CA2096177C - Broadband antennas - Google Patents

Broadband antennas Download PDF

Info

Publication number
CA2096177C
CA2096177C CA 2096177 CA2096177A CA2096177C CA 2096177 C CA2096177 C CA 2096177C CA 2096177 CA2096177 CA 2096177 CA 2096177 A CA2096177 A CA 2096177A CA 2096177 C CA2096177 C CA 2096177C
Authority
CA
Canada
Prior art keywords
septum
horn
ground plane
conducting section
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 2096177
Other languages
French (fr)
Other versions
CA2096177A1 (en
Inventor
Andrew S. Podgorski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9210563A external-priority patent/GB9210563D0/en
Priority claimed from GB9210558A external-priority patent/GB9210558D0/en
Application filed by Individual filed Critical Individual
Publication of CA2096177A1 publication Critical patent/CA2096177A1/en
Application granted granted Critical
Publication of CA2096177C publication Critical patent/CA2096177C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

A structure for use in an antenna or as a broadband electromagnetic field simulator having an open horn TEM waveguide coupled to launch energy in a strip line formed between a forwardly extending plate section and a ground plane. When used as a simulator the test volume is located outside the horn between the forwardly extending plate section and the ground plane. The plate section which functions gas a radiating element initially extends parallel to the ground plane and then curves downwardly to terminate adjacent it. In alternative embodiments the plate section extends upwardly, initially with an exponential configuration. In a simulator embodiment it may then terminate at a vertical, grounded wall faced with anechoic material. The horn contains a flat conductor plate positioned parallel to and spaced from the top edge defining an asymmetrical transmission line within the horn. This plate conductor can be coupled to the forwardly extending plate section directly, by means of an RLC coupling network or by means o~ an array of literally spaced conductors.

Description

r .. ~0?6?
z _..._ .
This appliGaCion relates to elactsroasgnatia radiatirig structures euitabie !or use as aptene3.a or as electromagnetic simulators. 14n elegy-.troaagnctfc s3aulatcr is a type of test equlpment used for c~eecxirg the behaviour of equipment in the presence of strong alactroaagnetic fields.
Continuous Wave (cv) seasnratnmt o! electromagnetic susceptibility and radiated interference can De carried out using multiple antennas xhose alectromaqr~etic properties must be veil known its the near field ar using Tt~i cells Mhos,: volume and/or tre~uancy Baits aaice them unsuitable for broadband testing at large (!ax mets~as in height) electrotfiC sub-syste~as.
Pulse measurements of alectroma~gnetic susceptibility are currently eondmcted using parallel line.simulators, G-TE~1 cells or distributed load conical simulators_ the parallel lilts simulators suffer from nigh frequency Zo limitations. The uss of G-TE~i calls limits the vohtme of the tested object and the conical sirmlator saffsss from freguet~cy limitations.
B.S. Patent Ho. 4,546,358 issued CCtober 8, 1SB5 t0 Ediin et al. discloses a test cell formed in the spa~-a betweels a parallel plate cottdurtvr and ground plane which together fore a transmission lips. The parallel plate conductor is fed by a tapored line 5actiori from a Coaxial feed, in Order to maintain a Cons':ant impedance, sad the parallel plate conductor terminates ire a llnted edge to avoid reflections.
Canadian Pat~:nt too. 1,273,060, issued August Zl, 1996 to 88c Brown, 8overi l company, LimtP~3, (v.5. Patent ha.
4,837,5811 discloses a~1 ~ testing device usitlg a xave guide of pyramidal shape but with added reatttrP.s. Tk~s . t,~t device disclosed in this patent has tat intermediate plate conductor suspended in the wave guide at a distance of about one quarter of the t" ~ n c,~ Q i _~ ~'3 ::~. ,l total height of the wave guide from the 'top surface.
This defines a test volume between the intermediate plate and the wave guide lower surface. Uniform field strength in the test volume is achieved by a complex termination arrangement consisting of a curved wall of high frequency energy absorbing material coupled to the intermediate plate by a number of terminal resistors. The impedance of the line formed by the a.mtermediate plate and the ground plane can be l0 slightly varied, if required for fine 'tuning, by altering the spacing of the intermediate plate from the upper surface of the wave guide.
such equipment is unsuitable fog' the testing of large pieces of electronic equipment. The apparatus described in the present application can be expanded to accommodate larger objects without degradation of the bandwidth.
Generally, the simulator oescrmea ~n ~aa~s application launches an electromagnetic wave from a z0 high frequency coaxial feed line into an expanding rectangular horn containing a plate conductor forming an asymmetrical parallel line within the horn. The parallel. line extends beyond the horn by means of a forwardly extending conducting plate section which functions as a radiating element and establishes a test volume in the space between itself and a ground plane extending forwardly from the lower surface of the horn. The forwardly extending plate section is connected to the parallel line either directly or through a network of parallel inductance and capacitance. Two modes of propagation occur in the horn giving a complete coverage of the relevant frequency spectrum.
Specifically, in one aspect the invention relates to a broadband electromagnetic field simulator comprising: an apen horn waveguide and a ground plane conductor formed as a forward extension of the lower r~ ~' L~ ~3 ~. ~~ 'l surface of the horn. A source of r.f. energy is coupled to the apex of the horn and a relatively narrow conducting plate positioned to form a septa between the upper and lower surfaces of the horn. A
plate section of similar configuration to the septum is coupled thereto and extends forwardly from the mouth of the horn. The plate section extends initially substantially parallel t~ the ground plane and then curves downwardly to terminate adjacent to it. The space between the forwardly e:rctending plate section and the ground plane defines the reguired test volume.
In an alternative embodiment the plate section extends upwardly, initially with an exponential configuration and then forwardly to terrtcinate at a vertical, grounded wall faced with anechoic material.
tahen used as an antenna, the structure provides an extremely wide band response due in part to greatly reduced internal reflections. 7Cn its antenna aspect, one form of the invention relates to an antenna comprising: an open horn waveguide with a ground plane conductor forming a forward extension of the lower surface of the horn; the apex of the horn being adapted to receive a detector or r.f. source; a relatively narrow conducting plate positioned to form a septum between the upper and lower surfaces of the horn; and a conducting plate section of similar configuration to the septum and coupled thereto and extending forwardly from the mouth of the horn, said plate section extending initially substantially parallel to the ground plane and then curving downwardly 'to terminate adjacent to it; whereby the forwardly extending plate section functions as a radiating element.
llnother form of antenna in accordance with the invention consists of an open horn waveguide with a ground plane conductor forming a forward extension of t a .~ ,S
e~ ..' >~ f1 ~' the lower surface of the horn; a pair of closely spaced conducting plates positioned to form an upper and lower septum, respectively, between the upper and lower surfaces of the horn; a forwardly extending conducting section spaced from and in front of the horn; and a plurality of laterally spaced conductors connecting the septums to the rear edge of the conducting section; whereby the conducting section functions as a radiating element. Probably the conductors extending between the front edge of the upper septum and the conducting section each contain a resistive termination. This structure can also function as an electromagnetic simulator.
BRIEF DESCRIPTION OF THE DRI~WINGS
Preferred embodiments will be described in conjunction with the accompanying drawings, in which:
Fic.~ure 1 is a schematic view of one embodiment of a simulator in accordance with the invention;
Figure 2 shows the coupling between the septum within the hare and the forwardly extending plate section;
Fagots 3 shows use of the simulator within an anechoic chamber;
Figure 4 shows use of the simulator in free space;
Figure 5 shows a further embodiment of a simulator in accordance with the invention.
Figures 6 to 9 are embodiments of antennas in accordance with the invention;
3p Figure 10 is a modification of the simulator shown in Figure 3; and Figure ~,1 is a further embodiment of a structure in accordance with the invention, which can be used as a simulator ar as an antenna.
DESCRTPTION OF PREFERRED EMBODINtENTS
Figure Z shows broadband electromagnetic field s~.mulator in accordance with this invention having an i ~, :~' n/ P) iJ ~ ~ I .d.
r.f. signal, either pulse or continuous wave, supplied from a generator 6 through a coaxial line 5 to a transition coupling 7 connected to the input of a TENT
line formed by horn 10. The aperture of horn 10 is .
5 open and a ground plane 3 extends forwardly to form the base of the test volume.
Within 'the horn a conducting plate or septum 9 is positioned spaced from the upper surface of the horn and with a high voltage dielectric lining 8 l0 therebetween. At the output of the horn a forwardly extending plate section 1 is provided to function as the radiating element in the test apparatus. This plate can be connected either directly to conducting plate 9 or by means of the coupling network shown in Figure 2. Plate 1 extends forwardly from the horn to a support structure 19 and then curves downwardly towards ground plane 3, being coupled to the ground pJ.ane through a terminating resistor 2. Apparatus to be tested, indicated schematically at 4, is located an the ground plane under the forwardly extending radiating element.
An alternative embodiment, shown in Figure 5 has plate 1 extending upwardly, initially at an exponential rate, towards a higher support structure 19" and then extending forwardly t~ terminate a~t a vertical ground plane 3' via ter~ninata.ng resistor~2.
The side of the vertical ground plane is covered with anechoic material. This peranits the testing of objects 4 ~f larger dimensions.
3~ A preferred manner of coupling the fvrwardly extending element to the septum in the horn is shown in Figure 2. The septum shown a~t 16 farms a capacitor with the radiating element 1 having a dielectric formed by strip 12. An inductance is provided by line 17 extending from the radiating element back to the conductive plate. The edges of the septum are connected to the side walls of the radiating horn n1 '~~~i_~.

through terminating inductances 15 and high voltage terminating resistors 1~.
The test apparatus can be used in an anechoic chamber 32 as shown in Figure 3 provided with absorbers 31 or in a shielded room having only side walls lined with anechoic material. Other reference numerals in Figure 3 correspond to 'those already shown in Figure 1. Alternatively, the test apparatus can be used in an unbounded electromagnetic f:Leld to configuration as shown in Figure 4. Again the same reference numerals are used in Figure :L.
A modification ~f the simulator uses two building, each of the type shown in Figure 4, facing one another with an open space between in which is ~.5 located the support 19. The terminating portion of the forwardly extending plate as well as the transmitting section are thus under cover. A further modification of the simulator shown in Figures 1 and 5 uses shielded side walls to reduce any electroanagne~tic 20 leakage tc~ acceptable levels.
As is known, due to reciprocity any radiating structure can also function as an antenna. The structure of Figure 1 can also act as a sensitive wide band antenna. Figure 6 is such a modification of the 25 simulator of Figure 5 adapted to function as an antenna. The vertical ground plane and anechoic material are removed for antenna operation and terminating resist~rs 33 are c~nnected from about the mid-line of plate 1 to the anetal upper edge of the 30 horn. The lt~wer surface of the horn is positioned on a ground plane 39. Nigh voltage insulation 3~
separates the septum and plate 1 from the horn itself.
The function of resistors 33 is to reduce unwanted reflections.
35 Figure 7 shows a similar, but more symmetrical arrangement, ozaitting the ground plane thus avoiding limiting the antenna to signals guided by ground. A

?
pair of forwardly extending plates 1 and 1' define a radiating arrangement with plate 1 connected in a similar fashion as shown in Figure 6 but plate 1' connected to the lower front edge of the horn. Figure 8 shows a similar but completely symmetrical arrangement in which a pair of structures of the type shown in Figure Z are provided with radiating horns connected along one edge and for.~~:rdly extending plates ~. and 1' are joined at their free ends by terminating resistors 34. the horns require separate feeds f and 6'. Figure 9 shows a still further modified antenna which uses a reflector 35 fed by a pair of symmetrically arranged horns having forwardly extending conductive plates 35 conforming in shape to the curvature of reflector 36 and connected to the reflector by terminating resistors 3?.
Such double horn antennas can also be used in a modification of the electromagnetic simulator of Figure 3, shawn in Figure 10. 'the simulator shown in Figure ZO has two plates or septums extending from the antennas into the anechoic chamber and terminating at the end of the side walls of the anechoic chambers.
The simulator projects into the anechoic chamber at an angle in respect to the ground. Such design is advantageous for an anechoic chamber with a ground plane, since it can simulate the effects of ground reflection. ~n the case of an anechoic chamber without ground fall six walls covered with absorbing material), or in the case of an open field simulator, the simulator of Figure 10 can be arranged parallel to the ground, simulating a perfectly horizontal polarization. 3'he use of such double-horn simulators permits the simulation of horizontal polarization, providing broadband simulation for both vertical and horizontal polarizations.
Figure 11 shows a further form of structure useful both as an antenna or a simulator employing similar concepts as in the previously discussed embodiments. A horn 40, located on a ground plate 48, is provided with a pair of septums 41 and 42 separated by an insulating member 43. As a result septums 41 and 42 are capacitively coupled. A forwardly located conductive plate with sections 44 and 45 is connected to the upper and lower septum edges by wires 47. The wires from the upper septum have resistors 46 along their length and the wires from the lower septum edge are continuous. Plate sections 44 and 45 may be formed from wire mesh and act as radiators when used as an antenna. Resistors 46 provide appropriate matching to avoid reflections. The antenna can be used with a reflector as discussed in relation to Figure 9.
then used as a simulator the area under the wires defines a test volume. xt is necessary to terminate the simulator with termination resistors and an absorbing wall as shown for the embodiment of Figure 5.
Thus, there has been disclosed broadband antennas and broadband gigahert~ field simulators capable of generating high power values of field distributed uniformly across a test volume. The simulator has the following advantages:
Reduced cost of testing by making possible susceptibility and emission testing in one simulator.
Provision of a wide~band simulator that can be used in both open field and shielded environments.
Provision for time (impulse), frequency (cw) and current injection testing with one simulator by suitably changing source 6.
Provision of both testing and calibration facilities in one simulator.

y~! rJ
w tJ r. v Provision of easily accessible large (mufti°metre height) testing volume.
Extension of the maximum frequency of operation into microwave (GFiz) frequencies for testing of large height (mufti°metre) objects.
.As a result, the low cost, extremely accurate, calibration simulator can be substituted for bulky ~'EM
cells presently used for calibration. The advantage of this simulator, over others presently in use, is o that it can be easily incorporated into existing shielded or anechoic enclosures thereby eliminating any environmental concerns by preventing the radiation of high electromagnetic fields into the environment.
'his is done without reduction of the bandwidth or 'the size of tested objects.
~'he structure has been shown to be useful as a broadband high power radiator and a broadband sensitive listening device f or electronic warfare applications.

Claims (8)

1. An antenna comprising:
an open horn waveguide with an upper and a lower surface, a mouth and a ground plane conductor forming a forward extension of the lower surface;
a thin conducting plate positioned to form a septum between the upper and lower surfaces of the horn waveguide, said conducting plate being insulated from said horn waveguide; and a conducting section of approximately the same width as the septum, coupled thereto and protecting from and beyond the mouth of the horn waveguide, said conducting section extending initially substantially parallel to the ground plane conductor and then curving downwardly to terminate adjacent to it;
whereby the protecting conducting section functions as a radiating element.
2. An antenna as set out in claim 1 wherein the coupling between the septum and the projecting conducting section consists of a distributed capacitor in parallel with a coupling inductance.
3. An antenna as set out in claim 2 wherein the coupling between the septum and the projecting conducting section further includes a plurality of terminating resistors between the septum and the horn waveguide.
4. An antenna as set out in claim 1 wherein the projecting conducting section is coupled to the ground plane conductor through a terminating resistor.
5. An antenna as set out in claim 1 further comprising a support for the projecting conducting section positioned at a forward edge of a space defining a test volume.
6. An antenna comprising:
an open horn waveguide with an upper and a lower surface, a mouth and a ground plane conductor forming a forward extension of the lower surface;
a thin conducting plate positioned to form a septum between the upper and lower surfaces of the horn waveguide;
a conducting section of approximately the same width as the septum, coupled thereto and projecting from and beyond the mouth of the horn waveguide, said conducting section extending upwardly away from the ground plane conductor; and resistive means connected between a mid-point of the conducting section and the horn waveguide;
whereby the projecting conducting section functions as a radiating element.
7. An antenna comprising:
an open horn waveguide with an upper and a lower surface, and a ground plane conductor forming a forward extension of the lower surface;
a pair of conducting plates positioned to form an upper and lower septum, respectively, between the upper and lower surfaces of the horn waveguide;
a conducting section spaced forwardly of the horn waveguide; and a plurality of laterally spaced conductors connecting a front edge of each septum to a rear edge of the conducting section;

whereby the conducting section functions as a radiating element.
8. An antenna as set out in claim 7 wherein the conductors extending between the front edge of the upper septum and the conducting section each contain a resistive section.
CA 2096177 1992-05-18 1993-05-13 Broadband antennas Expired - Fee Related CA2096177C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9210563.4 1992-05-18
GB9210563A GB9210563D0 (en) 1992-05-18 1992-05-18
GB9210558A GB9210558D0 (en) 1992-05-18 1992-05-18
GB9210558.4 1992-05-18

Publications (2)

Publication Number Publication Date
CA2096177A1 CA2096177A1 (en) 1993-11-19
CA2096177C true CA2096177C (en) 2002-07-30

Family

ID=26300894

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2096177 Expired - Fee Related CA2096177C (en) 1992-05-18 1993-05-13 Broadband antennas

Country Status (1)

Country Link
CA (1) CA2096177C (en)

Also Published As

Publication number Publication date
CA2096177A1 (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US5440316A (en) Broadband antennas and electromagnetic field simulators
US5053786A (en) Broadband directional antenna
US6295032B1 (en) Broadband horn antennas and electromagnetic field test facility
Kiang Analysis of linear coaxial antennas
US4546358A (en) Large broadband free radiating electromagnetic test cell
US6127980A (en) Dual polarization electromagnetic field simulator
US5982331A (en) Dual polarization electromagnetic field simulator
RU128789U1 (en) LOGOPERIODIC ANTENNA
CA2096177C (en) Broadband antennas
CN114142217B (en) Compact high-power broadband waveguide slot array antenna
Byun et al. FDTD analysis of mutual coupling between microstrip patch antennas on curved surfaces
Kiang Radiation properties of circumferential slots on a coaxial cable
Excell et al. An independently fed log-periodic antenna for directed pulsed radiation
KR101001664B1 (en) Antenna capable of receiving and trransmitting vertical and horizontal polarization
EP0852727B1 (en) Dual polarization electromagnetic field simulator
Qiu et al. Design and simulation of ultra-wideband quad-ridged horn antenna
GB2315558A (en) An electromagnetic compatibility (EMC) test cell
Balzovsky et al. Dual-polarized antenna sub-array of 2× 2 elements for measurements of short electromagnetic pulses
CN219144502U (en) Reverberation room radio frequency test system composed of monopole array antennas
Licul Ultra-wideband antenna characterization and modeling
CN210167497U (en) Loading and unloading formula Vivaldi antenna
Lagerqvist Design and analysis of an electrically steerable microstrip antenna for ground to air use
WO2023078121A1 (en) Antenna and base station device
Midtbøen 3D Printed Horn Antenna for Ultra Wideband Applications
JP2001119192A (en) Radio wave anechoic box

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed