CA2056790C - Method of manufacturing a plastic-coated steel mesh sports face mask - Google Patents

Method of manufacturing a plastic-coated steel mesh sports face mask

Info

Publication number
CA2056790C
CA2056790C CA 2056790 CA2056790A CA2056790C CA 2056790 C CA2056790 C CA 2056790C CA 2056790 CA2056790 CA 2056790 CA 2056790 A CA2056790 A CA 2056790A CA 2056790 C CA2056790 C CA 2056790C
Authority
CA
Canada
Prior art keywords
steel
grid
wire
mask
face mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 2056790
Other languages
French (fr)
Other versions
CA2056790A1 (en
Inventor
Franz W. Martinitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canstar Sports Group Inc
Original Assignee
Canstar Sports Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canstar Sports Group Inc filed Critical Canstar Sports Group Inc
Priority to CA 2056790 priority Critical patent/CA2056790C/en
Publication of CA2056790A1 publication Critical patent/CA2056790A1/en
Application granted granted Critical
Publication of CA2056790C publication Critical patent/CA2056790C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/18Face protection devices
    • A42B3/20Face guards, e.g. for ice hockey

Landscapes

  • Wire Processing (AREA)
  • Laminated Bodies (AREA)

Abstract

A wire mesh face mask for hockey or other sports is manufactured from a steel having carbon content in the range of AISI grades C-1018 to C-1038,and preferably C-1022. The mask is made by forming a grid of generally horizontal wires overlaid by generally vertical wires, shaping the grid into a mask shape, welding the wires to each other where they intersect, heat treating and quenching the grid to increase hardness, dipping the grid to coat it with an epoxy coating.
This combination of materials and processes permits the use of a thinner wire than has previously been possible in face masks.

Description

205~790 This invention relates to sports equipment, and particularly to a wire mesh face mask intended particularly for use in conjunction with a hockey helmet, but also conceivably adaptable for use with headgear for other sports, including for example baseball and softball catchers' masks.
5For convenience and clarity, reference will be made to hockey helmets throughout this description, but it should be clearly understood that this is not in any way intended to limit the scope of the invention to hockey helmets.
Wire mesh face masks are well known. A number of manufacturers have such masks on the market. The primary advantages of such masks are that .0they allow a free flow of air, while offering substantial protection against impact from projectiles such as hockey pucks, baseballs, softballs, etc However, in order to provide adequate protection against impact, it has hitherto been necessary to use wire of relatively large diameter, i.e. typically on the order of 0.130 to 0.144 inches in diameter, and in some cases more. Relatively 15iow carbon steel such as AISI grade C-1008 or C-1010 is commonly used, so that good weld strength can be obtained.
There are several main disadvantages in using such large diameter wire. Firstly, more material is required than if a smaller diameter could be used, so the cost is greater. Secondly, the weight is greater than it would be if a smaller 20diameter could be used. Thirdly, the larger diameter wire obscures the player's vision more that it would with a smaller diameter wire.
To date, no manufacturer has been able to develop a commercially feasible mask using a smaller diameter wire and yet still be able to meet impactresistance standards specified by bodies such as the Canadian Standards 25Association and corresponding standards bodies in other countries.
It is an object of the invention to provide a wire mesh face mask which employs a smaller diameter wire than has hitherto been possible, while still meeting or exceeding the required impact resistance standards.
In the invention, a medium carbon content steel wire is used. The face 30mask is formed and the intersecting wires are welded at their intersections. The mask is then heat treated to increase hardness.
2 ~a B

The medium carbon steel provides reasonable strength with acceptable welding characteristics, and the subsequent heat treatment increases the hardness and strength substantially. The result is a face mask with the strength equivalent to a high-carbon steel, but with the weldability of a lower carbon steel. This increased strength permits a smaller diameter wire to be used, the preferred embodiment of the face mask for a hockey helmet using a wire diameter of just 0.1 13 inches, for example.
Further features of the invention will be described or will become apparent in the course of the following detailed description.
.0 In order that the invention may be more clearly understood, the preferred embodiment thereof will now be described in detail by way of example, with reference to the accompanying drawings, in which:
Fig. 1 is a perspective view showing the face mask installed on a hockey helmet;
Fig. 2 is a front view of the face mask;
Fig. 3 is a side view of the face mask;
Fig. 4 is a top view of the face mask;
Fig. 5 is a perspective of the face mask from the inside, showing the typical chin strap arrangement; and Fig. 6 is a perspective view showing an alternative embodiment of the face mask, incorporating a clear LEXAN (trademark) polycarbonate visor, installed on a hockey helmet.
Fig. 1 shows the preferred embodiment of the wire mesh face mask 1, installed on a hockey helmet 2. The face mask is formed from a number of wires 3, welded together wherever they intersect. The face mask is pivotally mounted onto the helmet by clips 4 which pass around the horizontal wire at the top of the mask and are secured to the helmet by screws 5. A chin guard 6 is typically mounted inside the lower portion of the mask, and is fastened to the helmet oncethe helmet is on the player's head by virtue of a strap 7 with dome fasteners 8 which snap onto the helmet. A bracket 9 mounted on the helmet by screws 10 B

2û5679~

acts as a stop for the mask. This arrangement ensures that the mask is properly positioned in front of the player's face.
In the alternative embodiment illustrated in Fig. 6, the mesh 1 has a large opening defined therein, which is covered by a clear LEXAN shield 11 mounted against the outside of the mesh. In hockey helmets, this arrangement is preferred by many players, since the LEXAN shield provides an unobstructed view of the incoming puck, albeit at the expense of decreased ventilation and possible concerns of fogging.
Neither of the above arrangements is unique to the present invention.
What is unique is the wire which is used to form the masks, and the method of manufacturing which permits that wire to be used. As can be readily appreciated from the drawings, the spacing of the wires is such that a smaller diameter wirecould greatly improve the visibility through the mask.
The face mask is manufactured by the following process. First of all, the generally vertical wires are laid into a grooved form, and the generally horizontal wires are then laid on top of them in the form. This forms the grid and the wires are bent to the desired shape. The wires are then welded together where they intersect.
The wire is a medium carbon steel. This provides a somewhat stronger wire than the low carbon steel, typically AISI grade C-1008 or C-1010, commonly used in the prior art. In the invention, C-1022 steel has been found tobe most advantageous. A steel with a carbon content as low as perhaps C-1018 steel could be used, and then subjected to heat treatment to increase the hardness, but might not be as strong as in the present invention, so that a slightly larger diameter might be required to attain comparable strength. At the other extreme, a steel with a carbon content as high as perhaps C-1038 steel could be used, butthe weldability of such a steel is not as good; the welds might not be as strong or as reliable due to crystallization at the welds. Also, the brittleness of the steel may become excessive, or at least beyond optimum. Within the stated range, it shouldbe possible to produce masks which are superior to those in the prior art, but C-1022 steel appears to be the optimum. A narrower range around C-1022 steel, , ~ .
B

such as C-1020 to C-1030, would provide greater assurance of satisfactory performance than towards the extremes of the broader range.
Once the mask has been formed, it is then heat treated to bring the hardness to approximately the 32 to 38 range on the Rockwell C scale. The 1022 5 steel is normally hardenable to about the 45 to 50 range. However, in this case the material is mar-quenched in a mild quenching material such as oil or salt, afterreaching an austenitizing temperature of 1650 degrees Fahrenheit. This produces a tempered martensite plus pearlite structure which minimizes any risk of cracking, and produces higher ductility to give the mask higher impact strength.
It is the heat treatment after welding which is the essence of the invention, since it permits a medium carbon steel to be used for good weldability, but permits the hardness and strength of a higher carbon steel to be obtained, thereby permitting the use of a smaller diameter wire.
After quenching, the mask is dipped to coat it with a polyester epoxy 15 coating, and is then cured. This coating provides a slightly resilient coating which is not prone to cracking on impact or extremes of temperature.
In the case of a mask intended for use with hockey helmets, as shown in the drawings, the spacing between wires is approximately 1-1/4 to 1-5/8 inches.
At this spacing, the 0.1 13 inch diameter wire is sufficiently strong to exceed the 20 present standards of the Canadian Standards Association, and the corresponding standards in other countries.
It will be appreciated that the above description relates to the preferred embodiment by way of example only. Many variations on the invention will be obvious to those knowledgeable in the field, and such obvious variations are within 25 the scope of the invention as described and claimed, whether or not expressly described .
For example, as previously mentioned, it should be clear that the face mask could be adapted to use with sports headgear other than hockey helmets, such as catchers' masks for baseball and softball, for example. The mesh opening30 size and wire diameter could be readily adjusted to meet the required maximumopening size and the required impact resistance. The method of the invention will 205679~

still permit a smaller wire diameter to be used than for a corresponding mask in the prior art.
It should also be clearly understood that the invention is not limited to the specific wire mesh configuration illustrated in the accompanying drawings. The method of manufacturing the face masks will be advantageous in any configurationof face mask using intersecting wires to define a mesh arrangement.
B

Claims (3)

1. A method of manufacturing a face mask for sports gear, comprising the steps of:
forming a grid of generally horizontal wires overlaid by generally vertical wires;
then shaping said grid into a mask shape;
then welding said wires to each other where they intersect;
then heat treating and quenching said grid to increase hardness;
then dipping said grid to coat it with an epoxy coating and allowing said coating to cure;
where said wire is a steel with carbon content in the range of AISI grade C-1018steel to C-1038 steel.
2. A method as recited in claim 1, where said wire is a steel with carboncontent in the range of C-1020 steel to C-1030 steel.
3. A method as recited in claim 1, where said wire is C-1022 steel.
CA 2056790 1991-12-05 1991-12-05 Method of manufacturing a plastic-coated steel mesh sports face mask Expired - Fee Related CA2056790C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA 2056790 CA2056790C (en) 1991-12-05 1991-12-05 Method of manufacturing a plastic-coated steel mesh sports face mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2056790 CA2056790C (en) 1991-12-05 1991-12-05 Method of manufacturing a plastic-coated steel mesh sports face mask

Publications (2)

Publication Number Publication Date
CA2056790A1 CA2056790A1 (en) 1993-06-06
CA2056790C true CA2056790C (en) 1995-11-07

Family

ID=4148850

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2056790 Expired - Fee Related CA2056790C (en) 1991-12-05 1991-12-05 Method of manufacturing a plastic-coated steel mesh sports face mask

Country Status (1)

Country Link
CA (1) CA2056790C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5862529A (en) * 1996-01-23 1999-01-26 Springuard Technology Group Inc Device for protecting face and eyes against projectile impact

Also Published As

Publication number Publication date
CA2056790A1 (en) 1993-06-06

Similar Documents

Publication Publication Date Title
US5249347A (en) Face mask for sports gear
US5661849A (en) Protective face guard for softball players
US5713082A (en) Sports helmet
US5267353A (en) Face guard
US4173795A (en) Racquetball or squash safety mask
US4031564A (en) Hockey mask
US4937888A (en) Helmet cover
US7836517B2 (en) Face guard for a hockey helmet
US5806088A (en) Face guard
US7062795B2 (en) Lightweight impact resistant helmet system
US5384914A (en) Sports face mask
US7434268B2 (en) Protective headgear for rodeo rough stock riding competition
US5148550A (en) Protective face and head gear
CA2508055C (en) Face guard for a sporting helmet
US20090083900A1 (en) Open view facemask visor shield
US20050178610A1 (en) Swiveling sound-gathering ear guard for masks and helmets
US20040133958A1 (en) Protective eyewear device for sports
US20030070201A1 (en) Protective face mask
CA2056790C (en) Method of manufacturing a plastic-coated steel mesh sports face mask
US6338165B1 (en) Visioned enhanced face guard for a sports helmet
US8356366B2 (en) Glove having a flexible cuff with integral vent
US5699556A (en) Catcher's face mask with a sun-shade
KR200487757Y1 (en) Head protector
EP3236794B1 (en) A face guard comprising at least one wire
US20230082869A1 (en) Sports facemask

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed