CA2106320C - Aluminium alloy for pressurized hollow articles - Google Patents

Aluminium alloy for pressurized hollow articles Download PDF

Info

Publication number
CA2106320C
CA2106320C CA002106320A CA2106320A CA2106320C CA 2106320 C CA2106320 C CA 2106320C CA 002106320 A CA002106320 A CA 002106320A CA 2106320 A CA2106320 A CA 2106320A CA 2106320 C CA2106320 C CA 2106320C
Authority
CA
Canada
Prior art keywords
content
alloy
alloy according
income
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002106320A
Other languages
French (fr)
Other versions
CA2106320A1 (en
Inventor
Jean-Christophe Ehrstrom
Marc Anagnostidis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luxfer Gas Cylinders SAS
Original Assignee
Metallurgigue de Gerzat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallurgigue de Gerzat filed Critical Metallurgigue de Gerzat
Publication of CA2106320A1 publication Critical patent/CA2106320A1/en
Application granted granted Critical
Publication of CA2106320C publication Critical patent/CA2106320C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/14Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of aluminium; constructed of non-magnetic steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/053Reducing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0745Gas bottles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Steel (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Catalysts (AREA)
  • Air Bags (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Metal Extraction Processes (AREA)
  • Press Drives And Press Lines (AREA)
  • Forging (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Alloy of the 7000 series and a specific heat treatment with a view to the manufacture of hollow bodies under pressure and, in particular, of metal bottles for compressed gases. The alloy contains, in weight %: 6.25 </= Zn </= 8.0 Mn </= 0.20 1.2 </= Mg </= 2.2 Ti </= 0.05 1.7 </= Cu </= 2.8 0.10 </= Zr </= 0.25 others, each </= 0.05 Fe </= 0.20 '' total </= 0.15 Si+Fe </= 0.40 remainder: Al Cr </= 0.05. The final annealing is preferably performed in 3 stages: - 1st stage between 105 and 120 DEG C for 6 to 12 h - 2nd stage: between 170 and 190 DEG C for 0.5 to 20 h - 3rd stage: between 105 and 120 DEG C for 12 to 36 h.

Description

2~.~~~~~

ALLIAGE D'ALUMINIUM POUR CORPS CREU)t SOUS PRESSION
L'invention concerne un alliage d'A1 utilisable pour la fabrication de corps creux sous pression, et en particulier, de bouteilles métalliques pour gaz comprimés.
Dans sa demande EP-A-0257167, la demanderesse a revendiqué un alliage type 7000 particulièrement adapté à l'emploi considéré ci-dessus.
Cependant, celle-ci s°est aperçue que dans certains cas, la modification de la composition chimique d'une part et du traitement thermique final d'autre part permettent d'améliorer les caractéristiques d'ëclatement (faciès de la déchirure) en conservant le niveau de caractéristiques mécaniques et de résistance à la corrosion sous contrainte requises.
Les alliages selon 1°invention possèdent donc la composition pondérale suivante (erg %) 6,25 ~ Zn S 8,0 1,2 3 Mg t 2,2 1,7 ~ Cu 3 2,8 0,10 â Zr ~ 0,25 Cr 3 0,05 Fe ~ 0,20 Fe+Si S 0,40 Mn 3 0,20 Ti i 0,05 Autre chacun ~ 0,05 total S 0,15 Reste : AZ
La teneur en Mg est tenue de préférence en dessous de 2%, et même 1,95%, et la teneur en Zr est de préférence comprise entre 0,10 et 0,18%, les teneurs en Fe+Si étant ~ 0,25% avec Fe S 0,12%, une teneur en Mn â 0,10 et/ou la teneur en Zn Z 6,75.

~~flfl3~fl Si la teneur en Zr est supérieure à 0,25°/, on constate la présence de gros précipités qui induisent de graves difficultés lors de la coulée et la structure est non recristallisée. Pour les teneurs en Zr S 0,10%, la structure est recristallisée, mais à gros grains.
Le procédé de fabrication et de contrôle sont semblables à ceux décrits dans EP-A-0257167, mais, de préférence, le traitement de revenu final type T73 est remplacé par un revenu en 3 étapes,, la lère étape étant effectuée entre 105 et 120°C pendant 6 à 12 h, la 2ème étape étant effectuée entre 170 et 190°C pendant 0,5 à 20 h et la Sème étape étant effectuée entre et 120°C, pendant 12 à 36 h.
Ces étapes peuvent être effectuées de manière continue ou discontinue (retour à la température ambiante entre chacune d'elles ou certaines d'entre elles).
~ Les durées et températures effectivement utilisëes sont choisies par l'homme de métier de manière à obtenir à la fois une conductibilité
élec'crique élevée (correspondant à une bonne résistance à la corrosion sous tension) et une limite élastique élevëe.
L'amélioration des caractéristiques de fissuration est probablement due, mais c'est là une hypothèse, au fait que la structure est mieux recristallisée (le Zr étant un élément anti-recristallisant moins puissant que le Cr), la perte relative dé résistance â la corrosion sous tension étant compensée par le revenu final triple.
L'invention sera mieux comprise à l'aide des exemples suivants Exemple 1 - Remplacement du Cr par le Zr pour des revenus bipaliers type T73.
Deux alliages, l'un conforme à la demande EP-A-0257167- alliage 1, l'autre semblable mis à part le fait qu'on a remplacé 1e chrome par le zirconium -alliage 2- ont été élaborés et transformés en bouteilles de 6 litres suivant la gamme de fabrication ci-après Coulée de billettes de diamètre 165 mm Sciage en lopins Réchauffage des lopins Filage inverse à chaud d'étuis
2 ~. ~~~~~

ALUMINUM ALLOY FOR RAW BODY) t UNDER PRESSURE
The invention relates to an alloy of A1 which can be used for the manufacture of pressurized hollow bodies, and in particular of metallic bottles for compressed gases.
In its application EP-A-0257167, the applicant claimed a standard alloy 7000 particularly suitable for the use considered above.
However, the latter noticed that in some cases, the change on the one hand, the chemical composition and the final heat treatment on the other hand improve the burst characteristics (tear facies) maintaining the level of characteristics mechanical and resistance to stress corrosion resistance required.
The alloys according to the 1st invention therefore have the composition weight next (erg%) 6.25 ~ Zn S 8.0 1.2 3 Mg t 2.2 1.7 ~ Cu 3 2.8 0.10 to Zr ~ 0.25 Cr 3 0.05 Fe ~ 0.20 Fe + Si S 0.40 Mn 3 0.20 Ti i 0.05 Other each ~ 0.05 total S 0.15 Rest: AZ
The Mg content is preferably kept below 2%, and even 1.95%, and the Zr content is preferably between 0.10 and 0.18%, the Fe + Si contents being ~ 0.25% with Fe S 0.12%, an Mn content at 0.10 and / or the content of Zn Z 6.75.

~~ ~ fl flfl3 If the Zr content is greater than 0.25 ° /, the presence is observed wholesale precipitates which cause serious difficulties during casting and structure is not recrystallized. For 0.10% Zr S contents, the structure is recrystallized, but with large grains.
The manufacturing and control process are similar to those described in EP-A-0257167, but preferably the standard final income treatment T73 is replaced by an income in 3 stages, the 1st stage being carried out between 105 and 120 ° C for 6 to 12 hours, the 2nd step being carried out Between 170 and 190 ° C for 0.5 to 20 h and the 5th stage being carried out between and 120 ° C, for 12 to 36 h.
These steps can be carried out continuously or discontinuously (return to room temperature between each of them or certain between them).
~ The durations and temperatures actually used are chosen by the person skilled in the art so as to obtain both conductivity high electrical (corresponding to good corrosion resistance under tension) and a high elastic limit.
The improvement in the cracking characteristics is probably due, but this is an assumption, that the structure is better recrystallized (Zr being a less powerful anti-recrystallizing element than Cr), the relative loss of resistance to corrosion under stress being offset by triple final income.
The invention will be better understood using the following examples Example 1 - Replacement of Cr with Zr for typical two-channel income T73.
Two alloys, one in accordance with request EP-A-0257167- alloy 1, the other similar apart from the fact that we replaced the chrome with the zirconium -alloy 2- were developed and processed in bottles of 6 liters according to the manufacturing range below 165 mm diameter billet casting Sawing into plots Reheating of plots Hot reverse spinning of cases

3 Etirage à chaud Etirage à froid Usinage du fond Mise à longueur Ogivage à chaud Perçage du goulot et usinage Décapage Mise en solution Trempe Revenu 6h â 105°C + 15h â 170°C.
La composition pondérale (en %) de ces 2 alliages est donnée dans le tableau suivant Les caractéristiques obtenues sur les bouteilles correspondantes sont les suivantes R 0,2 Rm A CSC à 280 MPa~' Longueur de fissure à
Alliage Ruptures/non rupt. l'éclatement (MPa) (MPa) (%) (NR) (mm) 1 404 470 15,6 3 NR â 80 j 512 -- 498 - 480 2 392 459 15,2 1 NR à 60j,55j,52j 446 - 423 - 421 ~ Essai de rêsistance à la corrosion sous contrainte selon la norme ASTM
G38-73 (révisée en 1984).
Dans des conditions pour lesquelles les caractéristiques de l'éclatement sont correctes (fissure longitudinale dans sa plus grande partie, non ~~o~~~o
3 Hot drawing Cold drawing Bottom machining Cut to length Hot icing Bottom drilling and machining scouring Dissolution temper Income 6h at 105 ° C + 15h at 170 ° C.
The weight composition (in%) of these 2 alloys is given in the following table The characteristics obtained on the corresponding bottles are:
following R 0.2 Rm A CSC at 280 MPa ~ 'Crack length at Alloy Ruptures / non ruptures. bursting (MPa) (MPa) (%) (NR) (mm) 1 404 470 15.6 3 NR at 80 d 512 - 498 - 480 2,392,459 15.2 1 NR at 60d, 55d, 52d 446 - 423 - 421 ~ Stress corrosion resistance test according to ASTM standard G38-73 (revised in 1984).
In conditions for which the burst characteristics are correct (longitudinal crack for the most part, not O o ~~ ~~~

4 ramifiée, limitée à un secteur d'angle + 90° autour de la fissure principale, limitée vers le fond et vers le goulot à des zones dont l'épaisseur est inférieure à 1,5 fois l'épaisseur du corps), la longueur développée de 1a fissure a été remarquée comme un bon indice de l'aptitude à l'éclatement . plus la fissure est longue, plus on se rapproche des conditions pour lesquelles l'éclatement serait mauvais.
Les résultats prêsentés ci-dessus montrent que le remplacement du chrome par du zirconium permet d'améliorer trës sensiblement la qualité de l'éclatement, mais au détriment de la résistance à la corrosion sous contrainte et, faiblement, de la résistance mëcanique. Toutefois, les deux séries de bbuteilles sont adaptées à l'emploi.
Pour un typé de revenu donné, en l'occurrence un .revenu bipalier, la résistance mécanique et la résistance à la corrosion sous contrainte sont 1 liées de façon biunivoque, ce qui fait qu'il vaut mieux parler d'une perte sur le compromis résistance mécanique/résistance à la corrosion sous contrainte. Autrement dit, le remplacement du chrome par le zirconium affecte négativement la résistance à la corrosion ou la résistance mécanique, selon la durée du maintien au deuxième palier que l'on choisit.
Exemple 2 - Utilisation d'un revenu en 3 étapes.
L'exemple suivant montre le gain que l'on peut obtenir en effectuant un revenu en trois étapes sur les bouteilles fabriquées dans l'alliage 2 selon la gamme de l'exemple précédent.
La conductivitë électrique est prise comme indicateur de la résistance à
la corrosion sous contrainte, conformément à une pratique courante. Toutes les valeurs du tableau ci-dessous sont des moyennes de 3 valeurs individuelles.

~~oo~zo Rep Revenu R0,2 Rm A Conductivité Eclatement Ii II II II(MPa)~(MPa)~(%) Ii (MS/m) N cmm) Ii A ~~6h 105C+15h 170C I ~ ~I15,2i~24,6 0O 430 (rf. ) ~ 392 459
4 branched, limited to a sector of angle + 90 ° around the crack main, limited towards the bottom and towards the neck to areas of which the thickness is less than 1.5 times the thickness of the body), the length developed from the crack was noted as a good indication of suitability to burst. the longer the crack, the closer we get to the conditions for which the burst would be bad.
The results presented above show that the replacement of chromium with zirconium makes it possible to improve the quality of bursting, but at the expense of corrosion resistance under stress and, weakly, mechanical resistance. However, both series of baby bottles are suitable for use.
For a given type of income, in this case a two-bearing income, the mechanical strength and resistance to stress corrosion are 1 are unequivocally linked, which makes it better to speak of a loss on the compromise between mechanical strength and corrosion resistance under constraint. In other words, the replacement of chromium by zirconium negatively affects corrosion resistance or resistance mechanical, depending on how long you maintain the second level you choose.
Example 2 - Using income in 3 steps.
The following example shows the gain that can be obtained by performing a returned in three stages to the bottles manufactured in alloy 2 according to the range of the previous example.
Electrical conductivity is taken as an indicator of resistance to stress corrosion, in accordance with standard practice. All the values in the table below are averages of 3 values individual.

~~ oo ~ zo Rep Income R0.2 Rm A Burst Conductivity Ii II II II (MPa) ~ (MPa) ~ (%) Ii (MS / m) N cmm) Ii A ~~ 6h 105C + 15h 170C I ~ ~ I15,2i ~ 24,6 0O 430 (rf.) ~ 392,459

5 116h105C+15h170C+36h110CI II 1114,9n 24,7 II 461 B

C 116h105C+20h170C+36h110CI II 15,569 25,6# 430 I 397 464 ~

D ~6h105C+3h190C+36h110CI Ij ~15,7~ 24,4 ~ 429 pour ce revenu, le test de corrosion sous contrainte donne 3 non rupture à 60 jours à 280 MPa.
A l'aide de ce tableau, on peut établir les points suivants - le revenu à 3 étapes permet d'améliorer le compromis résistance à la corrosion sous contrainte/résistance mécanique. Entre le revenu A et le revenu C, la conductivité augmente de manière importante, avec un léger gain de résistance mécanique. L'augmentation de conductivité se traduit bien par une augmentation de la résistance à la corrosion sous contrainte puisqu'on n'a pas de rupture à 60 j sous 280 MPa.
- le revenu tri-paliers avec un deuxième palier à 190°C conduit à un compromis résistance à la corrosion sous contrainte/rêsistance mécanique à peine meilleur que celui obtenu avec un revenu bipal.ier. Le domaine de température intéressant pour le deuxième palier est donc limité vers le haut à 190°C.
- grâce au revenu tri-paliers, le compromis résistance à la corrosion sous contrainte/rêsistance mécanique obtenu avec l'alliage 2 est équivalent à
celui obtenu avec l'alliage 1 traité avec un revenu bi-palier. On bénéficie alors pleinement de l'influence du zirconium sur la qualité de l'éclatement, puisque la longueur moyenne des fissures est passée de 497 mm avec l'alliage au chrome à 430 mm avec l'alliage au zirconium.
5 116h105C + 15h170C + 36h110CI II 1114.9n 24.7 II 461 B

C 116h105C + 20h170C + 36h110CI II 15.569 25.6 # 430 I 397 464 ~

D ~ 6h105C + 3h190C + 36h110CI Ij ~ 15.7 ~ 24.4 ~ 429 for this income, the stress corrosion test gives 3 no rupture at 60 days at 280 MPa.
Using this table, we can establish the following points - 3-stage income improves the resistance to compromise stress corrosion / mechanical resistance. Between income A and income C, the conductivity increases significantly, with a slight gain in mechanical strength. The increase in conductivity is reflected well by an increase in corrosion resistance under constraint since there is no rupture at 60 d under 280 MPa.
- tri-level income with a second level at 190 ° C leads to a compromise stress corrosion resistance / mechanical resistance hardly better than that obtained with a bipal.ier income. The domain of interesting temperature for the second level is therefore limited towards the high at 190 ° C.
- thanks to tri-level income, the compromise in corrosion resistance under mechanical stress / resistance obtained with alloy 2 is equivalent to that obtained with alloy 1 treated with bi-level income. We benefits fully from the influence of zirconium on the quality of bursting, since the average length of the cracks went from 497 mm with the chrome alloy to 430 mm with the zirconium alloy.

Claims (24)

Les réalisations de l'invention, au sujet desquelles un droit exclusif de propriété ou de privilège est revendiqué, sont définies comme il suit: The embodiments of the invention, about which a exclusive right of property or privilege is claimed, are defined as follows: 1. Utilisation d'un alliage contenant en poids %
6,25 <= Zn <= 8,0~Mn <= 0,20 1,2 <= Mg <= 2,2 ~Ti <= 0,05 1,7 <= Cu <= 2,8 0,10 <= Zr <= 0,25 ~Autres chacun <= 0,05 Fe <= 0,20 ~~ " total <= 0,15 Si + Fe <= 0,40 ~~reste A1 Cr <= 0,05 pour la fabrication de corps creux sous pression.
1. Use of an alloy containing by weight%
6.25 <= Zn <= 8.0 ~ Mn <= 0.20 1.2 <= Mg <= 2.2 ~ Ti <= 0.05 1.7 <= Cu <= 2.8 0.10 <= Zr <= 0.25 ~ Others each <= 0.05 Fe <= 0.20 ~~ "total <= 0.15 If + Fe <= 0.40 ~~ remains A1 Cr <= 0.05 for the production of pressurized hollow bodies.
2. Utilisation d'un alliage d'Al selon la revendication 1, ayant une teneur en Mg <= 2,0%. 2. Use of an Al alloy according to claim 1, having an Mg content <= 2.0%. 3. Utilisation d'un alliage d'Al selon la revendication 1, ayant une teneur en Mg <= 1,95%. 3. Use of an Al alloy according to claim 1, having an Mg content <= 1.95%. 4. Utilisation d'un alliage d'Al selon la revendication 1, ayant une teneur en Zn <= 6,75%. 4. Use of an Al alloy according to claim 1, having a Zn content <= 6.75%. 5. Utilisation d'un alliage selon la revendication 1, ayant des teneurs en Fe et Si telles que Fe <= 0,12% et Fe+Si <=
0,25%.
5. Use of an alloy according to claim 1, having Fe and Si contents such as Fe <= 0.12% and Fe + Si <=
0.25%.
6. Utilisation d'un alliage selon la revendication 1, ayant une teneur en Mn <= 0,10%. 6. Use of an alloy according to claim 1, having an Mn content <= 0.10%. 7. Utilisation d'un alliage selon la revendication 1, ayant une teneur en Zr comprise entre 0,10% et 0,18%. 7. Use of an alloy according to claim 1, having a Zr content of between 0.10% and 0.18%. 7 e. Utilisation d'un alliage d'Al selon la revendication 2, ayant une teneur en Mg égale à 1,9%. 7 e. Use of an Al alloy according to claim 2, having an Mg content equal to 1.9%. 9. Utilisation d'un alliage d'Al selon la revendication 3, ayant une teneur en Zn >= 6,75%. 9. Use of an Al alloy according to claim 3, having a Zn content> = 6.75%. 10. Utilisation d'un alliage selon la revendication 9, ayant des teneurs en Fe et Si telles que Fe <= 0,12% et Fe+Si <= 0,25%. 10. Use of an alloy according to claim 9, having Fe and Si contents such that Fe <= 0.12% and Fe + Si <= 0.25%. 11. Utilisation d'un alliage selon la revendication 10, ayant une teneur en Mn <= 0,10%. 11. Use of an alloy according to claim 10, having an Mn content <= 0.10%. 12. Utilisation d'un alliage selon la revendication 11, ayant une teneur en Zr comprise entre 0,10% et 0.18%. 12. Use of an alloy according to claim 11, having a Zr content of between 0.10% and 0.18%. 13. Procédé de fabrication de corps creux dans lequel on utilise un alliage contenant en poids %

6,25 <= Zn <= 8,0 Mn <= 0,20 1,2 <= Mg <= 2,2 Ti <= 0,05 1,7 <= Cu <= 2,8 0,10 <= Zr <= 0,25 Autres chacun <= 0,05 Fe <= 0,20 " total <= 0,15 Si + Fe <= 0,40 reste Al Cr <= 0,05 et dans lequel le revenu final est effectué en 3 étapes:

1ère étape: entre 105 et 120°C pendant 6 à 12 h 2ème étape: entre 170 et 190°C pendant 0,5 à 20 h 3ème étape: entre 105 et 120°C pendant 12 à 36 h.
13. Method for manufacturing hollow bodies in which uses an alloy containing by weight%

6.25 <= Zn <= 8.0 Mn <= 0.20 1.2 <= Mg <= 2.2 Ti <= 0.05 1.7 <= Cu <= 2.8 0.10 <= Zr <= 0.25 Others each <= 0.05 Fe <= 0.20 "total <= 0.15 If + Fe <= 0.40 remains Al Cr <= 0.05 and in which the final income is made in 3 stages:

1st stage: between 105 and 120 ° C for 6 to 12 hours 2nd stage: between 170 and 190 ° C for 0.5 to 20 h 3rd stage: between 105 and 120 ° C for 12 to 36 h.
14. Procédé selon la revendication 13, dans lequel Mg a une teneur <= 2,0%. 14. The method of claim 13, wherein Mg has a content <= 2.0%. 15. Procédé selon la revendication 13, dans lequel Mg a une teneur <= 1,95%. 15. The method of claim 13, wherein Mg has a content <= 1.95%. 16. Procédé selon la revendication 13, dans lequel Zn a une teneur >= 6,75 %. 16. The method of claim 13, wherein Zn has a content> = 6.75%. 17. Procédé selon la revendication 13, dans lequel Fe et Si ont des teneurs telles que Fe <= 0,12% et Fe + Si <= 0,25%. 17. The method of claim 13, wherein Fe and Si have contents such as Fe <= 0.12% and Fe + Si <= 0.25%. 18. Procédé selon la revendication 13, dans lequel Mn a une teneur Mn <= 0,10%. 18. The method of claim 13, wherein Mn has a Mn content <= 0.10%. 19. Procédé selon la revendication 13, dans lequel Zr a une teneur comprise entre 0,10% et 0,18%. 19. The method of claim 13, wherein Zr has a content between 0.10% and 0.18%. 20. Procédé selon la revendication 14, dans lequel Mg a une teneur <= 1,95%. 20. The method of claim 14, wherein Mg has a content <= 1.95%. 21. Procédé selon la revendication 20, dans lequel Zn a une teneur >= 6,75%. 21. The method of claim 20, wherein Zn has a content> = 6.75%. 22. Procédé selon la revendication 2l, dans lequel Fe et Si ont des teneurs telles que Fe <= 0,12% et Fe + Si <= 0,25%. 22. The method of claim 21, wherein Fe and Si have contents such as Fe <= 0.12% and Fe + Si <= 0.25%. 23. Procédé selon la revendication 22, dans lequel Mn a une teneur <= 0,10%. 23. The method of claim 22, wherein Mn has a content <= 0.10%. 24. Procédé selon la revendication 23, dans lequel Zr a une teneur comprise entre 0,10% et 0,18%. 24. The method of claim 23, wherein Zr has a content between 0.10% and 0.18%.
CA002106320A 1992-09-22 1993-09-16 Aluminium alloy for pressurized hollow articles Expired - Lifetime CA2106320C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9211502A FR2695942B1 (en) 1992-09-22 1992-09-22 Aluminum alloy for pressurized hollow bodies.
FR9211502 1992-09-22

Publications (2)

Publication Number Publication Date
CA2106320A1 CA2106320A1 (en) 1994-03-23
CA2106320C true CA2106320C (en) 2003-11-18

Family

ID=9433935

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002106320A Expired - Lifetime CA2106320C (en) 1992-09-22 1993-09-16 Aluminium alloy for pressurized hollow articles

Country Status (10)

Country Link
EP (1) EP0589807B1 (en)
JP (1) JPH06256882A (en)
AT (1) ATE167237T1 (en)
AU (1) AU670114B2 (en)
BR (1) BR9303846A (en)
CA (1) CA2106320C (en)
DE (1) DE69319051T2 (en)
DK (1) DK0589807T3 (en)
ES (1) ES2118209T3 (en)
FR (1) FR2695942B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805282B1 (en) * 2000-02-23 2002-04-12 Gerzat Metallurg A1ZNMGCU ALLOY PRESSURE HOLLOW BODY PROCESS
CA2528614C (en) * 2003-06-24 2012-06-05 Pechiney Rhenalu Products made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage
ES2393706T3 (en) * 2003-12-16 2012-12-27 Constellium France Modeled product in the form of laminated sheet and structure element for Al-Zn-Cu-Mg alloy aircraft
DE502005001724D1 (en) 2005-01-19 2007-11-29 Fuchs Kg Otto Quench-resistant aluminum alloy and method for producing a semifinished product from this alloy
JP5276341B2 (en) * 2008-03-18 2013-08-28 株式会社神戸製鋼所 Aluminum alloy material for high pressure gas containers with excellent hydrogen embrittlement resistance
FR2977297B1 (en) * 2011-06-29 2015-01-16 Air Liquide ALUMINUM BOTTLE FOR MIXTURE GAS NO / NITROGEN
FR2977298B1 (en) * 2011-06-29 2015-02-06 Air Liquide ALUMINUM BOTTLE FOR MIXTURE GAS NO / NITROGEN
FR3068370B1 (en) * 2017-07-03 2019-08-02 Constellium Issoire AL-ZN-CU-MG ALLOYS AND PROCESS FOR PRODUCING THE SAME
EP3670690A1 (en) 2018-12-20 2020-06-24 Constellium Issoire Al-zn-cu-mg alloys and their manufacturing process
CN111876639A (en) * 2020-08-06 2020-11-03 北部湾大学 7000 series aluminum alloy for automobile upright column and manufacturing method of plate thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2409320A1 (en) * 1977-11-21 1979-06-15 Pechiney Aluminium PROCESS FOR THERMAL TREATMENT OF THICK PRODUCTS IN ALUMINUM ALLOYS OF THE 7000 SERIES CONTAINING COPPER
FR2510231A1 (en) * 1981-07-22 1983-01-28 Gerzat Metallurg METHOD FOR MANUFACTURING HOLLOW BODIES UNDER PRESSURE OF ALUMINUM ALLOYS
FR2517702B1 (en) * 1981-12-03 1985-11-15 Gerzat Metallurg
FR2601967B1 (en) * 1986-07-24 1992-04-03 Cerzat Ste Metallurg AL-BASED ALLOY FOR HOLLOW BODIES UNDER PRESSURE.

Also Published As

Publication number Publication date
CA2106320A1 (en) 1994-03-23
FR2695942A1 (en) 1994-03-25
ES2118209T3 (en) 1998-09-16
BR9303846A (en) 1994-03-29
JPH06256882A (en) 1994-09-13
DK0589807T3 (en) 1999-03-22
AU670114B2 (en) 1996-07-04
FR2695942B1 (en) 1994-11-18
ATE167237T1 (en) 1998-06-15
EP0589807A1 (en) 1994-03-30
EP0589807B1 (en) 1998-06-10
DE69319051T2 (en) 1998-12-10
AU4751193A (en) 1994-03-31
DE69319051D1 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
EP1574589B1 (en) Titanium alloy having excellent high-temperature oxidation and corrosion resistance
CA2106320C (en) Aluminium alloy for pressurized hollow articles
KR101454458B1 (en) Heat-resistant titanium alloy with excellent oxidation resistance for exhaust system components, manufacturing method of heat-resistant titanium plate with excellent oxidation resistance for exhaust system components, and exhaust system
JP4486530B2 (en) Heat-resistant titanium alloy plate excellent in cold workability and method for producing the same
JP4516440B2 (en) Titanium alloy with excellent high-temperature oxidation resistance and corrosion resistance
JP3737105B2 (en) Method for manufacturing hollow body
JPWO2019035329A1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
AU2003244695B2 (en) Al-Mg alloy products for a welded construction
EP1818422B1 (en) Ferritic stainless steel with 19% of chromium stabilised with niobium
US4747890A (en) Al-base alloy hollow bodies under pressure
JP2009068026A (en) Titanium alloy material for exhaust system component excellent in oxidation resistance and formability, method for producing the same, and exhaust apparatus using the alloy material
JP6638308B2 (en) Engine exhaust valve for large marine vessel and method of manufacturing the same
CH493640A (en) Nickel-chromium-iron alloy
US20050260433A1 (en) Titanium alloys excellent in hydrogen absorption-resistance
EP0070790B1 (en) Process for manufacturing hollow bodies for pressure containers from an aluminium alloy
EP3344790B1 (en) Extruded product made from al-cu-mg alloy with improved compromise between mechanical resistance and toughness
FR2710657A1 (en) Process for desensitizing intercrystalline corrosion of Al series 2000 and 6000 alloys and corresponding products.
EP0892076A1 (en) Nickel based alloy and welding electrode made from a nickel based alloy
FR2509328A1 (en) STAINLESS STEEL HAVING HIGH MECHANICAL STRENGTH, EXCELLENT INTERGRANULAR CORROSION CRACK RESISTANCE AND EXCELLENT FORMING CAPACITY
EP0394155A1 (en) Damage resistant Al-li-cu-mg alloy having good cold-forming properties
Anderson et al. Sand and Permanent-Mold Casting Alloys
AU2022202014A1 (en) Cobalt-chromium alloy resistant to high speed/self-coupled sliding wear
JP4414929B2 (en) Titanium alloy material with excellent oxidation resistance for exhaust system parts and exhaust device using the alloy material
JPH0967634A (en) Aluminum alloy pipe for pneumatic piping for ship
JPS6026637A (en) Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking

Legal Events

Date Code Title Description
EEER Examination request