CA2105134C - Process for removing elemental sulfur from fluids - Google Patents
Process for removing elemental sulfur from fluids Download PDFInfo
- Publication number
- CA2105134C CA2105134C CA 2105134 CA2105134A CA2105134C CA 2105134 C CA2105134 C CA 2105134C CA 2105134 CA2105134 CA 2105134 CA 2105134 A CA2105134 A CA 2105134A CA 2105134 C CA2105134 C CA 2105134C
- Authority
- CA
- Canada
- Prior art keywords
- elemental sulfur
- fuel
- gasoline
- fluid
- mercaptan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 239000012530 fluid Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 27
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 19
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 19
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 18
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000003518 caustics Substances 0.000 claims abstract description 17
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 12
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 12
- 229920001021 polysulfide Polymers 0.000 claims abstract description 8
- 239000005077 polysulfide Substances 0.000 claims abstract description 8
- 150000008117 polysulfides Polymers 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- 239000003502 gasoline Substances 0.000 claims description 38
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 28
- 239000000446 fuel Substances 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical group [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims description 11
- 229910052979 sodium sulfide Inorganic materials 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 8
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 claims description 4
- 239000002283 diesel fuel Substances 0.000 claims description 3
- 239000003350 kerosene Substances 0.000 claims description 3
- 150000001983 dialkylethers Chemical class 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 abstract description 3
- 239000003209 petroleum derivative Substances 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 23
- 229910052717 sulfur Inorganic materials 0.000 description 15
- 239000011593 sulfur Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- -1 LizS Chemical compound 0.000 description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 7
- 239000003208 petroleum Substances 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 5
- 238000010908 decantation Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000005864 Sulphur Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- WYLQOLGJMFRRLX-UHFFFAOYSA-N 2-methoxy-2-methylpentane Chemical compound CCCC(C)(C)OC WYLQOLGJMFRRLX-UHFFFAOYSA-N 0.000 description 1
- WICKZWVCTKHMNG-UHFFFAOYSA-N 2-methyl-2-propan-2-yloxybutane Chemical compound CCC(C)(C)OC(C)C WICKZWVCTKHMNG-UHFFFAOYSA-N 0.000 description 1
- FITVQUMLGWRKKG-UHFFFAOYSA-N 2-methyl-2-propoxypropane Chemical compound CCCOC(C)(C)C FITVQUMLGWRKKG-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 229910003202 NH4 Inorganic materials 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 150000004699 copper complex Chemical class 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- HVZJRWJGKQPSFL-UHFFFAOYSA-N tert-Amyl methyl ether Chemical compound CCC(C)(C)OC HVZJRWJGKQPSFL-UHFFFAOYSA-N 0.000 description 1
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-butyl ethyl ether Chemical compound CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
A process for removing elemental sulfur from fluids such as refined petroleum products transported through pipelines for the transportation of sour hydrocarbon streams. The fluids are contacted with an aqueous solution containing caustic, an aliphatic mercaptan and optionally a sulfide to produce an aqueous layer containing metal polysulfides and a clear fluid layer having a reduced elemental sulfur level.
Description
2:~~~.~~~~
_ (iACKGROUND OF THE INVENTION
Field of the Invention This invention relates to a process for removing elemental sulfur from fluids, particularly fuels such as gasoline transported in a pipeline for the transportation of sour hydrocarbon streams.
Description of Related Art It is well known that elemental sulfur and other sulfur compounds contained in hydrocarbon streams is corrosive and damaging to metal equipment, particularly copper and copper alloys. Sulfur and sulfur compounds may be present in varying concentrations in the refined fuels and additional contamination may take place as a conse-quence of transporting the refined fuel through pipelines containing sulfur contaminants resulting from the transportation of sour hydro-carbon streams such as petroleum crudes. The sulfur has a particu-larly corrosive effect on equipment such as brass valves, gauges and in-tank fuel pump copper commutators.
Various techniques have been reported for removing elemental sulfur from petroleum products. For example U.S. Patent 4,149,966 discloses a method for removing elemental sulfur from refined hydro-carbon fuels by adding an organo-mercaptan compound and a copper compound capable of forming a soluble complex with said mercaptan and said sulfur and contacting said fuel with an adsorbent material to remove the resulting copper complex and substantially ail the a elemental sulfur.
U.S. Patent 4,908,122 discloses a process far sweetening a sour hydrocarbon fraction containing mercaptans by contacting the hydrocarbon fraction in the presence of an oxidizing agent with a catalytic composite, ammonium hydroxide and a quaternary ammonium salt other than hydroxide.
~~~J~.-~~
U.S. Patent 3,185,641 describes a method for removing elemental sulfur from a liquid hydrocarbon which comprises contacting with solid sodium hydroxide a hydrocarbon stream having dissolved therein at least 7.6 parts by weight of water per part of sulfur contained therein to yield both a hydrocarbon phase and an aqueous phase. The method is claimed to be effective and convenient for treating gasoline containing from trace to more than 25 ppm sulfur employing temperatures as high as about 140°F (60°C).
U.S. Patent 4,011,882 discloses a method for reducing sulfur contamination of refined hydrocarbon fluids transported in a pipeline for the transportation of sweet and sour hydrocarbon fluids by washing the pipeline with a wash solution containing a mixture of light and heavy amines, a corrosion inhibitor, a surfactant and an alkanol containing from 1 to 6 carbon atoms.
U.S. Patent 2,460,227 discloses a method for removing elemental sulfur from petroleum fractions, such as gasoline, by contacting the petroleum fraction with an aqueous solution containing an alkali metal hydroxide, an aromatic mercaptan and a reducing compound such as sodium monosulfide to limit the oxidation and conse-quent loss of the aromatic mercaptan.
SUMMARY OF THE INDENTION
The present invention provides a process for removing elemental sulfur from fluids such as hydrocarbon fuels, fuel blending components such as octane improvers, liquified petroleum gas (LPG), solvents and other petroleum streams transported in a pipeline for the transportation of sour hydrocarbon streams, comprising contacting the sulfur-containing fluid with an inorganic caustic material, water, an aliphatic mercaptan and optionally a sulfide to form an aqueous layer containing polysulfides and a fluid layer having a reduced elemental sulfur level. The fluid layer is decanted from the aqueous layer leaving a treated product having a low residual elemental sulfur content.
~:3.~~:~.J~~
_ (iACKGROUND OF THE INVENTION
Field of the Invention This invention relates to a process for removing elemental sulfur from fluids, particularly fuels such as gasoline transported in a pipeline for the transportation of sour hydrocarbon streams.
Description of Related Art It is well known that elemental sulfur and other sulfur compounds contained in hydrocarbon streams is corrosive and damaging to metal equipment, particularly copper and copper alloys. Sulfur and sulfur compounds may be present in varying concentrations in the refined fuels and additional contamination may take place as a conse-quence of transporting the refined fuel through pipelines containing sulfur contaminants resulting from the transportation of sour hydro-carbon streams such as petroleum crudes. The sulfur has a particu-larly corrosive effect on equipment such as brass valves, gauges and in-tank fuel pump copper commutators.
Various techniques have been reported for removing elemental sulfur from petroleum products. For example U.S. Patent 4,149,966 discloses a method for removing elemental sulfur from refined hydro-carbon fuels by adding an organo-mercaptan compound and a copper compound capable of forming a soluble complex with said mercaptan and said sulfur and contacting said fuel with an adsorbent material to remove the resulting copper complex and substantially ail the a elemental sulfur.
U.S. Patent 4,908,122 discloses a process far sweetening a sour hydrocarbon fraction containing mercaptans by contacting the hydrocarbon fraction in the presence of an oxidizing agent with a catalytic composite, ammonium hydroxide and a quaternary ammonium salt other than hydroxide.
~~~J~.-~~
U.S. Patent 3,185,641 describes a method for removing elemental sulfur from a liquid hydrocarbon which comprises contacting with solid sodium hydroxide a hydrocarbon stream having dissolved therein at least 7.6 parts by weight of water per part of sulfur contained therein to yield both a hydrocarbon phase and an aqueous phase. The method is claimed to be effective and convenient for treating gasoline containing from trace to more than 25 ppm sulfur employing temperatures as high as about 140°F (60°C).
U.S. Patent 4,011,882 discloses a method for reducing sulfur contamination of refined hydrocarbon fluids transported in a pipeline for the transportation of sweet and sour hydrocarbon fluids by washing the pipeline with a wash solution containing a mixture of light and heavy amines, a corrosion inhibitor, a surfactant and an alkanol containing from 1 to 6 carbon atoms.
U.S. Patent 2,460,227 discloses a method for removing elemental sulfur from petroleum fractions, such as gasoline, by contacting the petroleum fraction with an aqueous solution containing an alkali metal hydroxide, an aromatic mercaptan and a reducing compound such as sodium monosulfide to limit the oxidation and conse-quent loss of the aromatic mercaptan.
SUMMARY OF THE INDENTION
The present invention provides a process for removing elemental sulfur from fluids such as hydrocarbon fuels, fuel blending components such as octane improvers, liquified petroleum gas (LPG), solvents and other petroleum streams transported in a pipeline for the transportation of sour hydrocarbon streams, comprising contacting the sulfur-containing fluid with an inorganic caustic material, water, an aliphatic mercaptan and optionally a sulfide to form an aqueous layer containing polysulfides and a fluid layer having a reduced elemental sulfur level. The fluid layer is decanted from the aqueous layer leaving a treated product having a low residual elemental sulfur content.
~:3.~~:~.J~~
DETAILED DESCRIPTION OF THE INVENTION
The inorganic caustic material which is employed in this invention includes alkali metal or ammonium hydroxides having the formula MOH wherein M is selected from the group consisting of lithium, sodium, potassium, NH4 or mixtures thereof. M is preferably sodium or potassium.
The sulfide which is employed in this invention includes mono sulfides and polysulfides of metals from Groups I and II of the Periodic Table. Examples of sulfides include Na2S, K2S, LizS, NaHS, (NH4)2S, and the like. Na2S is preferred. The sulfide in caustic reacts with the elemental sulfur in the fluid to be treated to form polysulfides in caustic. The sulfide may be present in a convenient source of caustic such as white liquor from paper pulp mills.
Aliphatic mercaptans are employed in the process of the invention. These mercaptans in the presence of caustic form a sulfur complex which transfers easily into the Fuel to react with the elemental sulfur, thereby accelerating its removal. Aliphatic mercaptans have been found to be more effective than aromatic mercaptans for elemental sulfur removal from fluids such as gasoline.
The aliphatic mercaptans which may be used include a wide variety of compounds having the general formula RSH, where R represents an a organic radical which may be alkyl, alkenyl, cycioalkyl or cyclo-alkenyl having from 1 to about 10 carbon atoms. Thus, the radical may be, for example methyl, ethyl, n-propyl, i-propyi, n-butyl, i-butyl, sec-butyl, t-butyl, amyl, n-octyl, cyclohexyl, n-hexyl, n-heptyl, n-octyl, cycloheptyl, cyclo-octyl, n-nonyl, n-decyl and the like.
Preferably, RSH is an alkyl mercaptan containing 2 to 5 carbon atoms.
Most preferably RSH is n-propyl mercaptan.
Alcohols such as methanol, ethanol, propanol, ethylene glycol, propylene glycol and the like may also be added to the mixture which is contacted with the fluid to be treated. The amount of alcohol used may vary within wide limits. In the case of methanol, 21~~1~~
The inorganic caustic material which is employed in this invention includes alkali metal or ammonium hydroxides having the formula MOH wherein M is selected from the group consisting of lithium, sodium, potassium, NH4 or mixtures thereof. M is preferably sodium or potassium.
The sulfide which is employed in this invention includes mono sulfides and polysulfides of metals from Groups I and II of the Periodic Table. Examples of sulfides include Na2S, K2S, LizS, NaHS, (NH4)2S, and the like. Na2S is preferred. The sulfide in caustic reacts with the elemental sulfur in the fluid to be treated to form polysulfides in caustic. The sulfide may be present in a convenient source of caustic such as white liquor from paper pulp mills.
Aliphatic mercaptans are employed in the process of the invention. These mercaptans in the presence of caustic form a sulfur complex which transfers easily into the Fuel to react with the elemental sulfur, thereby accelerating its removal. Aliphatic mercaptans have been found to be more effective than aromatic mercaptans for elemental sulfur removal from fluids such as gasoline.
The aliphatic mercaptans which may be used include a wide variety of compounds having the general formula RSH, where R represents an a organic radical which may be alkyl, alkenyl, cycioalkyl or cyclo-alkenyl having from 1 to about 10 carbon atoms. Thus, the radical may be, for example methyl, ethyl, n-propyl, i-propyi, n-butyl, i-butyl, sec-butyl, t-butyl, amyl, n-octyl, cyclohexyl, n-hexyl, n-heptyl, n-octyl, cycloheptyl, cyclo-octyl, n-nonyl, n-decyl and the like.
Preferably, RSH is an alkyl mercaptan containing 2 to 5 carbon atoms.
Most preferably RSH is n-propyl mercaptan.
Alcohols such as methanol, ethanol, propanol, ethylene glycol, propylene glycol and the like may also be added to the mixture which is contacted with the fluid to be treated. The amount of alcohol used may vary within wide limits. In the case of methanol, 21~~1~~
for example, from 0 to about 90 volume percent of the water may be replaced with alcohol.
The fluids which are treated in accordance with the inven-tion include fluids containing elemental sulfur where the elemental sulfur is detrimental to the performance of the fluid. The invention is particularly applicable to those liquid products, such as gasoline, which have become contaminated with elemental sulfur as a result of being transported in a pipeline previously used to transport sour hydrocarbon streams such as petroleum crudes.
The fluids treated in accordance with the invention include a wide variety of petroleum fuels and particularly refined hydrocarbon fuels such as gasoline, jet fuel, diesel fuel and kerosene.
Other fluids include ethers used to improve the octane - ratings of gasoline. These ethers are typically dialkyl ethers having 1 to 7 carbon atoms in each alkyl group. Illustrative ethers are methyl tertiary-butyl ether, methyl tertiary-amyl ether, methyl tertiary-hexyl ether, ethyl tertiary-butyl ether, n-propyl tertiary-butyl ether, isopropyl tertiary-amyl ether. Mixtures of these ethers and hydrocarbons may be treated in accordance with the invention.
Fluids containing quantities of elemental sulfur as high as 100 mg, or higher, sulfur per liter, more usually from about 10 to about 60 mg per liter, can be effectively treated in accordance with this invention to reduce the sulfur contamination to about 5 mg sulfur per liter, preferably 3 mg sulfur per liter or lower.
In general, the process of the invention involves the addition to the fluid to be treated of effective amounts of caustic, water, sulfide, aliphatic mercaptan and optionally alcohol. The mixture is allowed to settle so as to form an aqueous layer containing metal polysulfides and a clear fluid layer having a reduced elemental sulfur level. Contact with the aliphatic mercaptan results in a clear fluid layer having a reduced elemental sulfur level and containing soluble polysulfide reaction products which are relatively non-~1~~~~~
The fluids which are treated in accordance with the inven-tion include fluids containing elemental sulfur where the elemental sulfur is detrimental to the performance of the fluid. The invention is particularly applicable to those liquid products, such as gasoline, which have become contaminated with elemental sulfur as a result of being transported in a pipeline previously used to transport sour hydrocarbon streams such as petroleum crudes.
The fluids treated in accordance with the invention include a wide variety of petroleum fuels and particularly refined hydrocarbon fuels such as gasoline, jet fuel, diesel fuel and kerosene.
Other fluids include ethers used to improve the octane - ratings of gasoline. These ethers are typically dialkyl ethers having 1 to 7 carbon atoms in each alkyl group. Illustrative ethers are methyl tertiary-butyl ether, methyl tertiary-amyl ether, methyl tertiary-hexyl ether, ethyl tertiary-butyl ether, n-propyl tertiary-butyl ether, isopropyl tertiary-amyl ether. Mixtures of these ethers and hydrocarbons may be treated in accordance with the invention.
Fluids containing quantities of elemental sulfur as high as 100 mg, or higher, sulfur per liter, more usually from about 10 to about 60 mg per liter, can be effectively treated in accordance with this invention to reduce the sulfur contamination to about 5 mg sulfur per liter, preferably 3 mg sulfur per liter or lower.
In general, the process of the invention involves the addition to the fluid to be treated of effective amounts of caustic, water, sulfide, aliphatic mercaptan and optionally alcohol. The mixture is allowed to settle so as to form an aqueous layer containing metal polysulfides and a clear fluid layer having a reduced elemental sulfur level. Contact with the aliphatic mercaptan results in a clear fluid layer having a reduced elemental sulfur level and containing soluble polysulfide reaction products which are relatively non-~1~~~~~
corrosive. The treated fluid may be recovered by decantation. The recovered aqueous layer may be recycled back to the mixing zone for contact with the fluid to be treated or it may be discarded or used, for example, as a feedstock to pulping paper mills, such as those employing the Kraft pulp mill process.
The treating conditions which may be used to carry out the present invention are conventional. Contacting of the fluid to be treated is effected at ambient temperature conditions, although higher temperatures up to 100°C or higher may be employed. Substantially atmospheric pressures are suitable, although pressures may, for example, range up to 1000 psig. Contact times may vary widely depending on the fluid to be treated, the amount of elemental sulfur therein and the treating materials used. The contact time will be chosen to effect the desired degree of elemental sulfur conversion.
The reaction proceeds relatively fast, usually within several minutes, depending on solution strengths and compositions. Contact times from 30 seconds to a few hours may be employed.
The reactants may be dispersed within the fluid to be treated using any suitable mixing device which will provide adequate mixing with the fluid. Thereafter the mixture is allowed to settle to produce the aqueous and fluid layers.
The proportion of water, caustic, sulfide and aliphatic mercaptan to be mixed may vary within wide limits. Typically, the aqueous treating solution contains caustic in the range of 0.01 to 20M, the sulfide concentration is from 0 to 20M. The amount of aliphatic mercaptan which is added may range from 0.1 to about 2 moles of aliphatic mercaptan per mole of elemental sulfur present in the fluid to be treated. The relative amount of aqueous treating solution containing caustic, metal sulfide and aliphatic mercaptan and the fluid to be treated may also vary within wide limits. Usually about 0.05 to 10, more usually, 0.1 to 0.3 volumes of aqueous treating solution will be used per volume of fluid to be treated.
i The following examples are illustrative of the invention.
21~J.~~~~
The treating conditions which may be used to carry out the present invention are conventional. Contacting of the fluid to be treated is effected at ambient temperature conditions, although higher temperatures up to 100°C or higher may be employed. Substantially atmospheric pressures are suitable, although pressures may, for example, range up to 1000 psig. Contact times may vary widely depending on the fluid to be treated, the amount of elemental sulfur therein and the treating materials used. The contact time will be chosen to effect the desired degree of elemental sulfur conversion.
The reaction proceeds relatively fast, usually within several minutes, depending on solution strengths and compositions. Contact times from 30 seconds to a few hours may be employed.
The reactants may be dispersed within the fluid to be treated using any suitable mixing device which will provide adequate mixing with the fluid. Thereafter the mixture is allowed to settle to produce the aqueous and fluid layers.
The proportion of water, caustic, sulfide and aliphatic mercaptan to be mixed may vary within wide limits. Typically, the aqueous treating solution contains caustic in the range of 0.01 to 20M, the sulfide concentration is from 0 to 20M. The amount of aliphatic mercaptan which is added may range from 0.1 to about 2 moles of aliphatic mercaptan per mole of elemental sulfur present in the fluid to be treated. The relative amount of aqueous treating solution containing caustic, metal sulfide and aliphatic mercaptan and the fluid to be treated may also vary within wide limits. Usually about 0.05 to 10, more usually, 0.1 to 0.3 volumes of aqueous treating solution will be used per volume of fluid to be treated.
i The following examples are illustrative of the invention.
21~J.~~~~
Example 1 In this Example the following solutions were prepared.
Solution A: 20g rsodium hydroxide -E 24g sodium sulfide (9H20) + 0.53 g elemental sulfur in 100 ml water (5M NaOH, lOM Na2S, , 0.53 wt% S) Solution B: 20g sodium hydroxide + 24g sodium sulfide (9H20) in 100 ml water (5M NaOH, lOM Na2S).
Solution C: 20g sodium hydroxide in 100 ml water (5M NaOH) Solution D: 50 mi of saturated sodium hydroxide in water + 12g of sodium sulfide (9H20).
Example 2 Into a beaker were added 100 ml of pipelined gasoline having an elemental sulfur level of 30 mg/L elemental sulfur (Mercury Number Method; UOP Method 286-59). The gasoline was stirred for 1 hour with 50 ml of Solution A, allowed to settle and thereafter decanted to produce a treated gasoline having an elemental sulfur level of 7 mg/L.
Exam~l a 3 Into a beaker were added 100 ml of pipelined gasoline having an elemental sulfur level of 44 mg/L elemental sulfur. The gasoline was stirred for 1 hour with 25 ml of Solution A and 25 ml of Solution B, allowed to settle and thereafter decanted to produce a treated gasoline having an elemental sulfur level of 4 mg/L. The treated gasoline was treated again as above in 'this example to produce a gasoline having an elemental sulfur level of 3 mg/L.
~1~~~~~
Example 4 100 ml of the pipelined gasoline of Example 3, 25 ml of Solution A and 25 ml of Solution C were mixed for 1 hour. The mixture was then allowed to settle and the gasoline removed by decantation.
The treated gasoline had an elemental sulfur level of 3 mg/L, showing that dilution with caustic still achieved significant sulfur removal.
Example 5 100 ml of the gasoline of Example 3 and 50 ml of Solution C
were mixed for 1 hour. The mixture was then allowed to settle and the treated gasoline removed by decantation. The treated gasoline had an elemental sulfur level of 41 mg/L, showing that caustic alone does not remove significant amounts of elemental sulfur.
Example 6 100 ml of the gasoline of Example 3 and 50 ml of aqueous solution containing 12g of sodium sulfide (9H20) (10M) were mixed for 1 hour. The mixture was then allowed to settle and then the treated gasoline removed by decantation. The 'treated gasoline had an elemen-tal sulfur level of 30 mg/L, showing that sulfide alone is not very effective for removing elemental sulfur.
Example 7 100 ml of the gasoline of Example 3 and 50 ml of solution D
were mixed for 24 hours. The mixture was then allowed to settle and then the treated gasoline removed by decantation. The treated gasoline had an elemental sulphur of 3 mg/L, showing that addition of elemental sulphur in the aqueous phase is not essential to remove 'the elemental sulphur from the gasoline.
~1~~.~ ~~
_8_ Example ~
This Example compares the effectiveness of aliphatic mercaptan and aromatic mercaptan for the removal of elemental sulfur from gasoline.
A number of 100 ml samples of gasoline containing 33 mg per liter elemental sulfur (Polarograph Method) were each stirred for two minutes in a Eberbach Shaker with 30 ml of a treating solution containing either a mixture of 30 ml of pulp mill white liquor and 2.0 wtf° of n-propyl mercaptan (Solution 1) or a mixture of 30 m~l of pulp mill white liquor and 2.0 wt% of thiophenol (Solution 2). The pulp mill white liquor contained 30g/L sodium sulfide and 100 g/L sodium hydroxide and was made by heating 146 g of caustic and 24 g of elemental sulfur in one liter of water at 190°F. The two treating solutions were repeatedly used to treat fresh samples of gasoline.
The results shown in the following Table demonstrate that aliphatic mercaptan is more effective for a longer period of time in removing elemental sulfur from gasoline.
Elemental Sulfur Level of Gasoline After Contact with Treating Solution, mg/L
Gasoline Sample Solution 1 Solution 2 0.5 -3 0.5 24 4 0.5 -g 5 -Avera a 6 24
Solution A: 20g rsodium hydroxide -E 24g sodium sulfide (9H20) + 0.53 g elemental sulfur in 100 ml water (5M NaOH, lOM Na2S, , 0.53 wt% S) Solution B: 20g sodium hydroxide + 24g sodium sulfide (9H20) in 100 ml water (5M NaOH, lOM Na2S).
Solution C: 20g sodium hydroxide in 100 ml water (5M NaOH) Solution D: 50 mi of saturated sodium hydroxide in water + 12g of sodium sulfide (9H20).
Example 2 Into a beaker were added 100 ml of pipelined gasoline having an elemental sulfur level of 30 mg/L elemental sulfur (Mercury Number Method; UOP Method 286-59). The gasoline was stirred for 1 hour with 50 ml of Solution A, allowed to settle and thereafter decanted to produce a treated gasoline having an elemental sulfur level of 7 mg/L.
Exam~l a 3 Into a beaker were added 100 ml of pipelined gasoline having an elemental sulfur level of 44 mg/L elemental sulfur. The gasoline was stirred for 1 hour with 25 ml of Solution A and 25 ml of Solution B, allowed to settle and thereafter decanted to produce a treated gasoline having an elemental sulfur level of 4 mg/L. The treated gasoline was treated again as above in 'this example to produce a gasoline having an elemental sulfur level of 3 mg/L.
~1~~~~~
Example 4 100 ml of the pipelined gasoline of Example 3, 25 ml of Solution A and 25 ml of Solution C were mixed for 1 hour. The mixture was then allowed to settle and the gasoline removed by decantation.
The treated gasoline had an elemental sulfur level of 3 mg/L, showing that dilution with caustic still achieved significant sulfur removal.
Example 5 100 ml of the gasoline of Example 3 and 50 ml of Solution C
were mixed for 1 hour. The mixture was then allowed to settle and the treated gasoline removed by decantation. The treated gasoline had an elemental sulfur level of 41 mg/L, showing that caustic alone does not remove significant amounts of elemental sulfur.
Example 6 100 ml of the gasoline of Example 3 and 50 ml of aqueous solution containing 12g of sodium sulfide (9H20) (10M) were mixed for 1 hour. The mixture was then allowed to settle and then the treated gasoline removed by decantation. The 'treated gasoline had an elemen-tal sulfur level of 30 mg/L, showing that sulfide alone is not very effective for removing elemental sulfur.
Example 7 100 ml of the gasoline of Example 3 and 50 ml of solution D
were mixed for 24 hours. The mixture was then allowed to settle and then the treated gasoline removed by decantation. The treated gasoline had an elemental sulphur of 3 mg/L, showing that addition of elemental sulphur in the aqueous phase is not essential to remove 'the elemental sulphur from the gasoline.
~1~~.~ ~~
_8_ Example ~
This Example compares the effectiveness of aliphatic mercaptan and aromatic mercaptan for the removal of elemental sulfur from gasoline.
A number of 100 ml samples of gasoline containing 33 mg per liter elemental sulfur (Polarograph Method) were each stirred for two minutes in a Eberbach Shaker with 30 ml of a treating solution containing either a mixture of 30 ml of pulp mill white liquor and 2.0 wtf° of n-propyl mercaptan (Solution 1) or a mixture of 30 m~l of pulp mill white liquor and 2.0 wt% of thiophenol (Solution 2). The pulp mill white liquor contained 30g/L sodium sulfide and 100 g/L sodium hydroxide and was made by heating 146 g of caustic and 24 g of elemental sulfur in one liter of water at 190°F. The two treating solutions were repeatedly used to treat fresh samples of gasoline.
The results shown in the following Table demonstrate that aliphatic mercaptan is more effective for a longer period of time in removing elemental sulfur from gasoline.
Elemental Sulfur Level of Gasoline After Contact with Treating Solution, mg/L
Gasoline Sample Solution 1 Solution 2 0.5 -3 0.5 24 4 0.5 -g 5 -Avera a 6 24
Claims (9)
1. A process for reducing the elemental sulfur content of a fluid selected from the group consisting of gasoline, jet fuel, diesel fuel, kerosene and dialkyl ethers containing same, comprising mixing said fluid with water, inorganic caustic and an aliphatic mercaptan in amounts effective to form after completion of mixing an aqueous layer containing polysulfides and a fluid layer having a reduced elemental sulfur level and recovering the treated fluid.
2. The process of claim 1 wherein the fluid is mixed with a sulfide.
3. The process of claim 1 wherein said inorganic caustic is NaOH.
4. The process of claim 2 wherein said sulfide is Na2S.
5. The process of claim 3 wherein said mercaptan is n-propyl mercaptan.
6. A process for reducing the corrosivity of a refined hydrocarbon fuel selected from the group consisting of gasoline, jet fuel, diesel fuel and kerosene by removing elemental sulfur resulting from the transportation of said fuel through a pipeline used to transport a sour hydrocarbon stream, which process comprises mixing said fuel with water caustic and an aliphatic mercaptan in amounts effective to form after completion of mixing an aqueous layer containing metal polysulfides and a fuel layer having a reduced elemental sulfur level and recovering the treated fuel.
7. The process of claim 6 wherein said fuel is gasoline.
8. The process of claim 7 wherein said gasoline is contacted with an aqueous NaOH solution containing a sulfide.
9. The process of claim 7 wherein the mercaptan is n-propyl mercaptan.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US07/941,823 US5250181A (en) | 1991-06-17 | 1992-09-08 | Process for removing elemental sulfur from fluids |
| US941,823 | 1992-09-08 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CA2105134A1 CA2105134A1 (en) | 1994-03-09 |
| CA2105134C true CA2105134C (en) | 2000-10-17 |
Family
ID=25477126
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA 2105134 Expired - Lifetime CA2105134C (en) | 1992-09-08 | 1993-08-30 | Process for removing elemental sulfur from fluids |
Country Status (1)
| Country | Link |
|---|---|
| CA (1) | CA2105134C (en) |
-
1993
- 1993-08-30 CA CA 2105134 patent/CA2105134C/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| CA2105134A1 (en) | 1994-03-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5160045A (en) | Process for removing elemental sulfur from fluids | |
| US5951851A (en) | Sulfur removal from hydrocarbon fluids by contacting said fluids with hydrololcite-like adsorbent material | |
| CA2068011C (en) | Process for removing elemental sulfur from fluids | |
| CN111032091B (en) | Compositions and methods for remediation of hydrogen sulfide and other contaminants in hydrocarbon-based liquids and aqueous solutions | |
| US5250181A (en) | Process for removing elemental sulfur from fluids | |
| US3708421A (en) | Process to remove mercaptan sulfur from sour oils | |
| US5961820A (en) | Desulfurization process utilizing an oxidizing agent, carbonyl compound, and hydroxide | |
| US5525233A (en) | Process for the removal of elemental sulfur from fluids by mixing said fluid with an immiscible solution of alcoholic caustic and an inorganic sulfide or hydrosulfide | |
| CA2105134C (en) | Process for removing elemental sulfur from fluids | |
| US2721166A (en) | Treatment of distillates with hypochlorite solution | |
| CA2163915C (en) | Dynamic mixer process with continuous caustic phase for removal of elemental sulfur from organic fluids | |
| US5200062A (en) | Process for removing elemental sulfur from fluids | |
| CA2512064C (en) | Method for reducing the level of elemental sulfur and total sulfur in hydrocarbon streams | |
| CA2573470C (en) | Method for reducing the level of elemental sulfur and total sulfur in hydrocarbon streams | |
| WO2005097300A1 (en) | Removal of mercaptans and related compounds form hydrocarbons | |
| US3449239A (en) | Diazine in a hydrocarbon sweetening process | |
| CA2456491C (en) | Improved process for removing elemental sulfur from pipeline-transported refined hydrocarbon fuels | |
| CA2249696C (en) | Sulfur removal from hydrocarbon fluids by mixing with organo mercaptan and contacting with hydrotalcite-like materials, alumina, bayerite or brucite | |
| CA2366224A1 (en) | Method for reducing the level of elemental sulfur and total sulfur in hydrocarbon streams | |
| CA2674954C (en) | Removal of elemental sulfur in pipelines using static mixers | |
| US3525683A (en) | Sweetening of jp-4 jet fuel with an alkali metal plumbite,phthalocyanine compound and elemental sulfur | |
| US3853746A (en) | Process for sweetening hydrocarbon products with sulfenamides | |
| US3184405A (en) | Desulfurizing petroleum with alkali and di-alkyl sulfoxide | |
| CA2366234A1 (en) | Process for reducing the level of elemental sulfur in hydrocarbon streams | |
| CA2512063C (en) | Process for reducing the level of elemental sulfur in hydrocarbon streams |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request |