ice cooled beverage dispenser comprising:
all L-shaped cold plate having a bottom horizontal portion and a vertical portion, the cold plate secured to a bin liner so that the cold plate and bin liner form an ice retaining bin, and a tank held within the cold plate at a juncture of the vertical and horizontal portions thereof, a first tube secured to the tank and extending therefrom through the cold plate vertical portion and terminating with a first inlet, the first inlet for providing fluid communication with a source of water, and the tank having a second inlet for providing fluid securing of the tank to a source of pressurized carbon dioxide gas, and the tank having one or more carbonated water outlets for providing fluid securing of the tank to one or more beverage dispensing valves.
5. The dispenser as defined in claim 4, and the tank having a second tube secured thereto and extending therefrom through the cold plate vertical portion and terminating at a top surface thereof with the second inlet.
6. The dispenser as defined in claim 4, and the tank having a second tube secured thereto and extending therefrom through the cold plate vertical portion and terminating at a top surface thereof with an extension end, the extension end including the first inlet and including a sensing means opening through which a liquid level sensing means can be inserted down the second tube and into the tank for providing the sensing of liquid levels therein, and the sensing means sealably securable with the sensing means opening.
7. An L-shaped cold plate for use in an ice cooled beverage dispenser, comprising:
a bottom horizontal portion and a vertical portion, the cold plate securable to a bin liner so that the cold plate and bin liner form an ice retaining bin, and a tank held within the cold plate at a juncture of the vertical and horizontal portions thereof; and the cold plate bottom portion having one or more water lines extending there through and fluidly connected to the tank for providing fluid communication therein of water from a source thereof, and the tank having a first inlet for providing fluid securing of the tank to a source of pressurized carbon dioxide gas, and the tank having one or more carbonated water outlet lines secured thereto for providing fluid securing of the tank to
8. The dispenser as defined in claim 7, and the tank having a first tube secured thereto and extending therefrom through the cold plate vertical portion and terminating at a top surface thereof with the first inlet.
9. The dispenser as defined in claim 7, and the tank having a first tube secured thereto and extending therefrom through the cold plate vertical portion and terminating at a top surface thereof with a first fitting, the firstfitting including the first inlet and a sensing means opening through which a liquid level sensing means can be inserted down the first tube and into the tank for providing the sensing of liquid levels therein and the sensing means sealably securable with the sensing means opening.
10. An L-shaped cold plate for use in an ice cooled beverage dispenser, comprising:
a bottom horizontal portion and a vertical portion, the cold plate securable to a bin liner so that the cold plate and bin liner form an ice retaining bin, and a tank held within the cold plate at a juncture of the vertical and horizontal portions thereof, a first secured secured to the tank and extending therefrom through the cold plate vertical portion and terminating with a first inlet, the first inlet for providing fluid communication with a source of water, and the tank having a second inlet for providing fluid securing of the tank to a source of pressurized carbon dioxide gas, and one or more carbonated water outlets for providing fluid securing of the tank to one or more beverage dispensing valves.
11. The dispenser as defined in claim 10, and the tank having a second tube secured thereto and extending therefrom through the cold plate vertical portion and terminating at a top surface thereof with the second inlet.
12. The dispenser as defined in claim 10, and the tank having a second tube secured thereto and extending therefrom through the cold plate vertical portion end terminating at a top surface thereof with an extension end, the extension end including the first inlet and including a sensing means opening through which a liquid level sensing means can be inserted down the second tube and into the tank for providing the sensing of liquid levels therein, and the sensing means sealably securable with the sensing means opening.
13. An L-shaped cold plate for use in an ice cooled beverage dispenser, comprising:
a bottom horizontal portion and a vertical portion, the cold plate securable to a bin liner so that the cold plate and bin liner form an ice retaining bin, and a tank held within the cold plate at a juncture of the vertical and horizontal portions thereof, the tank having first inlet means for providing fluid securing thereof to a source of water, and the tank having a second inlet means for providing fluid securing of the tank to a source of pressurized carbon dioxide gas, and the tank having one or mole carbonated water outlet lines secured thereto for providing fluid securing of the tank to one or more beverage dispensing valves.
14. The dispenser as defined in claim 13, and the tank having a first tube secured thereto and extending therefrom through the cold plate vertical portion and terminating at a top surface thereof with the first inlet means.
15. The dispenser as defined in claim 13, and the tank having a first tube secured thereto and extending therefrom through the cold plate vertical portion and terminating at a top surface thereof with a first fitting, the firstfitting including the first inlet means and including a sensing means opening through which a liquid level sensing means can be inserted down the first tube and into the tank for providing the sensing of liquid levels therein and the sensing means sealably securable with the sensing means opening.
16. The dispenser as defined in claim 13, and the one or more carbonated water outlet lines extending through the cold plate vertical portion.
17. The dispenser as defined in claim 15, and the one or more carbonated water outlet lines extending through the cold plate vertical portion.
CA002133540A 1994-10-03 1994-10-03 Beverage dispenser Abandoned CA2133540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002133540A CA2133540A1 (en) 1994-10-03 1994-10-03 Beverage dispenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002133540A CA2133540A1 (en) 1994-10-03 1994-10-03 Beverage dispenser

Publications (1)

Publication Number Publication Date
CA2133540A1 true CA2133540A1 (en) 1996-04-04

Family

ID=4154454

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002133540A Abandoned CA2133540A1 (en) 1994-10-03 1994-10-03 Beverage dispenser

Country Status (1)

Country Link
CA (1) CA2133540A1 (en)

Similar Documents

Publication Publication Date Title
US5524452A (en) Beverage dispenser having an L-shaped cold plate with integral carbonator
US6912867B2 (en) Combined water cooler and refrigerator unit
US6422031B1 (en) Refrigeration appliance with impingement cooling system
US20060150637A1 (en) Alcohol beverage dispensing apparatus
CA2140889C (en) Bottled water station with removable reservoir
US5743107A (en) Apparatus for cooling fluids
CN100510588C (en) Housing for a refrigeration device
JPH02213688A (en) Cooling system of carbonated liquid
EP1392596A4 (en) Cooling and dispensing of products
CN1174977A (en) Detachable type refrigerator
CA2133540A1 (en) Beverage dispenser
CN212346232U (en) Liquid supply device and drinking water equipment
JP3934308B2 (en) Cryostat
CN101218477B (en) Refrigerating device with cooling of circulating air
PL202101B1 (en) Thermally insulating housing for a cooling device
EP1121322A4 (en) Beverage dispenser with enhanced cooling efficiency
US7299948B2 (en) Reservoirs for bottled liquid dispensers
WO2012076451A2 (en) Refrigeration appliance
CN113854824A (en) Liquid supply device and drinking water equipment
EP1580503B1 (en) Temperature control apparatus for use in a carbonator of a refrigerator
JP3537313B2 (en) Cooled beverage supply device
JPS629502Y2 (en)
KR200245484Y1 (en) Table for beverage
GB2203823A (en) Liquid cooler
KR20190060917A (en) Soju freezer for camping

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued