CA2060994C - Electrical transdermal drug applicator with counteractor and method of drug delivery - Google Patents
Electrical transdermal drug applicator with counteractor and method of drug delivery Download PDFInfo
- Publication number
- CA2060994C CA2060994C CA 2060994 CA2060994A CA2060994C CA 2060994 C CA2060994 C CA 2060994C CA 2060994 CA2060994 CA 2060994 CA 2060994 A CA2060994 A CA 2060994A CA 2060994 C CA2060994 C CA 2060994C
- Authority
- CA
- Canada
- Prior art keywords
- drug
- skin
- patient
- reservoir
- transdermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003814 drug Substances 0.000 title claims abstract description 149
- 229940079593 drug Drugs 0.000 title claims abstract description 148
- 238000000034 method Methods 0.000 title claims description 14
- 238000012377 drug delivery Methods 0.000 title description 14
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims description 40
- 230000037317 transdermal delivery Effects 0.000 claims description 20
- 210000004204 blood vessel Anatomy 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 11
- 229940124549 vasodilator Drugs 0.000 claims description 10
- 239000003071 vasodilator agent Substances 0.000 claims description 10
- 229940126585 therapeutic drug Drugs 0.000 claims description 8
- 238000005370 electroosmosis Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 230000001839 systemic circulation Effects 0.000 claims description 4
- 230000024883 vasodilation Effects 0.000 claims description 4
- 238000001962 electrophoresis Methods 0.000 claims description 3
- 210000000601 blood cell Anatomy 0.000 claims 1
- 230000002792 vascular Effects 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract description 9
- 210000003491 skin Anatomy 0.000 description 69
- 210000004369 blood Anatomy 0.000 description 18
- 239000008280 blood Substances 0.000 description 18
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 17
- 229960003711 glyceryl trinitrate Drugs 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 13
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 9
- 230000017531 blood circulation Effects 0.000 description 9
- 230000023555 blood coagulation Effects 0.000 description 8
- 230000009885 systemic effect Effects 0.000 description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 239000008103 glucose Substances 0.000 description 7
- 230000001976 improved effect Effects 0.000 description 7
- 229920000669 heparin Polymers 0.000 description 6
- 102000004877 Insulin Human genes 0.000 description 5
- 108090001061 Insulin Proteins 0.000 description 5
- 239000000006 Nitroglycerin Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 229940125396 insulin Drugs 0.000 description 5
- 239000002674 ointment Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 206010053567 Coagulopathies Diseases 0.000 description 4
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 4
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 4
- 239000003146 anticoagulant agent Substances 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000035602 clotting Effects 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 229960002897 heparin Drugs 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229960000201 isosorbide dinitrate Drugs 0.000 description 4
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 3
- 102000007327 Protamines Human genes 0.000 description 3
- 108010007568 Protamines Proteins 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 210000003780 hair follicle Anatomy 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- MOYKHGMNXAOIAT-JGWLITMVSA-N isosorbide dinitrate Chemical compound [O-][N+](=O)O[C@H]1CO[C@@H]2[C@H](O[N+](=O)[O-])CO[C@@H]21 MOYKHGMNXAOIAT-JGWLITMVSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229950008679 protamine sulfate Drugs 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 210000004243 sweat Anatomy 0.000 description 3
- 238000013271 transdermal drug delivery Methods 0.000 description 3
- UOTMYNBWXDUBNX-UHFFFAOYSA-N 1-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxyisoquinolin-2-ium;chloride Chemical compound Cl.C1=C(OC)C(OC)=CC=C1CC1=NC=CC2=CC(OC)=C(OC)C=C12 UOTMYNBWXDUBNX-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- 108090000932 Calcitonin Gene-Related Peptide Proteins 0.000 description 2
- 102000004414 Calcitonin Gene-Related Peptide Human genes 0.000 description 2
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 108010023197 Streptokinase Proteins 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000000702 anti-platelet effect Effects 0.000 description 2
- 230000002785 anti-thrombosis Effects 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- YEESUBCSWGVPCE-UHFFFAOYSA-N azanylidyneoxidanium iron(2+) pentacyanide Chemical compound [Fe++].[C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.N#[O+] YEESUBCSWGVPCE-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000916 dilatatory effect Effects 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 235000001968 nicotinic acid Nutrition 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229960002460 nitroprusside Drugs 0.000 description 2
- 229960003207 papaverine hydrochloride Drugs 0.000 description 2
- -1 phospho Chemical class 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229940057199 potassium aminobenzoate Drugs 0.000 description 2
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 2
- 229960002477 riboflavin Drugs 0.000 description 2
- 235000019192 riboflavin Nutrition 0.000 description 2
- 239000002151 riboflavin Substances 0.000 description 2
- 150000003873 salicylate salts Chemical class 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 210000000434 stratum corneum Anatomy 0.000 description 2
- 229960005202 streptokinase Drugs 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 230000025033 vasoconstriction Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 1
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 1
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical class CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 108090000935 Antithrombin III Proteins 0.000 description 1
- 102100022977 Antithrombin-III Human genes 0.000 description 1
- 108010080422 CD39 antigen Proteins 0.000 description 1
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 description 1
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical class [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- QVPSGVSNYPRFAS-UHFFFAOYSA-N Isoxsuprine hydrochloride Chemical compound Cl.C=1C=C(O)C=CC=1C(O)C(C)NC(C)COC1=CC=CC=C1 QVPSGVSNYPRFAS-UHFFFAOYSA-N 0.000 description 1
- 108010093008 Kinins Proteins 0.000 description 1
- 102000002397 Kinins Human genes 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- UGJBHEZMOKVTIM-UHFFFAOYSA-N N-formylglycine Chemical compound OC(=O)CNC=O UGJBHEZMOKVTIM-UHFFFAOYSA-N 0.000 description 1
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 1
- CLJHABUMMDMAFA-UHFFFAOYSA-N Nylidrin hydrochloride Chemical compound [Cl-].C=1C=C(O)C=CC=1C(O)C(C)[NH2+]C(C)CCC1=CC=CC=C1 CLJHABUMMDMAFA-UHFFFAOYSA-N 0.000 description 1
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical compound [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 description 1
- 239000000026 Pentaerythritol tetranitrate Substances 0.000 description 1
- VBCPVIWPDJVHAN-UHFFFAOYSA-N Phenoxybenzamine hydrochloride Chemical compound [Cl-].C=1C=CC=CC=1C[NH+](CCCl)C(C)COC1=CC=CC=C1 VBCPVIWPDJVHAN-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 101800004937 Protein C Proteins 0.000 description 1
- 102000017975 Protein C Human genes 0.000 description 1
- 229940096437 Protein S Drugs 0.000 description 1
- 102000029301 Protein S Human genes 0.000 description 1
- 108010066124 Protein S Proteins 0.000 description 1
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 1
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 1
- 101800001700 Saposin-D Proteins 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 102100026966 Thrombomodulin Human genes 0.000 description 1
- 108010079274 Thrombomodulin Proteins 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 206010047139 Vasoconstriction Diseases 0.000 description 1
- 229960002054 acenocoumarol Drugs 0.000 description 1
- VABCILAOYCMVPS-UHFFFAOYSA-N acenocoumarol Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=C([N+]([O-])=O)C=C1 VABCILAOYCMVPS-UHFFFAOYSA-N 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 229940099983 activase Drugs 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229960003318 alteplase Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 230000003510 anti-fibrotic effect Effects 0.000 description 1
- 229960005348 antithrombin iii Drugs 0.000 description 1
- 229960004676 antithrombotic agent Drugs 0.000 description 1
- 210000002565 arteriole Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000002327 cardiovascular agent Substances 0.000 description 1
- 229940125692 cardiovascular agent Drugs 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 229960000729 cyclandelate Drugs 0.000 description 1
- ZOOGRGPOEVQQDX-UHFFFAOYSA-N cyclic GMP Natural products O1C2COP(O)(=O)OC2C(O)C1N1C=NC2=C1NC(N)=NC2=O ZOOGRGPOEVQQDX-UHFFFAOYSA-N 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 229960004042 diazoxide Drugs 0.000 description 1
- 229940087490 dibenzyline Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229960002768 dipyridamole Drugs 0.000 description 1
- IZEKFCXSFNUWAM-UHFFFAOYSA-N dipyridamole Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCO)=NC=1N1CCCCC1 IZEKFCXSFNUWAM-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229960001123 epoprostenol Drugs 0.000 description 1
- KAQKFAOMNZTLHT-VVUHWYTRSA-N epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 description 1
- 229960005450 eritrityl tetranitrate Drugs 0.000 description 1
- SNFOERUNNSHUGP-ZXZARUISSA-N erythrityl tetranitrate Chemical compound [O-][N+](=O)OC[C@@H](O[N+]([O-])=O)[C@@H](O[N+]([O-])=O)CO[N+]([O-])=O SNFOERUNNSHUGP-ZXZARUISSA-N 0.000 description 1
- 229960004886 ethaverine hydrochloride Drugs 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 229960003602 guanethidine Drugs 0.000 description 1
- YUFWAVFNITUSHI-UHFFFAOYSA-N guanethidine monosulfate Chemical compound [H+].[H+].[O-]S([O-])(=O)=O.NC(=N)NCCN1CCCCCCC1 YUFWAVFNITUSHI-UHFFFAOYSA-N 0.000 description 1
- 229960002096 guanethidine monosulfate Drugs 0.000 description 1
- 229960004848 guanethidine sulfate Drugs 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 229960005384 hydralazine hydrochloride Drugs 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229940093268 isordil Drugs 0.000 description 1
- 229960004164 isoxsuprine hydrochloride Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000008338 local blood flow Effects 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229960003632 minoxidil Drugs 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 229940072991 nitro-bid Drugs 0.000 description 1
- 229940073020 nitrol Drugs 0.000 description 1
- 229940073015 nitrostat Drugs 0.000 description 1
- 229940018466 nylidrin hydrochloride Drugs 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- XQYZDYMELSJDRZ-UHFFFAOYSA-N papavarine Natural products C1=C(OC)C(OC)=CC=C1CC1=NC=CC2=CC(OC)=C(OC)C=C12 XQYZDYMELSJDRZ-UHFFFAOYSA-N 0.000 description 1
- 208000035824 paresthesia Diseases 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229960004321 pentaerithrityl tetranitrate Drugs 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229940090007 persantine Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229960003006 phenoxybenzamine hydrochloride Drugs 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 230000009805 platelet accumulation Effects 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229940068989 potaba Drugs 0.000 description 1
- VLSHYHUKASKGPF-UHFFFAOYSA-M potassium;2-aminobenzoate Chemical compound [K+].NC1=CC=CC=C1C([O-])=O VLSHYHUKASKGPF-UHFFFAOYSA-M 0.000 description 1
- MZKKJVZIFIQOPP-UHFFFAOYSA-M potassium;4-aminobenzoate Chemical compound [K+].NC1=CC=C(C([O-])=O)C=C1 MZKKJVZIFIQOPP-UHFFFAOYSA-M 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 229960000856 protein c Drugs 0.000 description 1
- 235000008160 pyridoxine Nutrition 0.000 description 1
- 239000011677 pyridoxine Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- QEVHRUUCFGRFIF-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C(C5=CC=C(OC)C=C5N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 QEVHRUUCFGRFIF-MDEJGZGSSA-N 0.000 description 1
- 229960003147 reserpine Drugs 0.000 description 1
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- KYITYFHKDODNCQ-UHFFFAOYSA-M sodium;2-oxo-3-(3-oxo-1-phenylbutyl)chromen-4-olate Chemical compound [Na+].[O-]C=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 KYITYFHKDODNCQ-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N sulfurochloridic acid Chemical class OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 229940089554 theo-24 Drugs 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- JIVZKJJQOZQXQB-UHFFFAOYSA-N tolazoline Chemical compound C=1C=CC=CC=1CC1=NCCN1 JIVZKJJQOZQXQB-UHFFFAOYSA-N 0.000 description 1
- 229960002312 tolazoline Drugs 0.000 description 1
- 239000003860 topical agent Substances 0.000 description 1
- 229940029774 trimethaphan camsylate Drugs 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 229960005080 warfarin Drugs 0.000 description 1
Landscapes
- Electrotherapy Devices (AREA)
- Medicinal Preparation (AREA)
Abstract
An electrical transdermal drug applicator provides enhanced drug flow to the bloodstream of the subject by delivering a primary drug into a subject's circulatory system for therapeutic purposes, and delivering from the same or other reservoir a non therapeutic counteracting agent to the skin of the patient which induces flow enhancement and allows delivery of the primary drug systemically over a longer period of time and in greater quantity than heretofore appeared possible using electric current.
Description
2~~fl~~~~
ELECTRICAL TRANSDERMAL DRUG APPLICATOR WITH
COUNTERACTOR AND METHOD OF DRUG DELIVERY
_BACKGROUND OF THE INVENTION
This invention relates generally to an electrical transdermal drug device delivering a drug to the patient for systemic distribution by blood flow using principles of electrokinetic phenomena, such as electrophoresis and electroosmosis, and more particularly to an electrical transdermal drug applicator delivering counteracting substances locally to the patient's skin and/or electrically inducing the skin to produce endogenous compounds which extend the period of therapeutic drug delivery and thereby increase usefulness of the drug applicator. Reference to or disclosure of devices for transdermal delivery of drugs by application of electrical current through the skin of a person or animal are shown in the following United States patents:
385,556 4,243,052 486,902 4,325,367 588,479 4,367,745 2,493,155 4,419,019 2,267,162 4,474,570 2,784,715 4,406,658 3,163,166 4,314,554 3,289,671 4,166,457 3,547,107 4,239,052 3,677,268 4,290,878 4,008,721 4,164,226 4,141,359 4,362,645 4,239,046 4,273,135 The following foreign patents refer to ar disclose transdermal drug delivery devices:
EPA No. 0060452 DE No. 290202183 DE No. 3225748 EPA No. 0058920 UK No. 2104388 Thus, it is evident, that transdermal delivery of drugs by application of an electrical current is not unknown. Yet, except for experimental and developmental purposes, such electrical transdermal drug applicators are not presently commercially available for use by medical professionals or by individuals.
A problem with transdermal patches, especially electrically powered patches, is that such devices ex.:~ibit a rate of drug delivery which decays with passage of time despite a steady state condition for the applied electrical current and steady state drug concentrations within the drug reservoir of the device.
This phenomenon has been reported in scientific journals, for example, an article, IN VIVO TRANSDERMAL DELIVERY OF INSULIN, Chien et al Annals of New York~Academ of Sciences y . pages 38-47 (1987).
Therein, changes in blood glucose level are recorded versus time after insulin is delivered transdermally to laboratory animals, using an electrical current. Several parameters are varied. For example, it is reported that a pulsed DC current has a greater and more enduring effect in reducing-: blood glucose levels in laboratory animals,~than does a pure continuous DC
20fi0~~ t~
current. The actual quantity of insulin, which is delivered, is not measured. Rather, the effect of the drug in reducing blood glucose levels is measured. It is found that one repetition rate of DC pulses is more effective than another pulse repetition rate in reducing blood glucose levels measured both in magnitude and time duration. A square waveform provided better results than did a sinusoidal waveform or a trapezoidal waveform.
The authors of the paper analogize the skin electrically with resistances and capacitance in parallel as an equivalent circuit. They theorize that the DC current charges the capacitance of the skin which, once charged, can accept no more current and accordingly limits drug delivery. Using DC pulses rather than steady state current allows time for the skin capacitance to discharge, such that on the next pulse, additional current, capacitor charging, and drug delivery can occur.
However, an anomalous situation arises when at a favorable pulse repetition rate, and with the same current delivery level as in prior tests, the duty cycle is varied: It would be expected that the greater the duty cycle, that is, the greater the current ON time versus the current OFF time ratio, the greater amount of insulin would be delivered transdermally and the measured effects on blood glucose level would be correspondingly more favorable and more enduring. Contrary to expectations, as the duty cycle increases from a one-to-one ratio toward an eight-to-one ratio, the reduction in~'blood [ glucose 2~~~~~
level becomes less, rather than more, although duration of this reduction is somewhat extended.
In summary, application of current over a longer period of time, that is, consumption of more energy for delivering drugs transdermally, results in what appears to be less delivery of drug as measured by the effect on blood glucose level.
That publication graphically illustrates the problem with prior art transdermal drug applicators and delivery methods using electrical current to carry drugs through the skin, that is, the effectiveness of the delivered drug is insufficient in duration of effect and the rate of drug delivery falls off as the delivering current is continuously applied over extended periods of time.
What is needed is an electrical transdernaal drug applicator and method which provide enhanced drug delivery to the patient with regard to quantity of systemically delivered drug and duration of drug effectiveness.
SUMMARY OF THE INVENTION
Generally speaking, in accordance with the invention, an electrical transdermal drug applicator having enhanced drug flow to the bloodstream of the subject is provided. The applicator, in addition to delivering a primary drug into. a subject s circulatory system for therapeutic purposes, delivers from a reservoir a non-therapeutic counteracting agent to the skin of the patient which induces flow enhancement and allows delivery of the primary drug systemically over a longer period of time and in greater quantity than heretofore appeared possible using electric current. Construction of the electrical transdermal drug applicator with electrochemical flow enhancement by introduction of a counteracting agent to the skin and/or specific electrical wave shapes is based on applicant's appraisal of known phenomena as described above.
However, charging of skin capacitance is not considered to be the primary factor in reducing drug delivery capability as current application time and magnitude of current are increased.
The efficiency of administration of insulin may be partially vitiated by adsorption and degradation within the skin tissues or by restricted blood circulation in the skin. The passage of current and/or dissociated water ions and/or certain drugs through the human skin causes a series of events related to reduction in magnitude of negative net surface charge exhibited by living mammalian cells. A, most important consequence of reduction in magnitude of the negative charge on the cells is triggering of an avalanche-like coagulation process which forms thrombi, that is, blood clotting, which in turn stops blood flow through capillaries. Passage of current from a transdermal applicator tends to reduce the negative charge on cells of the skin proximate the applicator reservoir, where drugs- are delivered, causing blood clotting in the capillaries which not ~~~~~v~
only stops local blood flow, but also stops drug flow into the circulatory system of the subject. A drug transdermally delivered locally is not effective systemically when the capillaries of the skin contain coagulated blood.
In addition, especially in the anodic (+) region of current delivery through the skin, an immediate contraction of small blood vessels, especially arteries, takes place causing a complete interruption of blood flow to said vessels. Thus, as with blood clotting, contraction of the small blood vessels prevents drugs delivered through the skin by the transdermal applicator from being delivered into the circulatory system.
Electroosmosis, which is an important factor in delivery of drugs from the applicator reservoir through the skin and into the blood circulation system, is affected by the existence of fixed negative charges on the cellular walls within the skin. A
reduction of such net negative charge, as caused by passage of even small electric currents or of the water ions through the skin, inhibits electroosmosis.
Blood clotting, blood vessel contraction, and reduced electroosmotic effects, as described above, can combine synergistically to slow down or completely stop system transdermal delivery of primary drugs, especially from electrically powered transdermal applicators. This occurs even when the drug is successfully transferred from the applicator through the skin into the local skin tissue.
To counteract the current or drug induced loss of negative charge on the cellular walls within the skin, the electrical transdermal drug applicator with electrochemical flow enhancement, in accordance with the invention, delivers into the skin, in addition to the primary drug having therapeutic purpose, counteractive substances known to increase the negative charge on cell surfaces.
A negative charge on cell surfaces is generally accepted as a fundamental factor in preventing the clotting of blood on that surface. Negative charge (Coulombic repulsion) is also considered to be part of the mechanism for the coagulation of platelets. Additionally, overcoming negative charge is also believed to be a crucial aspect of fibrin formation, part of the avalanche of reactions in the clotting of blood (thrombosis).
Without being bound by theory, for the reasons given above, it is known at a minimum, that providing a negative charge on natural or artificial surfaces in contact with animal blood helps prevent clotting or thrombosis.
One may add to the negative charge on a cell surface by reaction with or adsorption of anionic moieties compatible with animal cells such as salicylates, nitrates, methylcarboxylates, sulfonates, chlorosulfonates, phosphonates, gluconates, maleates, citrates, phthalates, or sulfates. These moieties bonded to or adsorbed on a cell surface inhibit adherence of animal blood, maintain the fluidity of animal blood, and help prevent clotting of blood in motion.
Specific drugs known as anticoagulants, antiplatelets, or antifibrotics also are negatively charged and are illustrated in the Table. Among these are heparin (a mixture containing mucosaccharide sulfonates), salicylates, protamine sulfate, potassium aminobenzoate, and nitroprusside - a source of sodium nitrate. Not only are these substances direct action drugs, they are also agents for increasing the negative charge on cell surfaces and artificial surfaces in contact with animal blood.
The chemicals may be chemically bonded to, adsorbed to, or absorbed in the surface. .
Another class of entities for increasing the negative charge on cell surfaces or acting to inhibit either platelet formation or coagulation of animal blood are natural substances produced by the metabolism of the animal or man. Among these natural biochemical factors are: prostacyclin, thrombomodulin, Ecto-ADPase, urokinase, tissue plasminogin activators (TPA), streptokinase, antithrombin III, protein C, protein S, prostaglandins I2 and El, sulfated glycosaminoglycans, N-acetylcysteine with nitroglycerin, nicoumalone, phosphatidyl inositol, hydrophilic gangiioside GM-1, cyclic GMP, S-nitrothiols, dodecapeptide gamma F1B, 400-411, and guanosine 31,51-monophosphate, their metabolic precursors and reaction products.
Additional natural vasodilators are kinins and histamines.
Such substances, if included in the reservoir of the transdermal drug delivery applicator, move through the skin and react with the cells at the same time that the primary therapeutic drug is delivered through the skin. By maintaining a more negative condition of charge on cell surfaces, blockage of flow through local blood vessels is reduced or prevented, allowing drugs delivered transdermally to be further delivered into the systemic flow. Generally, the counteractive substance has no therapeutic value, although in special instances a substance may serve a dual purpose.
Maintaining a more negative condition of charge on cell surfaces could be achieved simultaneously and/or alternatively by precharging the cell surface with a negative charge prior to electroosmo~ic drug delivery in cases where such delivery takes place from the positive drug reservoir. The precharging and the discharging voltage levels are monitored and maintained within preset limits by electronic means.
In situations where one polarity of voltage delivers the primary drug and the opposite polarity delivers the counteractive substance, arrangements can be made for simultaneous delivery of both substances, or alternatively, alternating delivery can be provided.
To prevent formation of thrombi of platelets, that is, blood coagulation, adjacent the applicator/skin interface, antithrombotic agents are delivered from the applicator reservoir, either as a preconditioner or during drug delivery or alternately. Such counteractive substances would include, for example, heparin or aspirin. To counteract contraction or i constriction of blood vessels adjacent the applicator interface, vasodilators can be used in the reservoir. Nitroglycerin is one such dilator. Alternatively or concomitantly, specific electrical pulses, such as square wave pulses of ~.4 ms and a frequency of 80 Hz at an intensity which could produce a tingling sensation may be used for repetitive periods of up to two hours a day to maintain vasodilation.
Accordingly, it is an object of the invention to provide an improved transdermal drug applicator and method which provide enhancement of drug flow into the system of the subject by means of delivery of counteractive agents.
Another object of the invention is to provide an improved .
transdermal drug applicator and method which provide, in addition to the primary therapeutic drug, a counteractor which works to make local cell charges relatively more negative.
Yet another object of the invention is to provide an improved transdermal drug applicator and method which enhance flow of primary therapeutic drug through the skin by addition of a vasodilator in the applicator reservoir.
A further object of the invention is to provide an improved transdermal drug applicator and method which provide an anticoagulant in the primary drug reservoir for delivery with the primary drug into the skin of the user.
Another object of the invention is to provide an improved transdert~al drug applicator and method which captures mobile ions such as H+ and OH" and thereby prevents such ions from reaching 7.0 the skin tissues and causing production of thrombi, vaso-constriction arid extreme changes of the cellular negative charge.
A still further object of the invention is to provide an improved transdermal drug applicator and method for the stimulation and systemic release of endogenous substances which have a natural therapeutic effect.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
The invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the apparatus embodying features of construction, combinations of elements and arrangement of parts which are adapted to effect such steps, all as exemplified in the following detailed disclosure, and the scope of the invention will be indicated in the claims.
ERIEF DESCRIPTION OF THE DRAWINGS
For a fuller understanding of the invention, reference is had to the following description taken in connection with the accompanying drawings, in which:
Figure 1 is a cross-section of human skin showing pathways for transdermal drug delivery in accordance with the invention.
' 2~~~~~~
Figure 2 is an electrical transdermal drug applicator in accordance with the invention including a single reservoir holding both a.primary drug and a counteractor.
Figure 3 is an electrical transdermal drug applicator in accordance with the invention including a parallel arrangement of reservoirs; one holding a primary drug; the others holding a counteractor.
Figure 4 is an electrical transdermal drug applicator in accordance with the invention including two reservoirs electrically in series.
Figures 5-8 illustrate alternative arrangements of reservoirs and circuitry in accordance w~.th the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
With reference to the Figure 2, an electrical transdermal drug applicator 10 in accordance with the invention includes a reservoir 12 containing a primary drug 14 and a counteractor 16, both being dispersed in a suspension, for example, a gel 18 as disclosed in any of the above-referenced patents by the inventor here (as examples). A surface 20 of the reservoir 12 rests against the surface 22, of the user's skin 23 and is maintained in position, Eor example, by an adhesive (not shown). An electrode 24 connects to another surface 26 of the reservoir 12 and this in turn is connected to a DC source 28 by way of-:an electrical current conditioner 30. and a single pole switch 32. The other rw 2~~~~~4 terminal of the DC source 28 connects to the skin surface 22 by way of a return electrode 36 which directly contacts the skin and is maintained in position, for example, by an adhesive (not shown). A single pole switch 34 is intermediate the electrode 36 and the DC source 28.
As discussed more fully hereinafter, the counteractor 16 acts locally on the blood vessels, for example, blood capillaries, whereas, as described in the Sibalis patents cited above, the primary drug is delivered systemically into the body's circulatory system.
It should be understood that the skin 23 is illustrated in Figures 1, 2 with simplified representations and the electrical transdermal drug applicator is also shown schematically in Figure 2 as a generic representation of such a device. More detailed descriptions may be found in the above-cited references by the inventor in this application. It suffices here to state that the gel 18 and the primary drug 14 and counteractor 16 are contained in the reservoir 12 in a manner to prevent leakage of the substances. Also, there is no short-circuit of electrical current across the skin surface 22 directly to the electrode 36.
When the switches 32, 34 are closed as illustrated, a positive potential appears on the electrode 24 and a negative potential on the electrode 36 causing a current to flow from the source 28 through the current conditioner 30, the electrode 24, reservoir 12 and skin surface 22 in series. A DC current flows within the skin 23 as indicated by the arrow 38, then back 13 ' through the skin surface 22 to the return electrode 36, and then back through switch 34 to the negative terminal of the DC source 28. The positive potential of the source 28 applied to the electrode 24 and the electrical current drive the primary drug 14 and the counteractor 16 through the interface between the reservoir 12 and the skin surface 22.
In Figure 1, the human skin 23 is represented in simplified construction as including an outer layer, the epidermis 42, which is broken by hair follicles 44 and sweat ducts 46, and at greater depth blood capillaries 40, glands, etc. In electrical transdermal drug applicators, it is known that small quantities of the drug pass directly through the epidermis 42 as indicated by the arrows 43 but also the drug 14 enters the skin with relative ease through the hair follicles 44 and sweat ducts 46 which act as shunts. Having entered into the skin, the drug 14 is disseminated to the systemic circulatory system by electrokinetic processes, for example, electrophoresis, electroosmosis, iontophoresis, etc. With certain drugs and counteractors it may be desirable to pick skin areas with greater or lesser densities of hair follicles and sweat ducts for application of the transdermal applicator 10 thereto.
Where a reversed polarity from that described in Figure 2 is required to drive the primary drug 14 and counteractor 16 into the skin tissues, the switches 32, 34 in Figure 2 are moved to the positions indicated with broken lines, whereby a negative potential is applied to the electrode 24 and a positive potential is applied to the return electrode 36.
Where the primary drug 14 and the counteractor 16 require opposite polarities of voltage to cause the substances to enter into the skin, an alternating DC potential is applied by periodically changing the positions of the switches 32, 34 such that the potentials on the electrodes 24, 36 are periodically reversed. The timing of the switches 32, 34 in each alternating position is based upon the drug 14 and counteractor 16 which are being used. Equal driving times or unequal driving times can be provided as best suited for the substances 14, 16.
Further, in recognition of the work reported by Chien et al as discussed above, it may be desirable, in the process of drug delivery, to incorporate time periods wherein no potential is applied to the electrodes 24, 36 and, it may be desirable during those periods of no driving potential, to apply a short circuit between the electrodes 24, 36 such that charges, if any, built up within the skin during the driving periods may be readily discharged. The switch 48, shown with broken lines in Figure 2, is connected between the electrodes 24, 36 and when closed provides the desired short circuit.
Tn electrical transdermal drug applicators in accordance with the invention, wherein a complex operational cycle is desirable, including (for examples) polarity reversals, periods without driving potential, periods of electrode short-circuiting, etcetera, a controller 50, also shoran in broken lines 2~~~'~~t~
in Figure 2, is used to automatically regulate opening and closing of the switches 32-35, 37, 48 in desired programs.
It should be understood that whereas the power source 28 is indicated in Figure ~ and in the other Figures for the sake of illustration, as a DC battery, the power source may include circuitry for converting potential from a DC battery to voltages of controlled magnitude with regulated current delivery: the electrodes not being connected directly to the DC battery but to the output of the voltage generating circuitry. Additionally, the switches which are schematically represented in Figure X as electro-mechanical switches can be solid state switches, especially when considering the very low current flows which are frequently involved in electrical transdermal drug applicators as indicated in the patents of the present inventor cited above.
Thus complex operational cycles of an applicator in accordance with the invention may be automatically controlled by a microchip.
The counteractors 16, which~are added to the reservoir 12, can operate wfthin the skin to accomplish one or more effects which tend to maintain blood circulation in the skin area adjacent the transdermal drug applicator 10, such that the primary drug 14, which enters the skin, is carried,away by the bloodstream into systemic circulation for therapeuxic purposes.
Broadly speaking, the counteractors 16 can include vasodilators which operate by relaxing the muscles surrounding the blood vessel walls, including capillary walls, such that a greater flow area and easier blood flow is possible. A counteractor 16 may fall in the category of antithrombosis agents in that they work to reduce platelet accumulation and blood clotting'in the blood vessels, in particular the capillaries, in the area where the drug applicator 10 is applied. A single counteractor which performs both functions may be used in the reservoir 12 or a plurality of counteractors which in combination perfona both functions, or a counteractor which performs only one such function may be used in the reservoir 12. Also, the counteractor 16 may be a substance which when introduced into the skin induces the body to produce substances which delay, inhibit, or eliminate blood coagulation or aid in dilating the blood vessels to improve blood circulation. The primary drug and counteractor may be variants of the same substance which do not interact pharmacologically, e.g. nitroglycerine and isosorbide dinitrate.
The counteractive substance can be part of the primary drug ro molecule. Especially sulfonated, phospho~lated and carboxylated groups attached to the primary drug molecules may be effective in providing a desired increase of the negative charge characteristics of the cellular walls where the applicator is attached.
Substances known to be unsuitable for systemic transdermal delivery as a primary drug with intended therapeutic benefit may be the preferred counteractor as the drug s action will be limited to the target area of applicator attachment and the counteractor will not be available to produce. any systemic 17 .
effects. Thus, such application of substances as counteractors is entirely opposed to prior teachings where it may be indicated that no therapeutic utility for these materials is present in transdermal applicators. The counteractors are formulated to function only as topical agents. For example, if nitrates are used, e.g. nitroglycerin, the flux rate of the counteractor may be adjusted so as not to produce any detectable blood serum level of the counteractor suLstance, while at the applicator site blood circulation is improved. There is no or negligible systemic effect or pharmacological effect. More specifically, the counteractive substance will be formulated for negligible transdermal delivery when its use is limited only to the counteractive function. The counteractive substance could be of a nature which selectively allows its delivery through the stratus corneum, such as nitroglycerin, whereas the electrokinetic main drug delivery takes place via the skin shunts, perspiration and sebaceous ducts. In such a case the stratum corneum would function as a depot for the counteractive substance even though the counteractive substance previously contained in said applicator reservoir is exhausted from the applicator.
Known vasodilators which may be used as counteractors, and knot~;n antithrombosis substances which also may be used as counteractors 16 and substances which may serve as both blood vessel dilators and also act to reduce or -eliminate blood coagulation, are set forth herein below.
CARDIOVASCULAR DRUGS VASODILATORS
TRADE NAME GENERIC (;TRIVIAL NAME
Cerespan - papaverine hydrochloride Cyclospasmol - cyclandelate Ethatab - ethaverine hydrochloride Lipo-Nicin - mixture of six agents: nicotinic acid, niacinamide, ascorbic acid, thiamine HC1, riboflavin, pyridoxine Pavabid - papaverine hydrochloride Theo-24 - theophylline Vasodilan - isoxsuprine hydrochloride Cardilate - erythrityl tetranitrate ~~E N~ GENERIC
TRIVIAL) NAME
Iso-bid - isosorbide dinitrate Isordil - isosorbide dinitrate Nitro-Bid - nitroglycerine Nitroglyn - nitroglycerine Nitrol (ointment) nitroglycerine (ointment) -Nitrospan - nitroglycerine Nitrostat - nitroglycerine/polyethylene glycol Peritrate - pentaerythritol tetranitrate Persantine - dipyridamole 8orbitrate - isosorbide dinitrate r TRADE NAME rENERIC fTRrvrAr~i N~
Tridil - nitroglycerine Arlidin - nylidrin hydrochloride Aprosoline HC1 - hydralazine hydrochloride l~rfonad - trimethaphan camsylate Dibenzyline - phenoxybenzamine hydrochloride Esimil - guanethidine sulfate/hydrochioride Hyperstat - diazooxide Ismelin - guanethidine monosulfate roniten - minoxidil Nico-400 - nitroglycerine Priscoline HC1 - talazoline hydrochloride Serpasil - reserpine NTICOAGULANTS
Calciparine - ca~.cium heparin Coumadin - sodium warfarin (propanol-2 clathrate) Heparin, Na - sodium heparin Protamine sulfate - protamine sulfate A~1TIFIBROTICS systemic Potaba - potassium aminobenzoate ao ~~~~~~i~
ANTIPLATELET
Aspirin - salicylates, such as salicylic acid, its derivatives and salts thereof.
OTHER
flavoroids (such as riboflavin) and their phenolic breakdown products or compounds.
calcitonin gene related peptide (CGRP) nitroprusside prostacylin streptokinase Activase recombinant alteplase While the above listings are by no means complete, they are nevertheless representative of various categories of drugs or agents which may be suitable in the practice of the invention.
Moreover, the present invention contemplates the use of any counteractors which have the specific characteristics and produce the effects desired as have been described in the present application.
Figure 3 illustrates an alternative embodiment of an electrical transdermal drug applicator 10' in accordance with the invention, wherein the primary drug 14 is contained in a first reservoir 12' and the counteractor 16 is contained in the reservoirs 12 " . In each reservoir, the substances are suspended ~~~~~9~~
in a gel 18. Electrodes 24, 52 are connected in parallel to receive current from the DC power source 28 by way of the electrical current conditioner 30. As illustrated, current flows from the battery 28 through the current conditioner 30 to the electrodes 24, 52, through the associated reservoirs 12°, 12 "
and through the surface 22 of the skin 23. The current flows (arrows 38) within the skin to the return electrode 36 and then back to the DC power source 28.
To suit a particular primary drug 14 and counteractor 16, provision for switching the polarity of the DC source 28 may be provided as indicated in Figure 2, and a shorting circuit connecting all electrodes 24, 52 directly to the return electrode 36 by way of a switch 48 may also be included. By operation of switches 33, 35, 37, reservoirs may be selectively inactivated while the other reservoirs continue to function. A controller 50 may be used to control the switches 32, 34, 48 (see Figure 2) When periodic cycling is involved in operation of the transdermal drug applicator 10'.
Figure 4 illustrates another alternative embodiment of an electrical transdermal drug applicator 10'°. In this configuration, the reservoir 12' is connected to one terminal of the DC source 28, whereas the reservoir 12 " is connected to the other terminal of the DC power source 28. Thereby, opposite polarities are always present on the two reservoirs 12', 12 " .
This is advantageous when the primary drug 14 is delivered through the skin's surface 22 by one electrical potential and the counteractor 16 is delivered through the skin surface 22 by the opposite potential. In this way, both the drug 14 and counteractor 16 can be continuously and concurrently delivered if desired.
A shorting circuit between the electrodes 24, 52 including the switch 48 may be used to remove charge, if any, from the skin during periods when the voltage is not applied. A controller 50 may be used with the configuration of Figure 4 as described above to control ON/OFF periods, periods when the short circuit through the switch 48 is desired, etc. A return electrode 36 (broken lines) may be used to eliminate the reservoir 12' from the circuit when a switch 39 is closed while switches 47, 54 are open while switch 48 is also open. In this way, delivery of the counteractor substance 16 to the skin may continue while delivery from the reservoir 12' of the primary drug 14 is discontinued.
Similarly, the return electrode 36 can be used to eliminate counteractor reservoir 12 " when it is desired to deliver the drug 14 while interrupting delivery of the counteractor 16. In this case the switch 47 is closed, switches 38, 48, 49 are open and switch 54 is closed.
The electrical transdermal drug applicator 10 of Figure 2 was described as containing a drug and a counteractor in suspension, for example, a gel. However, it should be understood that in alternative embodiments of an electrical transdermal drug applicator in accordance with the invention, the reservoir may be in the form of a matrix, liquid, paste, etc. as suits the particular substances in use. Also, Figure 2 illustrates a generally random and equal distribution of drug 14 and counteractor 16 within the reservoir 12. It should be understood that the reservoir may contain a predominance of one substance over the other. The distribution of materials may not be uniform or randomized. The drug 14 may be in one layer, whereas a counteractor 16 may be in another ~ayer, the layers being at different distances from the skin surface 22. As dictated by the particular application, either the drug 14 or counteractor 16 layer may be closer to the skin surface. Such layers may themselves combine several substances which can be in varying proportions as suits the particular construction with drug 14 and counteractor 16 in each layer. The layers may be of different thicknesses such that one layer may act as a flow inhibitor of materials from the other layer. There may be several layers each of counteractors and drugs and these layers may be alternated in their stacking within a reservoir.
In an exemplary embodiment of the invention, blockage of the capillaries and stratum corneum of the skin may be avoided or inhibited by sub-therapeutic dosages of an active vasodilator such as nitroglycerin. For example, a therapeutic ointment at 2%
concentration is available from the W.H. Rorer Co. (Fort Washington, Penna 19034) under the tradename NITROL ointment.
Since it is known that nitroglycerine relaxes smooth muscles, principally in the smaller blood vessels thus dilating arterioles and capillaries, it may be advantageous to topically apply sub-i ~~~~~.'.~4 therapeutic doses of about 0.001 to about 0.2% nitroglycerine ointments to the skin, when employing an otherwise .conventional transdermal applicator, such as described in the applicant's own earlier issued U.S. Patents. Thus a counteractor layer is at the skin surface: the primary drug passes through this layer before entering the skin. If desired, the body of the ointment may preferably be a hydrophilic polymer, such as polyvinyl pyrrolidone or neutralized polyacrylic acid and the like in order not to interfere with the hydrophilic adhesive which may be employed in the transdermal applicator.
In another exemplary embodiment, one may utilize a stabilized vasodilator in order to restrict blockage counteraction to the region of the patient's body where the transdermal applicator of the invention is located. This may be achieved by the use of a polymer stabilizer for a vasodilator, such as nitroglycerine. One such polymer stabilizer is polyethylene glycal, but other stabilizers having like properties may also be suitable in the practice of the invention. As is known, a polyethylene glycol of molecular weight 3350 operates to lower the migration of nitroglycerine, (see U.s. Patent 3,789,119). With the present invention, a higher molecular weight would be preferred, for example of from about 5000 to about 20,000 so as to localize the vasodilation of the very region where the electrolytic patch of the invention is applied.
Of course, other suitable benign polymers with a molecular weight of from abut 3,000 to about 30,000 may be employed, depending on their diffusion constant.
Figures 5-8 illustrate alternative embodiments in accordance with the invention wherein the primary drug indicated in those Figures with a D and the counteractive agent, indicated in those Figures with a C, are located in individual reservoirs. In Figure 5, counteractor reservoirs 60 alternate with drug reservoirs 62 in the direction of current flow indicated by the arrows 64 when an applicator 66 is attached to the skin surface 22. For the sake of example, the reservoirs are connected in parallel schematically to one terminal of an electrical control unit 68 and current flows from the reservoirs 60, 62 through the skin surface 22 and within the skin to the return electrode 70 indicated in Figure 5 by the letter R. The skin to which the applicator 66 is attached receives the primary drug from the reservoirs 62, while at the same time a current passing through a counteractor reservoir 60 from the upstream direction (left to right in Figure 5) delivers the counteractive substance and acts as a preconditioner to the blood vessels in the area of the drug reservoirs 62. The counteractive substance and the primary drug axe thereby simultaneously active in the same region of skin.
The Figures 5-8 are schematic. Any electrical control, such as polarity reversal, ON/OFF voltage application, electrode short-circuiting, series arrangement of reservoirs, etc., as described above in relation to Figures 2-4, can be applied equally to the arrangements of Figures 5-8. Figures 6, 7 and 8 show applicators with separate drug D reservoirs and counteractor C reservoirs. In each instance, the reservoirs may be electrically connected such that the counteractor substance acts as a preconditioner for the blood vessels in the area where the drug reservoir is applied. With regard to Figures 5-8, it should be understood that the relative positions of the primary drug reservoirs D may be interchanged with the counteractive substance reservoirs C as suits the particular substances which are in use.
Other configurations as shown in the above cited patents by the inventor here, may also be adapted to utilize counteractors in conjunction with primary drug delivery.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in carrying out the above method and in the construction set forth without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings, shall be interpreted as illustrative and not in a limiting sense.
ELECTRICAL TRANSDERMAL DRUG APPLICATOR WITH
COUNTERACTOR AND METHOD OF DRUG DELIVERY
_BACKGROUND OF THE INVENTION
This invention relates generally to an electrical transdermal drug device delivering a drug to the patient for systemic distribution by blood flow using principles of electrokinetic phenomena, such as electrophoresis and electroosmosis, and more particularly to an electrical transdermal drug applicator delivering counteracting substances locally to the patient's skin and/or electrically inducing the skin to produce endogenous compounds which extend the period of therapeutic drug delivery and thereby increase usefulness of the drug applicator. Reference to or disclosure of devices for transdermal delivery of drugs by application of electrical current through the skin of a person or animal are shown in the following United States patents:
385,556 4,243,052 486,902 4,325,367 588,479 4,367,745 2,493,155 4,419,019 2,267,162 4,474,570 2,784,715 4,406,658 3,163,166 4,314,554 3,289,671 4,166,457 3,547,107 4,239,052 3,677,268 4,290,878 4,008,721 4,164,226 4,141,359 4,362,645 4,239,046 4,273,135 The following foreign patents refer to ar disclose transdermal drug delivery devices:
EPA No. 0060452 DE No. 290202183 DE No. 3225748 EPA No. 0058920 UK No. 2104388 Thus, it is evident, that transdermal delivery of drugs by application of an electrical current is not unknown. Yet, except for experimental and developmental purposes, such electrical transdermal drug applicators are not presently commercially available for use by medical professionals or by individuals.
A problem with transdermal patches, especially electrically powered patches, is that such devices ex.:~ibit a rate of drug delivery which decays with passage of time despite a steady state condition for the applied electrical current and steady state drug concentrations within the drug reservoir of the device.
This phenomenon has been reported in scientific journals, for example, an article, IN VIVO TRANSDERMAL DELIVERY OF INSULIN, Chien et al Annals of New York~Academ of Sciences y . pages 38-47 (1987).
Therein, changes in blood glucose level are recorded versus time after insulin is delivered transdermally to laboratory animals, using an electrical current. Several parameters are varied. For example, it is reported that a pulsed DC current has a greater and more enduring effect in reducing-: blood glucose levels in laboratory animals,~than does a pure continuous DC
20fi0~~ t~
current. The actual quantity of insulin, which is delivered, is not measured. Rather, the effect of the drug in reducing blood glucose levels is measured. It is found that one repetition rate of DC pulses is more effective than another pulse repetition rate in reducing blood glucose levels measured both in magnitude and time duration. A square waveform provided better results than did a sinusoidal waveform or a trapezoidal waveform.
The authors of the paper analogize the skin electrically with resistances and capacitance in parallel as an equivalent circuit. They theorize that the DC current charges the capacitance of the skin which, once charged, can accept no more current and accordingly limits drug delivery. Using DC pulses rather than steady state current allows time for the skin capacitance to discharge, such that on the next pulse, additional current, capacitor charging, and drug delivery can occur.
However, an anomalous situation arises when at a favorable pulse repetition rate, and with the same current delivery level as in prior tests, the duty cycle is varied: It would be expected that the greater the duty cycle, that is, the greater the current ON time versus the current OFF time ratio, the greater amount of insulin would be delivered transdermally and the measured effects on blood glucose level would be correspondingly more favorable and more enduring. Contrary to expectations, as the duty cycle increases from a one-to-one ratio toward an eight-to-one ratio, the reduction in~'blood [ glucose 2~~~~~
level becomes less, rather than more, although duration of this reduction is somewhat extended.
In summary, application of current over a longer period of time, that is, consumption of more energy for delivering drugs transdermally, results in what appears to be less delivery of drug as measured by the effect on blood glucose level.
That publication graphically illustrates the problem with prior art transdermal drug applicators and delivery methods using electrical current to carry drugs through the skin, that is, the effectiveness of the delivered drug is insufficient in duration of effect and the rate of drug delivery falls off as the delivering current is continuously applied over extended periods of time.
What is needed is an electrical transdernaal drug applicator and method which provide enhanced drug delivery to the patient with regard to quantity of systemically delivered drug and duration of drug effectiveness.
SUMMARY OF THE INVENTION
Generally speaking, in accordance with the invention, an electrical transdermal drug applicator having enhanced drug flow to the bloodstream of the subject is provided. The applicator, in addition to delivering a primary drug into. a subject s circulatory system for therapeutic purposes, delivers from a reservoir a non-therapeutic counteracting agent to the skin of the patient which induces flow enhancement and allows delivery of the primary drug systemically over a longer period of time and in greater quantity than heretofore appeared possible using electric current. Construction of the electrical transdermal drug applicator with electrochemical flow enhancement by introduction of a counteracting agent to the skin and/or specific electrical wave shapes is based on applicant's appraisal of known phenomena as described above.
However, charging of skin capacitance is not considered to be the primary factor in reducing drug delivery capability as current application time and magnitude of current are increased.
The efficiency of administration of insulin may be partially vitiated by adsorption and degradation within the skin tissues or by restricted blood circulation in the skin. The passage of current and/or dissociated water ions and/or certain drugs through the human skin causes a series of events related to reduction in magnitude of negative net surface charge exhibited by living mammalian cells. A, most important consequence of reduction in magnitude of the negative charge on the cells is triggering of an avalanche-like coagulation process which forms thrombi, that is, blood clotting, which in turn stops blood flow through capillaries. Passage of current from a transdermal applicator tends to reduce the negative charge on cells of the skin proximate the applicator reservoir, where drugs- are delivered, causing blood clotting in the capillaries which not ~~~~~v~
only stops local blood flow, but also stops drug flow into the circulatory system of the subject. A drug transdermally delivered locally is not effective systemically when the capillaries of the skin contain coagulated blood.
In addition, especially in the anodic (+) region of current delivery through the skin, an immediate contraction of small blood vessels, especially arteries, takes place causing a complete interruption of blood flow to said vessels. Thus, as with blood clotting, contraction of the small blood vessels prevents drugs delivered through the skin by the transdermal applicator from being delivered into the circulatory system.
Electroosmosis, which is an important factor in delivery of drugs from the applicator reservoir through the skin and into the blood circulation system, is affected by the existence of fixed negative charges on the cellular walls within the skin. A
reduction of such net negative charge, as caused by passage of even small electric currents or of the water ions through the skin, inhibits electroosmosis.
Blood clotting, blood vessel contraction, and reduced electroosmotic effects, as described above, can combine synergistically to slow down or completely stop system transdermal delivery of primary drugs, especially from electrically powered transdermal applicators. This occurs even when the drug is successfully transferred from the applicator through the skin into the local skin tissue.
To counteract the current or drug induced loss of negative charge on the cellular walls within the skin, the electrical transdermal drug applicator with electrochemical flow enhancement, in accordance with the invention, delivers into the skin, in addition to the primary drug having therapeutic purpose, counteractive substances known to increase the negative charge on cell surfaces.
A negative charge on cell surfaces is generally accepted as a fundamental factor in preventing the clotting of blood on that surface. Negative charge (Coulombic repulsion) is also considered to be part of the mechanism for the coagulation of platelets. Additionally, overcoming negative charge is also believed to be a crucial aspect of fibrin formation, part of the avalanche of reactions in the clotting of blood (thrombosis).
Without being bound by theory, for the reasons given above, it is known at a minimum, that providing a negative charge on natural or artificial surfaces in contact with animal blood helps prevent clotting or thrombosis.
One may add to the negative charge on a cell surface by reaction with or adsorption of anionic moieties compatible with animal cells such as salicylates, nitrates, methylcarboxylates, sulfonates, chlorosulfonates, phosphonates, gluconates, maleates, citrates, phthalates, or sulfates. These moieties bonded to or adsorbed on a cell surface inhibit adherence of animal blood, maintain the fluidity of animal blood, and help prevent clotting of blood in motion.
Specific drugs known as anticoagulants, antiplatelets, or antifibrotics also are negatively charged and are illustrated in the Table. Among these are heparin (a mixture containing mucosaccharide sulfonates), salicylates, protamine sulfate, potassium aminobenzoate, and nitroprusside - a source of sodium nitrate. Not only are these substances direct action drugs, they are also agents for increasing the negative charge on cell surfaces and artificial surfaces in contact with animal blood.
The chemicals may be chemically bonded to, adsorbed to, or absorbed in the surface. .
Another class of entities for increasing the negative charge on cell surfaces or acting to inhibit either platelet formation or coagulation of animal blood are natural substances produced by the metabolism of the animal or man. Among these natural biochemical factors are: prostacyclin, thrombomodulin, Ecto-ADPase, urokinase, tissue plasminogin activators (TPA), streptokinase, antithrombin III, protein C, protein S, prostaglandins I2 and El, sulfated glycosaminoglycans, N-acetylcysteine with nitroglycerin, nicoumalone, phosphatidyl inositol, hydrophilic gangiioside GM-1, cyclic GMP, S-nitrothiols, dodecapeptide gamma F1B, 400-411, and guanosine 31,51-monophosphate, their metabolic precursors and reaction products.
Additional natural vasodilators are kinins and histamines.
Such substances, if included in the reservoir of the transdermal drug delivery applicator, move through the skin and react with the cells at the same time that the primary therapeutic drug is delivered through the skin. By maintaining a more negative condition of charge on cell surfaces, blockage of flow through local blood vessels is reduced or prevented, allowing drugs delivered transdermally to be further delivered into the systemic flow. Generally, the counteractive substance has no therapeutic value, although in special instances a substance may serve a dual purpose.
Maintaining a more negative condition of charge on cell surfaces could be achieved simultaneously and/or alternatively by precharging the cell surface with a negative charge prior to electroosmo~ic drug delivery in cases where such delivery takes place from the positive drug reservoir. The precharging and the discharging voltage levels are monitored and maintained within preset limits by electronic means.
In situations where one polarity of voltage delivers the primary drug and the opposite polarity delivers the counteractive substance, arrangements can be made for simultaneous delivery of both substances, or alternatively, alternating delivery can be provided.
To prevent formation of thrombi of platelets, that is, blood coagulation, adjacent the applicator/skin interface, antithrombotic agents are delivered from the applicator reservoir, either as a preconditioner or during drug delivery or alternately. Such counteractive substances would include, for example, heparin or aspirin. To counteract contraction or i constriction of blood vessels adjacent the applicator interface, vasodilators can be used in the reservoir. Nitroglycerin is one such dilator. Alternatively or concomitantly, specific electrical pulses, such as square wave pulses of ~.4 ms and a frequency of 80 Hz at an intensity which could produce a tingling sensation may be used for repetitive periods of up to two hours a day to maintain vasodilation.
Accordingly, it is an object of the invention to provide an improved transdermal drug applicator and method which provide enhancement of drug flow into the system of the subject by means of delivery of counteractive agents.
Another object of the invention is to provide an improved .
transdermal drug applicator and method which provide, in addition to the primary therapeutic drug, a counteractor which works to make local cell charges relatively more negative.
Yet another object of the invention is to provide an improved transdermal drug applicator and method which enhance flow of primary therapeutic drug through the skin by addition of a vasodilator in the applicator reservoir.
A further object of the invention is to provide an improved transdermal drug applicator and method which provide an anticoagulant in the primary drug reservoir for delivery with the primary drug into the skin of the user.
Another object of the invention is to provide an improved transdert~al drug applicator and method which captures mobile ions such as H+ and OH" and thereby prevents such ions from reaching 7.0 the skin tissues and causing production of thrombi, vaso-constriction arid extreme changes of the cellular negative charge.
A still further object of the invention is to provide an improved transdermal drug applicator and method for the stimulation and systemic release of endogenous substances which have a natural therapeutic effect.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
The invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the apparatus embodying features of construction, combinations of elements and arrangement of parts which are adapted to effect such steps, all as exemplified in the following detailed disclosure, and the scope of the invention will be indicated in the claims.
ERIEF DESCRIPTION OF THE DRAWINGS
For a fuller understanding of the invention, reference is had to the following description taken in connection with the accompanying drawings, in which:
Figure 1 is a cross-section of human skin showing pathways for transdermal drug delivery in accordance with the invention.
' 2~~~~~~
Figure 2 is an electrical transdermal drug applicator in accordance with the invention including a single reservoir holding both a.primary drug and a counteractor.
Figure 3 is an electrical transdermal drug applicator in accordance with the invention including a parallel arrangement of reservoirs; one holding a primary drug; the others holding a counteractor.
Figure 4 is an electrical transdermal drug applicator in accordance with the invention including two reservoirs electrically in series.
Figures 5-8 illustrate alternative arrangements of reservoirs and circuitry in accordance w~.th the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
With reference to the Figure 2, an electrical transdermal drug applicator 10 in accordance with the invention includes a reservoir 12 containing a primary drug 14 and a counteractor 16, both being dispersed in a suspension, for example, a gel 18 as disclosed in any of the above-referenced patents by the inventor here (as examples). A surface 20 of the reservoir 12 rests against the surface 22, of the user's skin 23 and is maintained in position, Eor example, by an adhesive (not shown). An electrode 24 connects to another surface 26 of the reservoir 12 and this in turn is connected to a DC source 28 by way of-:an electrical current conditioner 30. and a single pole switch 32. The other rw 2~~~~~4 terminal of the DC source 28 connects to the skin surface 22 by way of a return electrode 36 which directly contacts the skin and is maintained in position, for example, by an adhesive (not shown). A single pole switch 34 is intermediate the electrode 36 and the DC source 28.
As discussed more fully hereinafter, the counteractor 16 acts locally on the blood vessels, for example, blood capillaries, whereas, as described in the Sibalis patents cited above, the primary drug is delivered systemically into the body's circulatory system.
It should be understood that the skin 23 is illustrated in Figures 1, 2 with simplified representations and the electrical transdermal drug applicator is also shown schematically in Figure 2 as a generic representation of such a device. More detailed descriptions may be found in the above-cited references by the inventor in this application. It suffices here to state that the gel 18 and the primary drug 14 and counteractor 16 are contained in the reservoir 12 in a manner to prevent leakage of the substances. Also, there is no short-circuit of electrical current across the skin surface 22 directly to the electrode 36.
When the switches 32, 34 are closed as illustrated, a positive potential appears on the electrode 24 and a negative potential on the electrode 36 causing a current to flow from the source 28 through the current conditioner 30, the electrode 24, reservoir 12 and skin surface 22 in series. A DC current flows within the skin 23 as indicated by the arrow 38, then back 13 ' through the skin surface 22 to the return electrode 36, and then back through switch 34 to the negative terminal of the DC source 28. The positive potential of the source 28 applied to the electrode 24 and the electrical current drive the primary drug 14 and the counteractor 16 through the interface between the reservoir 12 and the skin surface 22.
In Figure 1, the human skin 23 is represented in simplified construction as including an outer layer, the epidermis 42, which is broken by hair follicles 44 and sweat ducts 46, and at greater depth blood capillaries 40, glands, etc. In electrical transdermal drug applicators, it is known that small quantities of the drug pass directly through the epidermis 42 as indicated by the arrows 43 but also the drug 14 enters the skin with relative ease through the hair follicles 44 and sweat ducts 46 which act as shunts. Having entered into the skin, the drug 14 is disseminated to the systemic circulatory system by electrokinetic processes, for example, electrophoresis, electroosmosis, iontophoresis, etc. With certain drugs and counteractors it may be desirable to pick skin areas with greater or lesser densities of hair follicles and sweat ducts for application of the transdermal applicator 10 thereto.
Where a reversed polarity from that described in Figure 2 is required to drive the primary drug 14 and counteractor 16 into the skin tissues, the switches 32, 34 in Figure 2 are moved to the positions indicated with broken lines, whereby a negative potential is applied to the electrode 24 and a positive potential is applied to the return electrode 36.
Where the primary drug 14 and the counteractor 16 require opposite polarities of voltage to cause the substances to enter into the skin, an alternating DC potential is applied by periodically changing the positions of the switches 32, 34 such that the potentials on the electrodes 24, 36 are periodically reversed. The timing of the switches 32, 34 in each alternating position is based upon the drug 14 and counteractor 16 which are being used. Equal driving times or unequal driving times can be provided as best suited for the substances 14, 16.
Further, in recognition of the work reported by Chien et al as discussed above, it may be desirable, in the process of drug delivery, to incorporate time periods wherein no potential is applied to the electrodes 24, 36 and, it may be desirable during those periods of no driving potential, to apply a short circuit between the electrodes 24, 36 such that charges, if any, built up within the skin during the driving periods may be readily discharged. The switch 48, shown with broken lines in Figure 2, is connected between the electrodes 24, 36 and when closed provides the desired short circuit.
Tn electrical transdermal drug applicators in accordance with the invention, wherein a complex operational cycle is desirable, including (for examples) polarity reversals, periods without driving potential, periods of electrode short-circuiting, etcetera, a controller 50, also shoran in broken lines 2~~~'~~t~
in Figure 2, is used to automatically regulate opening and closing of the switches 32-35, 37, 48 in desired programs.
It should be understood that whereas the power source 28 is indicated in Figure ~ and in the other Figures for the sake of illustration, as a DC battery, the power source may include circuitry for converting potential from a DC battery to voltages of controlled magnitude with regulated current delivery: the electrodes not being connected directly to the DC battery but to the output of the voltage generating circuitry. Additionally, the switches which are schematically represented in Figure X as electro-mechanical switches can be solid state switches, especially when considering the very low current flows which are frequently involved in electrical transdermal drug applicators as indicated in the patents of the present inventor cited above.
Thus complex operational cycles of an applicator in accordance with the invention may be automatically controlled by a microchip.
The counteractors 16, which~are added to the reservoir 12, can operate wfthin the skin to accomplish one or more effects which tend to maintain blood circulation in the skin area adjacent the transdermal drug applicator 10, such that the primary drug 14, which enters the skin, is carried,away by the bloodstream into systemic circulation for therapeuxic purposes.
Broadly speaking, the counteractors 16 can include vasodilators which operate by relaxing the muscles surrounding the blood vessel walls, including capillary walls, such that a greater flow area and easier blood flow is possible. A counteractor 16 may fall in the category of antithrombosis agents in that they work to reduce platelet accumulation and blood clotting'in the blood vessels, in particular the capillaries, in the area where the drug applicator 10 is applied. A single counteractor which performs both functions may be used in the reservoir 12 or a plurality of counteractors which in combination perfona both functions, or a counteractor which performs only one such function may be used in the reservoir 12. Also, the counteractor 16 may be a substance which when introduced into the skin induces the body to produce substances which delay, inhibit, or eliminate blood coagulation or aid in dilating the blood vessels to improve blood circulation. The primary drug and counteractor may be variants of the same substance which do not interact pharmacologically, e.g. nitroglycerine and isosorbide dinitrate.
The counteractive substance can be part of the primary drug ro molecule. Especially sulfonated, phospho~lated and carboxylated groups attached to the primary drug molecules may be effective in providing a desired increase of the negative charge characteristics of the cellular walls where the applicator is attached.
Substances known to be unsuitable for systemic transdermal delivery as a primary drug with intended therapeutic benefit may be the preferred counteractor as the drug s action will be limited to the target area of applicator attachment and the counteractor will not be available to produce. any systemic 17 .
effects. Thus, such application of substances as counteractors is entirely opposed to prior teachings where it may be indicated that no therapeutic utility for these materials is present in transdermal applicators. The counteractors are formulated to function only as topical agents. For example, if nitrates are used, e.g. nitroglycerin, the flux rate of the counteractor may be adjusted so as not to produce any detectable blood serum level of the counteractor suLstance, while at the applicator site blood circulation is improved. There is no or negligible systemic effect or pharmacological effect. More specifically, the counteractive substance will be formulated for negligible transdermal delivery when its use is limited only to the counteractive function. The counteractive substance could be of a nature which selectively allows its delivery through the stratus corneum, such as nitroglycerin, whereas the electrokinetic main drug delivery takes place via the skin shunts, perspiration and sebaceous ducts. In such a case the stratum corneum would function as a depot for the counteractive substance even though the counteractive substance previously contained in said applicator reservoir is exhausted from the applicator.
Known vasodilators which may be used as counteractors, and knot~;n antithrombosis substances which also may be used as counteractors 16 and substances which may serve as both blood vessel dilators and also act to reduce or -eliminate blood coagulation, are set forth herein below.
CARDIOVASCULAR DRUGS VASODILATORS
TRADE NAME GENERIC (;TRIVIAL NAME
Cerespan - papaverine hydrochloride Cyclospasmol - cyclandelate Ethatab - ethaverine hydrochloride Lipo-Nicin - mixture of six agents: nicotinic acid, niacinamide, ascorbic acid, thiamine HC1, riboflavin, pyridoxine Pavabid - papaverine hydrochloride Theo-24 - theophylline Vasodilan - isoxsuprine hydrochloride Cardilate - erythrityl tetranitrate ~~E N~ GENERIC
TRIVIAL) NAME
Iso-bid - isosorbide dinitrate Isordil - isosorbide dinitrate Nitro-Bid - nitroglycerine Nitroglyn - nitroglycerine Nitrol (ointment) nitroglycerine (ointment) -Nitrospan - nitroglycerine Nitrostat - nitroglycerine/polyethylene glycol Peritrate - pentaerythritol tetranitrate Persantine - dipyridamole 8orbitrate - isosorbide dinitrate r TRADE NAME rENERIC fTRrvrAr~i N~
Tridil - nitroglycerine Arlidin - nylidrin hydrochloride Aprosoline HC1 - hydralazine hydrochloride l~rfonad - trimethaphan camsylate Dibenzyline - phenoxybenzamine hydrochloride Esimil - guanethidine sulfate/hydrochioride Hyperstat - diazooxide Ismelin - guanethidine monosulfate roniten - minoxidil Nico-400 - nitroglycerine Priscoline HC1 - talazoline hydrochloride Serpasil - reserpine NTICOAGULANTS
Calciparine - ca~.cium heparin Coumadin - sodium warfarin (propanol-2 clathrate) Heparin, Na - sodium heparin Protamine sulfate - protamine sulfate A~1TIFIBROTICS systemic Potaba - potassium aminobenzoate ao ~~~~~~i~
ANTIPLATELET
Aspirin - salicylates, such as salicylic acid, its derivatives and salts thereof.
OTHER
flavoroids (such as riboflavin) and their phenolic breakdown products or compounds.
calcitonin gene related peptide (CGRP) nitroprusside prostacylin streptokinase Activase recombinant alteplase While the above listings are by no means complete, they are nevertheless representative of various categories of drugs or agents which may be suitable in the practice of the invention.
Moreover, the present invention contemplates the use of any counteractors which have the specific characteristics and produce the effects desired as have been described in the present application.
Figure 3 illustrates an alternative embodiment of an electrical transdermal drug applicator 10' in accordance with the invention, wherein the primary drug 14 is contained in a first reservoir 12' and the counteractor 16 is contained in the reservoirs 12 " . In each reservoir, the substances are suspended ~~~~~9~~
in a gel 18. Electrodes 24, 52 are connected in parallel to receive current from the DC power source 28 by way of the electrical current conditioner 30. As illustrated, current flows from the battery 28 through the current conditioner 30 to the electrodes 24, 52, through the associated reservoirs 12°, 12 "
and through the surface 22 of the skin 23. The current flows (arrows 38) within the skin to the return electrode 36 and then back to the DC power source 28.
To suit a particular primary drug 14 and counteractor 16, provision for switching the polarity of the DC source 28 may be provided as indicated in Figure 2, and a shorting circuit connecting all electrodes 24, 52 directly to the return electrode 36 by way of a switch 48 may also be included. By operation of switches 33, 35, 37, reservoirs may be selectively inactivated while the other reservoirs continue to function. A controller 50 may be used to control the switches 32, 34, 48 (see Figure 2) When periodic cycling is involved in operation of the transdermal drug applicator 10'.
Figure 4 illustrates another alternative embodiment of an electrical transdermal drug applicator 10'°. In this configuration, the reservoir 12' is connected to one terminal of the DC source 28, whereas the reservoir 12 " is connected to the other terminal of the DC power source 28. Thereby, opposite polarities are always present on the two reservoirs 12', 12 " .
This is advantageous when the primary drug 14 is delivered through the skin's surface 22 by one electrical potential and the counteractor 16 is delivered through the skin surface 22 by the opposite potential. In this way, both the drug 14 and counteractor 16 can be continuously and concurrently delivered if desired.
A shorting circuit between the electrodes 24, 52 including the switch 48 may be used to remove charge, if any, from the skin during periods when the voltage is not applied. A controller 50 may be used with the configuration of Figure 4 as described above to control ON/OFF periods, periods when the short circuit through the switch 48 is desired, etc. A return electrode 36 (broken lines) may be used to eliminate the reservoir 12' from the circuit when a switch 39 is closed while switches 47, 54 are open while switch 48 is also open. In this way, delivery of the counteractor substance 16 to the skin may continue while delivery from the reservoir 12' of the primary drug 14 is discontinued.
Similarly, the return electrode 36 can be used to eliminate counteractor reservoir 12 " when it is desired to deliver the drug 14 while interrupting delivery of the counteractor 16. In this case the switch 47 is closed, switches 38, 48, 49 are open and switch 54 is closed.
The electrical transdermal drug applicator 10 of Figure 2 was described as containing a drug and a counteractor in suspension, for example, a gel. However, it should be understood that in alternative embodiments of an electrical transdermal drug applicator in accordance with the invention, the reservoir may be in the form of a matrix, liquid, paste, etc. as suits the particular substances in use. Also, Figure 2 illustrates a generally random and equal distribution of drug 14 and counteractor 16 within the reservoir 12. It should be understood that the reservoir may contain a predominance of one substance over the other. The distribution of materials may not be uniform or randomized. The drug 14 may be in one layer, whereas a counteractor 16 may be in another ~ayer, the layers being at different distances from the skin surface 22. As dictated by the particular application, either the drug 14 or counteractor 16 layer may be closer to the skin surface. Such layers may themselves combine several substances which can be in varying proportions as suits the particular construction with drug 14 and counteractor 16 in each layer. The layers may be of different thicknesses such that one layer may act as a flow inhibitor of materials from the other layer. There may be several layers each of counteractors and drugs and these layers may be alternated in their stacking within a reservoir.
In an exemplary embodiment of the invention, blockage of the capillaries and stratum corneum of the skin may be avoided or inhibited by sub-therapeutic dosages of an active vasodilator such as nitroglycerin. For example, a therapeutic ointment at 2%
concentration is available from the W.H. Rorer Co. (Fort Washington, Penna 19034) under the tradename NITROL ointment.
Since it is known that nitroglycerine relaxes smooth muscles, principally in the smaller blood vessels thus dilating arterioles and capillaries, it may be advantageous to topically apply sub-i ~~~~~.'.~4 therapeutic doses of about 0.001 to about 0.2% nitroglycerine ointments to the skin, when employing an otherwise .conventional transdermal applicator, such as described in the applicant's own earlier issued U.S. Patents. Thus a counteractor layer is at the skin surface: the primary drug passes through this layer before entering the skin. If desired, the body of the ointment may preferably be a hydrophilic polymer, such as polyvinyl pyrrolidone or neutralized polyacrylic acid and the like in order not to interfere with the hydrophilic adhesive which may be employed in the transdermal applicator.
In another exemplary embodiment, one may utilize a stabilized vasodilator in order to restrict blockage counteraction to the region of the patient's body where the transdermal applicator of the invention is located. This may be achieved by the use of a polymer stabilizer for a vasodilator, such as nitroglycerine. One such polymer stabilizer is polyethylene glycal, but other stabilizers having like properties may also be suitable in the practice of the invention. As is known, a polyethylene glycol of molecular weight 3350 operates to lower the migration of nitroglycerine, (see U.s. Patent 3,789,119). With the present invention, a higher molecular weight would be preferred, for example of from about 5000 to about 20,000 so as to localize the vasodilation of the very region where the electrolytic patch of the invention is applied.
Of course, other suitable benign polymers with a molecular weight of from abut 3,000 to about 30,000 may be employed, depending on their diffusion constant.
Figures 5-8 illustrate alternative embodiments in accordance with the invention wherein the primary drug indicated in those Figures with a D and the counteractive agent, indicated in those Figures with a C, are located in individual reservoirs. In Figure 5, counteractor reservoirs 60 alternate with drug reservoirs 62 in the direction of current flow indicated by the arrows 64 when an applicator 66 is attached to the skin surface 22. For the sake of example, the reservoirs are connected in parallel schematically to one terminal of an electrical control unit 68 and current flows from the reservoirs 60, 62 through the skin surface 22 and within the skin to the return electrode 70 indicated in Figure 5 by the letter R. The skin to which the applicator 66 is attached receives the primary drug from the reservoirs 62, while at the same time a current passing through a counteractor reservoir 60 from the upstream direction (left to right in Figure 5) delivers the counteractive substance and acts as a preconditioner to the blood vessels in the area of the drug reservoirs 62. The counteractive substance and the primary drug axe thereby simultaneously active in the same region of skin.
The Figures 5-8 are schematic. Any electrical control, such as polarity reversal, ON/OFF voltage application, electrode short-circuiting, series arrangement of reservoirs, etc., as described above in relation to Figures 2-4, can be applied equally to the arrangements of Figures 5-8. Figures 6, 7 and 8 show applicators with separate drug D reservoirs and counteractor C reservoirs. In each instance, the reservoirs may be electrically connected such that the counteractor substance acts as a preconditioner for the blood vessels in the area where the drug reservoir is applied. With regard to Figures 5-8, it should be understood that the relative positions of the primary drug reservoirs D may be interchanged with the counteractive substance reservoirs C as suits the particular substances which are in use.
Other configurations as shown in the above cited patents by the inventor here, may also be adapted to utilize counteractors in conjunction with primary drug delivery.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in carrying out the above method and in the construction set forth without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings, shall be interpreted as illustrative and not in a limiting sense.
Claims (16)
1. A transdermal drug patch for delivering at least one drug to the bloodstream of a patient over an extended period of time comprising:
reservoir means for containing one or more therapeutic drugs to be applied to the bloodstream of a patient through the skin thereof, a source of DC potential having a return electrode connected to one polarity terminal thereof and said reservoir means connected to an opposite polarity terminal thereof forming an electrical series circuit when the reservoir means and return electrode are applied to the skin of the patient and interface therewith, means for operating the electrical circuit in different operational cycles to effect application of the therapeutic drug or drugs into the bloodstream of the patient through the skin by electrokinetic processes including electrophoresis and electro-osmosis depending on the drug to be administered to the patient, and said means also being for at the same time electrically or electrochemically or electrically and electrochemically maintaining the negative surface charge density of the blood vessel walls and blood cells of the patient and effecting vasodilation of the vascular system of the patient at least in a region where the transdermal patch is attached to the skin of the patient.
reservoir means for containing one or more therapeutic drugs to be applied to the bloodstream of a patient through the skin thereof, a source of DC potential having a return electrode connected to one polarity terminal thereof and said reservoir means connected to an opposite polarity terminal thereof forming an electrical series circuit when the reservoir means and return electrode are applied to the skin of the patient and interface therewith, means for operating the electrical circuit in different operational cycles to effect application of the therapeutic drug or drugs into the bloodstream of the patient through the skin by electrokinetic processes including electrophoresis and electro-osmosis depending on the drug to be administered to the patient, and said means also being for at the same time electrically or electrochemically or electrically and electrochemically maintaining the negative surface charge density of the blood vessel walls and blood cells of the patient and effecting vasodilation of the vascular system of the patient at least in a region where the transdermal patch is attached to the skin of the patient.
2. A transdermal drug patch for delivering at least one drug to the bloodstream of a patient over an extended period of time according to claim 1, in which the reservoir means contains a vasodilator in addition to one or more therapeutic drugs.
3. A transdermal drug patch for delivering at least one drug to the bloodstream of a patient over an extended period of time according to claim 1 or 2, in which said means for operating the electrical circuit in different operational cycles comprises an electrical current conditioner connected between said source and said reservoir means in series therewith.
4. A transdermal drug patch for delivering at least one drug to the bloodstream of a patient over an extended period of time according to claim 1 or 2, in which said means for operating the electrical circuit in different operational cycles comprises switching means for effecting polarity reversals.
5. A transdermal drug patch for delivering at least one drug to the bloodstream of a patient over an extended period of time according to claim 1 or 2, in which said means for operating the electrical circuit in different operational cycles comprises means for varying periods in which the circuit is free of electrical potential during an operational cycle.
6. A transdermal drug patch for delivering at least one drug to the bloodstream of a patient over an extended period of time according to claim 1 or 2, in which said means for operating the electrical circuit in different operational cycles comprises means for selectively effecting a short-circuit between said reservoir means and said return electrode.
7. A transdermal drug patch for delivering at least one drug to the bloodstream of a patient over an extended period of time in accordance with any one of claims 1 to 6, in which said reservoir means contains a substance for delivery to the bloodstream of the patient for effecting said vasodilation.
8. The use of a transdermal drug patch for transdermal delivery of a primary drug to the systemic circulation system of a patient over an extended time period, the transdermal drug patch comprising:
(a) a reservoir containing said primary drug intended for therapeutic purpose, said primary drug being capable of transdermal delivery;
(b) said reservoir further containing a counteractive substance for acting within the skin of said patient proximate the location of transdermal delivery of said primary drug, said counteractive substance being capable of transdermal delivery;
(c) a first surface of said reservoir having a first surface for application to the skin of a patient for exposing said primary drug and counteractive substance to the skin of said patient.
(a) a reservoir containing said primary drug intended for therapeutic purpose, said primary drug being capable of transdermal delivery;
(b) said reservoir further containing a counteractive substance for acting within the skin of said patient proximate the location of transdermal delivery of said primary drug, said counteractive substance being capable of transdermal delivery;
(c) a first surface of said reservoir having a first surface for application to the skin of a patient for exposing said primary drug and counteractive substance to the skin of said patient.
9. The use as claimed in claim 8 wherein the transdermal drug patch further comprises:
an electrical source for generating an electrical potential having two terminals between said skin and a second surface of said reservoir, an electrical circuit being created from one said source terminal through said reservoir, through said skin to said other terminal of said source.
an electrical source for generating an electrical potential having two terminals between said skin and a second surface of said reservoir, an electrical circuit being created from one said source terminal through said reservoir, through said skin to said other terminal of said source.
10. The use as claimed in claim 9, wherein said electrical source is DC.
11. The use as claimed in claim 9, wherein said primary drug and said counteractive means require opposite polarity potential for transdermal delivery and wherein:
the polarity of said voltage source at said source terminals may be alternated.
the polarity of said voltage source at said source terminals may be alternated.
12. The use of a transdermal drug patch for transdermal delivery of a primary drug to the systemic circulation system of a patient over an extended time period, the drug patch comprising:
(a) a reservoir containing said primary drug intended for therapeutic purposes, said primary drug being capable of transdermal delivery;
(b) a second reservoir containing counteractive means for acting within the skin of said patient proximate the location of transdermal delivery of said primary drug, said counteractive means being capable of transdermal delivery;
(c) a first surface of said first reservoir applying to the skin of a patient for exposing said primary drug to the skin surface of said patient;
(d) a first surface of said second reservoir applying to the skin of a patient for exposing said counteractive means to the skin surface of said patient adjacent to said first reservoir;
(e) an electrical source having two terminals for generating an electrical potential, one said terminal being connected in parallel to a second surface of each said reservoir respectively;
(f) the second terminal of said source being connected to said skin proximate said reservoirs.
(a) a reservoir containing said primary drug intended for therapeutic purposes, said primary drug being capable of transdermal delivery;
(b) a second reservoir containing counteractive means for acting within the skin of said patient proximate the location of transdermal delivery of said primary drug, said counteractive means being capable of transdermal delivery;
(c) a first surface of said first reservoir applying to the skin of a patient for exposing said primary drug to the skin surface of said patient;
(d) a first surface of said second reservoir applying to the skin of a patient for exposing said counteractive means to the skin surface of said patient adjacent to said first reservoir;
(e) an electrical source having two terminals for generating an electrical potential, one said terminal being connected in parallel to a second surface of each said reservoir respectively;
(f) the second terminal of said source being connected to said skin proximate said reservoirs.
13. The use as claimed in claim 12, wherein said primary drug and said counteractive means require opposite polarity potential for transdermal delivery and wherein:
the polarity of said voltage source at said source terminals may be alternated.
the polarity of said voltage source at said source terminals may be alternated.
14. The use of a transdermal drug patch for transdermal delivery of a primary drug to the systemic circulation system of a patient over an extended time period, the drug patch comprising:
(a) a reservoir containing said primary drug intended for therapeutic purposes, said primary drug being capable of transdermal delivery;
(b) a second reservoir containing counteractive means for acting within the skin of said patient proximate the location of transdermal delivery of said primary drug, said counteractive means being capable of transdermal delivery;
(c) a first surface of said first reservoir applying to the skin of a patient for exposing said primary drug to the skin surface of said patient;
(d) a first surface of said second reservoir applying to the skin of a patient for exposing said counteractive means to the skin surface of said patient adjacent to said first reservoir;
(e) an electrical source having two terminals for generating an electrical potential, one said terminal being connected in parallel to a second surface of each said reservoir respectively;
(f) the second terminal of said source being connected to said skin proximate said reservoirs.
(a) a reservoir containing said primary drug intended for therapeutic purposes, said primary drug being capable of transdermal delivery;
(b) a second reservoir containing counteractive means for acting within the skin of said patient proximate the location of transdermal delivery of said primary drug, said counteractive means being capable of transdermal delivery;
(c) a first surface of said first reservoir applying to the skin of a patient for exposing said primary drug to the skin surface of said patient;
(d) a first surface of said second reservoir applying to the skin of a patient for exposing said counteractive means to the skin surface of said patient adjacent to said first reservoir;
(e) an electrical source having two terminals for generating an electrical potential, one said terminal being connected in parallel to a second surface of each said reservoir respectively;
(f) the second terminal of said source being connected to said skin proximate said reservoirs.
15. The use as claimed in any one of claims 9 to 14, wherein:
the application of said electrical potential from said electrical source is periodically interrupted.
the application of said electrical potential from said electrical source is periodically interrupted.
16. The use as claimed in any one of claims 9 to 14, wherein:
said source may be periodically replaced with a short-circuit connection.
said source may be periodically replaced with a short-circuit connection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA 2060994 CA2060994C (en) | 1992-02-11 | 1992-02-11 | Electrical transdermal drug applicator with counteractor and method of drug delivery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA 2060994 CA2060994C (en) | 1992-02-11 | 1992-02-11 | Electrical transdermal drug applicator with counteractor and method of drug delivery |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2060994A1 CA2060994A1 (en) | 1993-08-12 |
CA2060994C true CA2060994C (en) | 2000-10-31 |
Family
ID=4149237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA 2060994 Expired - Fee Related CA2060994C (en) | 1992-02-11 | 1992-02-11 | Electrical transdermal drug applicator with counteractor and method of drug delivery |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2060994C (en) |
-
1992
- 1992-02-11 CA CA 2060994 patent/CA2060994C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA2060994A1 (en) | 1993-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5328453A (en) | Method for enhancing transdermal drug delivery of electrical drug applicators | |
Banga et al. | Iontophoresis and electroporation: comparisons and contrasts | |
Prausnitz | Reversible skin permeabilization for transdermal delivery of macromolecules | |
US5540669A (en) | Iontophoretic drug delivery system and method for using same | |
KR100472689B1 (en) | Electrotransport Agent Delivery Method and Apparatus | |
KR100194851B1 (en) | Ion osmosis therapy apparatus | |
KR101028788B1 (en) | Controlled Delivery Device and Method of Active Material into Skin | |
JPH06509254A (en) | Transdermal administration device | |
Tiwary et al. | Innovations in transdermal drug delivery: formulations and techniques | |
JP2002520101A (en) | Method and apparatus for localized delivery of electrically assisted cosmetic agents | |
WO1998032488A1 (en) | Iontophoretic transdermal delivery and control of adverse side-effects | |
EP0793517B1 (en) | Device for enhancing electrotransport agent delivery | |
US5954684A (en) | Iontophoretic drug delivery system and method for using same | |
EP0555510B1 (en) | Electrical transdermal drug applicator with counteractor | |
JPH04224770A (en) | Apparatus for iontophoresis | |
KR20220112757A (en) | Iontophoresis dosing device | |
ZA200700051B (en) | System and method for transdermal delivery of an antico-agulant | |
CA2060994C (en) | Electrical transdermal drug applicator with counteractor and method of drug delivery | |
Hirvonen et al. | Current profile regulates iontophoretic delivery of amino acids across the skin | |
IE920197A1 (en) | Electrical transdermal drug applicator with counteractor and¹method of drug delivery | |
IL100794A (en) | Electrical transdermal drug applicator with counteractor | |
JP2863757B2 (en) | Electrical transdermal drug applicator | |
JPH10508526A (en) | Iontophoresis devices for transdermal administration of pharmaceuticals and disposable assemblies forming part of such devices | |
JP2003516828A (en) | Ion induction therapy system | |
Pillai et al. | Noninvasive transdermal delivery of peptides and proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |