CA2066254C - Conductive polymer device - Google Patents

Conductive polymer device

Info

Publication number
CA2066254C
CA2066254C CA002066254A CA2066254A CA2066254C CA 2066254 C CA2066254 C CA 2066254C CA 002066254 A CA002066254 A CA 002066254A CA 2066254 A CA2066254 A CA 2066254A CA 2066254 C CA2066254 C CA 2066254C
Authority
CA
Canada
Prior art keywords
heater
fuse
standard
composition
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002066254A
Other languages
French (fr)
Other versions
CA2066254A1 (en
Inventor
Arthur F. Emmett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Corp
Original Assignee
Raychem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raychem Corp filed Critical Raychem Corp
Publication of CA2066254A1 publication Critical patent/CA2066254A1/en
Application granted granted Critical
Publication of CA2066254C publication Critical patent/CA2066254C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/54Heating elements having the shape of rods or tubes flexible
    • H05B3/56Heating cables

Abstract

A melt-extrudable conductive polymer composition which contains a polymer, a particulate conductive filler and a particulate non conductive filler. When a standard strip heater is made from the composition and tested in a UL VW-1 test; it has comparable performance to a heater made from a second composition which is the same as the composition but which does not contain the non conductive filler. When tested in a standard arcing fault test, the standard heater will trip a fuse in less time than is required by the second heater, i.e in less than 30 seconds. A preferred nonconductive filler is Sb2O3.

Description

~D~j .TT ~~QT_,YMER DEVICE
HA . ~R~ QE T~ INVENTION
F;~~ ~ the Invention This invention relates to conductive polymer compositions and strip heaters comprising them, in particular self-regulating strip heaters which comprise a pair of elongate metal electrodes embedded in an elongate core of a conductive polymer composition which exhibits PTC behavior. .
Tntroduct~ on ,~ the 2nvention Conductive polymer compositions and electrical devices comprising such compositions are well known. A conductive polymer composition comprises a polymeric component and, dispersed or otherwise distributed therein, a particulate Conductive filler. Strip heaters, particularly self-regulating strip heaters comprising conductive polymers, are also well-known. ~In this application, the term strip heater is used to mean a conductive polymer resistive element into which elongate electrodes are embedded. In operation, such strip heaters provide a varying level of heat in response to changes in the thermal environment. Under normal operating conditions, this self-regulating feature serves to limit the maximum temperature which the heater achieves, thus providing reliability and safety. However, under certain circumstances where the busbars are exposed by external damage or by faulty installation, and when the heater is electrically powered and exposed to an electrolyte, an arc can occur between the electrodes. Unless the arc is interrupted, the conductive polymer may burn and could possibly result. One way to minimize this danger is wo ~no~sz2 ~~) ~ ~ -zw ~cr~usooiosio?
to develop appropriate conductive polymer compositions in which the polymer itself is flame-retardant or which contain conventional flame retardant additives to work in conjunc-tion with the strip heaters. Another method to minimize risks from arcing faults is to use fuses or other circuit protectian devices, e.g. arc fault interruptors or ground fault detectors, as part of the strip heater circuit in order to remove power from the circuit if an arc should occur.
SUI~dARY Oh THE INVENTION
I have now found that the presence of a nonconduat,ive filler in the conductive polymer composition in a strip heater can reduce the trip tame of a fuse which forms part of a strip heater circuit, and thus reduce the danger that the heater will burn and cause damage. In a first aspect, this invention discloses a strip heater assembly which comprises tA) a strip heater which comprises (1) a resistive element which is composed of a first conductive polymer composition which comprises (a) a polymer, tb) a particulate conductive filler, and (c) a particulate nonconductive filler, and (2) two electrodes which can be connected to a source of electrical Bower to cause currant to flow through the resistive element, and 2~3~~~~~
t8) a fuse, the particulate nonconductive filler being such that when the first composition is made into a standard strap heater as hereinafter defined and the standard heater is tested in a standard arcing fault test as hereinafter defined, it trips the fuse in less than 30 seconds.
In a second aspect the invention discaloses a strap heater assembly which comprises (A> a strip heater which comprises (1) a resistive element which is composed of a conductive polymer composition which comprises ta) a polymeric component which comprises polyethylene, (b) a particulate conductive filler which comprises carbon black, and (c> a particulate nonconductive filler which comprises Sb203, and t2) two elongate wire electrodes which are embedded in the resistive element and which can be connected to.a source of electrical Bower to cause current to flow through the resistive element, and tB) a fuse which is a very fast acting fuse and which has a rating of 10A, 125/250V;
the particulate nonconductive filler being such that when the composition is made into a standard strip heater and the .

WU 91/03$22 ~ ~ ~ ~ ~ ~a " PCf/tJS90/OSi02 standard heater is tested in a standard arcing fault test a,.
trips the fuse in less than 30 seconds.
In a third aspect the invention discloses a strip heater circuit which comprises tA) a strip heater which comprises t11 a resistive element which is composed of a conductive polymer composition which comprises (a) a polymer, (b).a particulate conductive filler, and tc) a particulate nonconductive filler, and (2) two electrodes which can be connected to a source of electrical power to pause current to flow through the resistive element, (B) a fuse. and (~) a power supply, the particulate nonconductive filler being such that when the composition is made into a standard strip heater and the standard heater is tested in a standard arcing fault test it trips the fuse in less than 30 seconds.
The invention further includes, in a fourth aspect, strip heaters whfch are useful in the assemblies and circuit defined above and are novel in their own right, namely, a strip heater which comprises a first conductive polymer composition comprising WO 91/03822 -5- PCflUS90105102 ~~~~25~
(1) a polymer, (2) a particulate conductive filler, and t3> a particulate nonconductive filler and which (a) when tested following the procedure of UL VW-l, has a performance which is similar to that of a second heater made from a second conductive polymer composition which is the same as the first composition except that it does not comprise the particulate nonconductive filler and (b> when. tested fn a standard arcing fault test (i) trips the fuse in less time than is required by the second heater, and (ii> trips the fuse in less than 30 seconds.
In a fifth aspect the invention discloses a strip heater which comprises a first conductive polymer composition comprising (1) a polymer, ' (2) a partieulate conductive filler, and (3) a particulate nonconductive filler and which (a) when tested following the procedure of UL VW-l, does not pass the test= and ~~'~~~~~ °~-(b) when tested in a standard arcing fault test (i) trips the fuse in less time than is required by a second heater made from a second conduc-tive polymer composition which as the same as the first composition except that it does not comprise the particulate nonconductive filler, and (ii) trips the fuse in less than 30 seconds.
The invention further includes, in a sixth aspect, con-ductive polymers which are useful in the assemblies, circuit and strip heaters defined above and are useful in their own right, namely a melt-extrudable first conductive polymer composition which comprises (1) a polymer, (2) a particulate conductive filler, and (3) a particulate nonconductive filler said first composition being such that when the ffrst composition is made into a standard strip heater (i) when the standard heater is tested following the procedure of UL test VW-1 its performance is similar to a second heater which is made from a second conductive polymer composition which is the same as the first composition...,,except that it does not comprise the particulate nonconductive filler, and (ii) when the standard heater is tested in a standard arcing fault test (a) the time it requires to trip WO 91 /03822 _ ~ _ PCTlUS90/05102 .
a fuse is less than the time required to trip a fuse for the second heater, and (b) it trips the fuse in less than 3() seconds.
In a seventh aspect the invention describes a melt-extrudable first conductive polymer composition which comprises tl) a polymer, (2) a particulate conductive filler, and (3) 3 particulate nonconductive filler said first composition being such that when the first composition is made into a standard strip heater (i) when the standard heater is tested following the procedure of UL test VW~1 it does not pass the test, and (ii) when the standard heater is tested in a standard arcing fault test (a> the time it requires to trip a fuse is less than the time required to trip a fuse for a second heater which is made from a second conductive polymer composition which is the same as the first composition except that it does not comprise the particulate nonconductive filler, and (b) it trips the fuse~in less than 30 seconds.
BRIEF DESCRIFTION OF T)3E DRAWING
Figure 1 is a cross-sectional view of a standard strip heater of the inventionP
Figure 2 is a top view of a strip heater of the invention; and WO 91/03822 PCf/US90/05102 ~0~6254 Figure 3 is a cross-sectional view of a strip heater along line 3-3 of Figure 2.
DETAILED ~ESCATPTT_ON ~ ~, ,~N_y~N_~LON
The first conductive polymer composition of this invention comprises a polymer which may be an organic polymer (such term being used to include siloxanes), preferably a crystalline organic polymer, an amorphous thermoplastic po:Lymer (such as polycarbonate or polystyrene), an elastomer (such as palybutadiene or ethylenelpropylene/diene (EPDM) polymer), ar a blend comprising at least one of these. Suitable crystalline polymers include polymers of one or more olefins, particularly polyethylene; copolymers of at least one olefin and at least one monomer copolymerisable therewith such as ethylene/acrylic acid, ethylene/ethyl acrylate, and ethylene/vinyl acetate copolymers;
melt-shapeable fluoropolymers such as polyvinylidene fluoride .
and ethylene tetrafluoroethylene; and blends of two or more such crystalline polymers. Suitable polymers and compositions comprising them may be found in U.S. Patent Nos. 4,188,276, 4,237,441, 4,388,607, 9,470,898, 4,514,620, 4,534,889, 4,560,498, 4,591,700, 4,624,990, 4,658,121, 4,774,024 and 4,775,7781 and European Patent Publication Nos. 38,713, 38,728, 74,281, 197,759 and 231,068.
Crystalline polymers are particularly preferred, although not required, when it is desired that the composition exhibit PTC (positive temperature coefficient) behavior. The term "PTC
behavior" is used in this specifi-CVO 9t/03822 PCTlUS9Ul05102 9 ~~~~°~~~
ca n on to denote a composition or an electrical device which has an Rlq value of at least 2.5 or an 8100 value of at least 10, and preferably both, and particularly one which has an R30 value of at least 6, where Rl~ is the ratio of the resistivities at the end and the beginning of a 14°C
range, 8100 is the ratio of the resistivities at the end and the beginning of a 100°C range, and R30 is the ratio of the resistivities at the end and the beginning of a 30°C range.
The composition also comprises a particulate conductive filler which is dispersed or otherwise distributed in the polymer. The particulate conductive filler may be, for examgle, carbon black, graphite, metal, metal oxide, or a combination of these. Alternatively, the conductive filler may itself comprise a conductive polymer in which a par-ticulate conductive filler is distributed in a polymer matrix and the matrix is then ground into particles before being dispersed in another polymeric matrix. The par-ticulate conductive filler is present in the composition in an amount suitable for achieving the desired resistivity, normally 5 to 50% by weight of the comgosition, preferably to 40% by weight, particularly 15 to 30% by weight.
The particulate~nonconductive filler comprises a material which is electrically insulating, i.e.,has a resistivity of greater than 1 x 109 ohm-cm. Preferably the nonconductive filler. has a melting temperature of less than 1000°C. Suitable materials include metal oxides which are easily reduced, e.g. Sb203, Pb02, H203, Mo03, and HiZ03. In this application, easily reduced means that the material has a reduction potential of less thaai +0.5 volts, preferably less than +0~.4 volts,, particularly less than +0.375 volts.
Particularly preferred is Sb203. For ease of dispersion in WO 91/038ZZ PCT/~590/0510Z
~~Db~~~4 -lo-the polymer matrix, the filler is preferably in the form of particles which have a particle size of 0.01 to 50 ~tm, particularly 0.05 to 50 ~Lm, especially 0.10 to 10 Vim. The nonconductive filler may be single material or it may comprise a blend of metal oxides or a metal oxide and another particulate filler. Although a blend of Sbz03 and decabromodiphenyloxide (also known as decabromodiphenylether), DBDPO, is commonly used as a flame retardant package in polymers, the presence of the DBDPO or any other halogenated material is not necessary for satisfactory performance in the compositions of the invention.
The conductive polymer composition may also comprise inert fillers, antioxidants, prorads, stabilizers, dispersing agents, or other components. Mixing is preferably effected by melt-processing, e.g. melt-extrusion. Subsequent processing steps may include extrusion, molding, or another procedure in order to form and shape the composition. The composition may be crosslinked by irradiation or chemical means.
The conductive polymer composition may be used in any current carrying electrical device, e.g. a circuit protection device, a sensor, or, most commonly, a heater. The heater may be in the form of either a strip or a laminar sheet in which the resistive element comprises the composition of the invention.
Strip heaters may be of any cross-section, e.g. rectangular, elliptical, or dumbell ("dogbone"). Appropriate electrodes, suitable for connection to a source of electrical power, are selected depending on the shape of the electrica-1 device.
Electrodes may comprise metal wires or braid, e.g. far attachment to or embedment into the conductive polymer, or they may comprise wo ~no3azz ~ ~ ~ ~ ~ ~ ~ Pcrius9oiosioz metal sheet, metal mesh, conductive te.g. metal- or carbon-filled) paint, or other suitable materials.
In order to provide environmental protection and electrical insulation, it is common far the resistive element to be covered by a dielectric layer, e.g. a polymeric jacket (fox strip heaters) or an epoxy layer (for circuit protection devices). The dielectric layer may comprise flame retardants or other fillers. For some strip heater applications, a metallic grounding braid is present over the dielectric layer in order to provide physical reinforcement and a means of electrically grounding the strip heater.
The compositions of this invention are particularly useful when, in the form of strip heaters, they are used in conjunction with a fuse and act to "trip" the fuse faster than strip heaters comprising conventional materials. A
fuse °'trips' when the current in the circuit comprising the fuse exceeds the rated value of the fuse. Fuses are categorized based on their vverloa~d fusing characteristics, i.e. the relationship between the value of current through the fuse and the time for the fuse to open as described in Bulletin SFH, "Boas Small Dimension Fuses', l~lsy 1985, the disclosure of which is incorporated herein by reference. Of the mayor categories (slow blowing, non-delay, and very fast acting?) it is. very fast acting fuses which are most useful in this invention) These fuses have little, if any, inters-tional delay in the overload region. Although the selection of a specific fuse is dependent on the normal operating con-ditions of t~~ stri~a heater and the anticipated fault con-ditions, fuses which are particularly preferred are very fast-acting ceramic ferrule fuses with a current rating of WO 91103822 ° 12 ° P~d'llJS90105102 ampe '~g~~ ~~~~ ~ oltage rating of 125/250 volts . Such fuses are available, for examgle, from the Hussman Division of Cooper Industries under the name Huss GHB°-10. The fuse may be an independent component in the circuit or it may be in a fused plug assembly, i.e. an assembly in which the fuse is part of the plug which connects the strip heater to the power source, e.g, an outlet or a power supply.
Strip heaters of the invention are commonly used in a strip heater assembly which comprises the strip heater and a fuse. , Alternatively, the strip heater is a component of a strig heater circuit which comprises the strip heater, a power supply, and a fuse. The power supply can be any suitable souree of power including portable power supplies and mains power sources. Other components, such.as resistors, thermostats, and indicating lights, may also be present in the circuit.
In this specification, a "standard strip heater" is defined for testing gurposes. A "standard strip heater" is one in which a conductive polymer composition is melt-extruded around two 22 AWG stranded nickel/copper wires to groduce a strip heater of flat, elliptical shape as shown 'in Figure 1. The heater has an electrode spacing of 0.10 inch ~..
(0.25 cm) from the center of one electrode to the center of the second electrode. The thickness of the heater at a point centered between the electrodes is 0.08 inch (0.20 cm). The heater is jacketed with a composition which containw 31.9 by weight of a standard flame retardant package as described in Example 1. The jacket is 0.030 inch (0.076 cm) thick.
The standard strip heater is tested by means of a "standard arcing fault test". In this test (which is more WO X1/03822 -13~ PCT/US90105102 fully described in Example 1), a standard strip heater is connected in a circuit to a power supply and a 10A, 125/250v fuse. An arc is initiated between two exposed electrodes of the heater and the time to interrupt the current and ' extinguish the arc by means of tripping the fuse is recorded. I have found that a standard strip heater which comprises the composition of the invention ti. e. a first conductive polymer composition) trips the fuse faster than a second strip heater which comprises a second conductive polymer composition, i.e..a composition which is the same as the first composition except that it does not comprise the nonconductive particulate filler. The time to trip a fuse for-the standard heater generally will be at least two times as fast, preferably at least three times as fast, gar-ticularly at least five times as fast, e.g. five to eight times as fast as the second heater. Thus the standard heater will trig the fuse in at most half the time required to trip the fuse in a circuit which comprises a second heater. When tested in the standard arcing fault test, a standard strip heater of the invention normally will trip the fuse in less than 30 seconds, preferably in less than 25 seconds, particularly in less than 20 seconds, e.g. in 5 to seconds. 14n additional aspect of the invention is that the addition of the nonconductive particulate filler results in an increase is the number of current spikes observed during the arcing fault test. Even if the amplitude of the spikes is similar for both types of heaters, there generally will be at least.2 times, greferably at least 3 times, par-ticularly at least 4 times as many current spikes in a given period, e.g. 30 seconds, fox the heater comprising the first composition., .
A second test which is conducted on heaters comprising the first composition of the invention is the UL VW-1 vertical-wire flame test (Reference Standard for Electrical Wires, Cables, and Flexible Cords, UL 1581, No. 1080, August 15, 1983. In this test, a heater sample is held in a vertical.
position while a flame is applied. In order to pass the test, the sample cannot "flame" longer than 60 seconds following any of five 15-second applications of the test flame. The period between sequential applications of the test flame is either 15 seconds (if the sample ceases flaming within 15 seconds) or the duration of the sample flaming time if the flaming lasts longer than 15 seconds. In addition, combustible materials in the vicinity of the sample cannot be ignited by the sample during the test. In this specification, when the performance in this test of the heater of the invention is said to be "similar" to that of a second heater which comprises a second conductive .
polymer composition, it means that if ten different samples of the standard heater are tested, eight of them (i.e. 80~) must have the same result (i.e. pass or fail) as ten samples of the second composition.
The invention is illustrated by the drawing in which Figure ' 1 shows a cross-section of a standard strip heater 1.
Electrodes 5, 7 are embedded in the first conductive polymer composition 3 (the resistive element). A polymeric jacket 9 surrounds the heater core. Figure 2 shows a top view of strip heater 1 which has been prepared for the arcing fault test described below. A V-shaped notch 11 is cut through the polymeric jacket 9 and the conductive polymer composition 3 on one surface of the heater in order to expose electrodes 5 and 7. ' The cross-sectional view~oF the heater along line 3-3 is shown in Figure 3. Electrodes 5, 7 remain partially embedded in the conductive polymer 3.

!VU '~ 1 /03822 ~ ~ ~ ~ ~ ~ (~ PCf/US90/05102 _15-The invention is illustrated by the following examples.
Example 1 (Comparative Example) The ingredients listed in Table I were preblended and then mixed in a co-rotating twin-screw extruder to form pellets. The pelletized composition was extruded through a 1.5 inch (3.8 cm> extruder around two 22 AWG stranded nickel/copper wires to produce a strip hE=_ater. The heater had an electrode spacing of 0.106 inch (0.269 cm) from center-to-center and a thickness of 0.08;i inch (0.211 cm) at a center point between the wires, The heaster was jacketed with a 0.030 inch (0.076 cm) layer of a composition containing 10% by weight ethylene/vinyl acetate copolymer (EVA), 36.8% medium density polyethylene, 10.3% ethylene/
propylene rubber, 23.4% decabromodiphenyloxide, 8.5% ; , antimony oxide, 9.4% talc, 1.0% magnesium oxide, and 0.7%
antioxidant.
The heater was tested using the standard arcing fault test described below. The results are shown in Table II.
In a related test, the amplitude and frequency of the current spikes produeed when a heater was tested following the procedure of the arcing fault test but without the use of a fuse were recorded. In this modified arcing fault test, the samples were allowed to burn for three minutes after a flame was initiated. The results are shown in Table III.
The heater was tested following the procedures of the UL VW-1 vertical-wire flame test (Reference Standard for Electrical Wires, Cables, and Flexible Cords, UL 1581, No.
1080, August 15, 1983). Of the 10 samples tested, five passed the test. These results are shown in Table Iv.

WO 91/03822 PCT/U590l05102 , Stanriar~3 Arc-i_t1g Fc~Wt- T .S .
A standard, jacketed 25 inch- (64 cm-) long strip heater.
was prepared by stripping one inch (2.5 cm) of jacket and core material from a first end to expose the two electrodes. A
transverse v-shaped notch was cut half-way through the thickness of the heater 2 inches (5.1 cm) from the second end and the jacket and core polymer were removed from the top half in order to expose part of each of the two electrodes. The electrodes at the first end were connected in a circuit in series with a 120V/lOOA power supply, a contactor relay, a 0.1 ohm/100 watt shunt resistor, and a 10A, 125/250V very fast acting fuse (Buss GBBTM-20, available from the Bussman Division of Cooper Industries). A chart recorder was connected across the shunt resistor in order to measure the voltage drop. When the relay was closed, the sample was powered. A sufficient quantity of 10 to 20~ saline solution was applied to the exposed v-notch until an arcing fault was initiated. The chart recorder was monitored until the current was interrupted and the arc was extinguished (i.e. until the fuse tripped). Both the time duration of the arc, as determined from the current spikes on the chart, and the .
distance of arc fault propagation on the strip heater were measured. In some instances, the number of current spikes present during the arcing fault was also determined.
Fxa p,l es 2 to 6 For each example, pellets of the composition of Example 1 were preblended with the inorganic materials in the proportions shown in Table I. After mixing in a co-rotating twin screw extruder and pelletizing, the WO 91 /03822 PCTf 0590/05102 compositions were extruded to form strip heaters with the same geometry as that of Example 1 and were jacketed as in Example 1. The results of the arcing fault test and the vertical flame test are shown in Tables II and IV. It is apparent that those compositions which <:ontain Sb203 have significantly faster trip times in the atrc fault test than comparable materials which do not contain the filler.
A strip heater formed from the composition of Example 2 was also tested following the modified arcing fault test described in Example 1. As shown in the results in Table III, the amplitude of the current spikes and the burn rate were comparable for bath the conventional eamposition (Example l> and the composition of the invention (Examgle Zl. The major difference occurred in the frequency of the current spikes; the spikes were much more prevalent for the composition of the invention than for the conventional material.
Example 7 Following the grocedure of Example 1, the ingredients listed in Table I were preblended, mixed in a co-rotating twin screw extruder, and pelletized. The pellets were extruded over two 16 AWG 19-strand nickel-coated copper wire electrodes to produce a strip heater with a wise spacing of 0.285 inch (0.724 cm) center-to-center and a thickness of 0.057 inch (0.145 cm) at a position intermediate to the electrodes. The heater was jacketed with the same material as in Example 1. The results of testing are shown in Tables II and IV.

Exam 1e Pellets of the composition of Example 7 were blended with 11.71 by weight decabromodiphenyloxide and A.3~ Sb203 before extrusion into pellets. The pellets were extruded to ~orm a strip heater as in Example 7. The results of testing are shown in Tables II and IV.

wo m/o3sz? PCT/US90/OSlo2 2~~~25~

Table I
CONDUCTIVE POLYMER FORMULATIONS
(Components in Percent by Weight) ~mL~an -n _., i 2 3 4 5 6 7 8 EEA 51.7 43.4 49.6 47.5 43.4 35.2 29.3 24.6 CB 30.3 25.5 29.1 27.9 25.5 20.6 17.2 14.5 MDPE 17.2 14.4 16.5 15.8 14.4 11.7 HDPE 32.4 27.2 Antioxidant 0.8 0.7 0.8 0.8 0.7 0.5 0.5 0.4 Sbp03 4.3 4.0 8.0 4.3 ' Zn0 20.0 16.8 A1203 3HZ0 16.0 32.0 DBDPO 11,7 11.7 Process Aid 0.6 0.5 Notes to Table I:
EEA is ethylene/ethyl acrylate copolymer.
CB is carbon black with a particle size of 28 nm.
MDPE is medium density polyethylene.
HDPE is high density polyethylene.
Antioxidant is an oligomer of 4,4-thio bis(3-methyl 1-6-t-butyl phenol) with an average degree of polymerisation of 3 to 4, as described in U.S.
Patent No. 3.986,981.
Sb203 is antimony trioxide with a particle size of 1.0 to 1.8 dun.
2n0 is zinc oxide with a particle size of 0.15 /,tm.
A1z03 3HZ0 is alumina trihydrate with a particle size of 0.15 ~IZn.
DBDPO is decabromodiphenyl oxide (also known as decabromodiphenylether).

_20_ ~~~~15~ ~a~le II

P.I2CING FA ULT RESULTS
TEST

Circuit Fuse Turn Hurn Length ResponseLength Rate Example (feet) (seconds) (in min) (i.nches) 1 2 97 2.1 1.30 100 180 4.3 1.43 2 2 6.9 0 --50 9.4 0 __ 100 19 0.3 0:94 3 2 9 0 __ 4 2 6 0 __ 2 60 1.1 1.10 100 159 3.0 1.13 6 Z 40 0.8 1.20 100 * 5.0 -_ 7 2 74 Z.5 1.22 8 2 18 0.2 0.67 *The test was discontinuedafter minutes, eventhough the fuse did not trap.

_21_ Table III ~~~~~~~
MODIFIED ARCING FAULT TEST RESDLTS
Amplitude Freduency Circuit of Current of Cua:rent burn Length Spikes Spi)ees Rate Example ( feet ) f a~ ) ( ~k/0 .5 min ) ( in min ) 1 2 31 - 71 8 2.06 50 8 - 41 1(i 2.08 100 5 - 21 3~1 2.52 2 2 27 - 100 2fi ~ I.83 50 6 - 40 . 63 2.00 100 4 - 30 88 2.34 Table IV
VERTICAL i~IRE FLAME TEST (UL VW-1) Example ~ Pass 1 50~

Claims (10)

-22-
1. A melt-extrudable first conductive polymer composition which comprises (A) a polymer, (B) a particulate conductive filler, and (C) a particulate nonconductive filler, said first composition being such that when the first composition is made into a standard strip heater and the standard strip heater is compared to a second heater which is made from a second conductive polymer composition which is the same as the first composition except that it does not comprise the particulate nonconductive filler, one of the following conditions occurs, (1) when the standard heater is tested (a) following the procedure of UL test VW-1 its performance is similar to the second heater and (b) in a standard arcing fault test (i) the time it requires to trip a fuse is less than the time required to trip a fuse for the second heater, and (ii) it trips the fuse in less than 30 seconds, and (2) when the standard heater is tested (a) following the procedure of UL test VW-1 it does not pass the test and (b) in a standard arcing fault test (i) the time it requires to trip a fuse is less than the time required to trip a fuse for the second heater and (ii) it trips the fuse in less than 30 seconds.
2. A composition according to claim 1 wherein the nonconductive filler comprises an inorganic oxide.
3. A composition according to claim 2 wherein the oxide is Sb2O3.
4. A composition according to claim 2 or 3 wherein the nonconductive filler further comprises decabromodiphenyloxide.
5. A composition according to any one of claims 1 to 4 wherein the composition exhibits PTC behavior.
6. A strip heater which comprises a first conductive polymer composition according to any one of the preceding claims and which (1) when tested following the procedure of UL VW-1 either (a) does not pass the test or (b) has a performance which is similar to that of a second heater which is made from a second conductive polymer composition which is the same as the first composition except that it does not comprise the particulate nonconductive filler, and (2) when tested in a standard arcing fault test (a) trips the fuse in less time than is required by the second heater, and (b) trips the fuse in less than 30 seconds.
7. A strip heater assembly which comprises (A) a strip heater which comprises (1) a resistive element which is composed of a conductive polymer composition according to claim 1, 2, or 3 and (2) two electrodes which can be connected to a source of electrical power to cause current to flow through the resistive element, and (B) a fuse, the particulate nonconductive filler being such that when the first composition is made into a standard strip heater and the standard heater is tested in a standard arcing fault test it trips the fuse in less than 30 seconds.
8. A strip heater assembly according to claim 7 wherein the fuse is part of a fused plug assembly.
9. A strip heater assembly according to claim 7 or 8 wherein the fuse is a very fast acting fuse.
10. A strip heater circuit which comprises (A) a strip heater which comprises (1) a resistive element which is composed of a conductive polymer composition according to claim 1, 2, or 3 and (2) two electrodes which can be connected to a source of electrical power to cause current to flow through the resistive element, (B) a fuse, and (C) a power supply, the particulate nonconductive filler being such that when the composition is made into a standard strip heater and the standard heater is tested in a standard arcing fault test it trips the fuse in less than 30 seconds.
CA002066254A 1989-09-08 1990-09-10 Conductive polymer device Expired - Lifetime CA2066254C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US40473089A 1989-09-08 1989-09-08
US404,730 1989-09-08
PCT/US1990/005102 WO1991003822A1 (en) 1989-09-08 1990-09-10 Conductive polymer device

Publications (2)

Publication Number Publication Date
CA2066254A1 CA2066254A1 (en) 1991-03-09
CA2066254C true CA2066254C (en) 1999-11-02

Family

ID=23600799

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002066254A Expired - Lifetime CA2066254C (en) 1989-09-08 1990-09-10 Conductive polymer device

Country Status (7)

Country Link
EP (1) EP0490989B1 (en)
JP (1) JPH05500884A (en)
KR (1) KR920704316A (en)
AT (1) ATE187013T1 (en)
CA (1) CA2066254C (en)
DE (1) DE69033364T2 (en)
WO (1) WO1991003822A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111234A (en) * 1991-05-07 2000-08-29 Batliwalla; Neville S. Electrical device
DE4221309A1 (en) * 1992-06-29 1994-01-05 Abb Research Ltd Current limiting element
EP0640995B1 (en) * 1993-08-25 1997-06-25 Abb Research Ltd. Electrical resistor and application of this resistor in a current limiter
IT1291999B1 (en) * 1997-05-26 1999-01-25 Alcantara Spa FLAME RESISTANT AGENT USEFUL FOR MAKING A SYNTHETIC MICROFIBROUS NON-WOVEN FABRIC FIREPROOF PROCEDURE FOR ITS PREPARATION AND FABRICS
NO319061B1 (en) * 2003-05-15 2005-06-13 Nexans Lead-free electrical cable with high specific weight
US20160021705A1 (en) 2014-07-17 2016-01-21 Gentherm Canada Ltd. Self-regulating conductive heater and method of making

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT313588B (en) * 1970-08-24 1974-02-25 Oppitz Hans Process for the production of electrically conductive composite materials
US4006443A (en) * 1975-09-11 1977-02-01 Allen-Bradley Company Composition resistor with an integral thermal fuse
US4237441A (en) * 1978-12-01 1980-12-02 Raychem Corporation Low resistivity PTC compositions
US4591700A (en) * 1980-05-19 1986-05-27 Raychem Corporation PTC compositions
GB2173200B (en) * 1985-03-30 1989-10-11 Charles Romaniec Conductive materials

Also Published As

Publication number Publication date
KR920704316A (en) 1992-12-19
DE69033364T2 (en) 2000-07-27
EP0490989A1 (en) 1992-06-24
CA2066254A1 (en) 1991-03-09
WO1991003822A1 (en) 1991-03-21
DE69033364D1 (en) 1999-12-30
ATE187013T1 (en) 1999-12-15
JPH05500884A (en) 1993-02-18
EP0490989B1 (en) 1999-11-24

Similar Documents

Publication Publication Date Title
US5049850A (en) Electrically conductive device having improved properties under electrical stress
US4545926A (en) Conductive polymer compositions and devices
JP3692141B2 (en) Conductive polymer composition
EP0038715B1 (en) Circuit protection devices
US5925276A (en) Conductive polymer device with fuse capable of arc suppression
US4910389A (en) Conductive polymer compositions
US5174924A (en) Ptc conductive polymer composition containing carbon black having large particle size and high dbp absorption
JP3333913B2 (en) Conductive polymer composition and PTC device
JP4188682B2 (en) Conductive polymer composition and device containing NNm-phenylene dimaleimide
EP0270370B1 (en) Electrical heaters
EP0417204B1 (en) Polymeric ptc composition and electrical device thereof
JPH06202744A (en) Electric circuit provided with ptc element
KR100395840B1 (en) Electrical circuit protection devices comprising ptc conductive liquid crystal polymer compositions
US5178797A (en) Conductive polymer compositions having improved properties under electrical stress
CA2289824A1 (en) Conductive polymer materials for high voltage ptc devices
EP0038713A2 (en) Conductive polymer compositions containing fillers
CA2066254C (en) Conductive polymer device
CA2090229C (en) Flame retardant conductive polymer composition device
WO1994006128A1 (en) An electric device which utilizes conductive polymers having a positive temperature coefficient characteristic
CA1184319A (en) Radiation cross-linking of ptc conductive polymers
KR960000423B1 (en) Conductive polymer composition
Doljack et al. Radiation cross-linking of PTC conductive polymers

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry