CA2105428A1 - Composition and process for increasing the shear strength of processing wastes used for tip building and underground consolidation - Google Patents

Composition and process for increasing the shear strength of processing wastes used for tip building and underground consolidation

Info

Publication number
CA2105428A1
CA2105428A1 CA 2105428 CA2105428A CA2105428A1 CA 2105428 A1 CA2105428 A1 CA 2105428A1 CA 2105428 CA2105428 CA 2105428 CA 2105428 A CA2105428 A CA 2105428A CA 2105428 A1 CA2105428 A1 CA 2105428A1
Authority
CA
Canada
Prior art keywords
weight
parts
composition
cement
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2105428
Other languages
French (fr)
Inventor
Michael C. R. Davies
Keith P. Williams
Peter J. Strydom
Alexander S. Lambert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
Michael C. R. Davies
Keith P. Williams
Peter J. Strydom
Alexander S. Lambert
American Cyanamid Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michael C. R. Davies, Keith P. Williams, Peter J. Strydom, Alexander S. Lambert, American Cyanamid Company filed Critical Michael C. R. Davies
Publication of CA2105428A1 publication Critical patent/CA2105428A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00724Uses not provided for elsewhere in C04B2111/00 in mining operations, e.g. for backfilling; in making tunnels or galleries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

COMPOSITION AND PROCESS FOR
INCREASING THE SHEAR STRENGTH
OF PROCESSING WASTES USED FOR
TIP BUILDING AND UNDERGROUND
CONSOLIDATION

ABSTRACT OF THE DISCLOSURE
There are provided compositions and processes for enhancing the initial and long term shear strength and initial tip stability of process wastes. The process wastes are aqueous dispersions such as the slurry tailings from mining operations. The compositions are comprised of the process waste, cement and a water absorbent polymer which is a mixture of Mannich acrylamide polymers and dimethyldiallyammonium halide polymers.

Description

2 1 ~ 8 31,546 -l-COMPOSITION AND PROCESS FOR INCREASING
THE SHEAR STRENGTH OF PROCESSING WASTES USED
FOR TIP BUILDING AND UNDERGROUND CONSOLIDATION
FIELD OF THE INVENTION
The present invention relates to composition~
and processes for increasing the shear strength of process wastes such as the tailings from mining activities used for tip building and underground consolidation. The compositions are comprised of an aqueous dispersion of the process waste solids, cement and a water absorbent polymer.
The preferred water absorbent polymer is a mixture of Mannich acrylamide polymers and dimethyldiallylammonium halide polymers.
BACKGROUND OF THE INVENTION
Mining activity is often associated with the production of large amounts of extremely fine waste material in the form of aqueous slurry tailings. Disposal of these tailings has traditionally been to lagoons or, ;~i after dewatering, to surface heaps. Increasing ~0 environmental consideration has focused attention on disposal methods. one possible method proposed for -`! disposing of these tailings is ~o use them as underground backfill for suppor~ purposes. This method requires classification and cementation in order to achieve the necessary shear strength and compression characteristics.
The addition of water absorbent pol~mers to ` mining products and process wastes for the purpose of drying the products and process wastes is known in the art, as demonstrated by United Kingdom Pa~en~ Application No.
2,200j440A and United States Paten~ No. 4,690,971. The ~; dried product or waste that results from the addition of a water absorbent polymer, such as, for example, cross-linked sodium polyacrylate, and the like, is brittle or in a : ~ .
~l crumbly state.
:, .'` .
:., .
;

-.: ... .

- 2 ~ 4 ~ ~

The use of water absorbent polymers with red mud wastes from a Bayer process is discussed in European Patent Application No. 0,388,108. The Application teaches the blending of a water absor~ent polymer to the process waste of a Bayer process. The process waste is an aqueous liquid with dispersed solid particles. The mixture of the waste and polymer has the characteristic of easily beinq pumped and then becoming rigid upon standing.
The use of water absorbent polymers in aqueous dispersions from various industrial processes is also well known in the art.
Japanese Patent No. 61-212,399 discloses a composition consisting of cement, promoter and sulphates or chlorides of aluminum and iron to solidify high water content organic and inorganic waste. The composition is prepared by adding below 30 parts by weight promoter to 100 parts by weight cement. The pH is then adjusted by adding at least one sulphate or chloride of aluminum or iron in an - amount below 800 parts by weight. The promoter is prepared ` 20 by adding under 20 parts by weight of cement to cement mortar consisting of 100 parts by weight cement and 200 parts by weight standard sand. To prevent separation of the water and waste, water absorbent material such as polyacrylate, hydroxyethyl cellulose, methyl cellulose or bentonite, is added. The citation also teaches the addition of rust inhibitors such as an alkali salt or ~i~ alkaline earth salt and the addition of water insoluble alkaline earth compounds such as sand, soil, aggregate or stone powders to the composition. The composition results in a gel with high viscosity or a hardened substance within at least three (3) hours.
Japanese Patent Application No. 1,254,292 discloses the aggregation of suspended material in water by iadding a hydraulic inorganic solidifying agent and an ~`y 35 inorganic or organic flocculant to the water. The .~. ' . ' , .
- ,' ' .' . ' ' ' ~. ' ' . , . ' - ~.
.

2 1 ~ 8 flocculant used is Al2(SO~)3, AlCl3, sodium alginate, polyaluminum chloride, polyacrylamide, sodium polyacrylate, aminopolyacrylate or diamine diamide. The hydraulic inorganic solidifying agent is Portland cement or an aluminum cement. The solidifying agent is mixed with the flocculant in a weight ratio of 1~ 5. The mixture is added to the water to be treated in an amount of 5-20 based on the weight of the suspended solid.
Japanese Patent Application No. 1,139,198 discloses the reformation of earth and sand from a construction site by adding slag formed in the purification of water or sludge from the treatment process of industrial ~` waste water, a water soluble polymer and a hydroxide, chloride, sulphate or nitrate of a cation of over two (2) ; 15 valances and or hydraulic cement. The cation with over two (2) valencies is preferably an element of groups IIA, IIB~
IIIA, IIIB, IVB, VB, VIB or VIIB. The hydraulic cement can be Portland cement, alumina cement, special cement, or their mixtures wi~h fly ash or pozzolan. The water soluble polymer can be guar gum, starch, alginate~ polyvinyl -~ alcohol, polyvinyl pyrrolidone, polyethylene oxide polyacrylate, polysaccharide or isobutylene-maleic anhydride copolymer. The polymer is added to the composition in an amount of 0.5 - 8 kg when th~ water ~l 25 content of the composition is 20-50~.
- Soviet Union Patent Application No. 1,285,105 teaches a composition for road and runway construction which comprises 6-8 weight percent cement, 81-86 weight percent soil, 6-8 weight percent waste products from polyacrylate article production and 5-10 weight percent vat " residue from vinyl chloride production.
Japanese Patent Application No. 52-090,111 discloses a method for consolidating soil comprising silt iand fine sand by injecting the soil with a coagulating -~35 solution prior to treating the soil with grout. The .., . ~

21~5428 _4_ coagulating solution can be A12(S04)3, NaAl02, FeS04, sodium salt of carboxy methylcellulose (CMC), polyacrylate, polyethyleneamine, tertiary ammonium salts, poly~inylpridines or polyacrylamides.
Japanese Patent Application No~ 50-082,857 - discloses a process for trea~ting cement containing waste water which comprises adding polyacrylate and polyacrylamide to the waste water to coagulate the suspended materials. Hiyh-degree of polymerization sodium polyacrylate and nonionic polyacrylamide in a weight ratio of 1:0.5-1 are the preferred polyacrylate and polyacrylamides.
.,.
Japanese Patent No. 73-013,673 discloses a process for treating sludge from sewage and industrial 15 processes. The process consists of filtering off or concentrating the sludge to remove water, adding greater than 3% by weight of a water hardenable cement and greater ` than 30 weight percent of an inorganic sulphatfe of sodium, iron, aluminum or a~monium. The sludge is dehydrated or concentrated by adding 15-40 weight percent Ca(OH)2 as a filtration assistant and 0005-0.2 weight percent of a water soluble oxganic polymer such as polyacrylàmide and sodium polyacrylate. ~
Japanese Patent Application No. 62-089,789 25 disclosess a process for regenerating deteriorated or ;t cement contaminated mud. The process consists of adding a - sodium salt of carboxymethylcellulose (CMC) with a degree ~, of polymerization lower than 350.
These prior art teachings fail to suggest a 30 composition and process for obtaining a composition that r~f results in improved initial and long term shear strength, reduced fine loss, increased water retention, increased cement retention and reduced requirement for desliming, -~ which eventually becomes a coherent solid.

., , ..

~ ~ ~5428 SUMMARY OF THE INVENTION
To this end, an object of the present invention is to provide a process waste composition with improved initial and long term shear stren~th, reduced fine loss, increased water retention, increased cement retention and red~lced xe~uirement for desliming, which eventually becomes a coherent solid.
A further object of this invention is to provide a process waste composition that has increased initial tip stability and slime that does not require a separate retaining structure.
Another object of the present invention is to provide a process fox producing a composition with improved initial and long term shear strength, reduced fine loss, inzreased water retention, increased cement retention and reduced requirement for desliming, which eventually becomes a coherent solid.
.
A further object of the present invention is to provide a process for obtaining a composition that has increased initial tip stability and slime that does not require a separate xetaining structure.
Applicants have found that by adding cement and a judiciously-selected ~ater absorbent polymer to aqueous process waste, the initial and long term shear strength of 2S the process waste and the initial tip stability of the ~- process waste can be increased. The applicants have also found that the process waste/cement/water absorbent polymer composition reduces the requlrement for desliming.
The process waste can be any type of aqueous waste with fine solids dispersed in it, such as ~he aqueous :
slurry tailings from mining operations, e.g., coal, gold or phosphate mining and processing operations.
It is critical to the present invention to select and use as the water absorbent polymer a mixtuxe of Mannich ' 35 acrylamide polymers and dimethyldiallylammonium halide . , .

- 2 ~ 2 8 polymers. AS will be seen this particular water soluble polymer has a unique ability to rapidly rigidify the composition by imparting a high initial shear strength.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings graphically represenk the physical properties and t sting results of compositions and processes of the present invention and compare them with those of the prior art.
FIG. 1 is a graph showing that two compositions of this invention containing mixed polymers develop higher ~ and more rapid shear strength in cemented coal tailings ; than does one without the mixed polymers.
FIG. ~., like FIG. 1, is a graph showing that two compositions of this invention containing mixed polymers develop higher and moxe rapid shear strength in cemented gold tailings than does one without the mixed polymers.
~ FIG. 3 is a graph showing that the addition of `` mixed polymers in accordance with this invention to cemented gold tailings vastly reduces the amount of water dxained ~herefrom during compression, the decrease being related to the concentration of polymers.
DETAILED DESCRIPTION OF ~HE INVENTION
` As used in thbs application, improved initial and long term shear strengths, reduced fine loss, increased water retention, in~reased cement retention and reduced requlrement for desliming is in reference to the physical properties for process waste compositions and process waste/cement compositions which are generally known in the art.
This invention relates to a composition for `y increasing the shear strength of processing wastes used for tip building and underground stowing. The composition is ~, comprised of process waste, cement and a water absorbent polymer comprising a mixture of Mannich acrylamide polymer and a dimethyldiallylammonium halide polymer.

,~ , , .

. . .

2 1 ~ 2 8 The process wastes used in the invention can be any type of aqueous waste with fine solid particles dispersed throughout the liquid phase. The preferred process wastes are the slurry tailings from mining and mine p.rocessing activities, such as coal, gold or phosphate tailings. The process ~aste generally has a solids content in the range of about 10 to about 50 parts by weight, preferably abou~ 20 to about 40 parts, solid particles per 100 parts by weight of the dispersion. The most preferred process wastes have about 35 to about 40 parts, by weight, of solid particles.
The cement, as used in the present invention, stabilizes and increases the coherent strength of the composition. The cement can be any type of commercially available cement such as Portland cement. The final composition contains an effective amount which can comprise generally anywhere from about 1 to about 10 parts, by -weight, per 100 parts, by weight, of process waste, cement and polymer, with the preferred range being from about 2 to about 7 parts, by weight, with the mos~ preferred range being about 3 ~o about 6 parts, by weight~
The water absorbent polymer can be any type of mixture of the Mannich acrylamide polymer and a dimethyldiallylammonium halide polymer. They are described in U.S. Patent No. 4,997,759. The effective concentration of the polymer is from about 0.01 to about 1.5 parts, by weight, per 100 parts, by weight, of process waste, cement and pol~mer combined, with the preferred range being from about 0.03 to 1.0 parts, by weight, and the most preferred amount being about 0.5 parts~ by weight.
The uniquely suitable polymer is a mixture of a Mannich acrylamide polymer and a dimethyldiallylamm~nium halide polymer. Some of them are commercially available, e.g., those sold under the trademark AQUASTORE water absorbent polymers by American Cyanamid Company. The , - ,; , , , ~,, , , : ~: ,-,. ,-~ : .

' ' ',: '; ' ' ' ';. ~, ' ' "" ' ' ' ' '' : , ' ' ~, , ~i~5~

preferred mixtures are composed of the two polymers in a ratio of 3:1 to 1:30, by weight, real polymer solids, respectively, preferably 1:1.5 to 1:7, same basis, respectively.
The Mannich acrylamide polymers are generally well known in the art, examples thereof being disclosed in United States Patent No. 4,137,164, hereby incorporated herein by reference. Generally, these polymers are homopolymers of acrylamide or copolymers thereof with such comonomers as acrylonitrile, methacrylamide, acrylic acid etc. in amounts up to about 50%, preferably 5-50% of the resultant copolymer. The polymers have molecular weights ranging from about 10,000 to about 3,000,000 and are chemically modified to provide dimethylaminomethyl groups to the extent that the polymer contains 25--100 mol percent ;~ of these groups, preferably at least 40 mol percent.
` The preferred Mannich polyacrylamide polymers are Nannich polyacrylamide of at least 70% aminomethylation with a Brookfield viscosity in the range of 26,000 to 46,000 cps.
~ The dimethyldiallylammonium halide (DADM) - polymers are likewis~ known in the art, examples thereof being disclosed in United States Patent No. 4,092,467, hereby incorporated herein by reference. These polymers are homopolymers of DADM or copolymers thereof with such monomers as acrylamide, vinyl pyrrolidone, etc. in amounts up to about 20% of the resultant polymer. These polymers have intrinsic viscosities ranging from about 0.1-4.00, ` preferably 2.0-3.5, deciliters per gram. The halide can be chloride, fluoride, bromide or iodide.
, The preferred dimethyldiallylammonium halide `
polymer is polydimethyldiallylammonium chloride, with an intrinsic vi~cosity between ~.0-3.5 cps.
The polymer mixture may be added to the composition as a blend or as individual components. If .`~/ .

~.

' ' " ' ,, '': ' ' ; ' ' . ' ;' '' ' ~ .'' ''~'',`' ' ' "' 2 1 ~ 8 added as individual components, they should be added as near the same time as possible.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention will be further defined by means of the following examples. Products A and B are set forth in the following tables, with respect to the amounts employed, as 0.065% aqueous polymer solutions while Product C is expressed as a 20.0% aqueous polymex solution.
In the following examples, the Mannich acryl~mide polymers employed are each Mannich polyacrylamides of 70%
~aminomethylation and are further designated as follows:
i~Product Percent Solids Brookfield Viscosity, cps . _ .
A 5.9-6.4 26,000-34,000 B 5.S-6.1 34,000-46,000 The polymer of dimethyldiallylammonium chloride is further designated as follows:
Product Percent Solids Intrinsic Viscosity, dl/q C 19.5-20.5 2.0-3.5 In the examples, polymer mixtures designated A/C
and B/C refer to those specified. The weight ratios of A/C
and B/C, unless otherwise specified are 1:3.
~` The undrained shear strength of cemented coal tailings is determined using a laboratory shear vane ~`25 apparatus. The principle of the apparatus is that a vane is inserted into the specimen and rotated at a constant rate, and the peak torque required to rotate the vane is measured using a calibrated ~pring. The rotation of the vane at a constant rate eliminates any discrepancy between samples due to rate effects.
~iThe undrained shear strength (Cu) of the process waste composition is a function of the torque required to shear the composition and the dimensions of the vane.

. ~ .

i ' .

.. ~ ~. ~, . .. . .. . . .. .

T
Cu =
~d2(h/2+d/6) The dimensions of the four-bladed vane used in this investigation are h = 12.6mm and diameter d = 12.8mm.
Hence, the undrained shear strength is given by T
Cu 4.34 X 10 6 Specimens are prepared which produce a slurry of approximately 2 liters~ Dried tailings materials are generally used to enable reproducible mixtures to be obtained. All preparations of the slurry are conducted using a commercially available "Hobart" mixer, with care ; 15 being taken to ensure that at each stage the length of mixing time is the same for each batch of slurry.
E~AMPLES l AND 2 AND COMPARATIVE EXAMPLE lA
~, Example 1.-An a~ueous coal tailings composition containing approximately 40 parts by weight coal tailings solids (dried at 40 C prior to reconstituting in tap water) is prepared in a Hobart mixer. Approximately 3 parts by ~ weight of cement a~ added to the composition and -j continuously mixed for five minutes. Approximately 0.03 part by weight of a mixture comprising~ on a solids basis, 1 part by weight of a Mannich polyacrylamide of 70 mol~
;~ aminomethylation (34,000-46,000 cps, ~rookfield viscosity) ;~ and 3 parts by weight of polydimethyldiallylammonium chloride (intrinsic viscosity 2.0-3.5 dl/g), (B/C = 1:3), is added to the coal tailings and cement mixture. All pa~ts are based on 100 parts by weight of the three component composition. The resulting composition is ~. ~
continuously mixed for another five minutes to produce a ~ curable composition in accordance with the present ;l invention.
~, .

. : ,,, . . : .. .. , .. ,,, . , ;:,: . . ~ . ~ . : . . ... .

2 ~

Following mixing, the slurry is placed in a 200 ml capacity plastic cup for vane testing. The undrained shear strength for the mixture is determined according to the procedure outlined above and the results presented graphically at various times. It is seen that within about 150 minutes a shear strength of about 2.3 kPa is reached.
After seven days, the undrained shear strength reaches about 14 kPa.
Example 2.-An aqueous composition containing approximately 40 parts by weight of reconstituted coal tailings solids t 3 parts by weight of cement and 0.3 part by weight of the same polymer mixture (B/C = 1:3) is prepared according to the procedure used to prepare Example 1. This produces a curable composition in accordance with the present invention. The undrained shear strength is determined for the composition and, within 150 minutes, reaches 3.2 kPa. After seven days the undrained shear strength reaches about 14 kPa. After twenty-eight days, ` the undrained shear strength has further risen to about 28 2~ kPa.
ComParative Example lA.-An aqueous composition containing approximately 40 parts weight of reconstituted coal tailing~ solids and 3 parts by weight of cement is prepared according to the procedure used to prepare Example 1. No polymer mixture is added. ~he undrained shear ~?,, strength is determined for the composition and, within the firs~ 100 minutes, reaches only 2 kPa. The undrained sh~ar stringth after seven days is about 9 kPa and after twenty-eight days is about 24 kPa. This shows that the mixed polymers enhance shear strength.
'!
EXAMPLES 3 AND 4 AND _OMPARATIVE EXA PLE 3A
Com~arative Example 3A.- An aqueous composition containing approximately 38.4 parts by weight of coal tailings solids and 3 parts by weight cement is prepared according to the procedure used to prepare Example 1, . ' ':
:~ ' . ' ' 2 ~ 2 8 except that the coal tailings solids are originally added to the mixer in a slurry form, i.e., not reconstituted.
This produces a curable composition not in accordance with this invention because it does not contain the mixed S yolymers.
Example 3.-An aqusous composition containing approximately 38.4 parts by weight of coal tailings solids, 3 parts by weight of cement and 0.03 part by weight of mixed polymers (B/C = 1:3) is prepared according to th~
procedure used to prepare Comparative Example 3A. This produces a curable composition in accordance with the present invention.
Example 4.-An aqueous composition containing approximately 38.4 parts by weight of coal tailings solids, 3 parts by weight of cement and 0.3 part by weight of mixed polymers (B/C = 1:3) is prepared according to the procedure ; used to prepare Comparative Example 3A. This produces also ` a curable composition in accordance with the present invention.
. 20 The undrained shear strengths for Examples 3, 4 -: and Comparative Example 3A are determined according to the procedure outlined fox Example 1. The results are graphically reported in FIGURE l. It can be seen that increasing the water absorbent mixed polymer (B/C = 1:3) concentration produces increased vane shear strength. For example, at times of less than four hours, a mixed polymers concentration of 0.3 part by weight, Example 4, increases -;; the strength of the composition with cement alone, Comparative Example 3A, hy a factor of at least 2.
EXAMPLES 5,6 AND 7 AND COMPARATIVE EXAMPLE 5A
omParative Example 5A.-An a~ueous composition ; containing approximately 40 parts by weight of gold tailings solids and 3 parts by weight of cement is prepared ~; according to the procedure used to prepare Example 1. This produces a curable composition not in accordance with the ~ .
.' ~ . ' .

', ',,' : ::, , . ,, ; . ,: '. . ,. : ': , , , 2 ~

present invention because it does not contain the mixed polymers.
Example S.-An aqueous composition containing approximately 40 parts by weight of gold tailings solids, S 3 parts by weight of cement and 0.1 part by weight of mixed polymers (B/C ~ 3) is prepared according to the procedure used to prepare Example 1. This produces a curable composition in accordance with the present invention.
Example 6.-An aqueous composition containing approximately 40 parts by weight of gold tailings solids, 3 parts by weight of cement and 0.5 part by weight of mixed polymers (B/C = 1:3) is prepared according to the procedure used to prepare Example 1. This produces a curable composition in accordance with the present invention.
15Example _7.-An aqueous composition containing approximately 40 parts by weight of gold tailings so~ids, 3 parts by weight of cement and 1.0 part by weight of mixed polymers (B/C = 1:3) is prepared according to the procedure used to prepare ~xample 1. This produces a curable composition in accordance with the present invention.
The shear str~ngths for Examples 5, 6, and 7 and Comparative Example 5A are determined according to the procedure outlined for.Example 1. The results show that i~
~` the first 6 hours, the strength of Comparative Example SA
is 1.8 kPa, for Example 5 it is 1.9 kPa, for Example 6 it is 2.9 kPa and for Example 7 it is 3.0 kPa.
EXANPLES 8~ 9 AND 10 AND COMPARATIVE EXAMPLE 8A
- Comparative Example 8A.-An aqueous composition containing approximately 40 parts by weight of gold tailings solids and 6 parts by weight of cement is prepared ; according to the procedure used to prepare Example 1. This produces a curable composition not in accordance with the present invention because it does not contain the mixed polymers.

. .
:', .

: .:, . . . - ! . ~ ~ .

- .: ; . ~ . . ,. ,~ .: : ; : : :: .: . :

2 1 ~ 8 -14- :
Example 8.-An aqueous composition containing approximately 40 parts by weight of gold tailings solids, 6 parts by weight of cement and 0.1 part by weight of mixed polymers (B~C =1:3) is prepared according to the procedure used to prepare Example 1. This produces a curable ;cornposition in accordance w~th the present invention.
Example 9.-An aqueous composition containing approximately 40 parts by weight of gold tailings solids, .
6 parts by weight of cement and 0.5 part by weight of mixed polymers (B/C = 1:3) is prepared according to the procedure -used to prepare Example 1. This produces a curable composition in accordance with the presient invention.
. ~ . .
Example 10.-An aqueous composition containing approximately 40 parts by weight of gold tailings solids, -;15 6 parts by weight of cement and 1.0 par~ by weight of mixed polymers (B/C = 1:3) is prepared according to the procedure used to prepare Example 1. This produces a composition in ~;accordance with the present invention.
The undrained shear strengths for Samples 8, 9 and 10 and Comparative Example 8A are determined according to the procedure outlined in Example 1. The results are graphically reported in FIGURE 2. This shows that in all cases, the mixed polymers enhance the achievement and magnitude of the shear strengths.
Exampleis 5A-10 develop undrained shear strengths `~ beyond the range that can be measured using a ætandard laboratory shear vane. Therefore, the strength of these tailin-gs at 7 and 28 days is obtained! in unconfined I triaxial`compression tests.
-~ 30 The unconfined triaxial compression tests are conducted using specimens nominally 63.5mm high and 31.73mm in diameter. A proving ring provides measurement of axial force and a dial gauge the axial deformation.
~11 7 and 28 day tests on Examples S~-10 are conducted at a constant rate of axial deformation of l .
.
. ~,, .

.. ; .,, ,~ ,. . . . . .. . .

21~a~28 O.O95mm/min, i.e. an axial strain rate of 0.150%imin., resulting in failure typically b~ing achieved in about twenty minutes.
The results of Examples 5A-10 show that the addition of mixed polymers (B/C = 1:3) to gold tailings results in a system~tic inc~ease in shear strength at the early stages of mixing. For longer times after mixing the shear strengths of Examples SA-10 are increased with mixed polymer content up to approximately 0.5 part by weight per 100 parts by weight of the total composition.
~Comparing the shear strengths of the 3 parts -~(Examples 5-7) and 6 parts by weight (Examples 8-10) cement compositions at the early stages after mixing, it should be noted that the values of shear strength axe very similar.
The applicants do not want to be limited to any particular theory but it is believed that this comparison indicates that the water absorbent polymer rather than cement is responsible for the increase in shear strength gains. The `higher concentration of cement results in a greater shear strength at longer times after mixing, as the effect of the cement becomes more pronounced. For both ~he 3 parts by weight and and the 6 parts by weight cement concentrations, the 28 day strength with 0.5 part by weight of mixed polymers, Examples 6 and 9, is twice that of the cemented tailings alone, Examples SA and 8A.
:-: . . .
.EXAMPLES 11 AND 12 AND COMPAR~TIVE EXA~PL2 llA
Comparative_Exam~le_llA.-An aqueous composition is prepared according to the procedure used to prepare .:
Example 1. The composi~ion contains 40 par~s by weight of gold tailings solids, from the same source used in Examples 'j5-7, and 3-6 parts by weight of cement. This pxoduces a icurable composition not in accordance with the present invention because it does not contain the mixed polymers. --Example 11.-An aqueous composition is prepared according to the procedure used to prepare Example 1. The . . j .
:

- ~ .. : .: . ., , , , , . : .. , , ~ :;: , , , , ., . , . . , , . :

2~ i'128 composition contains 40 parts by weight of gold tailings solids from the same source used in Examples 5 7, 3-6 parts by weight of cement and n . 5 part by weiqht of mixed polymers (B/C = 1:3). This produces a composition in accordance with the present invention.
Exam~le 12.-An a~ueous composition is prepared according to the procedure used to prepare Example 1. The composition contains 40 parts by weight of gold tailings solids from the same source used in Examples 5-7, 3-6 parts by weight of cement and 1.0 part by weigh~ of mixed ~ polymers (B/C = 1:3). This produces a curable composition `: in accordance with the present invention.
The compressibility of Examples 11 and 12 and Comparative Example llA is measured to determine 1) the lS quantity of liquid which drains from the sample during three (3) days of curing and 2) the axial strain resulting from the application of one dimensional compressive stress :~
of 1 MPa.
. . .. .
The quantîty of liquid which drains is measured ~20 prior to the application of the compressive stress, by a .3device designed and fabricated at the University of Wales College of Cardiff. The device consists of an aluminum ~cylinder, 300mm high an~ 70mm internal diameter, into which `~is placed the sample compositions to a nominal depth of i25 lOOmm. A porous plastic disc is placed above the sample and a porous stone is placed below the sample to permit drainage. ~Both the porous disc and stone have a nominal diameter of 70mm. A drainage hole is located at the base of the cylinder to which is attached a calibratéd burette, ~J~30 enabling water which flows out of the base of the specimen to be collectsd. Loading to the specimen is applied via a ~1'loading cap~, which is drilled with holes to permit drainage `~'7to the top of the specimen during the loading stage of the itest. The force is provided by a 150mm internal diameter 'J35 pneumatic actuator. During loading, the compression of the ' :~ . , ': ' ' , .

2 ~ 4 2 ~ :

tailings is monitored using an electrical linear strain displacement transducer (LSDT). This is fixed to the piston of the cylinder with the measuring rod resting on top of the cylinder.
5Prior to testing, the device is prepared by ensllring that t.he pipe leadin~ to the ~urette and the porous stone are free of air bubbles and the interior of the cylinder lubricated with silicon oil to minimize friction developing between the specimen and the walls.
10The sample is then introduced to the cylinder, its depth recorded and the porous plastic disc inserted.
The specimen is then left to allow the cement to cure for three (3) days during which the quantity of water leaving the specimen is monitored. Throughout this period, the level of the burette is maintained at its initial level to sustain constant boundary conditions.
The amount of water which drains from Examples ~, 11, 12 and Comparative Example llA during the first portion `~ of the compressibility test is reported graphically in FIG.
3. This graph shows that, as the mixed polymer (B/C = 1:3) concentration is increased from 0 to 1 part by weight, the / volume of watér which drains decreases from 12.2% to 0.6%.
`~ This is significant be,cause it shows that water will not exude and gather at inconvenient and dangerous locations.
- 25The second phase of the compressibility tests on Examples 11 and 12 and Comparative Example llA entail ' application of compressive stress. The loading cap is .!,i, introduced to the cylinder and the piston of the actuator ` extended and attached to the top cap by means of a screw thread. Zero readings are taken on the LSDT and the ` required load, 1 MPa applied by rapidly raising ~he air ; pressure in the cylinder to 218 kPa (determined from the ~:i ratio of the internal diameter of the cylinder to the ;; actuator, viz. 0.22). This pressure is maintained throughout the second phase of the test. Monitoring of the ;., .
-:, compression of the specimen takes place for 24 hours, alt.hough typically consolidation of the specimen is normally completed about 10 hours after the application of the loading increment.
The consolidation plots indicate that the vast majority of the consolida~ion oCcurs within the first two (2) minutes for all the samples tested. The plots for Example 11 and Comparative Example llA are almost ~ coincidental, while the plot for Example 12 indicates ; 10 approximately twice the axial (one-dimensional) strain.
This is significant because it indicates greater coherency at the higher level of mixed polymers.
The final volumetric strains show that, at a mixed polymer (B/C = 1:3) concentration of 0 and 0.5 part by weight, the volumetric strain is approximately 11%, whîle at a mixed polymer concentxation of 1.0 part by weight, the volumetric strain is 25%. The significance of ;~this is that it indicates greater coherency at the higher level of mixed polymers.
`; 20 During the process of curing and compression of Examples ll, 12 and Comparative Example llA in the ,.
compressibility tests under the one-dimensional stress of 1 MPa, Example 11, con~aining 0.5 part by weight of mixed polymers concentration is found to be most preferred in ' 25 terms o~ ~otal volume change, the upper and lower levels of : mixed polymers having higher changes.
All patents, publications and test methods, if ;any, referred to are hereby incorporated by reference.
- Many variations of the present invention will ~ 30 suggest themselves to those skilled in the art in light of `.~J the above-detailed description. For example, instead of i/ polymer mixture B/C = 1:3, the following polymer mixtures can be used; B/C = 1.3:1; A/C = 3:1; A/C = 1:3; A/C = 1:30;
B/C = 1:30. All such obvious modifications are within the full intended scope of the claims.
.~ .
.
. '', ' .,

Claims (12)

1. A curable composition for tip building and underground stowing having enhanced initial shear strength, comprising:
(a) process waste comprising an aqueous dispersion comprising 10 to 50 parts by weight of solid particles per 100 parts by weight of said dispersion;
(b) an effective amount of cement; and (c) an effective amount of a water absorbent polymer comprising a mixture of Mannich acrylamide polymer and a dimethyldiallyl-ammonium halide polymer.
2. A composition as defined in Claim 1, wherein the process waste comprises slurry tailings from mining activities.
3. A composition as defined in Claim 1, wherein the process waste is an aqueous dispersion comprising 20 to 40 parts by weight of solids.
4. A composition as defined in Claim 1, wherein the concentration of the cement is 2 to 7 parts by weight per 100 parts by weight of (a), (b) and (c).
5. A composition as defined in Claim 1, wherein the concentration of the water absorbent polymer is from about 0.01 to about 1.5 parts by weight per 100 parts by weight of (a), (b) and (c).
6. A composition as defined in Claim 1, wherein the ratio of Mannich acrylamide polymer to dimethyldiallylammonium halide polymer is 3:1 to 1:30.
7. A method for converting aqueous dispersions of process wastes to a coherent form adapted to tip building and to underground stowing, said method comprising:
(A) forming a mixture comprising (a) process waste comprising an aqueous dispersion comprising 10 to 50 parts by weight of solid particles per 100 parts by weight of said dispersion;
(b) an effective amount of cement; and (c) an effective amount of a water absorbent polymer comprising a mixture of Mannich acrylamide polymer and a dimethyldiallyl-ammonium halide polymer;
and (B) allowing said mixture to react and form a coherent mass.
8. A method as defined in Claim 7, wherein the process waste comprises slurry tailings from mining activities.
9. A method as defined in Claim 7, wherein the process waste is an aqueous dispersion comprising 20 to 40 parts by weight of solids.
10. A method as defined in Claim 7, wherein the concentration of the cement is 2 to 7 parts by weight per 100 parts by weight of (a), (b) and (c).
11. A method as defined in Claim 7, wherein the concentration of the water absorbent polymer is from about 0.01 to about 1.5 parts by weight per 100 parts by weight of (a), (b) and (c).
12. A process as defined in Claim 7, wherein the ratio of Mannich acrylamide polymer to dimethyldiallylammonium halide polymer is 3:1 to 1:30.
CA 2105428 1992-09-04 1993-09-02 Composition and process for increasing the shear strength of processing wastes used for tip building and underground consolidation Abandoned CA2105428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9218747A GB2271350B (en) 1992-09-04 1992-09-04 Cement and polymer composition for increasing the shear strength of process wastes used for tip building and underground consolidation
GB9218747.5 1992-09-04

Publications (1)

Publication Number Publication Date
CA2105428A1 true CA2105428A1 (en) 1994-03-05

Family

ID=10721397

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2105428 Abandoned CA2105428A1 (en) 1992-09-04 1993-09-02 Composition and process for increasing the shear strength of processing wastes used for tip building and underground consolidation

Country Status (7)

Country Link
JP (1) JPH06218351A (en)
AU (1) AU657637B2 (en)
CA (1) CA2105428A1 (en)
DE (1) DE4329825A1 (en)
FR (1) FR2695383A1 (en)
GB (1) GB2271350B (en)
ZA (1) ZA936517B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323335A (en) * 1998-05-14 1999-11-26 Nippon Shokubai Co Ltd Conditioning process for water-containing soil
WO2001064556A1 (en) * 2000-03-01 2001-09-07 Hersol Manufacturing Laboratories Cc Method of transporting slimes
GB0219554D0 (en) * 2002-08-22 2002-10-02 Tarmac Ltd Disposal of waste quarried material
US7866394B2 (en) 2003-02-27 2011-01-11 Halliburton Energy Services Inc. Compositions and methods of cementing in subterranean formations using a swelling agent to inhibit the influx of water into a cement slurry
US8469095B2 (en) 2003-05-14 2013-06-25 Schlumberger Technology Corporation Self adaptive cement systems
US20070204765A1 (en) 2003-05-14 2007-09-06 Sylvaine Le Roy-Delage Self-Adaptive Cement Systems
US7607483B2 (en) 2004-04-19 2009-10-27 Halliburton Energy Services, Inc. Sealant compositions comprising colloidally stabilized latex and methods of using the same
US7690429B2 (en) 2004-10-21 2010-04-06 Halliburton Energy Services, Inc. Methods of using a swelling agent in a wellbore
US20070111901A1 (en) 2005-11-11 2007-05-17 Reddy B R Method of servicing a wellbore with a sealant composition comprising solid latex
US7488705B2 (en) 2004-12-08 2009-02-10 Halliburton Energy Services, Inc. Oilwell sealant compositions comprising alkali swellable latex
US7891424B2 (en) 2005-03-25 2011-02-22 Halliburton Energy Services Inc. Methods of delivering material downhole
US7870903B2 (en) 2005-07-13 2011-01-18 Halliburton Energy Services Inc. Inverse emulsion polymers as lost circulation material
US7670277B2 (en) * 2007-10-04 2010-03-02 Amcol International Corporation Composition and method for the solidification of toxic or hazardous drilling and agricultural waste
EP3088539B1 (en) * 2015-04-29 2019-10-09 Evonik Degussa GmbH Treatment of water-containing ore processing residues
CN115849791B (en) * 2022-11-09 2023-12-01 台州东部建材科技有限公司 Complex-doped green high-strength concrete and preparation method thereof

Also Published As

Publication number Publication date
DE4329825A1 (en) 1994-04-07
GB2271350A (en) 1994-04-13
FR2695383A1 (en) 1994-03-11
AU4610093A (en) 1994-03-10
GB9218747D0 (en) 1992-10-21
ZA936517B (en) 1994-10-11
AU657637B2 (en) 1995-03-16
GB2271350B (en) 1996-04-03
JPH06218351A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
AU657637B2 (en) Composition and process for increasing the shear strength of processing wastes used for tip building and underground consolidation
US4897119A (en) Aqueous dispersion of ground slag
Birchall Cement in the context of new materials for an energy-expensive future
Zhao et al. Improvement of loess characteristics using sodium alginate
CN104910322A (en) Copolymer based on a compound comprising sulfonic acid
CA2920932A1 (en) Cationic copolymer and use thereof in lost circulation additive
Liu et al. Effects of chitosan treatment on strength and thickening properties of oil well cement
CA1177185A (en) Water-soluble poly(meth)acrylic acid derivative gels and their manufacture
US5391597A (en) Composition and process for increasing the shear strength of processing wastes used for tip building and underground consolidation
Tsugawa et al. Thixotropy of sludge from the Cubatão water treatment plant, Brazil
Chuaqui et al. Mix design and quality control procedures for high mobility cement based grouts
CA2127346C (en) Set retarded cement compositions, additives and methods
Kayabalı et al. The influence of hazardous liquid waste on the permeability of earthen liners
CN115159924B (en) Underwater non-dispersive concrete and preparation method thereof
CA1264536A (en) Process for consolidating soils
JPH0582280B2 (en)
CN113735412B (en) Efficient dehydration and solidification treatment agent for waste slurry of foundation engineering and use method thereof
US5332434A (en) Method for adjusting consistency
US4911584A (en) Method for soil injection
Shen et al. Hydraulic conductivity of polymer modified bentonite filter cakes in calcium chloride solutions
JP4680178B2 (en) Method for dewatering slurry mixture from jet grout operation and aqueous suspension used therefor
JP4092373B2 (en) Sludge treatment method
AU2005291642B2 (en) Method for de- watering a slurry
JP3644134B2 (en) Treatment agent for hydrous stone powder
JP3402374B2 (en) How to improve soft soil

Legal Events

Date Code Title Description
FZDE Dead