CA2069845A1 - Linear viscoelastic aqueous liquid automatic dishwasher detergent composition - Google Patents
Linear viscoelastic aqueous liquid automatic dishwasher detergent compositionInfo
- Publication number
- CA2069845A1 CA2069845A1 CA002069845A CA2069845A CA2069845A1 CA 2069845 A1 CA2069845 A1 CA 2069845A1 CA 002069845 A CA002069845 A CA 002069845A CA 2069845 A CA2069845 A CA 2069845A CA 2069845 A1 CA2069845 A1 CA 2069845A1
- Authority
- CA
- Canada
- Prior art keywords
- composition
- alkali metal
- dynes
- radians
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 164
- 239000003599 detergent Substances 0.000 title claims abstract description 45
- 239000007788 liquid Substances 0.000 title claims abstract description 21
- 229920002125 Sokalan® Polymers 0.000 claims abstract description 42
- 150000003839 salts Chemical class 0.000 claims abstract description 39
- 239000002245 particle Substances 0.000 claims abstract description 27
- 239000007787 solid Substances 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 52
- 229910001868 water Inorganic materials 0.000 claims description 49
- 229910052783 alkali metal Inorganic materials 0.000 claims description 41
- -1 metal oxide compound Chemical class 0.000 claims description 35
- 150000001340 alkali metals Chemical class 0.000 claims description 34
- 150000001875 compounds Chemical class 0.000 claims description 20
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 19
- 239000000460 chlorine Substances 0.000 claims description 19
- 229910052801 chlorine Inorganic materials 0.000 claims description 19
- 239000003795 chemical substances by application Substances 0.000 claims description 18
- 239000004094 surface-active agent Substances 0.000 claims description 17
- 229920006318 anionic polymer Polymers 0.000 claims description 14
- 239000006260 foam Substances 0.000 claims description 14
- 239000000725 suspension Substances 0.000 claims description 8
- 125000000129 anionic group Chemical group 0.000 claims description 7
- 229910052910 alkali metal silicate Inorganic materials 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical group O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 5
- 230000000994 depressogenic effect Effects 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims 2
- 230000002272 anti-calculus Effects 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 claims 1
- 239000000796 flavoring agent Substances 0.000 claims 1
- 235000013355 food flavoring agent Nutrition 0.000 claims 1
- 239000003349 gelling agent Substances 0.000 claims 1
- 239000003906 humectant Substances 0.000 claims 1
- 150000002736 metal compounds Chemical class 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- 235000014113 dietary fatty acids Nutrition 0.000 abstract description 41
- 239000000194 fatty acid Substances 0.000 abstract description 41
- 229930195729 fatty acid Natural products 0.000 abstract description 41
- 150000004665 fatty acids Chemical class 0.000 abstract description 29
- 239000011734 sodium Substances 0.000 abstract description 29
- 239000002562 thickening agent Substances 0.000 abstract description 23
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 18
- 229910052708 sodium Inorganic materials 0.000 abstract description 16
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 abstract description 14
- 235000021355 Stearic acid Nutrition 0.000 abstract description 13
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 abstract description 13
- 239000008117 stearic acid Substances 0.000 abstract description 13
- 239000004584 polyacrylic acid Substances 0.000 abstract description 12
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 abstract description 11
- 239000011591 potassium Substances 0.000 abstract description 10
- 229910052700 potassium Inorganic materials 0.000 abstract description 10
- 239000007791 liquid phase Substances 0.000 abstract description 8
- 238000010348 incorporation Methods 0.000 abstract description 7
- 238000004140 cleaning Methods 0.000 abstract description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 39
- 238000009472 formulation Methods 0.000 description 30
- 229920000642 polymer Polymers 0.000 description 29
- 239000000047 product Substances 0.000 description 27
- 239000000243 solution Substances 0.000 description 25
- 239000007844 bleaching agent Substances 0.000 description 24
- 238000002156 mixing Methods 0.000 description 22
- 239000004615 ingredient Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 239000006185 dispersion Substances 0.000 description 14
- 239000004480 active ingredient Substances 0.000 description 13
- 235000011121 sodium hydroxide Nutrition 0.000 description 13
- JVTIXNMXDLQEJE-UHFFFAOYSA-N 2-decanoyloxypropyl decanoate 2-octanoyloxypropyl octanoate Chemical compound C(CCCCCCC)(=O)OCC(C)OC(CCCCCCC)=O.C(=O)(CCCCCCCCC)OCC(C)OC(=O)CCCCCCCCC JVTIXNMXDLQEJE-UHFFFAOYSA-N 0.000 description 12
- 239000000839 emulsion Substances 0.000 description 12
- 239000000499 gel Substances 0.000 description 12
- 238000005191 phase separation Methods 0.000 description 11
- 239000002609 medium Substances 0.000 description 10
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 10
- 239000002253 acid Substances 0.000 description 9
- 239000012071 phase Substances 0.000 description 9
- 229960003975 potassium Drugs 0.000 description 9
- 238000004851 dishwashing Methods 0.000 description 8
- 239000003381 stabilizer Substances 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 229910001415 sodium ion Inorganic materials 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 6
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 235000019832 sodium triphosphate Nutrition 0.000 description 6
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 150000004668 long chain fatty acids Chemical class 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910001414 potassium ion Inorganic materials 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 230000000087 stabilizing effect Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 239000002518 antifoaming agent Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 4
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 230000008719 thickening Effects 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 235000021314 Palmitic acid Nutrition 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229920000388 Polyphosphate Polymers 0.000 description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 238000010936 aqueous wash Methods 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000001205 polyphosphate Substances 0.000 description 3
- 235000011176 polyphosphates Nutrition 0.000 description 3
- 238000000518 rheometry Methods 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- WLAMNBDJUVNPJU-UHFFFAOYSA-N 2-methylbutyric acid Chemical compound CCC(C)C(O)=O WLAMNBDJUVNPJU-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ATTZFSUZZUNHBP-UHFFFAOYSA-N Piperonyl sulfoxide Chemical compound CCCCCCCCS(=O)C(C)CC1=CC=C2OCOC2=C1 ATTZFSUZZUNHBP-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 2
- 229940063655 aluminum stearate Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical group O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- ONHFWHCMZAJCFB-UHFFFAOYSA-N myristamine oxide Chemical compound CCCCCCCCCCCCCC[N+](C)(C)[O-] ONHFWHCMZAJCFB-UHFFFAOYSA-N 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 239000000606 toothpaste Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 229940095095 2-hydroxyethyl acrylate Drugs 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- JBVOQKNLGSOPNZ-UHFFFAOYSA-N 2-propan-2-ylbenzenesulfonic acid Chemical class CC(C)C1=CC=CC=C1S(O)(=O)=O JBVOQKNLGSOPNZ-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- MWOBKFYERIDQSZ-UHFFFAOYSA-N benzene;sodium Chemical compound [Na].C1=CC=CC=C1 MWOBKFYERIDQSZ-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000003250 coal slurry Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- CEJLBZWIKQJOAT-UHFFFAOYSA-N dichloroisocyanuric acid Chemical compound ClN1C(=O)NC(=O)N(Cl)C1=O CEJLBZWIKQJOAT-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- DWVAEDTZGRQKKP-UHFFFAOYSA-N diethyl(tetradecyl)azanium;pentanoate Chemical compound CCCCC([O-])=O.CCCCCCCCCCCCCC[NH+](CC)CC DWVAEDTZGRQKKP-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- UPBDXRPQPOWRKR-UHFFFAOYSA-N furan-2,5-dione;methoxyethene Chemical compound COC=C.O=C1OC(=O)C=C1 UPBDXRPQPOWRKR-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- BXFPJFWOBWLKSR-UHFFFAOYSA-N hexadecyl(dimethyl)azanium;hexanoate Chemical compound CCCCCC([O-])=O.CCCCCCCCCCCCCCCC[NH+](C)C BXFPJFWOBWLKSR-UHFFFAOYSA-N 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 229940005740 hexametaphosphate Drugs 0.000 description 1
- 238000011086 high cleaning Methods 0.000 description 1
- 230000003165 hydrotropic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940094522 laponite Drugs 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229940098695 palmitic acid Drugs 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000007971 pharmaceutical suspension Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229940080350 sodium stearate Drugs 0.000 description 1
- 239000013042 solid detergent Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229960004274 stearic acid Drugs 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000005472 straight-chain saturated fatty acid group Chemical group 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229940034610 toothpaste Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- JEVFKQIDHQGBFB-UHFFFAOYSA-K tripotassium;2-[bis(carboxylatomethyl)amino]acetate Chemical compound [K+].[K+].[K+].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O JEVFKQIDHQGBFB-UHFFFAOYSA-K 0.000 description 1
- SOBHUZYZLFQYFK-UHFFFAOYSA-K trisodium;hydroxy-[[phosphonatomethyl(phosphonomethyl)amino]methyl]phosphinate Chemical compound [Na+].[Na+].[Na+].OP(O)(=O)CN(CP(O)([O-])=O)CP([O-])([O-])=O SOBHUZYZLFQYFK-UHFFFAOYSA-K 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
- 239000003190 viscoelastic substance Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/1213—Oxides or hydroxides, e.g. Al2O3, TiO2, CaO or Ca(OH)2
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/003—Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
- C11D3/3765—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
LINEAR VISCOELASTIC AQUEOUS LIQUID
AUTOMATIC DISHWASHER DETERGENT COMPOSITION
ABSTRACT OF THE DISCLOSURE
Automatic dishwasher detergent composition is formulated as a linear viscoelastic, pseudoplastic, gel-like aqueous product of exceptionally good physical stability, low bottle residue, low cup leakage, and improved cleaning performance, Linear viscoelasticity and pseudoplastic behavior is attributed by incorporation of cross-linked high molecular weight polyacrylic acid type thickener. Potassium to sodium weight ratios of at least 1/1 minimize amount of undissolved solid particles to further contribute to stability and pourability. Control of incorporated air bubbles functions to provide the product with a bulk density of 1.28 to 1.40 g/cc which roughly corresponds to the density of the liquid phase.
Stearic acid or other fatty acid or salt further improve physical stability.
AUTOMATIC DISHWASHER DETERGENT COMPOSITION
ABSTRACT OF THE DISCLOSURE
Automatic dishwasher detergent composition is formulated as a linear viscoelastic, pseudoplastic, gel-like aqueous product of exceptionally good physical stability, low bottle residue, low cup leakage, and improved cleaning performance, Linear viscoelasticity and pseudoplastic behavior is attributed by incorporation of cross-linked high molecular weight polyacrylic acid type thickener. Potassium to sodium weight ratios of at least 1/1 minimize amount of undissolved solid particles to further contribute to stability and pourability. Control of incorporated air bubbles functions to provide the product with a bulk density of 1.28 to 1.40 g/cc which roughly corresponds to the density of the liquid phase.
Stearic acid or other fatty acid or salt further improve physical stability.
Description
~69845 ~P- IR- 4681X
BINEAR ~ISCOELASTIC AQUEOUS
LIQUID AUTOMATIC DISHWASHER
DETERGENT COMPOSITION
Background of the Invention ' ~iquid automatic dishwasher detergent compositions, both aqueous and nonaqueous, have recently received much attention, and the aqueous products have achieved commercial popularity.
The acceptance and popularity of the liquid formulations as compared to the more con~entional powder products stems from the convenience and performance of the liquid products.
However, even the best of the currently available liquid formulations still suffer from two major problems, product phase instability and bottle residue, and to some extent cup leakage from the dispenser cup of the automatic dishwashing machine.
Representative of the relevant patent art in this area, mention is made of Rek, U.S. Patent 4,556,504; Bush, et al., U.S. Patent 4,226,736; Ulrich, U.S. Patent 4,431,559;
Sabatelli, U.S. Patent 4,147,650; Paucot, U.S. Patent 4,079,015; Leikhem, U.S. Patent 4,116,849; Milora, U.S. Patent 4,521,332; Jone~, U.S. Patent 4,597,889; Heile, U.S. Patent 4,512,908; Laitem, U.S. Patent 4,753,748; Sabatelli, U.S.
Patent 3,579,455; Hynam, U.S. Patent 3,684,722: other patents relatin~ to thickened detergent compositions include U.S.
Patent 3,985,668; U.K. Patent Applications GB 2,116,199A and GB 240,450A; U.S. Patent 4,511,487; U.S. Patent 4,752,409 (Drapier, et al.); U.S. Patent 4,801,395 (Drapier, et al.);
U.S. Patent 4,801,395 (Drapier, et al.).
~' , ~rief Descrip~ion of the Drawings Figures 1-13 are rheograms, plotting elastic modules G' and viscous modulus G~ as a function of applied strain, for the compositions of Example 1, Formulations A, C, D, G, J, H, I and K, Example 2, A and B, Example 3, L and M and Comparative Example 1, respectively and Figures 14-30 are rheograms as functions of frequency and applied strain for the compositions of Example v.
Summary of the Invention According to the present invention there is provided a novel aqueous liquid automatic dishwasher detergent composition. The composition is characterized by its linear viscoelastic behavior, substantially indefinite stability again~t phase separation or settling of dissolved or suspended particles, low levels of bottle residue, relatively high bulk density, and substantial absence of unbound or free water.
This unique combination of properties i9 achieved by virtue of the incorporation into the aqueous mixture of dishwashing detergent surfactant, alkali metal detergent builder salt(s) and chlorine bleach compound, a small but effective amount of high molecular weight cross-linked polyacrylic acid type thickening agent, a physical stabilizing amount of a long ~: : chain fatty acid or salt thereof, and a source of potassium ; ions to provide a potassium/sodium weight ratio in the range ~ 25 of from 1:1 to 45:1, such that substantially all of the : detergent builder salts and other normally solid detergent additives present in the composition are present dissolved in :~ the aqueous phase. The compositions are further characterized 20~4~
by a bulk density of at least 1.32 g/cc, such that the density of the polymeric phase and the density of the aqueous (continuous) phase are approximately the same.
~etaiLed Description of the Preferred Embodiments The compositions of this invention are aqueous liquids containing various cleansing active ingredients, detergent adjuvants, structuring and thickening agents and stabilizing components, although some ingredients may serve more than one of these functions.
The advantageous characteristics of the compositions of this invention, including physical stability, low bottle residue, high cleaning performance, e.g. low spotting and filming, dirt residue removal, and 90 on, and superior aesthetics, are believed to be attributed to several interrelated factors such as low solids, i.e. undissolved particulate content, product density and linear viscoelastic rheology. These factors are, in turn, dependent on several critical compositional components of the formulations, namely, (1) the inclusion of a thickening effective amount of polymeric thickening agent having high water absorption capacity, exemplified by high molecular weight cross-linked polyacrylic acid, (2) inclusion of a physical stabilizing amount of a long chain fatty acid or salt thereof, (3) potassium ion to sodium ion weight ratio K/Na in the range of from 1:1 to 45:1, especially from 1:1 to 3.1, and (4) a product bulk density of at least 1.32 g/cc, such that the bulk density and liquid phase density are the same.
206984~
The polymeric thickening agents contribute to the linear viscoelastic rheology of the invention composition~. A9 used herein, ~linear viscoelastic ~or~ linear viscoelasticity~
means that the elastic (storage) moduli (G') and the viscous i(loss) moduli (G~) are both substantially independent of strain, at lea~t in an applied strain range of from 0-50%, and preferably over an applied strain range of from 0-80~. More specifically, a composition i9 considered to be linear viscoelastic for purposes of this invention, if over the strain range of 0-50~ the elastic moduli G~ has a minimum value of lO0 dynes/sq.cm., preferably at least 250 dynes/sq.cm., and varies less than 500 dynes/sq.cm, preferably less than 300 dynes/sq.cm., especially preferably less than 100 dynes/sq.cm. Preferably, the minimum value of G' and maximum variation of G~ applies over the strain range of 0 to 80~. Typically, the variation in 1098 moduli G~ will be less than that of G'. As a further characteristic of the preferred linear viscoelastic compositions the ratio of G"/G
(tan~ i9 less than 1, preferably less than 0.8, but more than 0.05, preferably more than 0.2, at least over the strain range of 0 to 50~, and preferably over the strain range of 0 to 80~.
It should be noted in this regard that ~ strain is ~hear strain xlO0.
3y way of further explanation, the elastic (storage~
modulus G' is a measure of the energy stored and retrieved when a strain is applied to the composition while viscous (1099) modulus G~ is a measure to the amount of energy 20698~
dissipated as heat when strain is applied. Therefore, a value of tand, 0.05~ tan ~ cl, preferably ' 0.2 c tan Sc 0.8 means that the compositions will retain sufficient energy when a stress or strain i9 applied, at least over the extent expected to be encountered for products of this type, for example, when poured from or shaken in the bottle, or stored in the dishwasher detergent dispenser cup of an automatic dishwashing machine, to return to its previous condition when the stress or strain is removed. The compositions with tan values in these ranges, therefore, will also have a high cohesive property, namely, when a shear or strain is applied to a portion of the composition to cause it to flow, the surrounding portions will follow. As a result of this cohesiveness of the subject linear viscoelastic compositions, the compositions will readily flow uniformly and homogeneously from a bottle when the bottle i9 tilted, thereby contributing to the physical (phase) stability of the formulation and the low bottle residue (low product 109g in the bottle) which characterizes the invention compositions. The linear viscoelastic property also contributes to improved physical stability against phase separation of any undissolved suspended particles by providing a resistance to movement of the particles due to the strain exerted by a particle on the surrounding fluid medium.
BINEAR ~ISCOELASTIC AQUEOUS
LIQUID AUTOMATIC DISHWASHER
DETERGENT COMPOSITION
Background of the Invention ' ~iquid automatic dishwasher detergent compositions, both aqueous and nonaqueous, have recently received much attention, and the aqueous products have achieved commercial popularity.
The acceptance and popularity of the liquid formulations as compared to the more con~entional powder products stems from the convenience and performance of the liquid products.
However, even the best of the currently available liquid formulations still suffer from two major problems, product phase instability and bottle residue, and to some extent cup leakage from the dispenser cup of the automatic dishwashing machine.
Representative of the relevant patent art in this area, mention is made of Rek, U.S. Patent 4,556,504; Bush, et al., U.S. Patent 4,226,736; Ulrich, U.S. Patent 4,431,559;
Sabatelli, U.S. Patent 4,147,650; Paucot, U.S. Patent 4,079,015; Leikhem, U.S. Patent 4,116,849; Milora, U.S. Patent 4,521,332; Jone~, U.S. Patent 4,597,889; Heile, U.S. Patent 4,512,908; Laitem, U.S. Patent 4,753,748; Sabatelli, U.S.
Patent 3,579,455; Hynam, U.S. Patent 3,684,722: other patents relatin~ to thickened detergent compositions include U.S.
Patent 3,985,668; U.K. Patent Applications GB 2,116,199A and GB 240,450A; U.S. Patent 4,511,487; U.S. Patent 4,752,409 (Drapier, et al.); U.S. Patent 4,801,395 (Drapier, et al.);
U.S. Patent 4,801,395 (Drapier, et al.).
~' , ~rief Descrip~ion of the Drawings Figures 1-13 are rheograms, plotting elastic modules G' and viscous modulus G~ as a function of applied strain, for the compositions of Example 1, Formulations A, C, D, G, J, H, I and K, Example 2, A and B, Example 3, L and M and Comparative Example 1, respectively and Figures 14-30 are rheograms as functions of frequency and applied strain for the compositions of Example v.
Summary of the Invention According to the present invention there is provided a novel aqueous liquid automatic dishwasher detergent composition. The composition is characterized by its linear viscoelastic behavior, substantially indefinite stability again~t phase separation or settling of dissolved or suspended particles, low levels of bottle residue, relatively high bulk density, and substantial absence of unbound or free water.
This unique combination of properties i9 achieved by virtue of the incorporation into the aqueous mixture of dishwashing detergent surfactant, alkali metal detergent builder salt(s) and chlorine bleach compound, a small but effective amount of high molecular weight cross-linked polyacrylic acid type thickening agent, a physical stabilizing amount of a long ~: : chain fatty acid or salt thereof, and a source of potassium ; ions to provide a potassium/sodium weight ratio in the range ~ 25 of from 1:1 to 45:1, such that substantially all of the : detergent builder salts and other normally solid detergent additives present in the composition are present dissolved in :~ the aqueous phase. The compositions are further characterized 20~4~
by a bulk density of at least 1.32 g/cc, such that the density of the polymeric phase and the density of the aqueous (continuous) phase are approximately the same.
~etaiLed Description of the Preferred Embodiments The compositions of this invention are aqueous liquids containing various cleansing active ingredients, detergent adjuvants, structuring and thickening agents and stabilizing components, although some ingredients may serve more than one of these functions.
The advantageous characteristics of the compositions of this invention, including physical stability, low bottle residue, high cleaning performance, e.g. low spotting and filming, dirt residue removal, and 90 on, and superior aesthetics, are believed to be attributed to several interrelated factors such as low solids, i.e. undissolved particulate content, product density and linear viscoelastic rheology. These factors are, in turn, dependent on several critical compositional components of the formulations, namely, (1) the inclusion of a thickening effective amount of polymeric thickening agent having high water absorption capacity, exemplified by high molecular weight cross-linked polyacrylic acid, (2) inclusion of a physical stabilizing amount of a long chain fatty acid or salt thereof, (3) potassium ion to sodium ion weight ratio K/Na in the range of from 1:1 to 45:1, especially from 1:1 to 3.1, and (4) a product bulk density of at least 1.32 g/cc, such that the bulk density and liquid phase density are the same.
206984~
The polymeric thickening agents contribute to the linear viscoelastic rheology of the invention composition~. A9 used herein, ~linear viscoelastic ~or~ linear viscoelasticity~
means that the elastic (storage) moduli (G') and the viscous i(loss) moduli (G~) are both substantially independent of strain, at lea~t in an applied strain range of from 0-50%, and preferably over an applied strain range of from 0-80~. More specifically, a composition i9 considered to be linear viscoelastic for purposes of this invention, if over the strain range of 0-50~ the elastic moduli G~ has a minimum value of lO0 dynes/sq.cm., preferably at least 250 dynes/sq.cm., and varies less than 500 dynes/sq.cm, preferably less than 300 dynes/sq.cm., especially preferably less than 100 dynes/sq.cm. Preferably, the minimum value of G' and maximum variation of G~ applies over the strain range of 0 to 80~. Typically, the variation in 1098 moduli G~ will be less than that of G'. As a further characteristic of the preferred linear viscoelastic compositions the ratio of G"/G
(tan~ i9 less than 1, preferably less than 0.8, but more than 0.05, preferably more than 0.2, at least over the strain range of 0 to 50~, and preferably over the strain range of 0 to 80~.
It should be noted in this regard that ~ strain is ~hear strain xlO0.
3y way of further explanation, the elastic (storage~
modulus G' is a measure of the energy stored and retrieved when a strain is applied to the composition while viscous (1099) modulus G~ is a measure to the amount of energy 20698~
dissipated as heat when strain is applied. Therefore, a value of tand, 0.05~ tan ~ cl, preferably ' 0.2 c tan Sc 0.8 means that the compositions will retain sufficient energy when a stress or strain i9 applied, at least over the extent expected to be encountered for products of this type, for example, when poured from or shaken in the bottle, or stored in the dishwasher detergent dispenser cup of an automatic dishwashing machine, to return to its previous condition when the stress or strain is removed. The compositions with tan values in these ranges, therefore, will also have a high cohesive property, namely, when a shear or strain is applied to a portion of the composition to cause it to flow, the surrounding portions will follow. As a result of this cohesiveness of the subject linear viscoelastic compositions, the compositions will readily flow uniformly and homogeneously from a bottle when the bottle i9 tilted, thereby contributing to the physical (phase) stability of the formulation and the low bottle residue (low product 109g in the bottle) which characterizes the invention compositions. The linear viscoelastic property also contributes to improved physical stability against phase separation of any undissolved suspended particles by providing a resistance to movement of the particles due to the strain exerted by a particle on the surrounding fluid medium.
2~6984~
The present invention also relates to polymeric compositions which are thickened aqueous polymeric solutions formed from water and 0.1 to 20 weight ~, more preferably 0.5 to 14 weight percent of a polymeric complex which icomprises an alkali metal neutralized anionic polymer having a molecular weight of 60,000 to 10,000,000 complexed at a pH of 7-10 with a structuring agent such as an amphoteric metal oxide compound having a particle size of 0.5 to 40 microns, which improves the formation of the polymeic matrix of the anionic polymer, wherein a weight ratio of the alkali metal neutralized anionic polymer to the amphoteric metal oxide compound is 10:1 to 1:10 and the aqueous thickened polymeric solution has a pH of 7 to 10 and a complex viscosity at 10 radians/seconds at room temperature as applied for 30 seconds lS of 2 to 800 dynes seconds/sq.cm The aqueous thickened polymeric solution has a G/ of at least 80 dyne~/sq.cm. at 10 radians/second, a G of at least 10 dynes/sq.cm., a ratio of ~/G/ of less than 1 and Gl i9 substantially linear over a range of frequency of 0.1 to 50 radians/second and a Brookfield viscosity at RT at 20 rpms with a #6 spindle of 700 to aoubt 27,000`cps. When the aqueous thickened polymeric solution has a minimum yield stress at least 2, dynes/sq.cm., more preferably 2 to 1200 ;~ dynes/sq.cm., it is capable of suspending solid particles ~uch ~25 as alkali metal ~ilicates and alkali metal detergent builder salts such that they will not settle out of solution.
.
~ 6 20698~
The solid particles to be suspended are not limited to alkali metal compounds, but can be any metal containing compound, organic compound, polymeric compound or even glass beads.
The structuring agents such as the amphoteric materials bf the instant invention are preferably aluminum oxides having a powdered particle size of 10-20 microns, a particle size dispersed in water of 10 to 60 nanometers, a powdered surface area of 1~0-250 m2/g, and a crystalline size of less than 60 micron~. An especially preferred aluminum oxide is Dispal T23 sold by ~ista Chemicals. Also suitable structuring agents are mixtures of aluminum oxide~ and magne~ium oxides, zeolites, synthetic clays 3uch as laponite, calcium rich clays such as Promat. Natural clays such as Bentonite, Hectorite and Attapolgite and polymeric aluminum ~alts sold by Reheis are al~o useful as a structuring agent.
It is an object of the instant invention to provide thicken aqueous polymeric solutions which exhibit both increased viscosity and an improved degree of shear insensitivity, wherein these polymeric solution~ maintain their improved viscosity and shear insensitively properties, when various ingredients are added to the thickened aqueous polymeric solutions to form a variety of diversified products.
A means for further improving the structuring of the gel formulations of the instant invention in order to obtain improved viscosity as well as G/ and G values is to form an ; aqueous polymeric solution of a crosslinked anionic polymer ; such as a crosslinked polyacrylic acid thickening agent at room temperature with mixing and subsequently with mixing 20698~5 eutrai~zing the anionic groups ~uch as the carboxylic acid groups by the addition of an excess basic material such as caustic soda to form an alkali metal neutralized crosslinked polyacrylic acid polymer. To the aqueous solution of the ~lkali metal neutralized crosslinked polyacrylic acid containing excess caustic soda is added with mixing an amphoteric compound. The alkali metal crosslinked neutralized polyacrylic acid pol~mer in combination with the amphoteric compound provides improved G/ and G values as well as improved viscosification of the aqueous polymeric solution having a pH of 7 to 10 as compared to the use of the alkali metal neutralized crosslinked polyacrylic acid alone as a viscosification agent. It is theorized that the improvement in viscosification results from the association of the amphoteric material and the alkali metal neutralized crosslinked polyacrylic acid polymer in the water, wherein the negative charges of the amphoteric compound and the negatively charged anionic groups of the polyacrylic acid are repulsive to each other thereby causing an uncoiling of the polymeric chain of the alkali metal neutralized crosslinked polyacrylic acid which provides a further building of the polymeric structure within the water. To the solution of the alkali metal neutralized crosslinked polyacrylic acid polymer, water and amphoteric compound detergent builder sa}ts, silicates, surfacants, foam depressants and bleachants can be added without signi icantly damaging the polymeric structure to form a gel like automatic dishwashing composition. Other commercial and industrial compositions can be formed for a 2~984~
,ariety of applications such as toothpastes, creams or a toothpaste gels, cosmetics, fabric cleaners, shampoos, floor cleaners, cleaning paste, tile cleaners, thickened bleach compositions, ointments, oven cleaners, pharmaceutical suspensions, concentrated coal slurries, oil drilling muds, cleaning prestoppers and aqueous based paints. These compositions can be formulated by adding the appropriate chemicals to the aqueous polymeric solution of alkali metal neutralized polyacrylic acid polymer, caustic soda and the amphoteric compound to form the desired composition. The polymeric aqueous solution of water, caustic soda, alkali metal neutralized polyacrylic acid polymer and the amphoteric compound has a complex viscosity at room temperature at 10 radians/second of 2 to 800 dynes second/sq.cm., more 15 preferably 3 to 600 dynes second/sq. cmThe polymeric solution comprises .05 to 4.0 weight %, more preferably 0.1 to 4.0 weight ~ of an amphoteric compound, 0.1 to 4.0 weight ~, more preferably 0.2 to 3.0 weight ~ of an alkali metal neutralized crosslinked anionic polymer such as a metal neutralized crosslinked polyacrylic polymer and water, wherein the aqueous polymeric solution has a G/ value of at least 80 dynes/sq. cm at a frequency of 10 radians/second, a G value of at least 10 dynes/3q. cm at a frequency of 10 radians/second, a ratio of G /GI i9 less than 1 and G/ is substantial constant over a frequency range of 0.01 to 50.0 radians/second.
If the polymeric solution has a G' value of at least 80 dynes/sq. cm. at a frequency of 10 radians/second and the G
valve is at least 10 dynes/sq. cm at a frequency of 10 2~
adians/second, wherein G' is substantially constant over a frequency range of 0.01 to 50 radians/second and a ratio of G/GI is less than 1 and a yield stress of at least 2 dynes/sq.cm., more preferably 2 to 1200 dynes/sq. cm., the ~olymeric solution will be a gel which can function as a suspension medium for a plurality of solid particles, immiscible liquid droplets or gaseous bubbles. The solid particles or liquid droplets or gaseous bubbles can be inorganic, organic or polymeric. The solid material liquid droplets or gas bubbles which are not soluble in the water phase, should not decompose in an aqueous solution or react with the anionic groups of the anionic polymer or the carboxylate groups. The concentration of the solid particles, liquid droplets or gaseous bubbles in the suspension medium is 0.1 to 70 weight percent, more preferably 1 to 50 weight ~.
Additionally, by the way of explanation, it is necessary to clearly emphasize that in order to minimize the rate and amount of sedimentation of solid particles that are insoluble in the suspension medium that the suspension medium should exhibit frequency independent moduli. For materials that exhibit frequency independence of the viscoelastic moduli (G'), these materials tend to exhibit a critical property known as the yield stress which prevents the sedimentation of insoluble particles from the suspension medium. It is also critical in the understanding of the data a~ presented in Example V of this invention that by linear viscoelastic gel it is meant that G/ is substantially constant over a strain range frequency of 0 to 50 percent. The minimum yield stress for the gel .lecessary to suspend each of the solids, liquid or gaseous particles in the ~el such that each particles will not settle from the gel is at least 2 dynes/sq. cm., more preperably 2 to 1200 dynes/sq.cm.
' Illustrative of alkali metal neutralized anionic polymers contemplated within the scope of the instant invention beside polyacrylic and polymers such as the Carbopols are: sulfonated polymers containing a sulfonate functionality as defined in U.S. Patent Nos. 3,642,728; 4,608,425; 4,619,773; 4,626,285;
4,637,882; 4,640,945; 4,647,603; 4,710,555; 5,730,028;
4,963,032; 4,970,260 and 4,975,482, wherein these aforementioned patents are all hereby incorporated by `
reference. as well as polymers and monomers containing a carboxylic acid functionally as defined in U.S. Patent Nos.
lS 4,612,332; 4,673,716; 4,694,046; 4,694,058; 4,709,759;
4,734,205, 4,780,517; 4,960,821 and 5,036,136, as well as copolymers containing a maleic anhydride functionality such as Gantrez provided that these is a sufficient association between the alkali metal neutralized salts of these polymers in the aforementioned patents and the Aluminum oxide to create a viscoelastic gel having the G/ and properties as defined herein.
The thickened aqueous polymeric solutions are made by neutralizing at room temperature with mixi~g an aqueous solutLon of the Carbopol resin with caustic soda such that to the resultant aqueous solution of the alkali metal neutralized Carbopol is added at room temperature with mixing an aqueous dispersion of aluminum oxide to form the thickened aqueous .
-206984~
~olymeric solution. A further enhancement of thickening can be achieved by the further addition of 0.02 to 1.0 weight percent of a fatty acid or a metal salt of a fatty acid.
Also contributing to the physical stability and low ~ottle residue of the invention compositions is the high potassium to sodium ion ratios in the range of 1:1 to 45:1, preferably 1:1 to 4:1, especially preferably from 1.05:1 to 3:1, for example 1.1:1, 1.2:1, 1.5:1, 2:1, or 2.5:1. At these ratios the solubility of the solid salt components, such as detergent builder salts, bleach, alkali metal silicates, and the like, is substantially increased since the presence of the potassium (K+) ions requires less water of hydration than the sodium (Na+) ions, such that more water is available to dissolve these salt compounds. Therefore, all or nearly all of the normally solid components are present dissolved in the aqueous phase. Since there is none or only a very low percentage, i.e. less than 5~, preferably less than 3~ by weight, of suspended solids present in the formulation there i9 no or only reduced tendency for undissolved particles to settle out of the compositions causing, for example, formation of hard masses of particles, which could result in high bottle residues (i.e. 1099 of product). Furthermore, any undissolved solids tend to be present in extremely small particle sizes, usually colloidal or sub-colloidal, such as 1 micron or less, thereby further reducing the tendency for the undissolved particles to settle.
A still further attribute of the invention compositions contributing to the overall product stability and low bottle 2~69845 residue is the high water absorption capacity of the cross- -linked polyacrylic acid type thickening agent. As a result of this high water absorption capacity virtually all of the aqueous vehicle component is held tightly bound to the polymer ~atrix. Therefore, there is no or substantially no free water present in the invention compositions. This absence of free water (as well as the cohesiveness of the composition) is manifested by the observation that when the composition is poured from a bottle onto a piece of water absorbent filter paper virtually no water is absorbed onto the filter paper and, furthermore, the mass of the linear viscoelastic material poured onto the filter paper will retain its shape and structure until it i9 again subjected to a stress or strain.
As a result of the absence of unbound or free water, there is virtually no phase separatin between the aqueous phase and the polymeric matrix or dissolved solid particles. This characteristic is ~anifested by the fact that when the subject compositions are subjected to centrifugation, e.g. at 1000 rpm for 30 minutes, there is no phase separation and the composition remains homogeneous.
However, it has also been discovered that linear viscoelasticity and K/Na ratios in the above-mentioned range do not, by themselves, assure long term physical stability (as determinèd by phase separation). In order to maximize ;25 physical (phase) stability, the density of the composition should be controlled such that the bulk density of the liquid phage i9 approximately the same as the bulk density of the entire composition, including the polymeric thickening agent.
206984~
lhis control and equalization of the densities is achieved, according to the invention, by providing the composition with a bulk density of at least 1.28 g/cc, preferably at least 1.35 g/cc, up to 1.42 g/cc, preferably up to 1.40 g/cc.
~urthermore, to achieve these relatively high bulk densities, it is important to minimize the amount of air incorporated into the composition (a density of 1.42 g/cc is essentially equivalent to zero air content).
It has previously been found in connection with other types of thickened aqueous liquid, automatic dishwasher detergent compositions that incorporation of finely divided air bubbles in amounts up to 8 to 10% by volume can function effectively to stabilize the composition against phase separation, but that to prevent agglomeration of or escape of the air bubbles it was important to incorporate certain surface active ingredients, ecpecially higher fatty acids and the salts thereof, 9uch as stearic acid, behenic acid, palmitic acid, sodium stearate, aluminum stearate, and the like. These surface active agent~ apparently functioned by forming an interfacial film at the bubble surface while also forming hydrogen bonds or contributing to the electrostatic attraction with the suspended particles, such that the air bubbles and attracted particles formed agglomerates of approximately the same density as the density of the continuous liquid phase.
Therefore, in a preferred embodiment of the present invention, stabilization of air bubbles which may become incorporated into the compositions during normal processing, : ' '' 2Q6~845 such as during various mixing steps, is avoided by post-adding the surface active ingredients, including fatty acid or fatty acid salt stabilizer, to the remainder of the composition, under low shear conditions using mixing devices designed to ~inimize cavitation and vortex formation.
As will be described in greater detail below the surface active ingredients present in the composition will include the main detergent ~urface active cleaning agent, and will also preferably include anti-foaming agent and higher fatty acid or salt thereof as a physical stabilizer.
Exemplary of the cross-linked polyacrylic acid-type thickening agents are the products sold by ~.F. Goodrich under their Carbopol trademark, especially Carbopol 941, which is the most ion-insensitive of this class of polymers, and lS Carbopol 940 and Carbopol 934. The Carbopol resins, also known as "Carbomer", are hydrophilic high molecular weight, cros~-linked acrylic acid polymers having an average equivalent weight of 76, and the general structure illustrated by the following formula:
H H
H l ~
~25 HO O n.
Carbopol 941 has a molecular weight of 1,250,000; Carbopol 940 a molecular weight of approximately 4,000,000 and Carbopol 934 a molecular weight of approximately 3,000,000. The Carbopol resins are cross-linked with polyalkenyl polyether, e.g. 1~ of a polyallyl ether of sucrose having an average of , -206~8~
5.8 allyl groups for each molecule of sucrose. Further detailed information on the Carbopol resins is available from .F. Goodrich, see, for example, the B.F. Goodrich catalog GC-67, Carbopol~ Water Soluble Resins.
' ~ile most favorable results have been achieved with Carbopol 941 polyacrylic resin, other lightly cross-linked polyacrylic acid-type thickening agents can also be used in the compositions of this invention. As used herein "polyacrylic acid-type" refers to water-soluble homopolymers of acrylic acid or methacrylic acid or water-dispersible or water-soluble salts, esters or amides thereof, or water-soluble copolymers of these acids of their salts, esters or ameides with each other or with one or more other etylenically unsaturated monomers, such as, for example, styrene, maleic acid, maleic anhydride, 2-hydroxyethylacrylate, acrylonitrile, vinyl acetate, ethylene, propylene, and the like.
The homopolymers or copolymers are characterized by their high molecular weight, in the range of from 500,000 to 10,000,000, preferably 500,000 to 5,000,000, especially from 1,000,000 to 4,000,000, and by their water solubility, generally at least to an extent of up to 5~ by weight, or more, in water at 25C.
These thickening agents are used in their lightly cross-linked form wherein the cross-linking may be accomplished by means known in the polymer arts, as by irradiation, or, preferably, by the incorporation into the monomer mixture to be polymerized of known chemical cross-linking monomeric agents, typically polyunsaturated (e.g. diethylenically 2069~4~
unsaturated) monomers, such as, for example, divinylbenzene, divinylether of diethylene glycol, N, N~-methylene-bisacrylamide, polyalkenylpolyethers (such as described above), and the like. Typically, amounts of cross-linking agent to be incorporated in the final polymer may range from 0.01 to 1.5 percent, preferably from 0.05 to 1.2 percent, and especially, preferably from 0.1 to 0.9 percent, by weight of cros~-linking agent to weight of total polymer.
Generally, those skilled in the art will recognize that the degree of cross-linking should be sufficient to impart some coiling of the otherwise generally linear polymeric compound while maintaining the cross-linked polymer at least water dispersible and highly water-swellable in an ionic aqueous medium. It i9 also understood that the water-swelling of the polymer which provides the desired thickening and viscous properties generally depends on one or two mechanisms, namely, conversion of the acid group containing polymers to the corresponding salts, e.g. sodium, generating negative charges along the polymer backbone, thereby causing the coiled molecules to expand and thicken the aqueous solution; or by formation of hydrogen bonds, for example, between the carboxyl groups of the polymer and hydroxyl donor. The former ~` mechanism is especially important in the present invention, and therefore, the preferred polyacrylic acid-type thickening ~25 agents will`contain free carboxylic acid (COOH) groups along the polymer backbone. Also, it will be understood that the degree of cross-linking should not be so high as to render the cross-linked polymer completely insoluble or non-dispersible . -.. . .. .. .. .
.
2~698~
in water or inhibit or prevent the uncoiling of the polymer molecules in the presence of the ionic aqueous system.
The amount of the high molecular weight, cross-linked polyacrylic acid or other high molecular weight, hydrophilic ~ross-linked polyacrylic acid-type thickening agent to impart the desired rheological property of linear viscoelasticity will generally be in the range of from 0.1 to 2%, preferably from 0.2 to 1.4~, by weight, based on the weight of the composition, although the amount will depend on the particular cross-linking agent, ionic strength of the composition, hydroxyl donors and the like.
The compositions of this invention must include sufficient amount of potassium ions and sodium ions to provide a weight ratio of K/Na of at least 1:1, preferably from 1:1 to 45:1, especially from 1:1 to 3:1, more preferably from 1.05:1 to 3:1, such as 1.5:1, or 2:1. When the K/Na ratio is less than 1 there is insufficient solubility of the normally solid ingredients whereas when the K/Na ratio is more than 45, especially when it is greater than 3, the product becomes too liquid and phase separation begins to occur. When the K/Na ratio is more than 45, especially when it i9 greater than 3, the product becomes too liquid and phase separation begins to occur. When the K/Na ratios become much larger than 45, such as in all or mostly potassium formulation, the polymer thickener loses its absorption capacity and begins to salt out of the aqueous phase.
The potassium and sodium ions can be made present in the compositions as the alkali metal cation of the detergent 2~69~
builder salt(s), or alkali metal silicate or alkali metal hydroxide components of the compositions. The alkali metal cation may also be present in the compositions as a component of an ionic detergent, bleach or other ionizable salt compound ~dditive, e.g. alkali metal carbonate. In determining the K/Na weight ratios all of these sources should be taken into consideration.
Specific examples of detergent builder salts include the polyphosphates, such as alkali metal pyrophosphate, alkali metal tripolyphosphate, alkali metal metapho~phate, and the like, for example, sodium or potassium tripolyphosphate (hydrated or anhydrou~), tetrasodium or tetrapotassium pyrophosphate, sodium or potassium hexa-metaphosphate, trisodium or tripotassium orthophosphate and the like, sodium or potassium carbonate, sodium or potassium citrate, sodium or potassium nitrilotriacetate, and the like. The phosphate ~uilders, where not precluded due to local regulations, are preferred and mixtures of tetrapotassium pyrophosphate (TKPP) and sodium tripolyphosphate (NaTPP) (especially the hexahydrate) are especially preferred. Typical ratios of NaTPP to TKPP are from 2:1 to 1:8, especially from 1:1.1 to 1:6. The total amount of detergent builder salts is preferably from 5 to 35~ by weight, more preferably from 15 to 35~, especially from 18 to 30~ by weight of the composition.
Other useful low molecular weight noncrosslinked polymers are Acusol~640D provided by Rohm ~ Haas; Norasol QR1014 from Norsohaas having a GPC molecular weight of 10,000.
- , 2069~45 The linear viscoelastic compositions of this invention may, and preferably will, contain a small, but stabilizing effective amount of a long chain fatty acid or monovalent or polyvalent salt thereof. Although the manner by which the fatty acid or salt contributes to the rheology and stability of the composition has not been fully elucidated it is hypothesized that it may function as a hydrogen bonding agent or cross-linking agent for the polymeric thickener.
The preferred long chain fatty acids are the higher aliphatic fatty acids having from 8 to 22 carbon atoms, more preferably from 10 to 20 carbon atoms, and especially preferably from 12 to 18 carbon atoms, and especially preferably from 12 to 18 carbon atoms, inclusive of the carbon atom of the carboxyl group of the fatty acid. The aliphatic radical may be saturated or unsaturated and may be straight or branched. Straight chain saturated fatty acids are preferred. Mixtures of fatty acids may be used, such as those derived from natural sources, such as tallow fatty acid, coco fatty acid, soya fatty acid, mixtures of these acids, ~20 etc. Stearic acid and mixed fatty acids, e.g. stearic acid/palmitic acid, are preferred.
When the free acid form of the fatty acid is used directly it will generally associate with the potassium and sodium ions in the aqueous phase to form the corresponding alkali metal fatty acid soap. However, the fatty acid salts may be directly added to the composition as sodium salt or potassium salt, or as a polyvalent metal salt, although the 20698~
alkali metal salts of the fatty acids are preferred fatty acid salts.
The preferred polyvalent metals are the di- and tri-valent metals of Groups IIA, IIB and IIIB, such as magnesium, calcium, aluminum and zinc, although other polyvalent metals, including those of Groups IIIA, IVA, VA, IB, IVB, VB VIB, VIIB
and VIII of the Periodic Table of the Elements can also be used. Specific examples of such other polyvalent metals include Ti, Zr, V, Nb, Mn, Fe, Co, Ni, Cd, Sn, Sb, Bi, etc.
Generally, the metals may be present in the divalent to pentavalent state. Preferably the metal salts are used in their higher oxidation states. Naturally, for use in automatic dishwashers, as well as any other applications where the invention composition will or may come in contact with articles used for the handling, storage or serving of food products or which otherwise may come into contact with or be consumed by people or animals, the metal salt should be selected by takiny into consideration the toxicity of the metal. For this purpose, the alkali metal and calcium and magnesium salts are especially higher preferred as generally safe food additives.
The amount of the fatty acid or fatty acid salt stabilizer to achieve the desired enhancement of physical stability will depend on such factors as the nature of the fatty acid or its salt, the nature and amount of the thickening agent, detergent active compound, inorganic salts, other ingredients, as well as the anticipated storage and shipping conditions.
2~698~
Generally, however, amounts of the fatty acid or fatty acid salt stabilizing agents in the range of from 0.02 to 2~, preferably 0.04 to 1~, more preferably from 0.06 to 0.8%, especially preferably from 0.08 to 0.4~, provide a long term ~tability and absence of phase separation upon standing or during transport at both low and elevated temperatures as are required for a commercially acceptable product.
Depending on the amounts, proportions and types of fatty acid physical stabilizers and polyacrylic acid-type thickening agents, the addition of the fatty acid or salt not only increases physical stability but also provides a simultaneous increase in apparent viscosity. Amounts of fatty acid or salt to polymeric thickening agent in the range of from 0.08-0.4 weight percent fatty acid salt and from 0.4-1.5 weight percent polymeric thickening agent are usually sufficient to provide these simultaneous benefits and, therefore, the use of these ingredients in these amounts is most preferred.
In order to achieve the desired benefit from the fatty acid or fatty acid salt stabilizer, without stabilization of excess incorporated air bubbles and consequent excessive lowering of the product bulk density, the fatty acid or salt should be post-added to the formulation, preferably together with the other surface active ingredients, including detergent active compound and anti-foaming agent, when present. These surface active ingredients are preferably added as an emulsion in water wherein the emulsified oily or fatty materials are finely and homogeneously dispersed throughout the aqueous phase. To achieve the desired fine emulsification of the 2069~4~
fatty acld or fatty acid salt and other surface active ingredients, it i9 usually neces~ary to heat the emulsion (or preheat the water) to an elevated temperature near the melting temperature of the fatty acid or its salt. For example, for ~tearic acid having a melting point of 68C-69C, a temperature in the range of between 50C and 70C will be used. For lauric acid (m.p.=47C) an elevated temperature of 35C to 50C can be used. Apparently, at these elevated temperatures the fatty acid or salt and other surface active ingredients can be more readily and uniformly dispersed (emulsified) in the form of fine dropléts throughout the composition.
In contrast, as will be shown in the examples which follow, if the fatty acid i9 simply post-added at ambient temperature, the composition is not linear viscoelastic as defined above and the stability of the composition i8 clearly inferior.
Foam inhibition is important to increase dishwasher machine efficiency and minimize destabilizing effects which might occur due to the presence of excess foam within the washer during use. Foam may be reduce by suitable selection of the type and/or amount of detergent active material, the main foam-producing component. The degree of foam is also somewhat dependent on the hardness of the wash water in the machine whereby suitable adjustment of the proportions of the builder salts such as NaTPP which has a water softening effect, may aid in providing a degree of foam inhibition.
However, it is generally preferred to include a chlorine ' .
~ " .
2Q698~5 bleach stable foam depressant or inhibitor. Particularly effective are the alkyl phosphoric acid esters of the formula S ~0 I~R
and especially the alkyl acid phosphate e~ters of the formula ll HO-P-OR
OR
In the above formulas, one or both R groups in each type of ester may represent independently a C12-C20 alkyl or ethoxylated alkyl group. The ethoxylated derivatives of each type of ester, for example, the condensation products of one mole of ester with from 1 to 10 moles, preferably 2 to 6 moles, more preferably 3 or 4 moles, ethylene oxide can also be used.
Some examples of the foregoing are commercially available, ~uch as the products SAP from Hooker and LPKN-158 from Knapsack. Mixtures of the two types, or any other chlorine bleach stable types, or mixtures of mono- and di-esters of the ~ame type, may be employed. Especially preferred is a mixture of mono- and di-CI6-Cl8 alkyl acid phosphate esters such as monostearyl/distearyl acid phosphates 1.2/1, and the 3 to 4 ~30 mole ethylene oxide condensates thereof. When employed, proportions of 0.05 to 1.5 weight percent, preferably 0.1 to 0.5 weight percent, of foam depressant in the composition is typical, the weight ratio of detergent active component (d) to foam depressant (e) generally ranging from 10:1 to 1:1 and ~35 preferably 5:1 to 1:1. Other defoamers which may be u~ed ..
" `'~ ' ~
20~9845 include, for example, the known silicones, such as available from Dow Chemicals. In addition, it i9 an advantageoùs feature of this invention that many of the stabilizing salts, such as the stearate salts, for example, aluminum stearate, ~hen included, are also effective as foam killers.
Although any chlorine bleach compound may be employed in the compositions of this invention, such as dichloro-isocyanurate, dichloro-dimethyl hydantoin, or chlorinated TSP, alkali metal or alkaline earth metal, e.g. potassium, lithium, magnesium and especially sodium, hypochlorite is preferred.
The composition should contain sufficient amount of chlorine bleach compound to provide 0.2 to 4.0~ by weight of available chlorine, as detenmined, for example by acidification of 100 parts of the composition with excess hydrochloric acid. A
solution containing 0.2 to 4.0% by weight of sodium hypochlorite contains or provides roughly the same percentage of available chlorine. 0.8 to 1.6~ by weight of available chlorine is especially preferred. For example, sodium hypochlorite (NaOCL) solution of from 11 to 13~ available chlorine in amounts of 3 to 20~, preferably 7 to 12~, can be advantageously used.
Detergent active material useful herein should be stable in the presence of chlorine bleach, especially hypochlorite bleach, and for this purpose those of the organic anionic, amine oxide, phosphine oxide, sulphoxide or betaine water dispersible surfactant types are preferred, the first mentioned anionics being most preferred. Particularly preferred surfactants herein are the linear or branched alkali 206984~
metal mono- and/or di-(C8-C,4) alkyl diphenyl oxide mono- and/or di-sulphates, commercially available for example as DOWFAX
(regi~tered trademark) 3B-2 and DOWFAX 2A-1. In addition, the surfactant should be compatible with the other ingredients of the composition. Other suitable organic anionic, non-soap surfactants include the primary alkylsulphates, alkylsulphonates, alkylarylsulphonates and sec.-alkylsulphates. Examples include sodium ClO-C~8 alkylsulphates such as sodium dodecylsulphate and sodium tallow alcoholsulphate; sodium C~O-Cl8 alkanesulphonates such as sodium hexadecyl-1-sulphonate and sodium Cl2-C~8 alkylbenzenesulphonates such as sodium dodecylbenzenesylphonates. The corresponding potassium salts may also be employed.
As other suitable surfactants or detergents, the amine oxide surfactants are typically of the structure R2RINO, in which each R represents a lower alkyl group, for instance, methyl, and Rl represents a long chain alkyl group ha~ing from 8 to 2a carbon atoms, for instance a lauryl, myristyl, palmityl or cetyl group. Instead of an amine oxide, a corresponding surfactant phosphine oxide R2RIPO or sulphoxide RRISO can be employed. Betaine surfactants are typically of the structure R2RIN+R~COO-, in which each R represents a lower alkylene group having from 1 to 5 carbon atoms. Specific ~25 examples of these surfactants include lauryl-dimethylamine oxide, myristyl-dimethylamine oxide, myristyl-dimethylamine oxide, the corresponding phosphine oxides and sulphoxides, and the corresponding betaines, including dodecyldimethylammonium 20698~5 acetate, tetradecyldiethylammonium pentanoate, hexadecyldimethylammonium hexanoate and the like. For biodegradability, the alkyl groups in these surfactants should be linear, and such compounds are preferred.
i Surfactants of the foregoing type, all well known in the art, are described, for example, in U.S. Patents 3,985,668 and 4,271,030. If chlorine bleach is not used than any of the well known low-foaming nonionic surfactants such as alkoxylated fatty alcohols, e.g. mixed ethylene oxide-propylene oxide condensates of C8-C22 fatty alcohols can also be used.
The chlorine bleach stable, wa~er dispersible organic detergent-active material (surfactant) will normally be present in the composition in minor amounts, generally 1% by weight of the composition in minor amounts, generally 1% by weight of the composition, although smaller or larger amounts, such as up to 5~, such as from 0.1 to 5~, preferably form 0.3 or 0.4 to 2~ by weight of the composition~ may be used.
Alkali metal (e.g. potas~ium or sodium) silicate, which provide~ alkalinity and protection of hard surfaces, such as flne china glaze and pattern, i9 generally employed in an amount ranging from 5 to 20 weight percent, preferably 5 to 15 weight percent, more preferably 8 to 12~ in the composition. The sodium or potassium silicate is generally 25~ added in the form of an aqueous solution, preferably having Na2O:SiO2 or K2O:SiO2 ratio of I:1.3 to 1:2.8, especially preferably 1:2.0 to 1:2.6. At this point, it should be mentioned that many of the other components of this .
..
, 206984~
composition, e~pecially alkali metal hydroxide and bleach, are also often added in the form of a preliminary prepared aqueous dispersion or solution.
In addition to the detergent active surfactant, foam lnhibitor, alkali metal silicate corrosion inhibitor, and detergent builder salts, which all contribute to the cleaning performance, it is also known that the effectiveness of the liquid automatic dishwasher detergent compositions is related to the alkalinity, and particularly to moderate to high alkalinity levels. Accordingly, the compositions of this invention will have pH value~ of at least 9.5, preferably at least 11 to as high as 14, generally up to 13 or more, and, when added to the aqueous wash bath at a typical concentration level of 10 grams per liter, will provide a pH in the wash bath of at least 9, preferably at least 10, such as 10.5, 11, 11.5 or 12 or more.
The alkalinity will be achieved, in part by the alkali metal ions contributed by the alkali metal detergent builder salts, e.g. sodium tripolyphosphate, tetrapotassium pyrophosphate, and alkali metal silicate, however, it is usually necessary to include alkali metal hydroxide, e.g. NaOH
or KOH, to achieve the desired high alkalinity. Amounts of alkali metal hydroxide in the range of (on an active basis) of from 0.5 to 8%, preferably from 1 to 6%, more preferably from 1.2 to 4~, by weight of the composition will be sufficient to achieve the desired pH level and/or to adjust the K/Na weight ratio.
20698g5 Other alkali metal salts, such as alkali metal carbonate may also be present in the compositions in minor amounts, for example from O to 4~, preferably O to 2~, by weight of the composition.
' Other conventional ingredients may be included in these compositions in small amounts, generally le~s than 3 weight percent, nuch as perfume, hydrotropic agents such as the sodium benzene, toluene, xylene and cumene sulphonates, preservatives, dyestuffs and pigments and the like, all of course being stable to chlorine bleach compound and high alkalinity. Especially preferred for coloring are the chlorinated phythalocyanines and polysuphides of aluminosilicate which provide, respectively, pleasing green and blue tints. TiO2 may be employed for whitening or neutralizing off-shades.
Although for the reasons previously discussed excessive air bubbles are not often desirable in the invention compositions, depending on the amounts of dissolved solids and liquid phase densities, incorporation of small amounts of finely divided air bubbles, generally up to 10~ by volume, preferably up to 4~ by volume, more preferably up to 2~ by volume, can be incorporated to adjust the bulk density to approximate liquid phase density. The incorporated air bubbles should be finely divided, such as up to 100 microns ~25 in diameter, preferably from 20 to 40 microns in diameter, to assure maximum stability. Although air is the preferred gaseous medium for adjusting densities to improve physical ;', ' 206984~
stability of the composition other inert gases can also be used, such as nitrogen, carbon dioxide, helium, oxygen, etc.
The amount of water contained in these compositions should, of course, be neither so high as to produce unduly low ~isco~3ity and fluidity, nor so low as to produce unduly high viscosity and low flowability, linear viscoelastic properties in either case being diminished or destroyed by increasing tan 1. Such amount i~ readily determined by routine experimentation in any particular instance, generally ranging from 30 to 75 weight percent, preferably 35 to 65 weight percent. The water should also be preferably deionized or softened.
The manner of formulating the invention compositions is also important. As discussed above, the order of mixing the }5 ingredients as well as the manner in which the the mixing is performed will generally have a significant effect on the properties of the composition, and in particular on product density (by incorporation and stabilization of more or less air) and physical stability (e.g. phase separation). Thus, according to the preferred practice of this invention the compositions are prepared by first forming a dispersion of the polyacrylic acid-type thickener in water under moderate to high shear conditions, neutralizing the dissolved polymer to cause gelation, and then introducing, while continuing mixing, ~25 the detergent builder salts, alkali metal dilicates, chlorine bleach compound and remaining detergent additives, including any previously unused alkali metal hydroxide, if any, other than the surface-active compounds. All of the additional ingredients can be added simultaneously or sequentially.
Preferably, the ingredients are added sequentially, although it is not necessary to complete the addition of one ingredient before beginning to add the next ingredient. Furthermore, one ~r more of these ingredients can be divided into portions and added at different times. These mixing steps should also be performed under moderate to high shear rates to achieve complete and uniform mixing. These mixing steps may ~e carried out at room temperature, although the polymer thickener neutralization (gelation) is usually exothermic.
The composition may be allowed to age, if necessary, to cause dissolved or dispersed air to dissipate out of the composition.
The remaining surface active ingredients, including the anti-foaming agent, organic detergent compound, and fatty acid or fatty acid salt stabilizer is post-added to the previously formed mixture in the form of an aqueous emulsion (using from 1 to 10~, preferably from 2 to 4~ of the total water added to the composition other than water added as carrier for other ingredients or water of hydration) which is pre-heated to a temperature in the range of from Tm+5 to Tm-20, preferably from Tm to TM-10, where Tm is the melting point temperature of the fatty acid or fatty acid salt. For the preferred stearic acid stabilizer the heating temperature is in the range of 50C to 70C. However, if care is taken to avoid excessive air bubble incorporation during the gelatin step or during the mixing of the detergent builder salts and other additives, for example, by operating under vacuum, or using 206984~i low shearing conditions, or special mixing operatatus, etc., the order of addition of the surface active ingredients should be less important.
In accordance with an especially preferred emkodiment, the thickened linear viscoelastic aqueous automatic dishwasher detergent composition of this invention includes, on a weight basis:
(a) 10 to 35~, preferably 15 to 30~, alkali metal polyphosphate detergent builder;
(b) 5 to 15, preferably 8 to 12%, alkali metal silicate;
(c) 1 to 6~, preferably 1.2 to 4~, alkali metal hydroxide;
(d) 0.1 to 3%, preferably 0.5 to 2~, chlorine bleach stable, water-dispersible, low-foaming organic detergent active material, preferably non-soap anionic detergent;
(e) 0.05 to 1.5~, preferably 0.1 to 0.5~, chlorine bleach stable foam depressant;
(f) chlorine bleach compound in an amount to provide 0.2 to 4~, preferably 0.8 to 1.6%, of available chlorine;
(g) high molecular weight hydrophilic cross-linked polyacrylic acid thickening agent in an amount to provide a linear viscoelasticity to the formulation, preferably from 0.4 to 1.5%, more preferably from 0.4 to 1.0%;
(h) a long chain fatty acid or a metal salt of a long chain fatty acid in an amount effective to increase the : physical stability of the compositions, preferably from 0.08 to 0.4%, more preferably from 0.1 to 0.3%; and 20698~
(i) balance water, preferably from 30 to 75%, more preferably from 35 to 65~; and wherein in (a) the alkali metal polyphosphate includes a mixture of from 5 to 30~, preferably from 12 to 22~ of tetrapotassium pyrophosphate, and from 0 to 20~, preferably from 3 to 18~ of sodium tripolyphosphate, and wherein in the entire composition the ratio, by weight, of potassium ions to sodium ions is from 1.05/1 to 3/1, preferably from 1.1/1 to 2.5/1, the compositions having an amount of air incorporated therein such that the bulk density of the composition is from 1.32 to 1.42 g/cc, preferably from 1.35 to 1.40 g/cc.
The compositions will be supplied to the consumer in suitable dispenser containers preferably formed of molded plastic, especially polyolefin plastic, and most preferably polyethylene, for which the invention compositions appear to have particularly favorable slip characteristics. In addition to their linear viscoelastic character, the compositions of this invention may also be characterized as pseudoplastic gels (non-thixotropic) which are typically near the borderline between liquid and solid viscoelastic gel, depending, for example, on the amount of the polymeric thickener. The invention compositions can be readily poured from their containers without any shaking or squeezing, although squeezable containers are often convenient and accepted by the consumer for gel-like products.
The liquid aqueous linear viscoelastic automatic dishwasher compositions of this invention are readily employed in known manner for washing dishes, other kitchen utensils and 20698~5 the like in an automatic dishwasher, provided with a suitable detergent dispenser, in an aqueous wash bath containing an effective amount of the composition, generally sufficient to fill or partially fill the automatic dispenser cup of the ~articular machine being used.
The invention also provides a method for cleaning dishware in an automatic dishwashing machine with an aqueous wash bath containing an effective amount of the liquid linear viscoelastic automatic dishwasher detergent composition as described above. The composition can be readily poured from the polyethylene container with little or no squeezing or shaking into the dispensing cup of the automatic dishwashing machine and will be sufficiently viscous and cohesive to remain securely within the dispensing cup until shear forces are again applied thereto, such as by the water spray from the dishwashing machine.
The invention may be put into practice in various ways and a number of specific embodiments will be described to illustrate the invention with reference to the accompanying ex&~ples.
All the amounts and proportions referred to herein are by weight of the composition unless otherwise indicated.
Example 1 The following formulations A-K were prepared as described below:
~ .
2069~5 1 ~ ~
~ In ~ ~ U~ l ~ ~1 ~ . l a~
1~ m N _ N . N , ~ ~1 O ~` N , ~
_ _ _ _ _ . O
;¦ l d~ l l N m .
~; , . , Ul rf) ~1 , . . N
H m ,N , ~,, N ,~) ~1 ~1 r r~ , _ _ _ _ _ _ _ . o 1:l O~ l ~r l l N ~_1 Il) . l ~; . l . ~ l l q~ . . . ~ l 1-') ~: m O _ (~, N _ ~ ~1 O t` A _ . ~d' , , , N -1 Lt~ O
v m ON , N , N , ~ ~1 O ~` N
_ _ __ _ ___ . O U~
~! l In l O Il~ ~` l l ~ ~ N l ~
~ m l ~ l N ~` ~1 l l rt l a~ A l ~1 _ _ _ __ _ _ _ 11 . O U~
~3 IJ~~ O 11~C` , l , ~1 N, 0~
~4~ ~~_ N ~ ~1 _ ~1 _ V _ ~1 O 1~1~1 l N ~1 ~ Nl a~
ON_ N N ~ ~1 O V _ ~i . ~~ l l N ~1 Il) O
,,l In N .1 l . . . N
ua _ O N _ '1 N ') ~ O V _ ~1 . ~ er l l N ,_1 Il~ O ~`
. . l Irl ~) ~1 l . . N .
m a~ O N l ~ ~ N l ~ ~1 O ~` V O rl . (~ ~ l l N ~1 15~ O
~: m O _ _ _ ,, N _ _ _ O r V _ _ 1 ~
20698~5 1~ ~r~ ~
O O .
. r~ . . ~ 0 ~ ~ ~ O O
H l i4 O O .C~
~ o o ~ a O
l ~ O O L~ X ~
--_~1 A A O IJ
~ ~1 .~ o o o~
_ - ~ V
l o o l ~1 ~1 '~ ~I tJ) ~1 1~ _ A A ,_~ $ 0,~ a) _ ri _ A A ~1 t/l ~
_ b- o o v~
. .,1 . . ~ ~1 0 ~
~ ~1 ~4 O O ~ U
_ ~ ~av~
~Jl O O ~ V~
U . O O .~ V~
_ av) ~ ~ ~0 o c~ m ~ ,vd v~ N
m ,1 _ O O qO ~
_ rl ~ ~ ~ ~ V
.~ O O ~ rO~ P~ o ~
,~c ~ o o ~ v~ ~ $~ ~
_ _ _ o ~ S~ ~ h ~ O~
~ ~ E~ ~ gtO~O~
O H i~ H U ~ 3 ~ ~Q
~i3 ~ ~o~o~
_ ~ ~ a~ rl~ ...
~I N ~
20698~5 Formulation~ A, B, C, D, E, G, J, and K are prepared by first forming a uniform dispersion of the Carbopol 941 or 940 thickener in 97~ of the water (balance). The Carbopol is slowly added to deionized water at room temperature using a ~ixer equipped with a premier blade, with agitation set at a medium shear rate, as recommended by the manufacturer. The dispersion is then neutralized by addition, under mixing, of the caustic soda (50% NaOH or KOH) component to form a thickened product of gel-like consistency.
To the resulting gelled dispersion the silicate, tetrapotassium pyrophosphate (TKPP), sodium tripolyphosphate TP(TPP, Na) and bleach, are added sequentially, in the order stated, with the mixing continued at medium shear.
Separately, an emulsion of the phosphate anti-foaming agent (LPKN), stearic acid/palmitic acid mixture and detergent (Dowfax 3B2) is prepared by adding these ingredients to the remaining 3% of water (balance) and heating the resulting mixture to a temperature in the range of 50C to 70C.
This heated emulsion is then added to the previously prepared gelled dispersion under low shear conditions, such that a vortex is not formed.
The remaining formulations F, H and I are prepared in essentially the same manner a~ described above except that the heated emulsion of ~PKN, stearic acid and Dowfax 382 i9 directly added to the neutralized Carbopol dispersion prior to the addition of the remaining ingredients. As a result, formulations F, H and I, have higher levels of incorporated air and densities below 1.30 g/cc.
20698~
The rheograms for the formulations A, C, D, G and J are shown in figure~ 1-5, respectively, and rheograms for formulations H, I and K are shown in figures 6, 7 and 8 respectively.
' These rheograms are obtained with the System 4 Rheometer from Rheometrics equipped with a Fluid Servo with a 100 grams-centimeter torque transducer and a 50 millimeter parallel plate geometry having an 0.8 millimeter gap between plates.
All measurements are made at room temperature (25C+1C) in a humidity chamber after a 5 minute or 10 minute holding period of the sample in the gap. The measurements are made by applying a frequency of 10 radians per second.
All of the composition formulations A, ~, C, D, G and J
according to the preferred embodiment of the invention which include Carbopol 941 and stearic acid exhibit linear viscoelasticity as seen from the rheograms of figure 1-5.
Formulation E which includes Carbopol 941 but not ~tearic acid showed no phase separation at either room temperature or 100F
after 3 weeks, but exhibited 10~ phase separation after 8 weeks at room temperature and after only 6 weeks at 100F.
Formulation K, containing Carbopol 940 in place of Carbopol 941, as seen from the rheogram in figure 8, exhibits substantial linearity over the strain range of from 2% to 50~
(G' at 1~ strain-G' at 50~ strain 500 dynes/sq.cm.) although tan ~ at a strain above 50~.
Example 2 .
206g8~
This example demonstrates the importance of the order of addition of the ~urface active component premix to the remainder of the composition on product density and stability.
The following formulations are prepared by methods A and ~:
Ingredient Water, deionized Balance Carbopol 941 0.5 NaOH (50~) 2.4 Na Silicate (47.5%) 21 TPP, Na 13 Bleach (1~) 7.5 ~PKN O.16 Stearic Acid 0.1 Dowfax 3B2 Method A:
The Carbopol 941 is dispersed, under medium shear rate, using a premier blade mixer, in deionized water at ambient temperature. The NaOH is added, under mixing, to neutralize and gel the Carbopol 941 dispersion. To the thickened mixture the following ingredients are added sequentially while the stir~ing is continued: sodium silicate, TKPP, TPP, and bleach.
Separately, an emulsion is prepared by adding the Dowfax 3B2, stearic acid and LPKN to water while mixing at moderate shear and heating the mixture to 65C to finely disperse the emulsified surface active ingredients in the water phase.
This emulsion premix is then slowly added to the Carbopol dispersion while mixing under low shear conditions without forming a vortex. The results are shown below.
Method B:
Method A is repeated except that the heated emulsion premix i9 added to the neutralized Carbopol 941 dispersion before the sodium stearate, TKPP, TPP, and bleach. The results are also shown below.
i Method A Method B
Density (g/cc) 1.38 1.30 Stability (RT-8 weeks) 0.00~ 7.00~
Rheogram Fig. 9 Fig.10 From the rheograms of figures 9 and 10 it is seen that both products are linear viscoelastic although the elastic and viscous moduli G~ and G~ are higher for Method A than for Method B.
From the results it is seen that early addition of the surface active ingredients to the Carbopol gel significantly increases the degree of aeration and lowers the bulk density of the final product. Since the bulk density i9 lower than the density of the continuous liquid phase, the liquid phase undergoes inverse separation (a clear liquid phase forms on the bottom of the composition). This process of inverse separation appears to be kinetically controlled and will occur faster as the density of the product becomes lower.
; Example 3 This example shows the importance of the temperature at which the premixed surfactant emulsion is prepared.
Two formulations, L and M, having the same composition as in Example 2 except that the amount of stearic acid was increased from 0.1~ to 0.2~ are prepared as shown in Method A
2069~45 for formulation L and by the following Method C for formulation M.
Method C
The procedure of Method A i9 repeated in all details 'except that emulsion premix of the surface active ingredients is prepared at room temperature and i9 not heated before being post-added to the thickened Carbopol dispersion containing silicate, builders and bleach. The rheograms for formulations L and M are shown in figures 11 and 12, respectively. From these rheograms it is seen that formulation ~ is linear viscoelastic in both G' and G" whereas formulation M is non-linear viscoelastic particularly for elastic modulus G' (G' at 1% strain-G' at 30% strain > 500 dynes/cm2) and also for G" (G"
at 1% strain-G" at 30~ strain 300 dyne9/cm2).
Formulation L remains stable after storage at RT and 100F
for at lea8t 6 weeks whereas formulation M undergoes phase ~eparation.
ComE~arative Example 1 The following formulation is prepared without any potassium salts:
Weight ~ater ~alance Carbopol 941 0.2 NaOH (50%) 2.4 TPP, Na (50~) 21.0 Na Silicate (47.5~) 17.24 13leach (1~) 7.13 Stearic Acid 0.1 LPKN (59c) 3.2 Dowfax 3~32 0.8 Soda Ash 5.0 Acrysol ~W 45-N 2.0 ,~ , .. . .
The procedure used is analogous to Method A of Example 2 with the soda ash and Acrysol LMW 45-N (low molecular weight polyacrylate polymer) being added before and after, respectively, the silicate, TPP and bleach, to the thickened ~arbopol 941 dispersion, followed by addition to the heated surface active emulsion premix. The rheogram is shown in figure 13 and is non-linear with G~/G~ (tan~ ) > 1 over the range of strain of from 5~ to 80%.
Example 4 Formulations A, ~, C, D and K according to this invention and comparative formulations F and a commercial liquid automatic dishwasher detergent product as shown in Table 1 above were subjected to a bottle residue test using a standard polyethylene 28 ounce bottle as used for current commercial liquid dishwasher detergent bottle.
Six bottles are filled with the respective samples and the product is dispensed, with a minimum of force, in 80 gram dosages, with a 2 minute rest period between dosages, until flow stops. At this point, the bottle was vigorously shaken to try to expel additional product.
The amount of product remaining in the bottle is measured as a percentage of the total product originally filled in the bottle. The results are shown below.
2~6~845 Bottle Residue Formulation Residue D S
F* 4 Commercial Product 20 *The sample separates upon aging Example V
The following formulas (A - K ) were prepared according to the following procedure:
AB C D E
Carbopol 614 1.0 1.0 1.0 0.75 0.75 NlOHi O. 5 ~ ~ ~ ~77 A um na 0.2 1.6 0.5 1.5 ¦
(Dispal T23 ) Water~ ~1:~ 98 . 375 ~7~7 ;~ Figure Nos.14,15 16,17 18,19 . 20,21 ~ 22,23 -5 : : = = ~ = =
'~
:
.
~0698~5 F G H I J K
Carbopol 614 0.5 0.5 0.5 1.0 0.75 0.5 1¦
NaOH 0.25 0.25 0.25 0.5 0.375 0.25 ¦¦
Stearic Acid .- . .
Alum1na O.5 2.0 1.O 1.O 2.5 O.5 (Dispal T23) Water 98.75 97.25 98.25 ~97.5 96.375 Figure Nos. 24,25 26,27 28,29 30,31 32 ===== = . ~
2~6984~
The Carbopol polymer was added to water at 75 - 80C with mixing. To the solution of the Carbopol polymer and water was added with mixing the sodium hydroxide to neutralize the Carbopol polymer so that the solution has a pH of 7 to 10.
~he dispersion of the alumina (Dispol T23) was added with mixing to the solution of water and neutralized Carbopol polymer to form formulas (A - K ). The polymer solutions were tested on the System 4 Rheometer as in Example 1. The Brookfield viscosities were run at room temperature using a #4 spindle at 20 rpms. Rheograms ( Figure 14-24) depict the G/ and G for formulas A-K, wherein for each formula a plot of G/ and G is illustrated.
The present invention also relates to polymeric compositions which are thickened aqueous polymeric solutions formed from water and 0.1 to 20 weight ~, more preferably 0.5 to 14 weight percent of a polymeric complex which icomprises an alkali metal neutralized anionic polymer having a molecular weight of 60,000 to 10,000,000 complexed at a pH of 7-10 with a structuring agent such as an amphoteric metal oxide compound having a particle size of 0.5 to 40 microns, which improves the formation of the polymeic matrix of the anionic polymer, wherein a weight ratio of the alkali metal neutralized anionic polymer to the amphoteric metal oxide compound is 10:1 to 1:10 and the aqueous thickened polymeric solution has a pH of 7 to 10 and a complex viscosity at 10 radians/seconds at room temperature as applied for 30 seconds lS of 2 to 800 dynes seconds/sq.cm The aqueous thickened polymeric solution has a G/ of at least 80 dyne~/sq.cm. at 10 radians/second, a G of at least 10 dynes/sq.cm., a ratio of ~/G/ of less than 1 and Gl i9 substantially linear over a range of frequency of 0.1 to 50 radians/second and a Brookfield viscosity at RT at 20 rpms with a #6 spindle of 700 to aoubt 27,000`cps. When the aqueous thickened polymeric solution has a minimum yield stress at least 2, dynes/sq.cm., more preferably 2 to 1200 ;~ dynes/sq.cm., it is capable of suspending solid particles ~uch ~25 as alkali metal ~ilicates and alkali metal detergent builder salts such that they will not settle out of solution.
.
~ 6 20698~
The solid particles to be suspended are not limited to alkali metal compounds, but can be any metal containing compound, organic compound, polymeric compound or even glass beads.
The structuring agents such as the amphoteric materials bf the instant invention are preferably aluminum oxides having a powdered particle size of 10-20 microns, a particle size dispersed in water of 10 to 60 nanometers, a powdered surface area of 1~0-250 m2/g, and a crystalline size of less than 60 micron~. An especially preferred aluminum oxide is Dispal T23 sold by ~ista Chemicals. Also suitable structuring agents are mixtures of aluminum oxide~ and magne~ium oxides, zeolites, synthetic clays 3uch as laponite, calcium rich clays such as Promat. Natural clays such as Bentonite, Hectorite and Attapolgite and polymeric aluminum ~alts sold by Reheis are al~o useful as a structuring agent.
It is an object of the instant invention to provide thicken aqueous polymeric solutions which exhibit both increased viscosity and an improved degree of shear insensitivity, wherein these polymeric solution~ maintain their improved viscosity and shear insensitively properties, when various ingredients are added to the thickened aqueous polymeric solutions to form a variety of diversified products.
A means for further improving the structuring of the gel formulations of the instant invention in order to obtain improved viscosity as well as G/ and G values is to form an ; aqueous polymeric solution of a crosslinked anionic polymer ; such as a crosslinked polyacrylic acid thickening agent at room temperature with mixing and subsequently with mixing 20698~5 eutrai~zing the anionic groups ~uch as the carboxylic acid groups by the addition of an excess basic material such as caustic soda to form an alkali metal neutralized crosslinked polyacrylic acid polymer. To the aqueous solution of the ~lkali metal neutralized crosslinked polyacrylic acid containing excess caustic soda is added with mixing an amphoteric compound. The alkali metal crosslinked neutralized polyacrylic acid pol~mer in combination with the amphoteric compound provides improved G/ and G values as well as improved viscosification of the aqueous polymeric solution having a pH of 7 to 10 as compared to the use of the alkali metal neutralized crosslinked polyacrylic acid alone as a viscosification agent. It is theorized that the improvement in viscosification results from the association of the amphoteric material and the alkali metal neutralized crosslinked polyacrylic acid polymer in the water, wherein the negative charges of the amphoteric compound and the negatively charged anionic groups of the polyacrylic acid are repulsive to each other thereby causing an uncoiling of the polymeric chain of the alkali metal neutralized crosslinked polyacrylic acid which provides a further building of the polymeric structure within the water. To the solution of the alkali metal neutralized crosslinked polyacrylic acid polymer, water and amphoteric compound detergent builder sa}ts, silicates, surfacants, foam depressants and bleachants can be added without signi icantly damaging the polymeric structure to form a gel like automatic dishwashing composition. Other commercial and industrial compositions can be formed for a 2~984~
,ariety of applications such as toothpastes, creams or a toothpaste gels, cosmetics, fabric cleaners, shampoos, floor cleaners, cleaning paste, tile cleaners, thickened bleach compositions, ointments, oven cleaners, pharmaceutical suspensions, concentrated coal slurries, oil drilling muds, cleaning prestoppers and aqueous based paints. These compositions can be formulated by adding the appropriate chemicals to the aqueous polymeric solution of alkali metal neutralized polyacrylic acid polymer, caustic soda and the amphoteric compound to form the desired composition. The polymeric aqueous solution of water, caustic soda, alkali metal neutralized polyacrylic acid polymer and the amphoteric compound has a complex viscosity at room temperature at 10 radians/second of 2 to 800 dynes second/sq.cm., more 15 preferably 3 to 600 dynes second/sq. cmThe polymeric solution comprises .05 to 4.0 weight %, more preferably 0.1 to 4.0 weight ~ of an amphoteric compound, 0.1 to 4.0 weight ~, more preferably 0.2 to 3.0 weight ~ of an alkali metal neutralized crosslinked anionic polymer such as a metal neutralized crosslinked polyacrylic polymer and water, wherein the aqueous polymeric solution has a G/ value of at least 80 dynes/sq. cm at a frequency of 10 radians/second, a G value of at least 10 dynes/3q. cm at a frequency of 10 radians/second, a ratio of G /GI i9 less than 1 and G/ is substantial constant over a frequency range of 0.01 to 50.0 radians/second.
If the polymeric solution has a G' value of at least 80 dynes/sq. cm. at a frequency of 10 radians/second and the G
valve is at least 10 dynes/sq. cm at a frequency of 10 2~
adians/second, wherein G' is substantially constant over a frequency range of 0.01 to 50 radians/second and a ratio of G/GI is less than 1 and a yield stress of at least 2 dynes/sq.cm., more preferably 2 to 1200 dynes/sq. cm., the ~olymeric solution will be a gel which can function as a suspension medium for a plurality of solid particles, immiscible liquid droplets or gaseous bubbles. The solid particles or liquid droplets or gaseous bubbles can be inorganic, organic or polymeric. The solid material liquid droplets or gas bubbles which are not soluble in the water phase, should not decompose in an aqueous solution or react with the anionic groups of the anionic polymer or the carboxylate groups. The concentration of the solid particles, liquid droplets or gaseous bubbles in the suspension medium is 0.1 to 70 weight percent, more preferably 1 to 50 weight ~.
Additionally, by the way of explanation, it is necessary to clearly emphasize that in order to minimize the rate and amount of sedimentation of solid particles that are insoluble in the suspension medium that the suspension medium should exhibit frequency independent moduli. For materials that exhibit frequency independence of the viscoelastic moduli (G'), these materials tend to exhibit a critical property known as the yield stress which prevents the sedimentation of insoluble particles from the suspension medium. It is also critical in the understanding of the data a~ presented in Example V of this invention that by linear viscoelastic gel it is meant that G/ is substantially constant over a strain range frequency of 0 to 50 percent. The minimum yield stress for the gel .lecessary to suspend each of the solids, liquid or gaseous particles in the ~el such that each particles will not settle from the gel is at least 2 dynes/sq. cm., more preperably 2 to 1200 dynes/sq.cm.
' Illustrative of alkali metal neutralized anionic polymers contemplated within the scope of the instant invention beside polyacrylic and polymers such as the Carbopols are: sulfonated polymers containing a sulfonate functionality as defined in U.S. Patent Nos. 3,642,728; 4,608,425; 4,619,773; 4,626,285;
4,637,882; 4,640,945; 4,647,603; 4,710,555; 5,730,028;
4,963,032; 4,970,260 and 4,975,482, wherein these aforementioned patents are all hereby incorporated by `
reference. as well as polymers and monomers containing a carboxylic acid functionally as defined in U.S. Patent Nos.
lS 4,612,332; 4,673,716; 4,694,046; 4,694,058; 4,709,759;
4,734,205, 4,780,517; 4,960,821 and 5,036,136, as well as copolymers containing a maleic anhydride functionality such as Gantrez provided that these is a sufficient association between the alkali metal neutralized salts of these polymers in the aforementioned patents and the Aluminum oxide to create a viscoelastic gel having the G/ and properties as defined herein.
The thickened aqueous polymeric solutions are made by neutralizing at room temperature with mixi~g an aqueous solutLon of the Carbopol resin with caustic soda such that to the resultant aqueous solution of the alkali metal neutralized Carbopol is added at room temperature with mixing an aqueous dispersion of aluminum oxide to form the thickened aqueous .
-206984~
~olymeric solution. A further enhancement of thickening can be achieved by the further addition of 0.02 to 1.0 weight percent of a fatty acid or a metal salt of a fatty acid.
Also contributing to the physical stability and low ~ottle residue of the invention compositions is the high potassium to sodium ion ratios in the range of 1:1 to 45:1, preferably 1:1 to 4:1, especially preferably from 1.05:1 to 3:1, for example 1.1:1, 1.2:1, 1.5:1, 2:1, or 2.5:1. At these ratios the solubility of the solid salt components, such as detergent builder salts, bleach, alkali metal silicates, and the like, is substantially increased since the presence of the potassium (K+) ions requires less water of hydration than the sodium (Na+) ions, such that more water is available to dissolve these salt compounds. Therefore, all or nearly all of the normally solid components are present dissolved in the aqueous phase. Since there is none or only a very low percentage, i.e. less than 5~, preferably less than 3~ by weight, of suspended solids present in the formulation there i9 no or only reduced tendency for undissolved particles to settle out of the compositions causing, for example, formation of hard masses of particles, which could result in high bottle residues (i.e. 1099 of product). Furthermore, any undissolved solids tend to be present in extremely small particle sizes, usually colloidal or sub-colloidal, such as 1 micron or less, thereby further reducing the tendency for the undissolved particles to settle.
A still further attribute of the invention compositions contributing to the overall product stability and low bottle 2~69845 residue is the high water absorption capacity of the cross- -linked polyacrylic acid type thickening agent. As a result of this high water absorption capacity virtually all of the aqueous vehicle component is held tightly bound to the polymer ~atrix. Therefore, there is no or substantially no free water present in the invention compositions. This absence of free water (as well as the cohesiveness of the composition) is manifested by the observation that when the composition is poured from a bottle onto a piece of water absorbent filter paper virtually no water is absorbed onto the filter paper and, furthermore, the mass of the linear viscoelastic material poured onto the filter paper will retain its shape and structure until it i9 again subjected to a stress or strain.
As a result of the absence of unbound or free water, there is virtually no phase separatin between the aqueous phase and the polymeric matrix or dissolved solid particles. This characteristic is ~anifested by the fact that when the subject compositions are subjected to centrifugation, e.g. at 1000 rpm for 30 minutes, there is no phase separation and the composition remains homogeneous.
However, it has also been discovered that linear viscoelasticity and K/Na ratios in the above-mentioned range do not, by themselves, assure long term physical stability (as determinèd by phase separation). In order to maximize ;25 physical (phase) stability, the density of the composition should be controlled such that the bulk density of the liquid phage i9 approximately the same as the bulk density of the entire composition, including the polymeric thickening agent.
206984~
lhis control and equalization of the densities is achieved, according to the invention, by providing the composition with a bulk density of at least 1.28 g/cc, preferably at least 1.35 g/cc, up to 1.42 g/cc, preferably up to 1.40 g/cc.
~urthermore, to achieve these relatively high bulk densities, it is important to minimize the amount of air incorporated into the composition (a density of 1.42 g/cc is essentially equivalent to zero air content).
It has previously been found in connection with other types of thickened aqueous liquid, automatic dishwasher detergent compositions that incorporation of finely divided air bubbles in amounts up to 8 to 10% by volume can function effectively to stabilize the composition against phase separation, but that to prevent agglomeration of or escape of the air bubbles it was important to incorporate certain surface active ingredients, ecpecially higher fatty acids and the salts thereof, 9uch as stearic acid, behenic acid, palmitic acid, sodium stearate, aluminum stearate, and the like. These surface active agent~ apparently functioned by forming an interfacial film at the bubble surface while also forming hydrogen bonds or contributing to the electrostatic attraction with the suspended particles, such that the air bubbles and attracted particles formed agglomerates of approximately the same density as the density of the continuous liquid phase.
Therefore, in a preferred embodiment of the present invention, stabilization of air bubbles which may become incorporated into the compositions during normal processing, : ' '' 2Q6~845 such as during various mixing steps, is avoided by post-adding the surface active ingredients, including fatty acid or fatty acid salt stabilizer, to the remainder of the composition, under low shear conditions using mixing devices designed to ~inimize cavitation and vortex formation.
As will be described in greater detail below the surface active ingredients present in the composition will include the main detergent ~urface active cleaning agent, and will also preferably include anti-foaming agent and higher fatty acid or salt thereof as a physical stabilizer.
Exemplary of the cross-linked polyacrylic acid-type thickening agents are the products sold by ~.F. Goodrich under their Carbopol trademark, especially Carbopol 941, which is the most ion-insensitive of this class of polymers, and lS Carbopol 940 and Carbopol 934. The Carbopol resins, also known as "Carbomer", are hydrophilic high molecular weight, cros~-linked acrylic acid polymers having an average equivalent weight of 76, and the general structure illustrated by the following formula:
H H
H l ~
~25 HO O n.
Carbopol 941 has a molecular weight of 1,250,000; Carbopol 940 a molecular weight of approximately 4,000,000 and Carbopol 934 a molecular weight of approximately 3,000,000. The Carbopol resins are cross-linked with polyalkenyl polyether, e.g. 1~ of a polyallyl ether of sucrose having an average of , -206~8~
5.8 allyl groups for each molecule of sucrose. Further detailed information on the Carbopol resins is available from .F. Goodrich, see, for example, the B.F. Goodrich catalog GC-67, Carbopol~ Water Soluble Resins.
' ~ile most favorable results have been achieved with Carbopol 941 polyacrylic resin, other lightly cross-linked polyacrylic acid-type thickening agents can also be used in the compositions of this invention. As used herein "polyacrylic acid-type" refers to water-soluble homopolymers of acrylic acid or methacrylic acid or water-dispersible or water-soluble salts, esters or amides thereof, or water-soluble copolymers of these acids of their salts, esters or ameides with each other or with one or more other etylenically unsaturated monomers, such as, for example, styrene, maleic acid, maleic anhydride, 2-hydroxyethylacrylate, acrylonitrile, vinyl acetate, ethylene, propylene, and the like.
The homopolymers or copolymers are characterized by their high molecular weight, in the range of from 500,000 to 10,000,000, preferably 500,000 to 5,000,000, especially from 1,000,000 to 4,000,000, and by their water solubility, generally at least to an extent of up to 5~ by weight, or more, in water at 25C.
These thickening agents are used in their lightly cross-linked form wherein the cross-linking may be accomplished by means known in the polymer arts, as by irradiation, or, preferably, by the incorporation into the monomer mixture to be polymerized of known chemical cross-linking monomeric agents, typically polyunsaturated (e.g. diethylenically 2069~4~
unsaturated) monomers, such as, for example, divinylbenzene, divinylether of diethylene glycol, N, N~-methylene-bisacrylamide, polyalkenylpolyethers (such as described above), and the like. Typically, amounts of cross-linking agent to be incorporated in the final polymer may range from 0.01 to 1.5 percent, preferably from 0.05 to 1.2 percent, and especially, preferably from 0.1 to 0.9 percent, by weight of cros~-linking agent to weight of total polymer.
Generally, those skilled in the art will recognize that the degree of cross-linking should be sufficient to impart some coiling of the otherwise generally linear polymeric compound while maintaining the cross-linked polymer at least water dispersible and highly water-swellable in an ionic aqueous medium. It i9 also understood that the water-swelling of the polymer which provides the desired thickening and viscous properties generally depends on one or two mechanisms, namely, conversion of the acid group containing polymers to the corresponding salts, e.g. sodium, generating negative charges along the polymer backbone, thereby causing the coiled molecules to expand and thicken the aqueous solution; or by formation of hydrogen bonds, for example, between the carboxyl groups of the polymer and hydroxyl donor. The former ~` mechanism is especially important in the present invention, and therefore, the preferred polyacrylic acid-type thickening ~25 agents will`contain free carboxylic acid (COOH) groups along the polymer backbone. Also, it will be understood that the degree of cross-linking should not be so high as to render the cross-linked polymer completely insoluble or non-dispersible . -.. . .. .. .. .
.
2~698~
in water or inhibit or prevent the uncoiling of the polymer molecules in the presence of the ionic aqueous system.
The amount of the high molecular weight, cross-linked polyacrylic acid or other high molecular weight, hydrophilic ~ross-linked polyacrylic acid-type thickening agent to impart the desired rheological property of linear viscoelasticity will generally be in the range of from 0.1 to 2%, preferably from 0.2 to 1.4~, by weight, based on the weight of the composition, although the amount will depend on the particular cross-linking agent, ionic strength of the composition, hydroxyl donors and the like.
The compositions of this invention must include sufficient amount of potassium ions and sodium ions to provide a weight ratio of K/Na of at least 1:1, preferably from 1:1 to 45:1, especially from 1:1 to 3:1, more preferably from 1.05:1 to 3:1, such as 1.5:1, or 2:1. When the K/Na ratio is less than 1 there is insufficient solubility of the normally solid ingredients whereas when the K/Na ratio is more than 45, especially when it is greater than 3, the product becomes too liquid and phase separation begins to occur. When the K/Na ratio is more than 45, especially when it i9 greater than 3, the product becomes too liquid and phase separation begins to occur. When the K/Na ratios become much larger than 45, such as in all or mostly potassium formulation, the polymer thickener loses its absorption capacity and begins to salt out of the aqueous phase.
The potassium and sodium ions can be made present in the compositions as the alkali metal cation of the detergent 2~69~
builder salt(s), or alkali metal silicate or alkali metal hydroxide components of the compositions. The alkali metal cation may also be present in the compositions as a component of an ionic detergent, bleach or other ionizable salt compound ~dditive, e.g. alkali metal carbonate. In determining the K/Na weight ratios all of these sources should be taken into consideration.
Specific examples of detergent builder salts include the polyphosphates, such as alkali metal pyrophosphate, alkali metal tripolyphosphate, alkali metal metapho~phate, and the like, for example, sodium or potassium tripolyphosphate (hydrated or anhydrou~), tetrasodium or tetrapotassium pyrophosphate, sodium or potassium hexa-metaphosphate, trisodium or tripotassium orthophosphate and the like, sodium or potassium carbonate, sodium or potassium citrate, sodium or potassium nitrilotriacetate, and the like. The phosphate ~uilders, where not precluded due to local regulations, are preferred and mixtures of tetrapotassium pyrophosphate (TKPP) and sodium tripolyphosphate (NaTPP) (especially the hexahydrate) are especially preferred. Typical ratios of NaTPP to TKPP are from 2:1 to 1:8, especially from 1:1.1 to 1:6. The total amount of detergent builder salts is preferably from 5 to 35~ by weight, more preferably from 15 to 35~, especially from 18 to 30~ by weight of the composition.
Other useful low molecular weight noncrosslinked polymers are Acusol~640D provided by Rohm ~ Haas; Norasol QR1014 from Norsohaas having a GPC molecular weight of 10,000.
- , 2069~45 The linear viscoelastic compositions of this invention may, and preferably will, contain a small, but stabilizing effective amount of a long chain fatty acid or monovalent or polyvalent salt thereof. Although the manner by which the fatty acid or salt contributes to the rheology and stability of the composition has not been fully elucidated it is hypothesized that it may function as a hydrogen bonding agent or cross-linking agent for the polymeric thickener.
The preferred long chain fatty acids are the higher aliphatic fatty acids having from 8 to 22 carbon atoms, more preferably from 10 to 20 carbon atoms, and especially preferably from 12 to 18 carbon atoms, and especially preferably from 12 to 18 carbon atoms, inclusive of the carbon atom of the carboxyl group of the fatty acid. The aliphatic radical may be saturated or unsaturated and may be straight or branched. Straight chain saturated fatty acids are preferred. Mixtures of fatty acids may be used, such as those derived from natural sources, such as tallow fatty acid, coco fatty acid, soya fatty acid, mixtures of these acids, ~20 etc. Stearic acid and mixed fatty acids, e.g. stearic acid/palmitic acid, are preferred.
When the free acid form of the fatty acid is used directly it will generally associate with the potassium and sodium ions in the aqueous phase to form the corresponding alkali metal fatty acid soap. However, the fatty acid salts may be directly added to the composition as sodium salt or potassium salt, or as a polyvalent metal salt, although the 20698~
alkali metal salts of the fatty acids are preferred fatty acid salts.
The preferred polyvalent metals are the di- and tri-valent metals of Groups IIA, IIB and IIIB, such as magnesium, calcium, aluminum and zinc, although other polyvalent metals, including those of Groups IIIA, IVA, VA, IB, IVB, VB VIB, VIIB
and VIII of the Periodic Table of the Elements can also be used. Specific examples of such other polyvalent metals include Ti, Zr, V, Nb, Mn, Fe, Co, Ni, Cd, Sn, Sb, Bi, etc.
Generally, the metals may be present in the divalent to pentavalent state. Preferably the metal salts are used in their higher oxidation states. Naturally, for use in automatic dishwashers, as well as any other applications where the invention composition will or may come in contact with articles used for the handling, storage or serving of food products or which otherwise may come into contact with or be consumed by people or animals, the metal salt should be selected by takiny into consideration the toxicity of the metal. For this purpose, the alkali metal and calcium and magnesium salts are especially higher preferred as generally safe food additives.
The amount of the fatty acid or fatty acid salt stabilizer to achieve the desired enhancement of physical stability will depend on such factors as the nature of the fatty acid or its salt, the nature and amount of the thickening agent, detergent active compound, inorganic salts, other ingredients, as well as the anticipated storage and shipping conditions.
2~698~
Generally, however, amounts of the fatty acid or fatty acid salt stabilizing agents in the range of from 0.02 to 2~, preferably 0.04 to 1~, more preferably from 0.06 to 0.8%, especially preferably from 0.08 to 0.4~, provide a long term ~tability and absence of phase separation upon standing or during transport at both low and elevated temperatures as are required for a commercially acceptable product.
Depending on the amounts, proportions and types of fatty acid physical stabilizers and polyacrylic acid-type thickening agents, the addition of the fatty acid or salt not only increases physical stability but also provides a simultaneous increase in apparent viscosity. Amounts of fatty acid or salt to polymeric thickening agent in the range of from 0.08-0.4 weight percent fatty acid salt and from 0.4-1.5 weight percent polymeric thickening agent are usually sufficient to provide these simultaneous benefits and, therefore, the use of these ingredients in these amounts is most preferred.
In order to achieve the desired benefit from the fatty acid or fatty acid salt stabilizer, without stabilization of excess incorporated air bubbles and consequent excessive lowering of the product bulk density, the fatty acid or salt should be post-added to the formulation, preferably together with the other surface active ingredients, including detergent active compound and anti-foaming agent, when present. These surface active ingredients are preferably added as an emulsion in water wherein the emulsified oily or fatty materials are finely and homogeneously dispersed throughout the aqueous phase. To achieve the desired fine emulsification of the 2069~4~
fatty acld or fatty acid salt and other surface active ingredients, it i9 usually neces~ary to heat the emulsion (or preheat the water) to an elevated temperature near the melting temperature of the fatty acid or its salt. For example, for ~tearic acid having a melting point of 68C-69C, a temperature in the range of between 50C and 70C will be used. For lauric acid (m.p.=47C) an elevated temperature of 35C to 50C can be used. Apparently, at these elevated temperatures the fatty acid or salt and other surface active ingredients can be more readily and uniformly dispersed (emulsified) in the form of fine dropléts throughout the composition.
In contrast, as will be shown in the examples which follow, if the fatty acid i9 simply post-added at ambient temperature, the composition is not linear viscoelastic as defined above and the stability of the composition i8 clearly inferior.
Foam inhibition is important to increase dishwasher machine efficiency and minimize destabilizing effects which might occur due to the presence of excess foam within the washer during use. Foam may be reduce by suitable selection of the type and/or amount of detergent active material, the main foam-producing component. The degree of foam is also somewhat dependent on the hardness of the wash water in the machine whereby suitable adjustment of the proportions of the builder salts such as NaTPP which has a water softening effect, may aid in providing a degree of foam inhibition.
However, it is generally preferred to include a chlorine ' .
~ " .
2Q698~5 bleach stable foam depressant or inhibitor. Particularly effective are the alkyl phosphoric acid esters of the formula S ~0 I~R
and especially the alkyl acid phosphate e~ters of the formula ll HO-P-OR
OR
In the above formulas, one or both R groups in each type of ester may represent independently a C12-C20 alkyl or ethoxylated alkyl group. The ethoxylated derivatives of each type of ester, for example, the condensation products of one mole of ester with from 1 to 10 moles, preferably 2 to 6 moles, more preferably 3 or 4 moles, ethylene oxide can also be used.
Some examples of the foregoing are commercially available, ~uch as the products SAP from Hooker and LPKN-158 from Knapsack. Mixtures of the two types, or any other chlorine bleach stable types, or mixtures of mono- and di-esters of the ~ame type, may be employed. Especially preferred is a mixture of mono- and di-CI6-Cl8 alkyl acid phosphate esters such as monostearyl/distearyl acid phosphates 1.2/1, and the 3 to 4 ~30 mole ethylene oxide condensates thereof. When employed, proportions of 0.05 to 1.5 weight percent, preferably 0.1 to 0.5 weight percent, of foam depressant in the composition is typical, the weight ratio of detergent active component (d) to foam depressant (e) generally ranging from 10:1 to 1:1 and ~35 preferably 5:1 to 1:1. Other defoamers which may be u~ed ..
" `'~ ' ~
20~9845 include, for example, the known silicones, such as available from Dow Chemicals. In addition, it i9 an advantageoùs feature of this invention that many of the stabilizing salts, such as the stearate salts, for example, aluminum stearate, ~hen included, are also effective as foam killers.
Although any chlorine bleach compound may be employed in the compositions of this invention, such as dichloro-isocyanurate, dichloro-dimethyl hydantoin, or chlorinated TSP, alkali metal or alkaline earth metal, e.g. potassium, lithium, magnesium and especially sodium, hypochlorite is preferred.
The composition should contain sufficient amount of chlorine bleach compound to provide 0.2 to 4.0~ by weight of available chlorine, as detenmined, for example by acidification of 100 parts of the composition with excess hydrochloric acid. A
solution containing 0.2 to 4.0% by weight of sodium hypochlorite contains or provides roughly the same percentage of available chlorine. 0.8 to 1.6~ by weight of available chlorine is especially preferred. For example, sodium hypochlorite (NaOCL) solution of from 11 to 13~ available chlorine in amounts of 3 to 20~, preferably 7 to 12~, can be advantageously used.
Detergent active material useful herein should be stable in the presence of chlorine bleach, especially hypochlorite bleach, and for this purpose those of the organic anionic, amine oxide, phosphine oxide, sulphoxide or betaine water dispersible surfactant types are preferred, the first mentioned anionics being most preferred. Particularly preferred surfactants herein are the linear or branched alkali 206984~
metal mono- and/or di-(C8-C,4) alkyl diphenyl oxide mono- and/or di-sulphates, commercially available for example as DOWFAX
(regi~tered trademark) 3B-2 and DOWFAX 2A-1. In addition, the surfactant should be compatible with the other ingredients of the composition. Other suitable organic anionic, non-soap surfactants include the primary alkylsulphates, alkylsulphonates, alkylarylsulphonates and sec.-alkylsulphates. Examples include sodium ClO-C~8 alkylsulphates such as sodium dodecylsulphate and sodium tallow alcoholsulphate; sodium C~O-Cl8 alkanesulphonates such as sodium hexadecyl-1-sulphonate and sodium Cl2-C~8 alkylbenzenesulphonates such as sodium dodecylbenzenesylphonates. The corresponding potassium salts may also be employed.
As other suitable surfactants or detergents, the amine oxide surfactants are typically of the structure R2RINO, in which each R represents a lower alkyl group, for instance, methyl, and Rl represents a long chain alkyl group ha~ing from 8 to 2a carbon atoms, for instance a lauryl, myristyl, palmityl or cetyl group. Instead of an amine oxide, a corresponding surfactant phosphine oxide R2RIPO or sulphoxide RRISO can be employed. Betaine surfactants are typically of the structure R2RIN+R~COO-, in which each R represents a lower alkylene group having from 1 to 5 carbon atoms. Specific ~25 examples of these surfactants include lauryl-dimethylamine oxide, myristyl-dimethylamine oxide, myristyl-dimethylamine oxide, the corresponding phosphine oxides and sulphoxides, and the corresponding betaines, including dodecyldimethylammonium 20698~5 acetate, tetradecyldiethylammonium pentanoate, hexadecyldimethylammonium hexanoate and the like. For biodegradability, the alkyl groups in these surfactants should be linear, and such compounds are preferred.
i Surfactants of the foregoing type, all well known in the art, are described, for example, in U.S. Patents 3,985,668 and 4,271,030. If chlorine bleach is not used than any of the well known low-foaming nonionic surfactants such as alkoxylated fatty alcohols, e.g. mixed ethylene oxide-propylene oxide condensates of C8-C22 fatty alcohols can also be used.
The chlorine bleach stable, wa~er dispersible organic detergent-active material (surfactant) will normally be present in the composition in minor amounts, generally 1% by weight of the composition in minor amounts, generally 1% by weight of the composition, although smaller or larger amounts, such as up to 5~, such as from 0.1 to 5~, preferably form 0.3 or 0.4 to 2~ by weight of the composition~ may be used.
Alkali metal (e.g. potas~ium or sodium) silicate, which provide~ alkalinity and protection of hard surfaces, such as flne china glaze and pattern, i9 generally employed in an amount ranging from 5 to 20 weight percent, preferably 5 to 15 weight percent, more preferably 8 to 12~ in the composition. The sodium or potassium silicate is generally 25~ added in the form of an aqueous solution, preferably having Na2O:SiO2 or K2O:SiO2 ratio of I:1.3 to 1:2.8, especially preferably 1:2.0 to 1:2.6. At this point, it should be mentioned that many of the other components of this .
..
, 206984~
composition, e~pecially alkali metal hydroxide and bleach, are also often added in the form of a preliminary prepared aqueous dispersion or solution.
In addition to the detergent active surfactant, foam lnhibitor, alkali metal silicate corrosion inhibitor, and detergent builder salts, which all contribute to the cleaning performance, it is also known that the effectiveness of the liquid automatic dishwasher detergent compositions is related to the alkalinity, and particularly to moderate to high alkalinity levels. Accordingly, the compositions of this invention will have pH value~ of at least 9.5, preferably at least 11 to as high as 14, generally up to 13 or more, and, when added to the aqueous wash bath at a typical concentration level of 10 grams per liter, will provide a pH in the wash bath of at least 9, preferably at least 10, such as 10.5, 11, 11.5 or 12 or more.
The alkalinity will be achieved, in part by the alkali metal ions contributed by the alkali metal detergent builder salts, e.g. sodium tripolyphosphate, tetrapotassium pyrophosphate, and alkali metal silicate, however, it is usually necessary to include alkali metal hydroxide, e.g. NaOH
or KOH, to achieve the desired high alkalinity. Amounts of alkali metal hydroxide in the range of (on an active basis) of from 0.5 to 8%, preferably from 1 to 6%, more preferably from 1.2 to 4~, by weight of the composition will be sufficient to achieve the desired pH level and/or to adjust the K/Na weight ratio.
20698g5 Other alkali metal salts, such as alkali metal carbonate may also be present in the compositions in minor amounts, for example from O to 4~, preferably O to 2~, by weight of the composition.
' Other conventional ingredients may be included in these compositions in small amounts, generally le~s than 3 weight percent, nuch as perfume, hydrotropic agents such as the sodium benzene, toluene, xylene and cumene sulphonates, preservatives, dyestuffs and pigments and the like, all of course being stable to chlorine bleach compound and high alkalinity. Especially preferred for coloring are the chlorinated phythalocyanines and polysuphides of aluminosilicate which provide, respectively, pleasing green and blue tints. TiO2 may be employed for whitening or neutralizing off-shades.
Although for the reasons previously discussed excessive air bubbles are not often desirable in the invention compositions, depending on the amounts of dissolved solids and liquid phase densities, incorporation of small amounts of finely divided air bubbles, generally up to 10~ by volume, preferably up to 4~ by volume, more preferably up to 2~ by volume, can be incorporated to adjust the bulk density to approximate liquid phase density. The incorporated air bubbles should be finely divided, such as up to 100 microns ~25 in diameter, preferably from 20 to 40 microns in diameter, to assure maximum stability. Although air is the preferred gaseous medium for adjusting densities to improve physical ;', ' 206984~
stability of the composition other inert gases can also be used, such as nitrogen, carbon dioxide, helium, oxygen, etc.
The amount of water contained in these compositions should, of course, be neither so high as to produce unduly low ~isco~3ity and fluidity, nor so low as to produce unduly high viscosity and low flowability, linear viscoelastic properties in either case being diminished or destroyed by increasing tan 1. Such amount i~ readily determined by routine experimentation in any particular instance, generally ranging from 30 to 75 weight percent, preferably 35 to 65 weight percent. The water should also be preferably deionized or softened.
The manner of formulating the invention compositions is also important. As discussed above, the order of mixing the }5 ingredients as well as the manner in which the the mixing is performed will generally have a significant effect on the properties of the composition, and in particular on product density (by incorporation and stabilization of more or less air) and physical stability (e.g. phase separation). Thus, according to the preferred practice of this invention the compositions are prepared by first forming a dispersion of the polyacrylic acid-type thickener in water under moderate to high shear conditions, neutralizing the dissolved polymer to cause gelation, and then introducing, while continuing mixing, ~25 the detergent builder salts, alkali metal dilicates, chlorine bleach compound and remaining detergent additives, including any previously unused alkali metal hydroxide, if any, other than the surface-active compounds. All of the additional ingredients can be added simultaneously or sequentially.
Preferably, the ingredients are added sequentially, although it is not necessary to complete the addition of one ingredient before beginning to add the next ingredient. Furthermore, one ~r more of these ingredients can be divided into portions and added at different times. These mixing steps should also be performed under moderate to high shear rates to achieve complete and uniform mixing. These mixing steps may ~e carried out at room temperature, although the polymer thickener neutralization (gelation) is usually exothermic.
The composition may be allowed to age, if necessary, to cause dissolved or dispersed air to dissipate out of the composition.
The remaining surface active ingredients, including the anti-foaming agent, organic detergent compound, and fatty acid or fatty acid salt stabilizer is post-added to the previously formed mixture in the form of an aqueous emulsion (using from 1 to 10~, preferably from 2 to 4~ of the total water added to the composition other than water added as carrier for other ingredients or water of hydration) which is pre-heated to a temperature in the range of from Tm+5 to Tm-20, preferably from Tm to TM-10, where Tm is the melting point temperature of the fatty acid or fatty acid salt. For the preferred stearic acid stabilizer the heating temperature is in the range of 50C to 70C. However, if care is taken to avoid excessive air bubble incorporation during the gelatin step or during the mixing of the detergent builder salts and other additives, for example, by operating under vacuum, or using 206984~i low shearing conditions, or special mixing operatatus, etc., the order of addition of the surface active ingredients should be less important.
In accordance with an especially preferred emkodiment, the thickened linear viscoelastic aqueous automatic dishwasher detergent composition of this invention includes, on a weight basis:
(a) 10 to 35~, preferably 15 to 30~, alkali metal polyphosphate detergent builder;
(b) 5 to 15, preferably 8 to 12%, alkali metal silicate;
(c) 1 to 6~, preferably 1.2 to 4~, alkali metal hydroxide;
(d) 0.1 to 3%, preferably 0.5 to 2~, chlorine bleach stable, water-dispersible, low-foaming organic detergent active material, preferably non-soap anionic detergent;
(e) 0.05 to 1.5~, preferably 0.1 to 0.5~, chlorine bleach stable foam depressant;
(f) chlorine bleach compound in an amount to provide 0.2 to 4~, preferably 0.8 to 1.6%, of available chlorine;
(g) high molecular weight hydrophilic cross-linked polyacrylic acid thickening agent in an amount to provide a linear viscoelasticity to the formulation, preferably from 0.4 to 1.5%, more preferably from 0.4 to 1.0%;
(h) a long chain fatty acid or a metal salt of a long chain fatty acid in an amount effective to increase the : physical stability of the compositions, preferably from 0.08 to 0.4%, more preferably from 0.1 to 0.3%; and 20698~
(i) balance water, preferably from 30 to 75%, more preferably from 35 to 65~; and wherein in (a) the alkali metal polyphosphate includes a mixture of from 5 to 30~, preferably from 12 to 22~ of tetrapotassium pyrophosphate, and from 0 to 20~, preferably from 3 to 18~ of sodium tripolyphosphate, and wherein in the entire composition the ratio, by weight, of potassium ions to sodium ions is from 1.05/1 to 3/1, preferably from 1.1/1 to 2.5/1, the compositions having an amount of air incorporated therein such that the bulk density of the composition is from 1.32 to 1.42 g/cc, preferably from 1.35 to 1.40 g/cc.
The compositions will be supplied to the consumer in suitable dispenser containers preferably formed of molded plastic, especially polyolefin plastic, and most preferably polyethylene, for which the invention compositions appear to have particularly favorable slip characteristics. In addition to their linear viscoelastic character, the compositions of this invention may also be characterized as pseudoplastic gels (non-thixotropic) which are typically near the borderline between liquid and solid viscoelastic gel, depending, for example, on the amount of the polymeric thickener. The invention compositions can be readily poured from their containers without any shaking or squeezing, although squeezable containers are often convenient and accepted by the consumer for gel-like products.
The liquid aqueous linear viscoelastic automatic dishwasher compositions of this invention are readily employed in known manner for washing dishes, other kitchen utensils and 20698~5 the like in an automatic dishwasher, provided with a suitable detergent dispenser, in an aqueous wash bath containing an effective amount of the composition, generally sufficient to fill or partially fill the automatic dispenser cup of the ~articular machine being used.
The invention also provides a method for cleaning dishware in an automatic dishwashing machine with an aqueous wash bath containing an effective amount of the liquid linear viscoelastic automatic dishwasher detergent composition as described above. The composition can be readily poured from the polyethylene container with little or no squeezing or shaking into the dispensing cup of the automatic dishwashing machine and will be sufficiently viscous and cohesive to remain securely within the dispensing cup until shear forces are again applied thereto, such as by the water spray from the dishwashing machine.
The invention may be put into practice in various ways and a number of specific embodiments will be described to illustrate the invention with reference to the accompanying ex&~ples.
All the amounts and proportions referred to herein are by weight of the composition unless otherwise indicated.
Example 1 The following formulations A-K were prepared as described below:
~ .
2069~5 1 ~ ~
~ In ~ ~ U~ l ~ ~1 ~ . l a~
1~ m N _ N . N , ~ ~1 O ~` N , ~
_ _ _ _ _ . O
;¦ l d~ l l N m .
~; , . , Ul rf) ~1 , . . N
H m ,N , ~,, N ,~) ~1 ~1 r r~ , _ _ _ _ _ _ _ . o 1:l O~ l ~r l l N ~_1 Il) . l ~; . l . ~ l l q~ . . . ~ l 1-') ~: m O _ (~, N _ ~ ~1 O t` A _ . ~d' , , , N -1 Lt~ O
v m ON , N , N , ~ ~1 O ~` N
_ _ __ _ ___ . O U~
~! l In l O Il~ ~` l l ~ ~ N l ~
~ m l ~ l N ~` ~1 l l rt l a~ A l ~1 _ _ _ __ _ _ _ 11 . O U~
~3 IJ~~ O 11~C` , l , ~1 N, 0~
~4~ ~~_ N ~ ~1 _ ~1 _ V _ ~1 O 1~1~1 l N ~1 ~ Nl a~
ON_ N N ~ ~1 O V _ ~i . ~~ l l N ~1 Il) O
,,l In N .1 l . . . N
ua _ O N _ '1 N ') ~ O V _ ~1 . ~ er l l N ,_1 Il~ O ~`
. . l Irl ~) ~1 l . . N .
m a~ O N l ~ ~ N l ~ ~1 O ~` V O rl . (~ ~ l l N ~1 15~ O
~: m O _ _ _ ,, N _ _ _ O r V _ _ 1 ~
20698~5 1~ ~r~ ~
O O .
. r~ . . ~ 0 ~ ~ ~ O O
H l i4 O O .C~
~ o o ~ a O
l ~ O O L~ X ~
--_~1 A A O IJ
~ ~1 .~ o o o~
_ - ~ V
l o o l ~1 ~1 '~ ~I tJ) ~1 1~ _ A A ,_~ $ 0,~ a) _ ri _ A A ~1 t/l ~
_ b- o o v~
. .,1 . . ~ ~1 0 ~
~ ~1 ~4 O O ~ U
_ ~ ~av~
~Jl O O ~ V~
U . O O .~ V~
_ av) ~ ~ ~0 o c~ m ~ ,vd v~ N
m ,1 _ O O qO ~
_ rl ~ ~ ~ ~ V
.~ O O ~ rO~ P~ o ~
,~c ~ o o ~ v~ ~ $~ ~
_ _ _ o ~ S~ ~ h ~ O~
~ ~ E~ ~ gtO~O~
O H i~ H U ~ 3 ~ ~Q
~i3 ~ ~o~o~
_ ~ ~ a~ rl~ ...
~I N ~
20698~5 Formulation~ A, B, C, D, E, G, J, and K are prepared by first forming a uniform dispersion of the Carbopol 941 or 940 thickener in 97~ of the water (balance). The Carbopol is slowly added to deionized water at room temperature using a ~ixer equipped with a premier blade, with agitation set at a medium shear rate, as recommended by the manufacturer. The dispersion is then neutralized by addition, under mixing, of the caustic soda (50% NaOH or KOH) component to form a thickened product of gel-like consistency.
To the resulting gelled dispersion the silicate, tetrapotassium pyrophosphate (TKPP), sodium tripolyphosphate TP(TPP, Na) and bleach, are added sequentially, in the order stated, with the mixing continued at medium shear.
Separately, an emulsion of the phosphate anti-foaming agent (LPKN), stearic acid/palmitic acid mixture and detergent (Dowfax 3B2) is prepared by adding these ingredients to the remaining 3% of water (balance) and heating the resulting mixture to a temperature in the range of 50C to 70C.
This heated emulsion is then added to the previously prepared gelled dispersion under low shear conditions, such that a vortex is not formed.
The remaining formulations F, H and I are prepared in essentially the same manner a~ described above except that the heated emulsion of ~PKN, stearic acid and Dowfax 382 i9 directly added to the neutralized Carbopol dispersion prior to the addition of the remaining ingredients. As a result, formulations F, H and I, have higher levels of incorporated air and densities below 1.30 g/cc.
20698~
The rheograms for the formulations A, C, D, G and J are shown in figure~ 1-5, respectively, and rheograms for formulations H, I and K are shown in figures 6, 7 and 8 respectively.
' These rheograms are obtained with the System 4 Rheometer from Rheometrics equipped with a Fluid Servo with a 100 grams-centimeter torque transducer and a 50 millimeter parallel plate geometry having an 0.8 millimeter gap between plates.
All measurements are made at room temperature (25C+1C) in a humidity chamber after a 5 minute or 10 minute holding period of the sample in the gap. The measurements are made by applying a frequency of 10 radians per second.
All of the composition formulations A, ~, C, D, G and J
according to the preferred embodiment of the invention which include Carbopol 941 and stearic acid exhibit linear viscoelasticity as seen from the rheograms of figure 1-5.
Formulation E which includes Carbopol 941 but not ~tearic acid showed no phase separation at either room temperature or 100F
after 3 weeks, but exhibited 10~ phase separation after 8 weeks at room temperature and after only 6 weeks at 100F.
Formulation K, containing Carbopol 940 in place of Carbopol 941, as seen from the rheogram in figure 8, exhibits substantial linearity over the strain range of from 2% to 50~
(G' at 1~ strain-G' at 50~ strain 500 dynes/sq.cm.) although tan ~ at a strain above 50~.
Example 2 .
206g8~
This example demonstrates the importance of the order of addition of the ~urface active component premix to the remainder of the composition on product density and stability.
The following formulations are prepared by methods A and ~:
Ingredient Water, deionized Balance Carbopol 941 0.5 NaOH (50~) 2.4 Na Silicate (47.5%) 21 TPP, Na 13 Bleach (1~) 7.5 ~PKN O.16 Stearic Acid 0.1 Dowfax 3B2 Method A:
The Carbopol 941 is dispersed, under medium shear rate, using a premier blade mixer, in deionized water at ambient temperature. The NaOH is added, under mixing, to neutralize and gel the Carbopol 941 dispersion. To the thickened mixture the following ingredients are added sequentially while the stir~ing is continued: sodium silicate, TKPP, TPP, and bleach.
Separately, an emulsion is prepared by adding the Dowfax 3B2, stearic acid and LPKN to water while mixing at moderate shear and heating the mixture to 65C to finely disperse the emulsified surface active ingredients in the water phase.
This emulsion premix is then slowly added to the Carbopol dispersion while mixing under low shear conditions without forming a vortex. The results are shown below.
Method B:
Method A is repeated except that the heated emulsion premix i9 added to the neutralized Carbopol 941 dispersion before the sodium stearate, TKPP, TPP, and bleach. The results are also shown below.
i Method A Method B
Density (g/cc) 1.38 1.30 Stability (RT-8 weeks) 0.00~ 7.00~
Rheogram Fig. 9 Fig.10 From the rheograms of figures 9 and 10 it is seen that both products are linear viscoelastic although the elastic and viscous moduli G~ and G~ are higher for Method A than for Method B.
From the results it is seen that early addition of the surface active ingredients to the Carbopol gel significantly increases the degree of aeration and lowers the bulk density of the final product. Since the bulk density i9 lower than the density of the continuous liquid phase, the liquid phase undergoes inverse separation (a clear liquid phase forms on the bottom of the composition). This process of inverse separation appears to be kinetically controlled and will occur faster as the density of the product becomes lower.
; Example 3 This example shows the importance of the temperature at which the premixed surfactant emulsion is prepared.
Two formulations, L and M, having the same composition as in Example 2 except that the amount of stearic acid was increased from 0.1~ to 0.2~ are prepared as shown in Method A
2069~45 for formulation L and by the following Method C for formulation M.
Method C
The procedure of Method A i9 repeated in all details 'except that emulsion premix of the surface active ingredients is prepared at room temperature and i9 not heated before being post-added to the thickened Carbopol dispersion containing silicate, builders and bleach. The rheograms for formulations L and M are shown in figures 11 and 12, respectively. From these rheograms it is seen that formulation ~ is linear viscoelastic in both G' and G" whereas formulation M is non-linear viscoelastic particularly for elastic modulus G' (G' at 1% strain-G' at 30% strain > 500 dynes/cm2) and also for G" (G"
at 1% strain-G" at 30~ strain 300 dyne9/cm2).
Formulation L remains stable after storage at RT and 100F
for at lea8t 6 weeks whereas formulation M undergoes phase ~eparation.
ComE~arative Example 1 The following formulation is prepared without any potassium salts:
Weight ~ater ~alance Carbopol 941 0.2 NaOH (50%) 2.4 TPP, Na (50~) 21.0 Na Silicate (47.5~) 17.24 13leach (1~) 7.13 Stearic Acid 0.1 LPKN (59c) 3.2 Dowfax 3~32 0.8 Soda Ash 5.0 Acrysol ~W 45-N 2.0 ,~ , .. . .
The procedure used is analogous to Method A of Example 2 with the soda ash and Acrysol LMW 45-N (low molecular weight polyacrylate polymer) being added before and after, respectively, the silicate, TPP and bleach, to the thickened ~arbopol 941 dispersion, followed by addition to the heated surface active emulsion premix. The rheogram is shown in figure 13 and is non-linear with G~/G~ (tan~ ) > 1 over the range of strain of from 5~ to 80%.
Example 4 Formulations A, ~, C, D and K according to this invention and comparative formulations F and a commercial liquid automatic dishwasher detergent product as shown in Table 1 above were subjected to a bottle residue test using a standard polyethylene 28 ounce bottle as used for current commercial liquid dishwasher detergent bottle.
Six bottles are filled with the respective samples and the product is dispensed, with a minimum of force, in 80 gram dosages, with a 2 minute rest period between dosages, until flow stops. At this point, the bottle was vigorously shaken to try to expel additional product.
The amount of product remaining in the bottle is measured as a percentage of the total product originally filled in the bottle. The results are shown below.
2~6~845 Bottle Residue Formulation Residue D S
F* 4 Commercial Product 20 *The sample separates upon aging Example V
The following formulas (A - K ) were prepared according to the following procedure:
AB C D E
Carbopol 614 1.0 1.0 1.0 0.75 0.75 NlOHi O. 5 ~ ~ ~ ~77 A um na 0.2 1.6 0.5 1.5 ¦
(Dispal T23 ) Water~ ~1:~ 98 . 375 ~7~7 ;~ Figure Nos.14,15 16,17 18,19 . 20,21 ~ 22,23 -5 : : = = ~ = =
'~
:
.
~0698~5 F G H I J K
Carbopol 614 0.5 0.5 0.5 1.0 0.75 0.5 1¦
NaOH 0.25 0.25 0.25 0.5 0.375 0.25 ¦¦
Stearic Acid .- . .
Alum1na O.5 2.0 1.O 1.O 2.5 O.5 (Dispal T23) Water 98.75 97.25 98.25 ~97.5 96.375 Figure Nos. 24,25 26,27 28,29 30,31 32 ===== = . ~
2~6984~
The Carbopol polymer was added to water at 75 - 80C with mixing. To the solution of the Carbopol polymer and water was added with mixing the sodium hydroxide to neutralize the Carbopol polymer so that the solution has a pH of 7 to 10.
~he dispersion of the alumina (Dispol T23) was added with mixing to the solution of water and neutralized Carbopol polymer to form formulas (A - K ). The polymer solutions were tested on the System 4 Rheometer as in Example 1. The Brookfield viscosities were run at room temperature using a #4 spindle at 20 rpms. Rheograms ( Figure 14-24) depict the G/ and G for formulas A-K, wherein for each formula a plot of G/ and G is illustrated.
Claims (11)
1. A polymeric composition which comprises:
(a) 0.5 to 14 weight percent of a polymeric complex which comprises an alkali metal neutralized anionic polymer having a molecular weight of 100,000 to 10,000,000 wherein said anionic polymer is complexed with a structuring agent, a weight ratio of said alkali metal neutralized anionic polymer to said structuring agent being 1:10 to 10:1; and (b) water, wherein the polymeric composition has a Brookfield viscosity measured with a #6 spindle at room temperature and 20 rpms of 700 cps to 27,000 cps.
(a) 0.5 to 14 weight percent of a polymeric complex which comprises an alkali metal neutralized anionic polymer having a molecular weight of 100,000 to 10,000,000 wherein said anionic polymer is complexed with a structuring agent, a weight ratio of said alkali metal neutralized anionic polymer to said structuring agent being 1:10 to 10:1; and (b) water, wherein the polymeric composition has a Brookfield viscosity measured with a #6 spindle at room temperature and 20 rpms of 700 cps to 27,000 cps.
2. The polymeric composition of Claim 1 wherein said structuring agent metal oxide compound is an amphoteric metal compound having a particle size of 0.5 to 40 microns.
3. The composition of Claim 2, wherein said anionic polymer has an anionic group selected from the group consisting of alkali metal neutralized carboxylic groups and alkali metal neutralized sulfonated groups and said structuring agent is an aluminum oxide.
4. The composition of Claim 3, wherein said anionic polymer is an alkali metal neutralized polyacrylic acid polymer.
5. The composition of Claim 4, wherein said alkali metal neutralized polyacrylic acid polymer is crosslinked.
6. The composition of Claim 1, wherein said structuring agent is a mixture of Mgo/aluminum oxide.
7. The composition of Claim 1, further including at least one additive selected from the group consisting essentially of at least on an alkali metal detergent builder salt, a surface active compound, a foam depressant, a chlorine containing compound and an alkali metal silicate and mixtures thereof.
8. The composition of Claim 1 further including at least one additive selected from the group consisting of a polishing agent, a bodying or gelling agent, a humectant, a flavoring agent, and an anti-calculus agent.
9. The composition of Claim 1 further including 0.1 to
10 weight percent of an electrolyte.
10. A polymeric solution having a complex viscosity at room temperature at 10 radians/second of 2 to 800 dynes seconds/sq.cm. which comprises:
(a) 0.1 to 4.0 weight precent of an alkali metal neutralized anionic polymer;
(b) 0.1 to 4.0 weight percent of a structuring agent;
and (c) water, wherein said polymeric solution has a G/ value of at least 80 dynes/sq. cm at a frequency of 10 radians/second and a G of at least 10 dynes/sq. cm at a frequency of 10 radians/second and a ratio of G/G is less than 1 and G/ is substantially constant at frequency of between 0.01 to 50.0 radians/second.
10. A polymeric solution having a complex viscosity at room temperature at 10 radians/second of 2 to 800 dynes seconds/sq.cm. which comprises:
(a) 0.1 to 4.0 weight precent of an alkali metal neutralized anionic polymer;
(b) 0.1 to 4.0 weight percent of a structuring agent;
and (c) water, wherein said polymeric solution has a G/ value of at least 80 dynes/sq. cm at a frequency of 10 radians/second and a G of at least 10 dynes/sq. cm at a frequency of 10 radians/second and a ratio of G/G is less than 1 and G/ is substantially constant at frequency of between 0.01 to 50.0 radians/second.
11. A viscoelastic gel composition having a G/ of at least 80 dynes/sq. cm. at a frequency of 10 radians/second, a G of at least 10 dynes/sq. cm at a frequency of 10 radians/second, a ratio of G*/G' is less than 1, G' is substantially constant at a frequency between 0.01 to 50.0 radians/second and a yield stress of at least 2 to 1200 dynes/cm2 which comprises:
(a) a suspension medium comprising:
(1) 0.1 to 4.0 weight % of an alkali metal neutralized anionic polymer;
(2) 0.01 to 4.0 weight percent of a structuring agent ;
and (3) water; and (b) a plurality of solid or liquid particles being suspended in said suspension medium such that said solid particles do not settle from said suspension medium with a period of seven days.
(a) a suspension medium comprising:
(1) 0.1 to 4.0 weight % of an alkali metal neutralized anionic polymer;
(2) 0.01 to 4.0 weight percent of a structuring agent ;
and (3) water; and (b) a plurality of solid or liquid particles being suspended in said suspension medium such that said solid particles do not settle from said suspension medium with a period of seven days.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78957491A | 1991-11-08 | 1991-11-08 | |
US7/789,574 | 1991-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2069845A1 true CA2069845A1 (en) | 1993-05-09 |
Family
ID=25148037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002069845A Abandoned CA2069845A1 (en) | 1991-11-08 | 1992-05-28 | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0541204A1 (en) |
AU (1) | AU662904B2 (en) |
CA (1) | CA2069845A1 (en) |
FI (1) | FI922510A (en) |
NO (1) | NO922066L (en) |
NZ (1) | NZ242845A (en) |
PT (1) | PT100544A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT101284A (en) * | 1992-06-08 | 1994-12-30 | Colgate Palmolive Co | Aqueous polymeric viscose agent and polymeric solution containing the said agent |
US8093200B2 (en) | 2007-02-15 | 2012-01-10 | Ecolab Usa Inc. | Fast dissolving solid detergent |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2134695A1 (en) * | 1971-07-12 | 1973-01-25 | Henkel & Cie Gmbh | Granular polymer complex builder compsns - contg hydrophobic silica to reduce hygroscopicity used in detergents as was |
DE3522029A1 (en) * | 1985-06-20 | 1987-01-02 | Degussa | DETERGENT COBUILDER MIX |
EP0295093B1 (en) * | 1987-06-12 | 1991-06-05 | Unilever Plc | Liquid machine dishwashing composition |
US5232621A (en) * | 1987-09-29 | 1993-08-03 | Colgate-Palmolive Company | Linear viscoelastic gel compositions |
US4970016A (en) * | 1987-09-29 | 1990-11-13 | Colgate-Palmolive Co. | Thixotropic aqueous liquid automatic dishwashing detergent composition |
US5219486A (en) * | 1987-09-29 | 1993-06-15 | Colgate Palmolive Company | Linear visoelastic aqueous liquid automatic dishwasher detergent composition |
CA1321115C (en) * | 1987-12-30 | 1993-08-10 | Robert Corring | Gel detergent compositions |
-
1992
- 1992-05-13 AU AU16256/92A patent/AU662904B2/en not_active Ceased
- 1992-05-20 NZ NZ242845A patent/NZ242845A/en unknown
- 1992-05-25 NO NO92922066A patent/NO922066L/en unknown
- 1992-05-28 CA CA002069845A patent/CA2069845A1/en not_active Abandoned
- 1992-05-29 FI FI922510A patent/FI922510A/en not_active Application Discontinuation
- 1992-05-29 PT PT100544A patent/PT100544A/en not_active Application Discontinuation
- 1992-05-29 EP EP92304893A patent/EP0541204A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
PT100544A (en) | 1993-10-29 |
NO922066L (en) | 1993-05-10 |
AU1625692A (en) | 1993-05-13 |
AU662904B2 (en) | 1995-09-21 |
NZ242845A (en) | 1993-07-27 |
FI922510A (en) | 1993-05-14 |
EP0541204A1 (en) | 1993-05-12 |
FI922510A0 (en) | 1992-05-29 |
NO922066D0 (en) | 1992-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5252242A (en) | Linear visoelastic aqueous liquid detergent composition, especially for automatic dishwashers, of improved high temperature stability | |
US5053158A (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition | |
US5209863A (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition having improved anti-filming properties | |
AU663496B2 (en) | Polymeric solutions and viscoelastic gels | |
EP0541203A1 (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition | |
US5368766A (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition | |
US5202046A (en) | Process for preparing a linear viscoelastic aqueous liquid automatic dishwasher deteregent composition | |
EP0560615A1 (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition | |
AU662904B2 (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition | |
EP0517314A1 (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition | |
AU653809B2 (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition | |
EP0517311A1 (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition | |
EP0517313A1 (en) | Linear viscoelastic aqueous liquid detergent composition, especially for automatic dishwashers, of improved high temperature stability | |
AU662137B2 (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition | |
AU654008B2 (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition | |
EP0517308A1 (en) | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition | |
IE921742A1 (en) | Linear viscoelastic aqueous liquid automatic dishwasher¹detergent composition | |
IE921759A1 (en) | Linear viscoelastic aqueous liquid automatic dishwasher¹detergent composition | |
CA2070093A1 (en) | Linear viscoelastic aqueous liquid detergent composition, especially for automatic dishwashers, of improved high temperature stability | |
NZ242833A (en) | Linear viscoelastic aqueous automatic dishwasher detergent containing alkali metal builder salt, alkali metal silicate, bleach, organic detergent, cross-linked polyacrylic acid thickener, c8-c50 fatty acid and a polymeric chelating agent | |
IE921748A1 (en) | Linear viscoelastic aqueous liquid automatic dishwasher¹detergent composition | |
IE921747A1 (en) | Linear viscoelastic aqueous liquid automatic dishwasher¹detergent composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |