CA2098700A1 - Medico-surgical devices - Google Patents

Medico-surgical devices

Info

Publication number
CA2098700A1
CA2098700A1 CA002098700A CA2098700A CA2098700A1 CA 2098700 A1 CA2098700 A1 CA 2098700A1 CA 002098700 A CA002098700 A CA 002098700A CA 2098700 A CA2098700 A CA 2098700A CA 2098700 A1 CA2098700 A1 CA 2098700A1
Authority
CA
Canada
Prior art keywords
electrode
electrically
medico
catheter
surgical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002098700A
Other languages
French (fr)
Inventor
Roland Henry Clyne Carter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smiths Group PLC
Original Assignee
Smiths Group PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smiths Group PLC filed Critical Smiths Group PLC
Publication of CA2098700A1 publication Critical patent/CA2098700A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49169Assembling electrical component directly to terminal or elongated conductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49169Assembling electrical component directly to terminal or elongated conductor
    • Y10T29/49171Assembling electrical component directly to terminal or elongated conductor with encapsulating

Abstract

Abstract of the Disclosure Plastic catheters can have an electrode close to their patient end for use in sensing or stimulating, the electrode being connected to a wire that runs along the length of the catheter.
In the present invention the electrode is formed of an electrically-conductive plastics. This is injection moulded about the catheter where the wire emerges through an aperture in its wall so as to make electrical contact with the wire. The electrode is moulded into a cavity that gives the electrode a convex surface projecting from the catheter.

Description

9 8~ ~

MEDICO-SURGICAL DEVICES

Background of the Invention This invention relates to medico-surgical devices.

The invention is more particularly concerned with medico-surgical catheters or probes having electrodes.

Conventionally, medico-surgical catheters provided with an electrode have a metal wire extending along the catheter which is insulated along its length such as by the material of the catheter along which it extends. The electrode may be formed by a separate metal member welded or so!dered to the wire and is located on the surface ofthe catheter where it is exposed for contact with adjacent tissue. Examples of such devices are described in EP 0366127, US
3,951,136, EP 0334086 and WO 92/17150.

There are several problems with using metal electrodes. Many metals suitable for use as electrodes are not very biocompatible. Although in some circumstances they can be used satisfactorily, where the electrode has to have a large surface area or is inserted in the body for prolonged periods, it can lead to adverse reactions. Inert metals which are biocompatible, such as go1d or platinum are expensive and, therefore, only suitable for use on reusable catheters.
Because of the risk of cross infection, it is preferable in most circumstances to use disposable, single-use catheters which must be of low cost. Also, it is often desired for the main body of the catheter to be of a plastics material because of its flexibility and so~ness but these plastics materials are often unsuitable for the repeated sterilization required in reusable catheters.

Another problem with using metal electrodes on a plastic catheter, probe or similar body is the difficulty of providing a secure mount. The difference between the physical properties of metal and plastics increases the risk that the electrode will separate from the body . .
: .,, ": :
,.. -. - ~.,. . ,,-.,. : . , ., ~

~ , : . : ..
. .

2a9~70~
on flexing or other deformation. In medical applications, it is clearly very important that there is no risk of the electrode coming away from the catheter or of damaging the catheter itself in such a way that a part of the catheter becomes detached. Furthermore, it can be difficult to assembly a metal electrode into a plastics body without damaging the plastics body. Where it is desired to produce a flexible catheter or probe with an electrode, the hard, rigid nature of metal materials can compromise the overall flexibility of the catheter.

Brief Summarv of the Invention It is an object of the present invention to provide a medico-surgical device including an electrode and a method of making a device thàt can be used to alleviate these problems.

According to one aspect of the present invention there is provided a medico-surgical device including an elongate plastics body, an electrically-conductive member extending along the body and insulated along a major part of its length from the exterior of the body, and an electrode member exposed to the exterior of the body so as to make contact with patient tissue, the electrode member being formed of an electrically-conductive plastics material moulded onto the body making electrical contact with the conductive member.

The electrode member is preferably injection moulded onto the body. The electrode member preferably projects above the surface of the body and may have a convex surface. The electrically-conductive member may be a metal wire such as an insulated wire. The plastics body may be a catheter with a bore extending along its length, the electrically-conductive member extending along the bore. The electrically-conductive plastics material may be a plastics material loaded with carbon.

According to another aspect of the present invention there is provided a method of making a medico-surgical device comprising the steps of providing an elongate plastics body having an electrically-conductive member extending along its length, the member being insulated from the exterior of the body along a major part of its length and exposed at its , . ., ~ ;:, ' ~ '. . :

- ~. . . ........... , .. ~ . ~. . . .
.. ~ ,-, , :

~98~0~
patient end, and moulding onto the body over the exposed end of the electrically-conductive member an electrode of an electrically-conductive plastics material so that the electrode bonds securely with the body and is electrically connected with the electrically-conductive member.

A monitoring catheter and its method of manufacture, in accordance with the present invention, will now be described, by way of example, with reference to the accompanying drawings.
t Brief Description of the Drawin~s Figure 1 is a side elevation view of the catheter;
~' Figure 2 is a sectional side elevation view of the patient end of the catheter to an enlarged scale; and ; Figure 3 is a sectional side elevation of the catheter during manufacture.

, . : ; , " "; , , . !

' ' ~ . , :
4 ~8~
Detailed Description of the Preferred Embodiment With reference first to Figures I and 2, the catheter I has a tubular body 2 of a flexible, electrically-insulating plastics material such as PVC which has an internal diameter of 2.4mm, an external diameter of 3.2mm and is 75mrn long. A single bore 3 extends along the entire length of the body 2, opening at the patient end and at the machine end of the catheter via a coupling 4.

The catheter 1 also includes an electrically-conductive wire or other elongate element 10 which extends from the machine end coupling 4 to an electrode 11 formed 10mm from the patient end ofthe catheter. The wire 10 may extend along the bore 3 ofthe catheter, as shown, or through a separate lumen formed in the wall of the tubular body 2. In the arrangement illustrated, the machine end ofthe wire 10 is terminated by an electrica1 coupling 12 and its other end extends through an aperture 13 in the wall ofthe tubular body 2 underlying the electrode 11. The wire 10 preferably has a metal core 14 of copper and an insulating plastics sleeve 15 a short length of which is removed from the wire at its patient end. This uninsulated end ofthe wire 10 projects externally of the aperture 13 and is wrapped close around the outside of the body 2.

The electrode 11 is provided by a conductive p1astics material which is moulded into a ring about the circumference of the body 2 about lOmm from its patient end. The electrode 11 is about lOmm long and projects above the surface ofthe body 2 by 2mm midway along its length. The ends of the electrode 11 are rounded so that it presents a convex surface externally and forms a relatively smooth transition with the body 2. The conductive plastics material from which the electrode 11 is formed comprises PVC or polyurethane loaded with about 30% by weight of carbon. The conductive plastics material is injection moulded around the body 2 in contact with the exposed core 14 of the wire 10 so that the wire is electrically connected to the electrode 11.

- . . , -s- ~9~ ~

In use, the catheter I is inserted into a body cavity such as the oesophagus or a blood vessel so that the electrode 11 contacts tissue lining the wall of the cavity. This enables monitoring of electrical activity within that region of the body, for example, ECG monitoring.
- Alternatively, the catheter can be used to provide electrical stimulation by supplying an electrical signal to the electrode such as, for example, for cardiac pacemaking, electroanalgesia, muscle control and the like.
~, The catheter I is manufactured in the manner shown in Figure 3. The wire 10 is pushed through the aperture 13 and threaded along the bore 3 until it emerges from the machine end of the body 2, with a short length of uninsulated wire projecting from the aperture. The core 14 of the wire is wrapped around the body 2 and may be held in place by a thin layer of conductive adhesive. As shown in Figure 3, the body 2 with the wire 10 in place is inserted into a two-part injection moulding cavity 20. Prior to insertion, a metal supporting plug 21 is pushed into the patient end ofthe body 2. The plug 21 is a close sliding fit within the bore 3 and extends a short distance proximally of the region in which the electrode will be formed. The two parts 22 and 23 of the cavity 20 form together a tubular cavity, for reception of the body 2, and an annu1ar recess 24 which defines the shape of the electrode 11. The recess 24 communicates via a sprue 23 with an injector 26 of molten conductive plastics material.

The temperature of the molten injectate is slightly higher than the melting point of the material of the body 2 so that, as it contacts the surface of the body, it causes some flow of the body material in the immediate vicinity. This causes the two plastics to mix together at the surface of the body 2 and produces a high strength bond between the electrode 11 and the body 2. A part ofthe injectate also flows into the aperture 13 so as to seal it and further help in anchoring the wire 10 in position. The plug 21 serves the purposes of preventing the body 2 collapsing as a result of the injection pressure, of preventing flow of injectate out of the -6- 2~$ ~

aperture 13 and of holding the wire 10 in position during moulding. When the recess 24 in the mould cavity 20 has been filled, the two parts 22 and 23 of the cavity are separated and the body, with its electrode moulded in place, is removed.

The completed catheter I can be made at low cost because it does not include an expensive metal electrode. Because the material of the electrode is sirnilar to that of the body itself, both materials have similar flexibility, thereby reducing the risk of separation between the electrode and the body. The join between the electrode and the body is of high strength because the two materials bond together. The deformable nature of the electrode reduces the risk of it causing trauma to the patient on insertion. Because the electrode material is biocompatible, the risk of adverse reaction is reduced. The electrode can be shaped as desired by the shape of the mould cavity so that it protrudes above the surface of the probe and improves contact of the electrode with the adjacent tissue.

Instead of a wire, some other electrically-conductive member could be used to make COMeCtiOn with the electrode. This could take the form of a strip of conductive plastics extruded or painted along the catheter. Alternatively, a lumen extending within the wall of the tube could be filled with a conductive material.

The invention can also be used with other devices such as probes and can be used to provide any number of electrodes. A shallow recess could be forrned around the body into which the electrode is moulded. The catheter could be provided with an inflatable cuff.

'.

'',. .

Claims (13)

1. A medico-surgical device comprising: an elongate plastics body; an electrically-conductive member, the electrically-conductive member extending along the body so that it is insulated along a major part of its length from the exterior of the body; and an electrode, the electrode being exposed to the exterior of the body so as to make contact with patient tissue, and wherein the electrode is formed of an electrically-conductive plastics material moulded onto the body making electrical contact with the conductive member.
2. A medico-surgical device according to Claim 1, wherein the electrode is an injection moulding on the body.
3. A medico-surgical device according to Claim 1, wherein the electrode projects above an exterior surface of the body.
4. A medico-surgical device according to Claim 3, wherein the electrode has a convex surface.
5. A medico-surgical device according to Claim 1, wherein the electrically-conductive member is a metal wire.
6. A medico-surgical device according to Claim 5, wherein the wire is an insulated wire.
7. A medico-surgical device according to Claim 1, wherein the plastics body is a catheter, the catheter having a bore extending along its length, and wherein theelectrically-conductive member extends along the bore.
8. A medico-surgical device according to Claim 1, wherein the electrically-conductive plastics material is a plastics material loaded with carbon.
9. A medico-surgical device comprising: a plastics catheter, the catheter having a bore extending along its length and an aperture in a wall towards one end; an electrically-conductive wire, the wire extending along the bore and projecting through the aperture; and an electrode joined with an exterior surface of the catheter, the electrode being of an electrically-conductive plastics material injection moulded over said aperture in electrical contact with the wire and theelectrode having a convex surface that projects from the catheter.
10. A method of making a medico-surgical device comprising the steps of: providing an elongate plastics body having an electrically-conductive member extending along its length, the member being insulated from the exterior of the body along a major part of its length and exposed at its patient end; and moulding onto the body over the exposed end of the electrically-conductive member an electrode of an electrically-conductive plastics material so that the electrode bonds securely with the body and is electrically connected with the electrically-conductive member.
11. A method according to Claim 10, wherein the electrode is injection moulded onto the body.
12. A method according to Claim 10, wherein the electrode is moulded into a cavity of a mould surrounding the body such as to produce an electrode with a convex surface that projects above the surface of the body.
13. A method according to Claim 10, in which the plastics body is a catheter with a bore extending along its length, and wherein the method includes the steps of inserting a removable plug in the bore to extend along the region of the body onwhich the electrode is moulded and subsequently removing the plug after the moulding step.
CA002098700A 1992-06-24 1993-06-17 Medico-surgical devices Abandoned CA2098700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB929213379A GB9213379D0 (en) 1992-06-24 1992-06-24 Medico-surgical devices
GB9213379 1992-06-24

Publications (1)

Publication Number Publication Date
CA2098700A1 true CA2098700A1 (en) 1993-12-25

Family

ID=10717639

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002098700A Abandoned CA2098700A1 (en) 1992-06-24 1993-06-17 Medico-surgical devices

Country Status (8)

Country Link
US (1) US5409652A (en)
JP (1) JPH0647089A (en)
AU (1) AU659741B2 (en)
CA (1) CA2098700A1 (en)
DE (1) DE4320702A1 (en)
FR (1) FR2692792B1 (en)
GB (2) GB9213379D0 (en)
IT (1) IT1268413B1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380276A (en) * 1994-02-28 1995-01-10 The Kendall Company Dual lumen catheter and method of use
US5524757A (en) * 1994-03-18 1996-06-11 St. Jude Medical, Inc. Packaging sheaths for intra-aortic balloon catheters
US6181971B1 (en) 1998-12-09 2001-01-30 Pacesetter, Inc. Joining conductor cables and electrodes on a multi-lumen lead body
FI19992463A (en) * 1999-11-17 2001-05-18 Mega Elektroniikka Oy Giver
AUPR090300A0 (en) 2000-10-20 2000-11-16 AMC Technologies Pty Limited An electrical lead
AUPS226402A0 (en) * 2002-05-13 2002-06-13 Advanced Metal Coatings Pty Limited An ablation catheter
EP1594401B1 (en) * 2003-01-15 2018-08-22 NuVasive, Inc. Systems for determining direction to a nerve
CA2575889A1 (en) 2004-08-05 2006-02-09 Cathrx Ltd A process of manufacturing an electrical lead
DE102006032583A1 (en) 2006-07-13 2008-01-17 Biotronik Crm Patent Ag introducer
ATE516004T1 (en) * 2006-12-13 2011-07-15 Koninkl Philips Electronics Nv FEEDING TUBE
HUE063909T2 (en) 2014-04-16 2024-02-28 Hollister Inc Molded catheter tip

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951136A (en) * 1973-10-10 1976-04-20 Vital Signs, Inc. Multiple purpose esophageal probe
US3959429A (en) * 1975-02-03 1976-05-25 International Paper Company Method of making a retention catheter and molding a tip thereon
US4073287A (en) * 1976-04-05 1978-02-14 American Medical Systems, Inc. Urethral profilometry catheter
SU978826A1 (en) * 1980-07-30 1982-12-07 Рижский Медицинский Институт Probe for investigating gastroenteric tract
CA1224850A (en) * 1982-08-09 1987-07-28 Gerald E. Mcginnis Biological probes and methods of making same
GB2135196B (en) * 1983-02-04 1986-04-30 Oxagon Medical Developments Li A probe, particularly a clinical probe for intracorporeal use
DE3836349A1 (en) * 1988-10-25 1990-05-03 Forschungsgesellschaft Fuer Bi CATHETER FOR MEASURING MOTILITY AND PERISTALTICS IN HOSE-SHAPED ORGANS WHICH CONTAIN THEIR CONTENT BY SIMULTANEOUS MULTIPLE IMPEDANCE MEASUREMENT
US5029585A (en) * 1989-07-14 1991-07-09 Baxter International Inc. Comformable intralumen electrodes

Also Published As

Publication number Publication date
ITMI931284A0 (en) 1993-06-16
DE4320702A1 (en) 1994-01-05
IT1268413B1 (en) 1997-02-27
US5409652A (en) 1995-04-25
JPH0647089A (en) 1994-02-22
FR2692792A1 (en) 1993-12-31
GB9312292D0 (en) 1993-07-28
ITMI931284A1 (en) 1994-12-16
AU4125793A (en) 1994-01-06
GB2268071B (en) 1996-07-31
FR2692792B1 (en) 1996-06-14
GB2268071A (en) 1994-01-05
AU659741B2 (en) 1995-05-25
GB9213379D0 (en) 1992-08-05

Similar Documents

Publication Publication Date Title
US5029585A (en) Comformable intralumen electrodes
US5433742A (en) Conductive adhesive band for cathether electrode
US6196980B1 (en) Male connector with a continuous surface for a guide wire, and method therefor
US4699157A (en) Pacing catheter and method of making same
US5473812A (en) Method of manufacturing medical electrical lead having a torque indicator
EP0037223B1 (en) A body implantable lead having a ring electrode, and a process for making same
US8147486B2 (en) Medical device with flexible printed circuit
JP2880070B2 (en) Medical wire having an indwelling member
US6728579B1 (en) “Medical electrode lead”
US4817611A (en) Esophageal electrocardiography electrode
US5409652A (en) Method of making medico-surgical devices
EP2476453A1 (en) A catheter and a method for producing a catheter
GB1424262A (en) Disposable central venous catheter
AU697100B2 (en) Delivery catheter for electrolytically detachable implant
JPH11253453A (en) Catheter
EP1462142B1 (en) Catheter with puncture sensor
CN107773235B (en) Catheter with split electrode sleeve and related methods
EP0101595B1 (en) Biological probes and methods of making same
US8437864B2 (en) Medical electrical lead with embedded electrode sub-assembly
US3999284A (en) Method for making a polarographic sensing means
US20020103426A1 (en) Electrophysiology catheter
JP7368599B2 (en) Chemical injection needles and chemical injection needle systems
US20230210580A1 (en) Coated Microelectrodes
JPH0328934B2 (en)
EP0582400A1 (en) Medico-surgical assemblies

Legal Events

Date Code Title Description
FZDE Discontinued