CA2068340C - Storage tank having secondary containment - Google Patents

Storage tank having secondary containment

Info

Publication number
CA2068340C
CA2068340C CA002068340A CA2068340A CA2068340C CA 2068340 C CA2068340 C CA 2068340C CA 002068340 A CA002068340 A CA 002068340A CA 2068340 A CA2068340 A CA 2068340A CA 2068340 C CA2068340 C CA 2068340C
Authority
CA
Canada
Prior art keywords
tank
storage tank
inner liner
rigid
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002068340A
Other languages
French (fr)
Other versions
CA2068340A1 (en
Inventor
David Harvey Bartlow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Publication of CA2068340A1 publication Critical patent/CA2068340A1/en
Application granted granted Critical
Publication of CA2068340C publication Critical patent/CA2068340C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/028Wall construction hollow-walled, e.g. double-walled with spacers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/022Laminated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Laminated Bodies (AREA)

Abstract

An underground storage tank having secondary containment comprising a self-supporting, semi-rigid thin liner (40) located on the inside of the tank (25). The thin inner liner (40) completely lines the inside of the tank and is structurally independent of the tank.

Description

WO 92/06gO5 2 0 6 8 3 4 0 PCI/US91/0708~

STORAGE ~AlIK HAVI~G SECONDARY CON~CAINMENT

TECHNICAL FIELD
This invention generally relates to storage tanks and more particularly to underground storage tanks with secondary containment.
BACKGROUND ART
Environmental protection is becoming increasingly important. As our understanding of cont~ tion of soil and water beneath the surface grows, our efforts to prevent leaks increases. Early efforts resulted in glass fiber reinforced plastic single wall underground tanks. See U.S. Patent No.
3,661,294 issued in 1972. As our awareness grew, our efforts to protect the environment matured into glass fiber reinforced plastic double-wall undeLyLoulld tanks, often equipped with leak detection systems. See U.S.
Patent No. 4,561,292 issued in 1985.
Others have attempted to encase or fit rigid storage tanks with secondary containment systems, often with flexible bladders or jackets. See U.S. Patent No.
4,524,609 issued in 1985. Flexible bladders have obvious problems. For example, flexible inner bladders or flexible outer jackets are very susceptible to damage from cutting, tearing, puncturing, etc.
DISCLOSURE OF THE INvnNllON
Basically, my invention is a standard single wall tank (SWT) on the inside of which I have added an FRP smooth inner wall that is not attached to the outer wall. The annular space between the inner and outer wall may have a non-structural porous core such as a thin HDPE
fluid transmitting net.

WO 92/06905 ~ a;~ PCI~/US91/07085 20~8340 The novelty of my invention is a self-supporting, semi-rigid, thin liner inside the SWT. The inner wall can be a thin FRP liner, thin stainless steel or an equivalent material. As I will show, carbon steel liners and flexible bladders do not compare with my discovery.
The thin liner I employ is self-supporting.
Flexible bladders on the other hand require either internal supports or the application of a vacuum between the inner bladder and the outer tank.
This tank has many advantages. One is that the installer can field test the outer wall for leaks prior to installation. Jacketed tanks cannot be field soap tested. Also, in the event of a breach to the primary tank, the FRP outer wall will permeate only negligible amounts of fuel into the environment, as opposed to a jacket which, because of its low resistance to fuel permeation, could allow a significant fuel spill prior to detection.
The thin liner I use has low permeability.
This is important in that some leak sensors that are located between the 2 walls will false alarm if the rate of permeation is too great. This is particularly a challenge for any material that must contain alcohol or blends of fuel containing alcohol.
The thin liners I use have provided corrosion resistance for the internal wall of primary tanks.
Carbon steel often rusts due to water condensate at the bottom of the tank. This has been traditionally overcome by using thick steel (at least 1/4"). This is why thin carbon steel will not work i.e., an allowance for corrosion must be incorporated into carbon steel tanks.

WO 92/0690~ & Q O Pcr/ usg 1/0708S

, . . .

BRIEF DESCRIPTION OF THE DRAWINGS
The invention is more fully explained with reference to the a~comp~nying drawing in which:
Figure 1 is an elevational view of a single wall tank containing an FRP liner in accordance with the present invention.
Figure 2 is a sectional view taken generally along the line 2-2 of Figure 1; and Figure 3 is a fragmentary perspective of an FRP
inner wall panel in accordance with this invention.
BEST MODE OF CARRYING OUT INVENTION
Figure 1 shows a tank 20 which employs the FRP
inner wall structure of the present invention (not shown). The tank 20 is made up of opposed frusto-conical tank halves 22, connected together by center joint 24.
Wall 26 includes a wall element 25 in combination with a rib 28. Actually, a plurality of ribs 28 are axially spaced along the length of the tank 20. Ribs 28 extend peripherally of the tank 20 and act in the nature of strong hoops against radially inwardly crushing forces.
Since they are of high tensile strength, they also absorb tensile stresses to which the tank 20 may be subjected.
It is important to note that the ribs 28 add to the stiffness of the wall 25; also, they provide protective buffers during handling.
The ribs 28 are spaced apart a sufficient distance so that fill and vent fittings 30 and 32 can be installed between the ribs. Optional positions 34 for fittings are thus provided all along the length of the tank 20. In an actual 6,000-gallon capacity tank of 8 feet nominal diameter, and approximately 20 feet length, a spacing of 16 1/2 inches between rib enters was W092/~ ~5 ~ 2 0~ 8 3 ~ O PCT/US91/0708~

employed and this provided adequate space for the installation of the fittings 30 and 32.
U.S. Patent No. 3,661,394 fully describes ribbed, single wall tank construction.
Figure 2 shows FRP inner wall 40 on the inside of wall element 25. Figure 2 also shows annular space 43 between wall 40 and wall element 25. Space 43 is partially filled with porous core 44.
Figure 3 shows a panel of FRP inner wall 40 detached from tank 20.
Typically, one can use any molding process or spray up equipment to make FRP inner wall 40. One can achieve this by placing mold release (Mylar) on a conventional SWT mold, spraying up thin FRP inner liner 40 including end cap, curing the FRP, placing another sheet of Mylar on top of liner 40 and then carrying out the conventional construction of SWT, for example, as described in U.S. Patent No. 3,661,394.
FRP inner wall 40 preferably is made of unsaturated polyester compounds. The practice of this invention, however, is not restricted to unsaturated polyesters.
These compositions, intended to polymerize when molded under heat and pressure, are generally combined with fillers and chopped glass, to produce products having appearance surfaces with a r;n;rllr of irregularities.
The use of chopped glass as reinforcement in such molding compounds is well known. The chopped glass is produced in the form of individual strands which are sized, gathered into rovings, chopped to the desired length and incorporated into the resin composite prior to molding.

WO92/~K PCT/US91/07085 20~834~

The sizes generally comprise a lubricant, film formers and the like and are extremely important in imparting to the reinforcing glass its ability to be wetted out by the molding compound. These sizes are also important in that they protect the glass in it handling subsequent to being sized and are influential in ~;n;m; zing the amount of fuzz and fly which is produced on the glass, the fuzz and fly having a decided affect upon the appearance surface of the molded product.
The sized glass fibers generally are employed as reinforcement for sheet molding compounds (SMC) and bulk molding compounds (BMC).
Unsaturated polyesters useful in this invention typically contain a polyesterification product of one or more ethylenically unsaturated dicarboxylic acids or anhydrides such as maleic or fumaric with one or more glycols such as ethylene or propylene glycol and, sometimes, minor proportions of other aromatic or aliphatic mono- or dicarboxylic acids or anhydrides and/or other mono- or polyhydroxyl compounds. They also typically contain an ethylenically unsaturated monomer, such as styrene, copolymerizable with the unsaturated polyester for curing.
The glass fibers preferably are "E" glass fibers, well known to those skilled in the art. See U.S.
Patent No. 2,334,961.
As I stated above, porous core material 44 may fill space 43. Examples of porous core materials 44, are mattings, nets, screens, and meshes. Specific examples are high density polyethylene (HDPE) net, jute, polyurethane foam, polyester foam, fiberglass matting, cotton matting, nylon matting and corrugated cardboard.

W092/06~5 PCT/US91/07085 2d~8i34Q

l~vu~lKIAL APPLICABILITY
The following table summarizes the advantages of my invention over other alternatives:
TAB~B
THIN WALL FRP INNER TANKS VS OTHER ALTERNATIVES
INVENTION CONTROL
THIN STAINLESS CARBON CARBON FLEXIBLE

UALL 1/10" 1/4" 1/10" BLADDER
Self-Supporting Yes Yes Yes Yes No Low Permeability Yes Yes Yes Yes No to Fuels Internal ~aLl of Primary Yes Yes No No No contairlment Corrosion-Resistant to Alcohol Blend, Fuels, Uster External ~all of Primary Yes Yes No Uo Yes Contairlment Corrosion Resistant to ~ater ll)~lelJell-lellt (ullL.ull~ L~i) Yes Yes Yes Yes Yes From Outer ~all Able to Deter~ine the Yes Yes Yes Yes No location of leaks An alternative embodiment comprises FRP inner wall 40 sections small enough to fit inside a tank through manway openings. Typically the panels are up to 8 feet in length and range from 2 to 4 feet in width.
After the panels are in place inside the tank, one uses a hand lay-up procedure on the seams of each panel to form FRP inner wall 40.
Basically, the procedure involves building up a combination of chopped glass fibers and a hardenable liquid resin and, if desired, a sand filler.

WO 92/06~5 2 0 6 83 ~ ~ PCT/US91/07085 r~

Complete wetting of the chopped glass fibers is desirable and can be accomplished, as is well known in the art, by rolling out the resin and glass and sand mixture. After the seams are fabricated, heat or the passage of time cures the resin. One can use any spray device or combination of spray devices to apply the resin and chopped glass fibers. Often the resin contains an accelerator or catalyst to speed up the curing process.
As shown in Figure 3, the panels and FRP inner liner 40 preferably have the same curvature as wall element 25. Preferably inner FRP liner 40 is thin and typically is 1/8 to 1/4 of an inch thick.
Access to the inside of the tank 20 is provided by a flanged manway fitting 54 (Figure 1) communicating with the inside thereof, and a double-flanged extension 55 normally covered by a cover 56. Hand lay-up secures manway fitting 54 to tank 20 by application of hardenable resin, chopped glass strand and filler such as sand. The hand lay-up procedure is much the same as that used to connect the panels of FRP inner wall 40.
The thin FRP inner liner that I use is unique in that it is:
* Self Supporting * Corrosion resistant * Offers lower permeability In one embodiment, the thin inner liner is structurally independent of the tank for the entire circumference except for a narrow width centered at the top of the bank. For these narrow widths, the inner liner is bonded to the rigid primary tank, thus allowing easy manufacture and installation of tank accessories such as fittings and manways. Alternately, the inner liner can end near the ~A~ . F~ ~
, ;, ~
W092/06905 : .:= PCT/US91/07085 2Q6~3k~

top of the tank resulting in only one wall at the top of the tank. r

Claims (17)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. An underground storage tank comprising:
a rigid tank particularly suited for use underground; and, an inner liner located on the inside of the rigid tank, the inner liner having sufficient flexibility so that it would substantially collapse if totally unconstrained by the rigid tank, but having sufficient rigidity so that it would substantially conform to the shape of the rigid tank when positioned within the rigid tank.
2. The storage tank of claim 1, wherein the inner liner is structurally independent of the rigid tank.
3. The storage tank of claim 2, wherein an annular space exists between the rigid tank and inner liner.
4. The storage tank of claim 3, including gas porous material in the annular space between the rigid tank and inner liner.
5. The storage tank of claim 4, wherein the gas porous material is a high-density polyethylene net.
6. The storage tank of claim 3, wherein the inner liner is glass fiber reinforced plastic.
7. The storage tank of claim 2, wherein the inner liner is glass fiber reinforced plastic from 0.020"
to 0.250" thick.
8. The storage tank of claim 2, wherein the inner liner is stainless steel or other metallic material from 0.010" to 0.125" thick.
9. The storage tank of claim 1, wherein the inner liner would collapse by at least about 90 percent of its manufactured diameter if totally unconstrained, but would remain at a height of at least about 95 percent of its manufactured diameter when positioned within the rigid tank.
10. The storage tank of claim 9, wherein the inner liner is structurally independent of the rigid tank.
11. The storage tank of claim 10, wherein the inner liner would collapse by at least about 25 percent of its manufactured diameter if totally unconstrained, but would remain at a height of at least about 98 percent of its manufactured diameter when positioned within the rigid tank.
12. The storage tank of claim 10, wherein an annular space exists between the rigid tank and inner liner.
13. The storage tank of claim 12, including gas porous material in the annular space between the tank and inner liner.
14. The storage tank of claim 13, wherein the gas porous material is a high-density polyethylene net.
15. The storage tank of claim 10, wherein the inner liner is glass fiber reinforced plastic.
16. The storage tank of claim 10, wherein the inner liner is glass fiber reinforced plastic from 0.020"
to 0.250" thick.
17. The storage tank of claim 10, wherein the inner liner is stainless steel or other metallic material from 0.010" to 0.125" thick.
CA002068340A 1990-10-12 1991-09-30 Storage tank having secondary containment Expired - Lifetime CA2068340C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59618990A 1990-10-12 1990-10-12
US596,189 1990-10-12

Publications (2)

Publication Number Publication Date
CA2068340A1 CA2068340A1 (en) 1992-04-13
CA2068340C true CA2068340C (en) 1996-05-21

Family

ID=24386314

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002068340A Expired - Lifetime CA2068340C (en) 1990-10-12 1991-09-30 Storage tank having secondary containment

Country Status (6)

Country Link
EP (1) EP0505534A1 (en)
JP (1) JPH05505375A (en)
AU (1) AU651997B2 (en)
CA (1) CA2068340C (en)
NZ (1) NZ240909A (en)
WO (1) WO1992006905A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003903578A0 (en) * 2003-07-11 2003-07-24 Bluescope Steel Limited Improved water tank and method of making same
CN103523404A (en) * 2013-09-29 2014-01-22 江苏中储能源装备有限公司 High-temperature storage tank body structure
RU186800U1 (en) * 2018-11-06 2019-02-04 Александр Александрович Сапожников LIGHTED RESERVOIR TANK FOR STORAGE OF OIL PRODUCTS

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1942728A1 (en) * 1969-08-22 1971-03-04 Stefan Nau Fa Plastics storage container
DE2046771A1 (en) * 1970-09-23 1972-03-30 Höger, Johann, 8440 Straubing Wandungselemennt for liquid containers
CH551859A (en) * 1973-06-05 1974-07-31 Raess Paul PROCESS FOR MANUFACTURING A SPHAEROID, DOUBLE-WALLED LARGE CONTAINER MADE FROM GLASS FIBER REINFORCED PLASTIC LAMINATE.
DE3147452A1 (en) * 1981-12-01 1983-07-28 Ceilcote Korrosionstechnik GmbH, 6081 Biebesheim CONTAINER WITH A LINING
CA1257096A (en) * 1985-06-17 1989-07-11 Bruce R. Sharp Storage tanks having formed jacket for secondary containment
AU597638B2 (en) * 1986-04-15 1990-06-07 Arthur George Yarrington Kit water storage tank or silo
DE3841463A1 (en) * 1988-01-11 1989-07-20 Walter Ludwig Behaelter Stahl Liquid container

Also Published As

Publication number Publication date
AU651997B2 (en) 1994-08-11
AU8549091A (en) 1992-05-20
CA2068340A1 (en) 1992-04-13
NZ240909A (en) 1993-11-25
WO1992006905A1 (en) 1992-04-30
JPH05505375A (en) 1993-08-12
EP0505534A1 (en) 1992-09-30

Similar Documents

Publication Publication Date Title
US4739659A (en) Double wall ribbed storage tanks
US5742992A (en) Method for making composite double-wall underground tank structure
US3394841A (en) Underground liquid storage system
US20210041043A1 (en) Method of Lining Pipe with High Strength Liner, High Strength Liner, and Pipe Lined with High Strength Liner
US4927050A (en) Method of making double wall storage tank for liquids from a metal tank having a patterned surface
US4871081A (en) Dual wall vessel for primary and secondary liquid containment
US5158201A (en) Storage tank having secondary containment
EP0404611B1 (en) Underground storage tank of corrosion-resistant materials with internal steel rib
US5320247A (en) Storage tanks with internal support ribs
CA2068340C (en) Storage tank having secondary containment
US3298560A (en) Piping attachment means for plastic vessels
WO1993007073A1 (en) Method of making multi-walled storage tanks and products_________
US5816426A (en) Double walled storage tank systems
US7348047B2 (en) Multi-layered structural corrosion resistant composite liner
US4819821A (en) Cylindrical-shaped storage tanks with formed outer jacket
US4869386A (en) Double walled storage tank having a ribbed appearance
US4995528A (en) Ribbed storage tank systems with interior wall sections for enhanced strength
US5799817A (en) Storage tank systems with encapsulated flow paths
US5303840A (en) Storage tanks having strengthened walls
US4169461A (en) Storge tank especially suitable for use in a solar heat system
US4993581A (en) Dual wall tank
NO141925B (en) PROCEDURE FOR MANUFACTURING A SFAEROID, DOUBLE WALL LARGE CONTAINER
US5090586A (en) Dual wall tank
US5152859A (en) Method of making a double walled cylindrical-shaped storage tank with independent monitoring of tank areas
US5102481A (en) Method of building double walled fibrous reinforced resinous storage tanks with common rib supports

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry