CA2057706A1 - Hydrosonically microapertured thin metallic sheet materials - Google Patents

Hydrosonically microapertured thin metallic sheet materials

Info

Publication number
CA2057706A1
CA2057706A1 CA 2057706 CA2057706A CA2057706A1 CA 2057706 A1 CA2057706 A1 CA 2057706A1 CA 2057706 CA2057706 CA 2057706 CA 2057706 A CA2057706 A CA 2057706A CA 2057706 A1 CA2057706 A1 CA 2057706A1
Authority
CA
Canada
Prior art keywords
sheet material
metallic sheet
thin metallic
microapertures
microapertured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2057706
Other languages
French (fr)
Inventor
Bernard Cohen
Lee K. Jameson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Corp
Original Assignee
Kimberly Clark Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Corp filed Critical Kimberly Clark Corp
Publication of CA2057706A1 publication Critical patent/CA2057706A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

A microapertured thin metallic sheet material is disclosed.

Description

~ ~ 3 RELATED APPLICATIONS

This application is one of a group of applications which are being filed on the same date. It should be noted that this group of applications includes U.S. patent application serial number 07/769.050 entitled "Hydrosonically Microapertured Thin Thermoset Sheet Materials" in the names of Lee K. Jameson and Bernard Cohen; U.S. patent application serial number 07/769~047 entitled "Hydrosonically Microapertured Thin Thermoplastic Sheet Materials" in the names of Bernard Cohen and Lee K. Jameson; U.S. patent application serial number 07/768 782 entitled "Pressure Sensitive Valve System and Process For Forming Said System" in the names of Lee K.
Jameson and Bernard Cohen; U.S. patent application serial number 07/768 494 entitled " Hydrosonically Embedded Soft Thin Film Materials and Process For Forming Said Materials" in the names of Bernard Cohen and Lee K. Jameson; U.S. patent application number 07/768,788 entitled "Hydrosonically Microapertured Thin Naturally Occurring Polymeric Sheet Materials and Method of Making the Same" in the names of Lee K. Jameson and Bernard Cohen; U.S. patent application serial number 07/769.048 entitled "Hydrosonically Microapertured Thin Metallic Sheet Materials" in the names of Bernard Cohen and Lee K. Jameson; U.S. patent application serial number 07/769,045 entitled "Process For Hydrosonically Microaperturing Thin Sheet Materials" in the names of Lee K.
Jameson and Bernard Cohen; and U.S. patent application serial number 07/767 727 entitled "Process For Hydrosonically Area ~37 J ~

Thinning Thin Sheet Materials" in the names of Bernard Cohen and Lee K. Jameson. All of these applications are hereby incorporated by reference.

FIELD OF THE INVENTION

The field of the present invention encompasses thin metallic sheet materials which have been microapertured in a generally uniform pattern.

BACKGROUND OF THE INVENTION

Ultrasonics is basically the science of the effects of sound vibrations beyond the limit of audible frequencies.
Ultrasonics has been used in a wide variety of applications.
For example, ultrasonics has been used for (1) dust, smoke and mist precipitation; (2) preparation of colloidal dispersions;
(3) cleaning of metal parts and fabrics; (4) friction welding;
(5) the formation of catalysts; (6) the degassing and solidification of molten metals; (7) the extraction of flavor oils in brewing; (8) electroplating; (9) drilling hard materials; (lO) fluxless soldering and (10) nondestructive testing such as in diagnostic medicine.
The object of high power ultrasonic applications is to bring about some permanent physical change in the material treated. This process requires the flow of vibratory power per unit of area or volume. Depending on the application, the power density may range from less than a watt to thousands 2 ~/`t ~

of watts per square centimeter. Although the original ultrasonic power devices operated at radio frequencies, today most operate at 20-69 kHz.
The piezoelectric sandwich-type transducer driven by an electronic power supply has emerged as the most common source of ultrasonic power: the overall efficiency of such equipment (net acoustic power per electric-line power) is typically greater than 70%. The maximum power from a conventional transducer is inversely proportional to the square of the 10 frequency. Some applications, such as cleaning, may have many transducers working into a common load.
Other, more particular areas where ultrasonic vibratory force has been utilized are in the areas of thin no~woven webs and thin films. For example, ultrasonic force has been use to 15 bond or weld nonwoven webs. See, for example, U.S. patent numbers 3,575,752 to Carpenter, 3,660,186 to Sager et al., 3,966,519 to Mitchell et al. and 4,695,454 to Sayovitz et al.
which disclose the use of ultrasonics to bond or weld nonwoven webs. U.S. patent numbers 3,488,240 to Roberts, describes the 20 use of ultrasonics to bond or weld thin films such as oriented polyesters.
Ultrasonic force has also been utilized to aperture nonwoven webs. See, for example, U.S. patent numbers 3,949,127 to ostermeier et al. and 3,966,519 to Mitchell et al..
Lastly, ultrasonic force has been used to aperture thin film material. See, for example, U. S. patent number 3,756,880 to Graczyk.

~ ~ Ji~t.

Other methods for the aperturing of thin film have been developed. For example, U.S. patent number 4,815,714 to Douglas discusses the aperturing of a thin film by first abrading the film, which is in filled and unoriented form, and then subjecting the film to corona discharge treatment.
One of the difficulties and obstacles in th~ use of ultrasonic force in the formation of apertures in materials is the fact that control of the amount of force which is applied was difficult. This lack of control resulted in the limitation of ultrasonic force to form large apertures as opposed to small microapertures. Such an application is discussed in ~I.K. patent application number 2,124,134 to Blair. One of the possible reasons that ultrasonics has not found satisfactory acceptance in the area of microaperture formation is that the amount of vibrational energy required to form an aperture often resulted in a melt-through of the film.
As has previously been stated, those in the art had recognized that ultrasonics could be utilized to form apertures in nonwoven webs. See, U.S. patent to Mitchell. e~
al.. Additionally, the Mitchell et al. patent discloses that the amount of ultrasonic energy being subjected to a nonwoven web could be controlled by applying enough of a fluid to the area at which the ultrasonic energy was being applied to the nonwoven web so that the fluid was present in uncombined form.
Importantly, the Mitchell. et al. patent states that the fluid is moved by the action of the ultrasonic force within the nonwoven web to cause aperture formation in the web by fiber F7 rJ ~ ~
rearrangement and entanglement. The Mitchell et al, patent also states that, in its broadest aspects, since these effects are obtained primarily through physical movement of fibers, the method of their invention may be utilized to bond or increase the strength of a wide variety of fibrous webs.
While the discovery disclosed in the Mitchell et al.
patent, no doubt, was an important contribution to the art, it clearly did not address the possibility of aperturing nonfibrous thin metal sheet materials. This fact is clear because the Mitchell et al. patent clearly states the belief that the mechanism of aperture formation depended upon fiber rearrangement. Of course, thin metal sheet materials do not have fibers and thus there are no fibers to be rearranged.
Accordingly, it can be stated with conviction that the ap-plicability of a method for aperturing thin metal sheetmaterials by the application of ultrasonic energy in conjunction with a fluid at the point of application of the ultrasonic energy to the metal sheet material was not contemplated by the Mitchell et al. patent. Moreover, the Mitchell et al. patent teaches away from such an application because the patent states the belief that aperture formation requires the presence of fibers to be rearranged.

DEFINITIONS

As used herein the terms "metal" or "metallic" refer to an element that forms positive ions when its compounds are in solution and whose oxides form hydroxides rather than acids ~ ~3 with water. of course, the terms "metal" or "metallic" are also meant to include alloys of two or more metals.
As used herein the terms "metallic (or metal) sheet material" or "metallic (or metal) foil" refer to a generally nonporous item ~ormed from a metal that can be arranged in generally planar configuration which, in an unapertured state, prior to being modified in accordance with the present inventicn, has a hydrostatic pressure (hydrohead) of at least about 100 inches of water when measured in accordance with Federal Test ~ethod NO. 5514, standard no. 191A. These terms are also intended to include multilayer materials which include at least one such metallic sheet as a layer thereof.
As used herein the term "thin metallic (or metal) sheet material" or l'thin metallic ~or metal) foilll refers to a metallic sheet material or metallic foil having an average thickne~s generally of les~ than about ten (10) mils. Average thickness is determined by randomly selecting five (5) locations on a given sheet material or foil, measuring the thickness of the sheet material or foil at each location to the nearest 0.1 mil, and averaging the five values (sum of the five values divided by five).
As used herein the term "mesh count" refers to the number which is the product of the number of wires in a wire mesh screen in both the machine (MD) and cross-machine (CD) directions in a given unit area. For example, a wire mesh screen having 100 wires per inch in the machine direction and 100 wires per inch in the cross machine direction would have a mesh count of 10,000 per square inch. As a result of the 2 ~

interweaving of these wires, raised areas are present on both sides of the mesh screen. The number of raised areas on one side of such a wire mesh screen is generally one-half of the mesh count.
As used herein the term "aperture" refers to a generally linear hole or passageway. Aperture is to be distinguished from and does not include holes or passageways having the greatly tortuous path or passageways found in membranes.
As used herein the term "microaperture" refers to an aperture which has an area of less than about lOO,Ooo square micrometers. The area of the microaperture is to be measured at the narrowest point in the linear passageway or hole.
As used herein the term "ultrasonic vibrations" refers to vibrations having a frequency of at least about 20,000 cycles per second. The frequency of the ultrasonic vibrations may range from about 20,000 to about 400,000 cycles per second.
As used herein the term "hydrosonics" refers to the application of ultrasonic vibrations to a material where the area of such application is has had a liquid applied thereto to the extent that the liquid is present in sufficient quantity to generally fill the gap between the tip of the ultrasonic horn and the surface of the material.
The approximate edge length of the thin microapertured metallic sheet material of the present invention is calculated from the size of the microaperture using the appropriate geometrical formula, depending upon the microaperture's general shape.

rJ ~3 1 OBJECTS OF THE INVENTION

Accordingly, it is a general object of the present invention to provide thin metallic sheet materials which have been microapertured in a generally uniform pattern.
Still further objects and the broad scope of applicability of the present invention will become apparent to those of skill in the art from the details given hereinafter. However, it should be understood that the detailed description of the presently preferred embodiments of the present invention is given only by way of illustration because various changes and modifications well within the spirit and scope of the invention will become apparent to those of skill in the art in view of thie detailed description.

SUMMARY OF THE INVENTION
., In response to the forgoing problems and difficulties encountered by those in the art, we have developed a method for forming microapertures in a thin metallic sheet material having a thickness of about 10 mils or less where the area of each of the formed microapertures is generally greater than about 10 square micrometers. The method includes the steps of:
(1) placing the thin metallic sheet material on a pattern anvil having a pattern of raised areas where the height of the raised areas 1s greater than the thickness of the thin :

-: .

r,~

metallic sheet material; (2) conveying the thin metallic sheet material, while placed on the pattern anvil, through an area where a fluid is applied to the thin metallic sheet material;
and (3) subjecting the thin metallic sheet material to ultrasonic vibrations in the area where the fluid is applied to the thin metallic sheet material. As a result of this method the thin metallic sheet material is microapertured in a pattern generally the same as the pattern of raised areas on the pattern anvil.
The fluid may be selected from the group including one or more of water, mineral oil, a chlorinated hydrocarbon, ethylene glycol or a solution of 50 volume percent water and 50 volume percent 2 propanol. The chlorinated hydrocarbon may be 1,1,1 trichloroethane or carbon tetrachloride.
In some embodiments, the area of each of the formed microapertures may generally range from at least about 10 square micrometers to about 100,000 square micrometers. For example, the area of each of the formed microapertures may generally range from at least about 10 square micrometers to about 5,000 square micrometers. More particularly, the area of each of the formed microapertures may generally range from at least about 10 square micrometers to about 1,000 square micrometers. Even more particularly, the area of each of the formed microapertures may generally range from about at least 10 square micrometers to about 100 square micrometers.
The thin metallic sheet material may be microapertured with a microaperture density of at least about 1,000 microapertures per square inch. For example, the thin metallic sheet material may be microapertured with a microaperture density of at least about 5,000 microapertures per square inch. More particularly, the thin metallic sheet material may be microapertured with a microaperture density of at least about 20,000 microapertures per square inch. Even more particularly, the thin metallic sheet material may be microapertured with a microaperture density of at least about 90,000 microapertures per square inch. Yet even more particularly, the thin metallic sheet material may be microapertured with a microaperture density of at least about 160,000 microapertures per square inch.
In so~e embodiments it may be desirable for the microaperturing of the thin metallic sheet material to be confined to a predesignated area or areas of the thin metallic sheet material. This result may be obtained where only a portion of the thin metallic sheet is subjected to ultrasonic vibrations. Alternatively, this result may be obtained where only a portion of the pattern anvil is provided with raised areas.
In some embodiments, the metallic sheet material may be formed from one or more metals selected from the group including aluminum, copper, gold, silver, zinc, lead, iron or platinum.
The thickness of the thin metallic sheet material is at least about 0.25 mil. For e~ample, the thickness of the thin metallic sheet material may range from about 0.25 mil to about 5 mils. More particularly, the thickness of the thin metallic sheet material may range from about 0.25 mil to about 2 mils.

7 ,~ ~33 Even more particularly, the thickness of the thin metallic sheet material may range from about 0.5 mil to about 1 mil.
As a result of the microaperturing process the edge length of the thin metallic sheet material may be increased by at least about 100 percent as compared to the sheet's edge length prior to microaperturing. For example, the edge length of the thin metallic sheet material may be increased by at least about 500 percent as compared to the sheet's edge length prior to microaperturing. More particularly, the edge length of the thin metallic material may be increased by at least about 1,500 percent as compared to the sheet's edge length prior to microaperturing. Even more particularly, the edge length of the thin metallic sheet material may be increased by at least about 3,000 percent as compared to the sheet's edge length prior to microaperturing.

THE FIGURES

Figure I is a schematic representation of apparatus which may be utilizes ultrasonic vibrations to microaperture thin - metallic sheet materials.
Figure II is a cross sectional view of the transport mechanism for transporting the thin metallic sheet material to the area where it is subjected to ultrasonic vibrations.
Figure III is a detailed view of the area where the thin metallic sheet material is subjected to ultrasonic vibrations.
The area is designated by the dotted circle in figure I.

~ ~ ~ 7 ~
Figure IV is a photomicrograph of a 0.45 mil thick sheet of aluminum foil which has been microapertured in accordance with the present invention. The photomicrograph is accompanied by a scale where each unit represents ten (10) microns (micrometers).

DETAILED DESCRIPTION OF ~IE IN~ENTION

Turning now to the figures where like reference numerals represent like structure and, in particular to Figure I which is a schematic representation of an apparatus which can carry out the method of the present invention, it can be seen that the apparatus is generally represented by the reference numeral 10. In operation, a supply roll 12 of a thin metallic sheet material 14 to be microapertured is provided. As has been previously stated, the term thin metallic sheet material refers to sheet materials which have an average thickness of about ten (10) mils or less. Additionally, generally speaking the average thickness of the thin metallic sheet material 14 will be at least about 0.25 mil. For example, the average thickness of the thin metallic sheet 14 material may range from about 0.25 mil to about 5 mils. More particularly, the average thickness of the thin metallic sheet material 14 may range from about 0.25 mil to about 2 mils. Even more 2S specifically, the average thickness of the thin metallic sheet material 14 may range from about 0.5 mil to about 1 mil.
The thin metallic cheet material 14 may be formed from a metal where the metal is selected from, for example, the group .

,:,~, . ~ .
: .

2~rj~

including aluminum, copper, gold, zinc, lead , iron, silver or platinum. The thin metallic sheet material 14 may be formed from an alloy of one or more metals or other materials which alloy with the metal or metals of the sheet material 14.
The thin metallic sheet material 14 is transported to a first nip 16 formed by a first transport roll 18 and a first nip roller 20 by the action of an endless transport mechanism 22 which moves in the direction indicated by the arrow 24. The transport mechanism 22 is driven by the rotation of the first lo transport roller 18 in conjunction with a second transport roller 26 which, in turn, are driven by a conventional power source, not shown.
Figure II is a cross sectional view of the transport mechanism 22 taken along lines A-A in Figure I. Figure II
di6closes that the transport mechanism 22 includes a heavy duty transport wire mesh screen 28 usually having a mesh count of less than about 400 (i.e. less than a 20 wires per inch MD
by 20 wires per inch CD mesh screen if machine direction (MD) ; and cross machine direction (CD) wire count is the same).
; 20 Heavy duty mesh wire screens of this type may be made from a variety of materials such as, for example, metals, plastics, nylons or polyesters, and are readily available to those in the art. Located above and attached to the transport screen 28 is an endless flat shim plate 30. The shim plate 30 desirably is formed from stainless steel. However, those of skill in the art will readily recognize that other materials may be utilized. Located above and attached to the shim plate 30 is a fine mesh wire pattern screen 32 usually having a mesh count of at l~ast about 2,000 (i.e. at least a 45 wires per inch MD by 45 wires per inch CD mesh screen if MD and CD wire count is the same). Fine mesh wire screens of this type are readily available to those in the art. The fine mesh wire screen 32 has raised areas or knuckles 34 which preform the function of a pattern anvil as will be discussed later.
From the first nip 16 the thin metallic sheet material 14 is transported by the transport mechanism 22 over a tension roll 36 to an area 38 (defined in Figure I by the dotted lined circle) where the thin metallic sheet material 14 is subjected to ultrasonic vibrations.
The assembly for subjecting the thin metallic sheet material 14 to the ultrasonic vibrations is conventional and is generally designated at 40. The assembly 40 includes a power supply 42 which, through a power control 44, supplies power to a piezoelectric transducer 46. As is well known in the art, the piezoelectric transducer 46 transforms electrical energy into mechanical movement as a result of the transducer's vibrating in response to an input of electrical energy. The vibrations created by the piezoelectric transducer 46 are transferred, in conventional manner, to a mechanical movement booster or amplifier 48. As is well known in the art, the mechanical movement booster 48 may be designed to increase the amplitude of the vibrations (mechanical movement) by a known factor depending upon the configuration of the booster 48. In further conventional manner, the mechanical movement (vibrational energy) is transferred from the mechanical movement booster 48 to a conventional knife edge ultrasonic ~3 horn 50. It should be realized that other types of ultrasonic horns 50 could be utilized. For example, a rotary type ultrasonic horn could be used. The ultrasonic horn 50 may be designed to effect yet another boost or increase in the amplitude of the mechanical movement (vibrations) which is to be applied to the thin metallic sheet material 14. Lastly, the assembly includes an actuator 52 which includes a pneumatic cylinder, not shown. The actuator 52 provides a mechanism for raising and lowering the assembly 40 so that the tip 54 of the ultrasonic horn 50 can apply tension to the transport mechanism 22 upon the assembly 40 being lowered. It has been found that it is necessary to have some degree of tension applied to the traneport mechanism 22 upon the lowering of the assembly for proper application of vibrational energy to the thin sheet material 14 to form microapertures in the thin metallic sheet material 14. one desirable aspect of this tensioned arrangement is that the need to design a finely toleranced gap between the tip 54 of the horn 50 and the raised areas or knuckles 34 of the fine mesh wire screen 32 is not necessary.
Figure III is a schematic representation of the area 38 where the ultrasonic vibrations are applied to the thin metallic sheet material 14. As can be seen in Figure III, the transport mechanism 22 forms an angle 56 with the tip 54 of the ultrasonic horn 50. While some microaperturing will occur if the angle 56 is as great as 45 degrees, it has been found that it is desirable for the angle 56 to range from about 5 degrees to about 15 degrees. For example, the angle 56 may h ~i ~ 7 ~ ~ ~

range from about 7 to about 13 degrees. More particularly, the angle 56 may range from about 9 to about 11 degrees.
Figure III also illustrates that the transport mechanism 22 is supported from below by the first tension roll 36 and a second tension roll 58. Positioned somewhat prior to the tip 54 of the ultrasonic horn 50 is a spray nozzle 60 which is configured to apply a fluid 62 to the surface of the thin metallic sheet material 14 just prior to the sheet material's 14 being subjected to ultrasonic vibrations by the tip 54 of the ultrasonic horn 50. The fluid 62 desirably may be selected from the group including one or more of water, mineral oil, a chlorinated hydrocarbon, ethylene glycol or a solution of 50 volume percent water and S0 volume percent 2 propanol. For example, in some embodiments the chlorinated hydrocarbon may be selected from the group including 1,1,1 trichloroethane or carbon tetrachloride. It should be noted that the wedge-shaped area 64 formed by the tip 54 of the ultrasonic horn 50 and the transport mechanism 22 should be subjected to a sufficient amount of the fluid 62 for the fluid 62 to act as both a heat sink and a coupling agent for the most desirable results. Positioned below the transport mechanism 22 in the area where the tip 54 of the ultrasonic horn 50 is located is a fluid collection tank 66. (See figure I.) The fluid collection tank 66 serves to collect fluid 62 which has been 2~ applied to the surface of the thin metallic sheet material 14 and which has either been driven through the sheet material 14 and/or the transport mechanism 22 or over the edges of the transport mechanism 22 by the action of the vibrations of the ~ ~3 ~ ~'U

tip 54 of the ultrasonic horn 50. Fluid 62 which is collected in the collection tank 66 is transported by tubing 68 to a fluid holding tank 70.
Figure I illustrates that the fluid holding tank 70 contains a pump 72 which, by way of additional tubing 74, supplies the fluid 62 to the fluid spray nozzle 60. According-ly, the fluid 62 may be re-cycled for a considerable period of time.
While the mechanism of action may not be fully understood and the present application should not be bound to any particular theory or mechanism of action, it is believed that the presence of the fluid 62 in the wedge-shaped area 64 during operation of the ultrasonic horn 50 accomplishes two separate and distinct functions. First, the presence of the fluid 62 allows the fluid 62 to act as a heat sink which allows the ultrasonic vibrations to be applied to the thin metallic sheet material 14 without the thin metallic sheet material 14 being altered or destroyed as by melting.
Secondly, the presence of the fluid 62 in the wedge-shaped area 64 allows the fluid 62 to act as a coupling agent in the application of the vibrations from the ultrasonic horn 50 to the thin metallic sheet material 14.
It has been discovered that the action of the ultrasonic horn 50 on the thin metallic sheet material 14 microapertures the thin metallic sheet material 14 in spite of the fact that there are no fibers to re-arrange to form microapertures as was the case in Mitchell et al.. The microapertures are punched through the thin metallic sheet material 14 in the - .

pattern of the raised areas or knuckles 34 of the fine mesh wire pattern screen 32. Generally, the number of microapertures produced will be equal to the number of raised areas or knuckles 34 on the upper surface of the fine mesh wire screen 32. That is, the number of microapertures will generally be one-half the mesh count of a given area of pattern screen 32. For example, if the pattern screen 32 is 100 wires per inch MD by 100 wires per inch CD, the total number of knuckles or raised areas 34 on one side of the pattern wire, per square inch, 32 will be 100 times lOo divided by 2. This equals 5,000 microapertures per square inch. For a 200 wires per inch by 200 wires per ir.ch mesh pattern screen 32 the calculation yields 20,000 microapertures per square inch. Depending somewhat on the thicknes6 of the thin metallic sheet material 14, at a mesh count of about 90,000 (300 wires per inch MD by 300 wires per inch CD) the wires are so thin as to allow the knuckles 34 on both sides to microaperture the thin metallic sheet material 14 if sufficient force is applied. Thus, a 300 wires per inch MD by 300 wires per inch CD mesh screen yields 90,000 microapertures per square inch; for a 400 wires per inch MD by 400 wires per inch CD mesh--160,000 microapertures per square inch. of course the MD and CD wire count of the wire mesh screen does not have to be the same.
As a result of the microaperturing process the edge length of the thin metallic sheet material may be increased by at least about 100 percent as compared to the sheet's edge length prior to microaperturing. For example, the edge length of the ~ ~ 3 thin metallic sheet material may be increased by at least about 500 percent as compared to the sheet's edge length prior to microaperturing. More particularly, the edge length of the thin metallic material may be increased by at least about 1,500 percent as compared to the sheet's edge length prior to microaperturing. Even more particularly, the edge length of the thin metallic sheet material may be increased by at least about 3,000 percent as compared to the sheet'9 edge length prior to microaperturing.
It should also be noted that the number of microapertures formed may also vary with the number of ultrasonic vibrations to which the thin metallic sheet material 14 is subjected per unit area for a given period of time. This factor may be varied in a number of ways. For example, the number and size of the microapertures will vary somewhat with the line speed of the thin metallic sheet material 14 as it passes underneath the tip 54 of the ultrasonic horn 5~. Generally speaking, as line speed increases, first the size of the microzpertures decreases and then the number of microapertures decreases. As the number of microapertures decreases the less the pattern of microapertures resembles the pattern of raised areas 34 on the pattern screen 32. The range of line speeds that usually yields microapertures varies with the metal utilized to form the thin metallic sheet material 14 and the material used as the fluid 62. For aluminum foil having a thickness of about 0.45 mil, it is believed that typical line speeds which should yield microapertures for a wide variety of fluids should range from about 5 to about 15 feet per minute. For example, if ~ J ~ ~ J

water is used as the fluid with aluminum foil typical line speeds which usually yield microapertures range from about 6 to about 9 feet per minute. It is believed that, to some extent, the variations in the number of microapertures formed and the size of the microapertures occurs due to the minute variations in the height of the raised areas or knuckles 34 of the fine mesh pattern screen 32. It should be noted that the fine mesh pattern screens used to date have been obtained from conventional everyday sources such as a hardware store.
It is also ~elieved that if a pattern screen 32 could be created where all of the raised areas 34 of the screen 32 were of exactly the same height these variations would only occur in uniform fashion with variations of line speed.
As was stated above, the area or size of each of the microapertures formed will also vary with the parameters discussed above. The area of the microapertures will also vary with the area of the raised areas of the pattern anvil such as the knuckles 34 on the fine mesh wire screen 32. It is believed that the type of metal used in forming the thin metallic sheet material 14 will also vary the area of the microapertures formed if all other parameters are maintained the same. For example, the softer the thin metallic sheet material 14, the easier it is to push the thin metallic sheet material 14 through the raised areas of the fine mesh pattern screen 32. Because the raised areas (knuckles) on the fine mesh screen are generally pyramidal in shape, the deeper the raised area penetrates the thin metallic sheet material 14, the larger the microaperture. In such situations the shape of ~7~

the microaperture will conform generally to the pyramidal shape of t~e raised area of the fine mesh screen and the microaperture will be generally pyramidally shaped, in the z direction, and will have an area which is greater at one end than at the other. As has been previously stated, the area of the microaperture should be measured at the narrowest point of the aperture. Of course, the height of the raised areas must be greater than the thickness of the thin sheet material 14 for microapertures to be formed and the degree of excess necessary may vary with the type of metal sheet to be microapertured.
In some embodiments it may be necessary to subject the thin metallic sheet material 14 to multiple passes through the apparatus 10 in order to microaperture the thin sheet material 14. In such situations the thin sheet material 14 will initially only be thinned in the pattern of the pattern anvil's raised areas. However, after two or more passes through the apparatus 10, with the thin metallic sheet material 14 being aligned in the same configuration with respect to the pattern anvil, yields microapertures.
,Essentially what is happening in these situations is that the thin metallic sheet material 14 is repeatedly thinned by repeated application of ultrasonic vibrational force until such time as microapertures are formed. Alternatively, the fine mesh wire diameter size may be increased with the consequent decrease in mesh count. Increasing the wire diameter size of the fine mesh screen 32 increases the likelihood that microapertures will be formed.

r ~

Another feature of the present invention is the fact that the microapertures can be formed in a predesignated area or areas of the thin metallic sheet material 14. This can be accomplished in a number of ways. For example, the thin S metallic sheet material 14 may be su~jected to ultrasonic vibrations only at certain areas of the sheet material, thus, microaperturing would occur only in those areas.
Alternatively, the entire thin metallic sheet material could be subjected to ultrasonic vibrations with the pattern anvil having raised areas only at certain locations and otherwise being flat. Ac-ordingly, the thin metallic sheet material would be microapertured only in those areas which corresponded to areas on the pattern anvil having raised areas.
It should also be noted that some limitation exists in the number of microapertures which can be formed in a given thin metallic sheet material 14 on a single application of vibrational energy, i.e. a single pass through the apparatus if a wire mesh screen is used as the pattern anvil. This follows from the fact that, as was stated above, the height of the raised areas must exceed the thickness of the thin metallic sheet material 14 in conjunction with the fact that, generally as the mesh count increases the height of the raised areas or knuckles decreases. In such situations, if the number of microapertures desired per unit area is greater than the number which can be formed in one pass through the apparatus, multiple passes are necessary with the alignment of the thin metallic sheet material 14 with respect to the raised ares being altered or shifted slightly on each pass.

. ~

~ ~?~ 3~ ~

Generally speaking the area of each of the microapertures is greater than about ten square micrometers. That is the area of each of the microapertures may range from at least about 10 square micrometers to about 100,000 square micrometers. For example,the area of each of the formed microapertures may generally range from at least about 10 square micrometers to about 10,000 square micrometers. More particularly, the area of each of the formed microapertures may generally range from at least about 10 square micrometers to about 1,000 square micrometers. Even more particularly, the area of each of the formed microapertures may generally range from at least about 10 square micrometers to about 100 square micrometers.
A number of important observations about the process may now be made. For example, it should be understood that the presence of the fluid 62 is highly important to the present inventive proce~s which uses the fluid as a coupling agent.
Because a coupling agent is present, the microapertures are punched in the thin sheet material 14. The importance of the fluid 62 is further exemplified by the fact that the process has been attempted without the use of the fluid 62 and was not successful. Additionally, the presence of the shim plate 30 or its equivalent is necessary in order to provide an anvil mechanism against which the thin metallic sheet material 14 may be worked, that is apertured, by the action of the tip 54 of the ultrasonic horn 50. Because the vibrating tip 54 of the ultrasonic horn 50 is acting in a hammer and anvil manner when operated in conjunction with the heavy duty wire mesh screen 28/shim plate 30/fine wire mesh 32 combination, it should be 2 ~

readily recognized that a certain degree of tension must be placed upon the transport mechanism .2 by the downward displacement of the ultrasonic horn 50. If there is little or no tension placed upon the transport mechanism 22, the shim S plate 30 cannot preform its function as an anvil and microaperturing generally does not occur. Because both the shim plate 30 and the fine mesh pattern wire 32 form the resistance that the ultrasonic horn 50 works against, they are collectively referred herein as a pattern anvil combination.
It should be easily recognized by those in the art that the function of the pattern anvil can be accomplished by other arrangements than the heavy duty wire mesh screen 28/shim plate 30/fine mesh screen 32 combination. For example, the pattern anvil could be a flat plate with raised portions acting to direct the microaperturing force of the ultrasonic horn 50. Alternatively, the pattern anvil could be a cylindrical roller having raised areas. If the pattern anvil is a cylindrical roller with raised areas~ it is desirable for the pattern anvil to be wrapped or coated with or made from a resilient material. Where the pattern anvil is a mesh screen the resiliency is provided by the fact that the screen is unsupported directly below the point of application of ultrasonic vibrations to the mesh screen.
The invention will now be discussed with regard to specific examples which will aid those of skill in the art in a full and complete understanding thereof.
', EXAMPLE I

2 ~

A shaet of 0.45 mil thick aluminum foil having the trade designation #01-213 was obtained from the Fischer Scientific Co. of Pittsburgh, Pennsylvania and was cut into a length of S about ten (10) inches and a width of about three (3) inches.
The hydrohead of such aluminum foil prior to hydrosonic treatment has been measured as being greater than 137 inches of water. (This is the highest value obtainable with the equipment used.) The sample was subjected to hydrosonic treatment in accordance with the present invention.
A model 1120 power supply obtained from the Branson Company of Danbury, Connecticut, was utilized. This power supply, which has the capacity to deliver 1,300 watts of electrical energy, was used to convert 115 volt, 60 cycle electrical energy to 20 kilohertz alternating current. A
Branson type J4 power level control, which has the ability to regulate the ultimate output of the model 1120 power supply from 0 to 100%, was connected to the model 1120 power supply.
In this example, the power level control was set at 100%. The actual amount of power consumed was indicated by a Branson model A410A wattmeter. This amount was about 900 watts.
The output of the power supply was fed to a model 402 - piezoelectric ultrasonic transducer obtained from the Branson Company. The transducer converts the electrical energy to mechanical movement. At 100% power the amount of mechanical movement of the transducer is about 0.8 micrometers.
The piezoelectric transducer was connected to a mechanical movement booster section obtained from the Branson Company.

r~

The ~ooster is a solid titanium metal shaft with a length equal to one-half wave length of the 20 kilohertz resonant frequency. Boosters can be machined so that the amount of mechanical movement at their output end is increased or decreased as compared to the amount of movement of the transducer. In this example the booster increased the amount of movement and has a gain ratio of about 1:2.5. That is, the amount of mechanical movement at the output end of the booster is about 2.5 times the amount of movement of the transducer.
lo ~he output end of the booster was connected to an ultrasonic horn obtained from the Branson Company. The horn in this example is made of titanium with a working face of about g inches by about 1/2 inch. The leading and trailing edges of the working face of the horn are each curved on a radius of about 1/8 inch. The horn step area is exponential in shape and yields about a two-fold increase in the mechanical movement of the booster. That is, the horn step area has about a 1:2 gain ratio. The combined increase, by the booster and the horn step area, in the original mechanical movement created by the transducer yields a mechanical movement of about 4.0 micrometers.
The forming table arrangement included a small forming table which was utilized to transport and support the sheet of metal foil to be microapertured. The forming table included two 2-inch diameter idler rollers which were spaced about 12 inches apart on the surface of the forming table. A transport mesh belt encircles the two idler rollers so that a continuous conveying or transport surface is created. The transport mesh ~ ~3 ~

belt is a square weave 20 x 20 mesh web of 0.020 inch diameter plastic filaments. The belt is about lO inches wide and is raised above the surface of the forming table.
The transducer/booster/horn assembly, hereinafter the assembly, is secured in a ~ranson series 400 actuator. When power is switched on to the transducer, the actuator, by means of a pneumatic cylinder with a piston area of about 4.4 square inches, lowers the assembly so that the output end of the horn contacts the sheet of aluminum foil which is to be microapertured. The actuator also raises the assembly so that the output end of the horn is removed from contact with the sheet of aluminum foil when power is switched off.
The assembly is positioned so that the output end of the horn is adapted so that it may be lowered to contact the transport mesh belt between the two idler rollers. An 8-inch wide 0.005-inch thick stainless steel shim stock having a length of about 60 inches was placed on the plastic mesh transport belt to provide a firm support for a pattern screen which is placed on top of the stainless steel shim. In this example the pattern screen is a 250 by 250 mesh wire size weave stainless steel screen. The sheet of aluminum foil which was to be microapertured was then fastened onto the pattern wire using masking tape.
The forming table arrangement also included a fluid circulating system. The circulating system includes a fluid reservoir tank, a fluid circulating pump which may convenient-ly be located within the tank, associated tubing for transpor-ting the fluid from the tank to a slotted boom which is 2 ~3 ~ 7~3 designed to direct a curtain of fluid into the juncture of the output end of the horn and sheet of aluminum foil which is to be microapertured.
In operation, the assembly was positioned so that the S output end of the horn was at an angle of from about 10 to 15 degrees to the sheet of aluminum foil to be microapertured.
Accordingly, a wedge shaped chamber was formed between the output end of the horn and the sheet of aluminum foil to be microapertured. It is into this wedge shaped chamber that the fluid, in this example water at room temperature, is directed by the slotted boom.
It should be noted that the actuator was positioned at a height to insure that, when the assembly is lowered, the downward movement of the output end of the horn is stopped by the tension of the transport mesh before the actuator reaches the limit of its stroke. In this example, actuating pressure was ad~usted to 8 pounds per square inch as read on a pressure gauge which is attached to the pneumatic cylinder of the actuator. This ad;ustment results in a total downward force of 35.2 pounds. (8 psi times 4.4 square inches of piston area equals 35.2 pounds of force.) The sequence of operation was (1) the fluid pump was switched on and the area where the output end of the horn was to contact the sheet of aluminum foil was flooded with water;
(2) the transport mesh conveyor system was switched on and the aluminum foil started moving at 8 feet per minute; and (3) power to the assembly was supplied and the assembly was lowered so that the output end of the horn contacted the sheet ~ ~ ~ 7 ~

of aluminum foil while the sheet continued to pass under the output end of the horn until the end of the sample was reached. The reading on the A410A wattmeter during the process i~ an indication of the energy required to maintain maximum mechanical movement at the output end of the horn while working against the combined mass of the fluid, the sheet of aluminum foil, the pattern wire, the shim stock, and the transport wire.
This example yielded a microapertured aluminum foil having a maximum microaperture density of about 30,000 microapertures per square inch with the microapertures having an area of about 1,800 square micrometers.
Figure IV is a photomicrograph of the thin metallic sheet material 14 apertured in accordance with example I.

EXAMPLE II

The process of example I was repeated with the exception that a sheet of annealed copper having a thickness of about 0.1 mil was utilized as the thin metallic sheet material. The line speed of the copper sheet was 4 feet per minute as compared to the 8 feet per minute utilized in example I. The actual amount of power consumed was indicated by the Branson model A410A wattmeter as about 1,000 watts.
This example yielded a microapertured copper sheet having a maximum density of about 30,000 microapertures per square inch with the microapertures having an area which varied from about 20 to 1,000 square micrometers. Significant ~ ~ ~3 r) ~

microaperture density variation was encountered in this example.

ILLUSTRATIVE EXAMPLE

In order to illustrate the importance of the presence of the fluid as a coupling agent an illustrative example was run.
This example attempted to duplicate example I with the exception that no fluid was provided to the area where ultrasonic vibrations were being applied to the aluminum foil.
All process parameters of the illustrative example were the same as those of example I with the exception that the line speed was seven (7) feet per minute and the actual amount of power consumed was indicated by the Branson model A410A
wattmeter as about 800 watts. Importantly, no microapertures were formed in the aluminum foi}.

EXAMPLE III

The process of example I was repeated with the exception that a 50 by 50 fine wire mesh screen was used. Additionally, the line speed of the aluminum sheet was about 6.9 feet per minute as compared to the 8 feet per minute utilized in example I and the actuating pressure was about 10 pounds per square inch. This example yielded a microapertured sheet ~ having a maximum density of about 1,250 microapertures per ;~ -31-:;

~37'i~

square inch with the microapertures having an area which was calculated as being about 18,000 square micrometers.
The edge length incr~ase was calculated as being about 2,800 percent.

EXAMPLE IV

The process of example I was repeated with the exception that a 120 by 120 fine wire mesh screen was used.
Additionally, the line speed of the aluminum sheet was about 6.9 feet per minute as compared to the 8 feet per minute utilized in example I. This example yielded a microapertured sheet having a maximum density of about 7,200 microapertures per square inch with the microapertures having an area which was calculated as being about 3,100 square micrometers.

The edge length increase was calculated as being about 1,400 percent.

EXAMPLE V

The process of examp}e I was repeated with the exception that the line speed of the aluminum sheet was about 6.8 feet per minute as compared to the 8 feet per minute utilized in example I. This example yielded a microapertured sheet having a maxi~um density of about 31,250 microapertures per square inch with the microapertures having an area which was calculated as being about 1,400 square micrometers.
:

;

~, , ~ 7 1~Ji3 The edge length increase was calculated as being about 3l000 percent.
EXAMPLE VI

The process of example I was repeated with the exception that the line speed of the aluminum sheet was about 6.8 feet per minute as compared to the 8 feet per minute utilized in example I. This example yielded a microapertured sheet having a maximum density of about 31,250 microapertures per square inch with the microapertures having an area which was calculated as being about 1,300 square micrometers.
The edge length increase was calculated as being about 4,000 percent.

EXAMPLE VI~

The process of example I was repeated with the exception that the actuating pressure was about 6 pounds per square inch. Additionally, the line speed of the aluminum sheet was about 6.8 feet per minute as compared to the 8 feet per minute utilized in example I. This example yielded a microapertured sheet having a maximum density of about 31,250 microapertures per square inch with the microapertures having an area which was calculated as being about 350 square micrometers.
The edge length increase was calculated as being about 2,000 percent.

EXAMPLE VIII

, ~ . ~. . . . ..

The process of example I was repeated with the exception that the line speed of the aluminum sheet was about 6.8 feet per minute as compared to the 8 feet per minute utilized in example I and the actuating pressure was about 10 pounds per square inch. This example yielded a microapertured sheet having a maximum density of about 31,250 microapertures per square inch with the microapertures having an area which was calculated as being about 1,000 square micrometers.
The edge iength increase was calculated as being about 3,500 percent.
The uses to which the microapertured metallic sheet material of the present invention may be put are numerous. of course, any application which is improved or otherwise enhanced if the edge length of the metallic sheet is increased is to be considered. An example of such an application is the area of filtration. For example, the microapertured thin sheet material of the present invention can be utilized as a filtration media for collecting charged particulates or particles from the air or water. The air or water would circulate through the microapertures of the metallic sheet material which , itself, could be provided with a charge to assist in the collection of the charged particulate or particle. Conveniently, the filter could be cleaned by reversing the charge on the metallic sheet material whereby the collected particulates and/or particles would fall off of the metallic sheet material.

It is to be understood that variations and modifications of the present invention may be made without departing from the scope of the invention. For example, in some embodiments the use of multiple ultrasonic horns aligned abreast or sequentially may be desirable. It is also to be understood that the scope of the present invention is not to be interpreted as limited to the specific embodiments disclosed herein, but only in accordance with the appended claims when read in light of the foregoing disclosure.

Claims (21)

1. A microapertured thin metallic sheet material, said thin metallic sheet material having at least about 1,000 microapertures per square inch.
2. The microapertured thin metallic sheet material according to claim 1, having at least about 5,000 microapertures per square inch.
3. The microapertured thin metallic sheet material according to claim 1, having at least about 20,000 microapertures per square inch.
4. The microapertured thin metallic sheet material according to claim 1, having at least about 90,000 microapertures per square inch.
5. The microapertured thin metallic sheet material according to claim 1, having at least about 160,000 microapertures per square inch.
6. The microapertured thin metallic sheet material according to claim 1, wherein the edge length of the sheet material is at least 100 percent greater than the edge length of the thin metallic sheet material prior to microaperturing.
7. The microapertured thin metallic sheet material according to claim 1, wherein the edge length of the sheet material is at least 500 percent greater than the edge length of the thin metallic sheet material prior to microaperturing.
8. The microapertured thin metallic sheet material according to claim 1, wherein the edge length of the sheet material is at least 1,500 percent greater than the edge length of the thin metallic sheet material prior to microaperturing.
9. The microapertured thin metallic sheet material according to claim 1, wherein the edge length of the sheet material is at least 3,000 percent greater than the edge length of the thin metallic sheet material prior to microaperturing.
10. The microapertured thin metallic sheet material of claim 1, wherein the metallic sheet material is formed from one or more metals selected from the group consisting of aluminum, copper, gold, silver,zinc, lead, iron or platinum.
11. The microapertured thin metallic sheet material of claim 1, wherein the average thickness of the metallic sheet material is at least about 0.25 mil.
12. The microapertured thin metallic sheet material of claim 1, wherein the average thickness of the metallic sheet material is from about 0.25 mil to about 5 mils.
13. The microapertured thin metallic sheet material of claim 1, wherein the average thickness of the metallic sheet material is from about 0.25 mil to about 2 mils.
14. The microapertured thin metallic sheet material of claim 1, wherein the average thickness of the metallic sheet material is from about 0.5 mil to about 1 mil.
15. The microapertured thin metallic sheet material of claim 1, wherein the area of each of the formed microapertures generally ranges from at least about 10 square micrometers to about 100,000 square micrometers.
16. The microapertured thin metallic sheet material of claim 1, wherein the area of each of the formed microapertures generally ranges from at least about 10 square micrometers to about 10,000 square micrometers.
17. The microapertured thin metallic sheet material of claim 1, wherein the area of each of the formed microapertures generally ranges from at least about lo square micrometers to about 5,000 square micrometers.
18. The microapertured thin metallic sheet material of claim 1, wherein the area of each of the formed microapertures generally ranges from at least about 10 square micrometers to about 1,000 square micrometers.
19. The microapertured thin metallic sheet material of claim 1, wherein the microaperturing is confined to a predesignated area or areas of the thin metallic sheet material.
20. A microapertured thin metallic sheet material having a thickness of about 1 mil or less, said sheet material having:
a microaperture density of at least about 90,000 microapertures per square inch; and wherein the area of each of said microapertures ranges generally from greater than about 10 square micrometers to less than about 1,000 square micrometers.
21. A microapertured thin metallic sheet material having a thickness of about 1 mil or less, said sheet material having:
a microaperture density of at least about 160,000 microapertures per square inch; and wherein the area of each of said microapertures ranges generally from greater than about 10 square micrometers to less than about 100 square micrometers.
CA 2057706 1991-09-30 1991-12-16 Hydrosonically microapertured thin metallic sheet materials Abandoned CA2057706A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US76904891A 1991-09-30 1991-09-30
US769,048 1991-09-30

Publications (1)

Publication Number Publication Date
CA2057706A1 true CA2057706A1 (en) 1993-03-31

Family

ID=28675821

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2057706 Abandoned CA2057706A1 (en) 1991-09-30 1991-12-16 Hydrosonically microapertured thin metallic sheet materials

Country Status (1)

Country Link
CA (1) CA2057706A1 (en)

Similar Documents

Publication Publication Date Title
US5269981A (en) Process for hydrosonically microaperturing
CA2043179C (en) Porous film manufacturing apparatus
US5370830A (en) Hydrosonic process for forming electret filter media
US5514308A (en) Method for hydrosonically embedding a material in a soft thin film material
EP0535579A1 (en) Hydrosonically microapertured thin thermoplastic sheet materials
US6120629A (en) Ultrasonic processing
MXPA00004188A (en) A patterned anvil roll.
EP0535581A1 (en) Process for hydrosonically microaperturing thin sheet materials
US20040011204A1 (en) Electrostatic fibrous filter web and method of making same
US5336452A (en) Process for hydrosonically area embossing thin thermoplastic film materials
EP0589222A2 (en) Hydrosonically bonded nonwoven/paper material and process for forming the same
CA2057706A1 (en) Hydrosonically microapertured thin metallic sheet materials
US5314737A (en) Area thinned thin sheet materials
EP0535580A1 (en) Pressure sensitive valve system and process for forming said system
EP0589224A1 (en) method for forming a net-like material from a thermoplastic film
KR100826326B1 (en) Electrostatic fibrous filter web and manufacturing method thereof
EP0589225A1 (en) Method for forming ultra-microapertures in thin thermoplastic film materials and products formed thereby
AU2002213472A1 (en) Electrostatic fibrous filter web and method of making same
CA2057366A1 (en) Hydrosonically micrapertured thin thermoset sheet materials
EP1331030A1 (en) Electrostatic fibrous filter web and method of making same

Legal Events

Date Code Title Description
FZDE Dead