CA2123285C - Coating agents and use thereof as primers and/or fillers in the production of multilayer coatings - Google Patents

Coating agents and use thereof as primers and/or fillers in the production of multilayer coatings Download PDF

Info

Publication number
CA2123285C
CA2123285C CA002123285A CA2123285A CA2123285C CA 2123285 C CA2123285 C CA 2123285C CA 002123285 A CA002123285 A CA 002123285A CA 2123285 A CA2123285 A CA 2123285A CA 2123285 C CA2123285 C CA 2123285C
Authority
CA
Canada
Prior art keywords
alpha
beta
coating
coating agent
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002123285A
Other languages
French (fr)
Other versions
CA2123285A1 (en
Inventor
Heinz D. Becker
Gerhard Bremer
Fritz Sadowski
Werner Stephan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CA2123285A1 publication Critical patent/CA2123285A1/en
Application granted granted Critical
Publication of CA2123285C publication Critical patent/CA2123285C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/625Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids
    • C08G18/6258Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids the acid groups being esterified with polyhydroxy compounds or epoxy compounds during or after polymerization
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/088Removal of water or carbon dioxide from the reaction mixture or reaction components
    • C08G18/0885Removal of water or carbon dioxide from the reaction mixture or reaction components using additives, e.g. absorbing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4081Mixtures of compounds of group C08G18/64 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal
    • Y10T428/1259Oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31565Next to polyester [polyethylene terephthalate, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The description relates to coating agents for use as primers and fillers in the manufacture of multilayer lacquer coatings, more particularly in the motor-vehicle sector.

The coating agent contains a binder mixture of A) 60 - 75 wt.% of a hydroxy-functional copolymer with an OH number of 110 to 170 mg KOH/g, obtainable from a) 5 - 60 wt.%, preferably 10 - 30 wt.% of at least one diester of an alpha, beta-olefinically unsaturated dicarboxylic acid with saturated monohydric alcohols containing 1 - 8 carbon atoms, b) 10 - 70 wt.%, preferably 35 - 60 wt.%, of one or more vinyl aromatic hydrocarbons, c) 0 - 30 wt.%, preferably 0 - 15 wt.% of one or more~
glycidyl esters of aliphatic saturated monocarboxylic acids branched in the alpha position, d) 25 - 50 wt.% of at least one hydroxy alkyl ester or a mixture of at least one alkyl ester and one hydroxyl alkyl ester of an alpha, beta-olefinically unsaturated monocarboxylic acid, and e) 0 - 10 wt.% of one or more alpha, beta-unsaturated monocarboxylic acids, B) 1 - 6 wt.% of ester-soluble nitrocellulose, C) 0.5 - 1.8 wt.% calcium oxide and D) 25 - 35 wt.% of one or more divalent or polyvalent polyisocyanates.

Description

Coatincr agents and use thereof as primers and/or fillers in the production of multilaver coatings The invention relates to a coating agent containing a binder mixture of an ester-soluble nitrocellulose, a hydroxy-functional copolymer and a lacquer polyisocyanate, pigments and/or extenders, solvents and optional conventional lacquer additives. The coating agent according to the invention is particularly suitable for preparing primers or as primer surfacers in multilayer coatings, particularly in the motor-vehicle sector.
Coating agents based on polyhydroxyl acrylate resins, lacquer polyisocyanates and nitrocellulose are already known. Tt is also known to use them as primers or fillers, particularly in the motor-vehicle sector. EP-A-269 035 describes a coating agent of this kind, containing a binder mixture of 60 - 75 wt.% of a hydroxy-functional copolymer, obtained by reaction of styrene and/or a styrene derivative with a hydroxyalkyl ester of (meth)acrylic acid and a (meth)acrylate, the homopolymer of which has a glass transition temperature above 40°C, 1 - 5 wt.% of ester-soluble nitrocellulose and 25 - 35 wt.% polyisocyanate. The resulting coating agents are suitable for forming layers up to 400 ~.m thick, but have the disadvantage that they cannot be worked at very low temperatures. In addition, the pot life and solvent content of these coating agents are as yet unsatisfactory.
DE-A-35 46 594 describes copolymers obtainable by reacting 21 - 70 wt.% styrene and/or vinyl toluene, 10 - 39 wt.%
hydroxyalkyl ester of (meth)acrylic acid, 0 - 2 wt.a (meth)-acrylic acid and/or itaconic acid, 0 - 20 wt.a alkyl esters of (meth)acrylic acid and 0 - 38 wt.o butyl acrylate and/or 2-ethyl hexyl acrylate. These copolymers can be used together with epoxy resins and nitrocellulose as primers or as priming or spray fillers. The disadvantages of these coating agents are the low content of solids and the relatively high content of solvent.
The object of the invention is to provide coating agents which are particularly suitable for producing primers and fillers and can be processed without difficulty even at low temperatures, and have a sufficient pot life and a relatively low solvent content.
This object is achieved by the coating agent containing a binder mixture comprising an ester-soluble nitrocellulose, a lacquer polyisocyanate and a hydroxy-functional copolymer, pi~ents and/or extenders, solvents and optionally conventional adjuvants, characterised in that the binder substantially comprises A) 60 - 75 wt.a of a hydroxy-functional copolymer with an OH number of 110 to 170 mg KOH/g, obtained from a) 5 - 60 wt. o, preferably 10 - 30 wt.% of at least one diester of an alpha, beta-olefinically unsaturated dicarboxylic acid with saturated monohydric alcohols containing 1 - 8 carbon atoms, b) 10 - 70 wt.o, preferably 35 - 60 wt.%, of one or more vinyl aromatic hydrocarbons, c) 0 - 30 wt. s, preferably 0 - 15 wt.% of one or more glycidyl esters of aliphatic saturated monocarboxylic acids branched in the alpha position, d) 25 - 50 wt.o of at least one hydroxy alkyl ester or a mixture of at least one alkyl ester and one hydroxy alkyl ester of an alpha, beta-olefinically unsaturated monocarboxylic acid, and e) 0 - 10 wt.o of one or more alpha, beta-unsaturated monocarboxylic acids, B) 1 - 6 wt.o of ester-soluble nitrocellulose, C) 0.5 - 1.8 wt.o calcium oxide and D) 25 - 35 wt.% of one or more divalent or polyvalent polyisocyanates.
The sum of components A), B), C) and D), and a), b), c), d) and e) is 100 wt.% in each case.
It has been found that the coating agents according to the invention can be used to prepare primers and primer surfacers which, in the state ready for spraying, have a high solids content and dry very quickly even at low temperatures.
Surprisingly, no tendency to blister has been observed even at higher layer thicknesses up to 250 ~,m, although a binder with a relatively high hydroxyl number is used.
The copolymer (component A) used in the coating agents according to the invention can be prepared by polymerisation by conventional methods, e.g. substance, solution or bead polymerisation. The various methods of polymerisation are well-known and described in Houben-Weyl, Methoden der Organischen Chemie, 4th edition, Volume 14/1, pages 24 - 255 (1961) .
Preferably the hydroxyl group-containing copolymer is prepared by radical substance polymerisation. Such copolymers and manufacture thereof are described in DE-A-31 O1 887. Conventional radical-forming compounds are used as polymerisation initiators.
The initiators can e.g. be aliphatic azo compounds such as azo isobutyric acid nitrile or peroxides such as diacyl peroxides, e.g. dibenzoyl peroxide, or dialkyl peroxides such as di-tert.-butyl peroxide, or dialkyl hydroperoxides such as tert.-butyl hydroperoxide. Di- tert. butyl peroxide is specially preferred.
The proportion thereof is generally 0.5 to 2.5, preferably 0.5 to 1.9 wt.% relative to the total weight of the starting components.
The initiator can be added gradually with the monomers. A
part of the initiator can be added right at the beginning with component A and another part can be introduced into the reactor gradually with the other monomers. After all the monomers have been introduced, no additional amount of initiator is usually necessary for completing the polymerisation. In some cases, however, an additonal quantity of 0.1 to 1.0 wt.o initiator can be added at intervals after all the monomers have been supplied, but in such cases the proportion of initiator should not exceed 2.5 wt .o.
The polymerisation temperature depends on the desired molecular weight and is usually considerably above the melting-point of the resulting copolymer, preferably between 150 and 190°C, more particularly between 160 and 185°C. At the polymerisation temperature, therefore, the copolymer is liquid and can easily be agitated. After polymerisation it can optionally be diluted or cooled without a solvent, in which case it hardens to a solid and can be ground.
The components a) can be malefic or fumaric acid esters, preferably with saturated monohydric alcohols containing 1 to 8, preferably 1 to 4 carbon atoms in the molecule, such as dimethyl maleinate, diethyl fumarate, di-butyl maleinate or dibutyl fumarate.

The component b) can e.g. be styrene, alkyl styrene, e.g.
alphamethyl styrene or a vinyl toluene, individually or in a mixture.
5 Component c) preferably comprises glycidyl esters of alpha-monoalkyl and/or alpha, alpha-dialkyl alkane monocarboxylic acids with 12 to 14 carbon atoms.
Hydroxyalkyl esters suitable as component d) can e.g. be the hydroxyalkyl esters of acrylic, methacrylic or crotonic acid, preferably with 1 - 12 carbon atoms in the hydroxyalkyl radical. The following are examples of preferred hydroxy alkyl esters: hydroxymethyl methacrylate, hydroxyethyl methacrylate, hydroxymethyl acrylate, hydroxyethyl acrylate, butanediol-1,3-monoacrylate, butanediol-1,4-monomethacrylate, butanediol-1,2-monoacrylate or butanediol-1,2-mono-methacrylate.
Alkyl esters suitable as component d) can e.g. be the alkyl esters of acrylic, methacrylic or crotonic acid with monohydric alcohols, preferably with 1 to 12 carbon atoms, such as methanol, ethanol or the various butanols. Methyl methacrylate, ethyl methacrylate, tert.butyl acrylate and tert.-butyl methacrylate are very suitable.
The proportions of hydroxy alkyl esters and alkyl esters in component d) are adjusted to obtain the desired OH number.
The component e) is preferably acrylic acid, methacrylic acid or crotonic acid.
The nitrocellulose (celluose nitrate) used as component B) in the coating agent according to the invention should be soluble in organic ester solvents. Nitrocellulose with a nitrogen content of 10 to 15%, e,.g. 11.8 to 12.250, is suitable for this purpose. Nitrocellulose of this kind is soluble in esters and practically insoluble in alcohols.

2 ~ z3z85 However, it can be extensively blended with alcohols and aromatics. Ester solvents for dissolving the nitrocellulose of use according to the invention can e.g. be esters subsequently present in the finished coating agents.
Advantageously and preferably, the natural viscosity of the nitrocellulose as expressed by the K value after H.Fikentscher (Cellulosechemie 13, page 58 (1932)) is in the range from 300 to 600 (measurement: 2 grams nitrocellulose in 100 ml acetone at 25°C).
Nitrocellulose with a K value of 400, e.g. Collodium wool~ E
400 B (Wolff Walsrode AG) is particularly preferred.
The component C) in the coating agent according to the invention is calcium oxide in a proportion of 0.5 to 1.8 wt.a relative to the total solids content of the coating agent.
The calcium oxide (Ca0) is pulverulent. For example, commercial fine-grained powder is suitable.
Polyisocyanates (component D) are used for cross-linking the binder mixture of copolymer and ester-soluble nitrocellulose according to the invention. The polyisocyanates are conventional lacquer polyisocyanates. The proportion of polyisocyanate cross-linking agents is chosen so as to obtain 0.5 to 2 isocyanate groups per hydroxyl group in the binder mixture. Excess isocyanate groups can react with moisture and contribute to the cross-linking.
The following are some examples of suitable polyisocyanates:
aliphatic, cycloaliphatic and aromatic polyisocyanates such as hexamethylene diisocyanate, trimethyl hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-diisocyanato-dicyclohexyl methane, toluylene-2,4-diisocyanate, o-, m- and p-xylylene diisocyanate, 4,4'-diisocyanatodiphenyl methane;
polyisocyanates masked with CH-, NH- or OH- acid compounds, or polyisocyanates containing biuret, allophanate, urethane or isocyanurate groups.
These polyisocyanates can e.g. be a reaction product of 3 mols hexamethylene diisocyanate and 1 mol water and containing biuret groups, or a polyisocyanate containing isocyanurate groups prepared by trimerisation of 3 mols hexamethylene diisocyanate, or polyisocyanates containing urethane groups and obtained by a reaction between 3 mots of toluylene diisocyanate and 1 mol trimethylol propane.
In order to manufacture the coating agents according to the invention, the individual components are mixed together and homogenised or ground in known manner. For example the procedure can be as follows: firstly the hydroxy-functional copolymer (component A) is mixed with the calcium oxide (C), pigments and/or extenders and conventional lacquer adjuvants and solvents if present, a dispersion is formed and then the nitrocellulose (component B) is added in the form of a solution, followed by a grinding operation. The polyisocyanate (component D) can then be added.
Alternatively the polyisocyanate (component D) can be stored separately in solution form and added to the other pre-mixed components directly before use of the coating agent.
The solvents for the coating agents according to the invention can e.g. be:
Glycol ethers such as ethylene glycol dimethyl ether, Glycol ether esters such as ethyl glycol acetate, butyl glycol acetate, 3-methoxy-n-butyl acetate, butyl diglycol acetate, or methoxy propyl acetate, Esters such as butyl acetate, isobutyl acetate or amyl acetate, or Ketones such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone or isophorone.
Use can also be made of aromatic hydrocarbons such as xylene, Solvesso 100 (registered trade mark) or aliphatic hydrocarbons, optionally blended with the aforementioned solvents.
The proportion of solvent used depends on the desired viscosity of the final coating agent.
Conventional pigments can be added to the coating agents according to the invention. Conventional inorganic and/or organic pigments can be used. These pigments can serve as colour pigments or as anti-corrosion pigments. Iron oxide pigments and titanium dioxide are examples of usable colour pigments. The anti-corrosion pigment can e.g. be zinc phosphate.
The coating agents according to the invention can also contain extenders, i.e. conventional extenders such as are used for coating agents and influence e.g. the adhesiveness, the elasticity, drying, grindability and the film hardness of coatings made from the coating agents.
The extenders can e.g. be silicic acid or silicon oxide (e. g.
for improving the adhesion, film hardness, liberation of solvent and for influencing the grindability), aluminium silicate (e. g. for improving the grindability), magnesium silicate (e. g. for increasing the adhesiveness) or barium sulphate (e. g. for improving the film hardness).
The ratio of extenders and/or pigments to binders (components A, B, C and D) (solid on solid proportions by weight) is preferably 70 - 80 to 30 - 20. The coating agents according to the invention can also be mixed with conventional A

additives used in lacquer technology, e.g. thixotropic agents such as montmorillonite or pyrogenic silicon dioxide.
Organic metal salts such as dibutyl tin dilaurate or zinc naphthenate are other examples. These catalysts are of assistance in thorough drying, with the result that the coatings become grindable more quickly. Wetting agents such as ionic or non-ionic wetting agents, corrosion-preventing agents, etc. are other examples of conventional lacquer additives.
The coating agents according to the invention are suitable for forming coatings on a wide variety of substrates, such as metal, wood, ceramics or plastics. They are of particular use in the motor-vehicle industry and in other industrial sectors involving mass-produced coatings, or in the repair sector. They are particularly suitable for repairing damage to lacquer on motor vehicles, particularly passenger cars.
They can be applied to the substrate as such or to conventional primers. They are particularly suitable as fillers. In practice they are used more particularly in the form of two-component materials, i.e. component D is added directly before use to components A), B), C) and optional additives. A diluent can be added if desired but is not necessary.
The coating agents according to the invention can be applied by various methods, e.g. by spraying (e.g. compressed-air sprays) or by brush or spatula.
Coatings made from the coating agents according to the invention dry quickly even at low temperatures down to 8°C
and can be ground particularly well when wet or dry. They form very good films without blistering even at greater layer thicknesses. The pot life is up to 90 minutes.

The invention therefore provides a coating agent having a high content of solids and a relatively low content of solvents when in the state ready for spraying. It is therefore particularly eco-friendly and extremely good as a 5 filler. owing to the low tendency to form blisters, it dries easily and hardens even in relatively thick layers. It adheres to a wide variety of substrates such as bare sheet steel, ground substrates, polyvinyl butyral primers, 2K-epoxide primers, partly ground works lacquers or waste 10 lacquers (except for thermoplastic lacquers) and is therefore particularly useful in the motor vehicle repair sector. For example, spots of polyethylene applied with a spatula can be covered by the coating agent according to the invention, dried and ground and then covered with conventional surface lacquers, e.g. based on 2K acrylate and isocyanate. The covering lacquer usually adheres very firmly and is therefore particularly suitable as a patching compound or filler.
The invention will be explained in detail with reference to the following examples.
Manufacture of component A) A hydroxyl group-containing copolymer was prepared according to DE 31 O1 887, example I/4.
Preparation of a filler:
The following is an example of a coating agent according to the invention, of use as a 2K filler Formulation of starting component (wt.%):
18% hydroxyl group-containing copolymer as per DE 31 O1 887, example I/4, 70% in butyl acetate (component A) l0% butyl acetate 98/100 5% methoxybutyl acetate 5°s Solvesso 100 0.5o electroneutral wetting agent 0.3% montmorillonite to pyrogenic silicic acid 0.3o iron oxide black 1.3o iron oxide yellow O.lo iron oxide red 1.2o silicon dioxide 5.5o magnesium silicate 6.5o zinc phosphate 14o titanium dioxide 13o aluminium silicate 13o barium sulphate 0.3% zinc naphthenate 0.8a dibutyl tin dilaurate (DBTL) 0.2o calcium oxide (component C) 4°s commercial nitrocellulose (component B) Formulation of activator (hardener) (wt.%) 48% polyisocyanate based on hexamethylene diisocyanate (Desmodur N 75, in butyl acetate 98/100) (component D) 30% butyl acetate 98/100 7s xylene 9o methoxypropyl acetate 6o DBTL 1°s in butyl acetate 98/100 The starting component was prepared as follows:
Component A), the solvent and the wetting agent were placed and agitated in a dry container cleaned with butyl acetate.
Montmorillonite was added with agitation and dispersed at 35 - 40°C, using a conventional dispersing device. The other components, except for component B), were then sprinkled with agitation and dispersed at 40 - 50°C. After the nitro-cellulose solution had been added, the mixture was left to swell for 12 hours, and was then ground to a particle fineness of 25 - 30 Vim.
The activator was prepared, depending on the formulation.
The starting component and the activator were mixed in the ratio 4 . 1 by volume.
The resulting coating agent was applied in layers 100 ~m and 250 ~m thick by spraying an iron sheet. Blister-free coatings dried in air were obtained in both cases.
r

Claims (8)

1. A coating agent containing a binder mixture comprising an ester-soluble nitrocellulose, a polyisocyanate and a hydroxy-functional copolymer, pigments and/or extenders, solvents and optionally adjuvants, characterised in that the binder substantially comprises A) 60 - 75 wt.% of a hydroxy-functional copolymer with an OH number of 110 to 170 mg KOH/g, obtained from a) 5 - 60 wt.% of at least one diester of an alpha, beta-olefinically unsaturated dicarboxylic acid with saturated monohydric alcohols containing 1 - 8 carbon atoms, b) 10 - 70 wt.% of one or more vinyl aromatic hydrocarbons, c) 0 - 30 wt.% of one or more glycidyl esters of aliphatic saturated monocarboxylic acids branched in the alpha position, d) 25 - 50 wt.% of at least one hydroxy alkyl ester or a mixture of at least one alkyl ester and one hydroxyl alkyl ester of an alpha, beta-olefinically unsaturated monocarboxylic acid, and e) 0 - 10 wt.% of one or more alpha, beta-unsaturated monocarboxylic acids, B) 1 - 6 wt.% of ester-soluble nitrocellulose, C) 0.5 - 1.8 wt.% calcium oxide, and D) 25 - 35 wt.% of one or more divalent or polyvalent polyisocyanates, the sum of components A), B), C) and D), and a), b), c), d) and e) being 100 wt.o in each case.
2. A coating agent as claimed in claim 1 wherein the at least one diester of an alpha, beta-olefinically unsaturated dicarboxylic acid with saturated monohydric alcohols containing 1 - 8 carbon atoms is in an amount of 10 - 30 wt.%.
3. A coating agent as claimed in claim 1 wherein the one or more vinyl aromatic hydrocarbons is in an amount of 35 - 60 wt.%.
4. A coating agent as claimed in claim 1 wherein the one or more glycidyl esters of aliphatic saturated monocarboxylic acids branched in the alpha position is in an amount of 0 - 15 wt.%.
5. A method of preparing multilayer coatings by applying a number of coating layers to a substrate to be coated, characterised in that a primer layer and/or primer surfacer layer is prepared by using a coating agent as defined in claim 1, 2, 3 or 4.
6. Use of the coating agents as defined in claim 1, 2, 3, or 4 as primers or primer surfacing compounds in the production of multilayer coatings.
7. Use according to claim 6 in the production of multilayer coatings in the motor-vehicle sector.
8. A multilayer coating characterised in that the priming layer and/or primer surfacer layer therein is based on a coating as defined in claim 1, 2, 3 or 4.
CA002123285A 1993-05-20 1994-05-10 Coating agents and use thereof as primers and/or fillers in the production of multilayer coatings Expired - Fee Related CA2123285C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4316912A DE4316912A1 (en) 1993-05-20 1993-05-20 Coating agents and their use as primers and / or fillers in the production of multi-layer coatings
DEP4316912.0 1993-05-20

Publications (2)

Publication Number Publication Date
CA2123285A1 CA2123285A1 (en) 1994-11-21
CA2123285C true CA2123285C (en) 2006-03-21

Family

ID=6488557

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002123285A Expired - Fee Related CA2123285C (en) 1993-05-20 1994-05-10 Coating agents and use thereof as primers and/or fillers in the production of multilayer coatings

Country Status (9)

Country Link
US (1) US5708117A (en)
EP (1) EP0630922B1 (en)
JP (1) JPH06329983A (en)
AT (1) ATE158322T1 (en)
CA (1) CA2123285C (en)
DE (2) DE4316912A1 (en)
DK (1) DK0630922T3 (en)
ES (1) ES2108329T3 (en)
GR (1) GR3025097T3 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2202392T3 (en) * 1995-04-21 2004-04-01 Basf Corporation COMPOSITION OF ENDURABLE COATING.
US5576063A (en) * 1995-04-21 1996-11-19 Basf Corporation Multiple layer coating method
AU690834B2 (en) * 1995-04-21 1998-04-30 Basf Corporation Coating compositions and methods of using them
DE19542119C1 (en) * 1995-11-11 1997-02-13 Herberts Gmbh Coating agents and process for the production of multilayer coatings
EP0877059A1 (en) * 1997-05-07 1998-11-11 Fina Research S.A. Primer for PVC-plastisol
DE19953996A1 (en) * 1999-11-10 2001-05-17 Volkswagen Ag Method for painting plastics parts involves coating surface of parts with dual component filler prior to painting and with optional surface roughening
JP4455712B2 (en) * 2000-02-18 2010-04-21 山下 正人 Coated steel with atmospheric corrosion resistance
US20020102425A1 (en) * 2000-12-04 2002-08-01 Ann Delmotte Coating compositions based on hydroxy-functional (meth)acrylic copolymers
US20070197727A1 (en) * 2006-02-16 2007-08-23 Laura Ann Lewin Multi component coating composition
JP2010275344A (en) * 2009-05-26 2010-12-09 Dic Corp Coating agent for polyester film
WO2016055128A1 (en) * 2014-10-06 2016-04-14 Siniat International Improved mat and related gypsum boards suitable for wet or humid areas
JP7425076B2 (en) * 2019-09-17 2024-01-30 関西ペイント株式会社 Two-component paint composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919173A (en) * 1973-11-23 1975-11-11 Contech Inc Moisture curable polyurethane systems
DE3101887A1 (en) * 1981-01-22 1982-09-02 Hoechst Ag, 6000 Frankfurt "METHOD FOR PRODUCING COPOLYMERISATS AND USE OF THE PRODUCTS RECEIVED"
DE3640243A1 (en) * 1986-11-25 1988-06-01 Herberts Gmbh COATING AGENTS AND THEIR USE AS PRIMER AND FILLER

Also Published As

Publication number Publication date
US5708117A (en) 1998-01-13
DE4316912A1 (en) 1994-12-01
EP0630922B1 (en) 1997-09-17
JPH06329983A (en) 1994-11-29
CA2123285A1 (en) 1994-11-21
ATE158322T1 (en) 1997-10-15
EP0630922A1 (en) 1994-12-28
ES2108329T3 (en) 1997-12-16
GR3025097T3 (en) 1998-01-30
DE59404067D1 (en) 1997-10-23
DK0630922T3 (en) 1998-02-02

Similar Documents

Publication Publication Date Title
JP4159600B2 (en) Aqueous two-component-polyurethane-coating agent, its production and process for producing multilayer coatings
AU684292B2 (en) Aqueous two-component polyurethane coating agent, process for preparing the same and its use in a process for applying a multilayered coating of lacquer
EP1784463B1 (en) Aqueous coating compositions based on acrylate copolymers
CA2123285C (en) Coating agents and use thereof as primers and/or fillers in the production of multilayer coatings
US5648410A (en) Aqueous polymer dispersions for clear coats
JPH11513064A (en) Moisture resistant aqueous urethane / acrylic resin and coating composition
KR100672868B1 (en) A Process for Preparing Physically Drying Coatings from Aqueous Dispersions
JPH024870A (en) Formation of non-chip film and/or filler layer
CA2335048C (en) Pastes containing matting and structuring agents and coating agents containing said pastes
JPH0329832B2 (en)
US5136004A (en) Binder, process for its preparation and its use in clear or pigmented coating agents
US4224357A (en) Method and composition for forming electron beam curing high build coating
DE112013003992B4 (en) Two component waterborne coating compositions
JPH0925452A (en) Coating medium, its use and method for multilayer coating
JP3825684B2 (en) Paints based on hydroxy-functional (meth) acrylate copolymers
US4855342A (en) Coating material and its use as primer and extender
US4522879A (en) Two-package urethane maintenance primer
GB2108138A (en) Two-package urethane maintenance primer
US20070244258A1 (en) Clear coating compositions with improved scratch resistance
KR100470429B1 (en) Process for preparing acrylic-urethane-acrylic block copolymer water dispersion resin and water-soluble paint composition containing the same
US6043301A (en) Aqueous coating compositions
US5856408A (en) Water dispersible acrylic based graft copolymers, a method of manufacture and aqueous paints
JP2002069135A (en) Acrylic copolymer, resin composition for coating and coating material
CN112912451B (en) Curable coating composition
JP3232390B2 (en) Paint composition for aerosol

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed