CA2047463A1 - Hydrophilic copolymers and their use in reprography - Google Patents
Hydrophilic copolymers and their use in reprographyInfo
- Publication number
- CA2047463A1 CA2047463A1 CA002047463A CA2047463A CA2047463A1 CA 2047463 A1 CA2047463 A1 CA 2047463A1 CA 002047463 A CA002047463 A CA 002047463A CA 2047463 A CA2047463 A CA 2047463A CA 2047463 A1 CA2047463 A1 CA 2047463A1
- Authority
- CA
- Canada
- Prior art keywords
- monomer
- mol
- hydrophilic copolymer
- hydrophilic
- copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920001480 hydrophilic copolymer Polymers 0.000 title claims abstract description 32
- 239000000178 monomer Substances 0.000 claims abstract description 82
- 229920001577 copolymer Polymers 0.000 claims abstract description 25
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 20
- 238000007645 offset printing Methods 0.000 claims abstract description 14
- 239000011230 binding agent Substances 0.000 claims abstract description 10
- 230000002378 acidificating effect Effects 0.000 claims abstract description 8
- 239000013522 chelant Substances 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 19
- 229920000642 polymer Polymers 0.000 claims description 13
- 238000006116 polymerization reaction Methods 0.000 claims description 9
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 9
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 7
- 229920001223 polyethylene glycol Polymers 0.000 claims description 7
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 claims description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 5
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 claims description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 5
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 5
- 239000011976 maleic acid Substances 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 5
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 claims description 4
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- 150000001298 alcohols Chemical class 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 239000001530 fumaric acid Substances 0.000 claims description 4
- 150000003440 styrenes Chemical class 0.000 claims description 4
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 3
- 239000003999 initiator Substances 0.000 claims description 3
- 150000002734 metacrylic acid derivatives Chemical class 0.000 claims description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 3
- 229920001451 polypropylene glycol Polymers 0.000 claims description 3
- 239000002244 precipitate Substances 0.000 claims description 3
- 238000012673 precipitation polymerization Methods 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 claims description 3
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 claims description 2
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 claims description 2
- XUDBVJCTLZTSDC-UHFFFAOYSA-N 2-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C=C XUDBVJCTLZTSDC-UHFFFAOYSA-N 0.000 claims description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical class C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 claims description 2
- UFQHFMGRRVQFNA-UHFFFAOYSA-N 3-(dimethylamino)propyl prop-2-enoate Chemical compound CN(C)CCCOC(=O)C=C UFQHFMGRRVQFNA-UHFFFAOYSA-N 0.000 claims description 2
- QGXMPHBQJFXJCI-UHFFFAOYSA-N 4-(dimethylamino)butyl prop-2-enoate Chemical compound CN(C)CCCCOC(=O)C=C QGXMPHBQJFXJCI-UHFFFAOYSA-N 0.000 claims description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical class ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 claims description 2
- 150000002688 maleic acid derivatives Chemical class 0.000 claims description 2
- 230000000379 polymerizing effect Effects 0.000 claims description 2
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 claims description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims 2
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 claims 1
- WWJCRUKUIQRCGP-UHFFFAOYSA-N 3-(dimethylamino)propyl 2-methylprop-2-enoate Chemical compound CN(C)CCCOC(=O)C(C)=C WWJCRUKUIQRCGP-UHFFFAOYSA-N 0.000 claims 1
- OAKUJYMZERNLLT-UHFFFAOYSA-N 4-(dimethylamino)butyl 2-methylprop-2-enoate Chemical compound CN(C)CCCCOC(=O)C(C)=C OAKUJYMZERNLLT-UHFFFAOYSA-N 0.000 claims 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims 1
- 125000005250 alkyl acrylate group Chemical group 0.000 claims 1
- 125000000217 alkyl group Chemical group 0.000 claims 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 claims 1
- 125000001302 tertiary amino group Chemical group 0.000 claims 1
- 229920005684 linear copolymer Polymers 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 40
- 238000007639 printing Methods 0.000 description 29
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 18
- 150000003839 salts Chemical class 0.000 description 10
- 239000002253 acid Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 5
- 229920002401 polyacrylamide Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical class O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 4
- 239000004584 polyacrylic acid Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- -1 alkyl vinyl ethers Chemical class 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 229920003086 cellulose ether Polymers 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical group [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- NAVJNPDLSKEXSP-UHFFFAOYSA-N Fe(CN)2 Chemical class N#C[Fe]C#N NAVJNPDLSKEXSP-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229920002554 vinyl polymer Chemical class 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical class NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229940106135 cellulose Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- JANTZNZAIPLDNH-UHFFFAOYSA-N ethyl prop-2-enoate Chemical compound CCOC(=O)C=C.CCOC(=O)C=C JANTZNZAIPLDNH-UHFFFAOYSA-N 0.000 description 1
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical group CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical group [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G13/00—Electrographic processes using a charge pattern
- G03G13/26—Electrographic processes using a charge pattern for the production of printing plates for non-xerographic printing processes
- G03G13/28—Planographic printing plates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41N—PRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
- B41N3/00—Preparing for use and conserving printing surfaces
- B41N3/03—Chemical or electrical pretreatment
- B41N3/036—Chemical or electrical pretreatment characterised by the presence of a polymeric hydrophilic coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/10—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
- B41C1/1008—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/24—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Printing Plates And Materials Therefor (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
Abstract of the Disclosure The invention relates to a hydrophilic copolymer having the general structure:
...-(A)m-...-(B)n-...-(C)o-...-(D)p-...
in which A is at least one polymerizable monomer having an acidic side group, B is at least one polymerizable monomer having a basic side group, C is at least one polymerizable monomer having a non-polar, non-hydrophilic side group, and D is at least one polymerizable monomer capable of increasing the hydrophilic character of monomer A
or to form a chelate with monomer A, m, n, o and p are the monomer contents of monomers A, B, C and D, respectively, in mol%, with m + n + o + p = 100 mol%, with the proviso that m and n are each ? 2 mol% and p is ? 1 mol%, wherein the copolymer is a linear copolymer having a random structure of the monomers. The copolymer is useful as a hydrophilizing agent for lithographic and offset printing plates, and as a binder in light-sensitive lithographic layers.
...-(A)m-...-(B)n-...-(C)o-...-(D)p-...
in which A is at least one polymerizable monomer having an acidic side group, B is at least one polymerizable monomer having a basic side group, C is at least one polymerizable monomer having a non-polar, non-hydrophilic side group, and D is at least one polymerizable monomer capable of increasing the hydrophilic character of monomer A
or to form a chelate with monomer A, m, n, o and p are the monomer contents of monomers A, B, C and D, respectively, in mol%, with m + n + o + p = 100 mol%, with the proviso that m and n are each ? 2 mol% and p is ? 1 mol%, wherein the copolymer is a linear copolymer having a random structure of the monomers. The copolymer is useful as a hydrophilizing agent for lithographic and offset printing plates, and as a binder in light-sensitive lithographic layers.
Description
~,~ t ji ) ` ~ 1? ` ;"
HYDROPHILIC COPOI,YMERS AND THEIR
USE IN REPROGRAPHY
Backqround of the Invention The invention relates to hydrophilic copolymers, built up from polymeric chains, which carry acidic and basic side groups, and to the use of these copolymers for hydrophilizing lithographic printing plates and as binders in light-sensitive lithographic layers.
To produce offset printing plates, suitable layer supports are provided on one or both sides with a light~sensitive layer (resist layer), by means of which a printing Lmage is generated by photomechanical means. After the printing image has been produced, the layer support carries the printing image areas and, in the image-free areas (non-image areas) forms at the same time the hydrophilic image background for the lithographic printing process.
A layer support for light-sensitive layers, suitable for producing lithographic plates, mu~t .
. - : ; , therefore meet the following requirements. First, the parts of the liyht-sensitive layer applied to the layer support, which are relatively readily soluble after exposure, must be detachable easily and without residue from the support in a developing process to produce the non-image areas. The support bared in the non-image areas must be highly hydrophilic, i.e. have a high affinity to water, so that it can rapidly absorb and permanently hold water during the lithographic printing step and thus sufficient~y repel the greasy printing ink. The light-sensitive layer must also have adequate adhesion to the layer support; even the printing areas of the layer, which have remained after exposure and development, must still adhere suffi-ciently strongly to the support in order to achieve a long print run.
Foils of aluminum, steel, copper, brass or zinc and also plastic films or paper can be used as the starting material for such layer supports.
These raw materials are converted to layer supports for offset printing plates by a suitable treatment of their surface, such as graining, matte chromium-plating, superficial oxidation and/or application of an interlayer. Aluminum, which is probably the most widely used base material for offset printing plates nowadays, is superficially roughened by known methods such as dry brushing, wet brushing, sandblasting, chemical and/or electrochemical treatment or a combination thereof. To increase the abrasion resistance, the aluminum thus roughened can , `` ~: .
also be subjected to an anodic oxidation in order to build up a thin oxide layer.
In practice, the support materials, especially aluminum-based, anodically oxidized support materials, are frequently subjected to a further treatment step before a light~sensitive layer is applied, for improving the layer adhesion, for increasing the hydrophilic character and/or for enhancing the developability of the light-sensitive layers. These include, for example, the following methods known from DE-C-907,147 (= U.S. Pat. No.
HYDROPHILIC COPOI,YMERS AND THEIR
USE IN REPROGRAPHY
Backqround of the Invention The invention relates to hydrophilic copolymers, built up from polymeric chains, which carry acidic and basic side groups, and to the use of these copolymers for hydrophilizing lithographic printing plates and as binders in light-sensitive lithographic layers.
To produce offset printing plates, suitable layer supports are provided on one or both sides with a light~sensitive layer (resist layer), by means of which a printing Lmage is generated by photomechanical means. After the printing image has been produced, the layer support carries the printing image areas and, in the image-free areas (non-image areas) forms at the same time the hydrophilic image background for the lithographic printing process.
A layer support for light-sensitive layers, suitable for producing lithographic plates, mu~t .
. - : ; , therefore meet the following requirements. First, the parts of the liyht-sensitive layer applied to the layer support, which are relatively readily soluble after exposure, must be detachable easily and without residue from the support in a developing process to produce the non-image areas. The support bared in the non-image areas must be highly hydrophilic, i.e. have a high affinity to water, so that it can rapidly absorb and permanently hold water during the lithographic printing step and thus sufficient~y repel the greasy printing ink. The light-sensitive layer must also have adequate adhesion to the layer support; even the printing areas of the layer, which have remained after exposure and development, must still adhere suffi-ciently strongly to the support in order to achieve a long print run.
Foils of aluminum, steel, copper, brass or zinc and also plastic films or paper can be used as the starting material for such layer supports.
These raw materials are converted to layer supports for offset printing plates by a suitable treatment of their surface, such as graining, matte chromium-plating, superficial oxidation and/or application of an interlayer. Aluminum, which is probably the most widely used base material for offset printing plates nowadays, is superficially roughened by known methods such as dry brushing, wet brushing, sandblasting, chemical and/or electrochemical treatment or a combination thereof. To increase the abrasion resistance, the aluminum thus roughened can , `` ~: .
also be subjected to an anodic oxidation in order to build up a thin oxide layer.
In practice, the support materials, especially aluminum-based, anodically oxidized support materials, are frequently subjected to a further treatment step before a light~sensitive layer is applied, for improving the layer adhesion, for increasing the hydrophilic character and/or for enhancing the developability of the light-sensitive layers. These include, for example, the following methods known from DE-C-907,147 (= U.S. Pat. No.
2,714,066), DE-B-1,471,707 (= U.S. Pat. No.
3,181,461 and U.S. Pat. No. 3,280,734) or DE-A-2,532,769 (= U.S. Pat. No. 3,902,976), which disclose processes for hydrophilizing printing plate support materials based on aluminum which may have been anodically oxidized. These materials are treated with aqueous sodium silicate solution, without or with the use of e].ectric current.
DE-A-1,134,093 (= U.S. Pat. No. 3,276,868) and DE-C-1,621,~78 (= U.S. Pat. No. 4,153,461) have disclosed the use of polyvinyl-phosphonic acid or copolymers based on vinyl phosphonic acid, acrylic acid and vinyl acetate for hydrophilizing printing plate support materials basedl on aluminum which may have been anodically oxidizecl. The use of salts of these compounds is also mentioned, but not specified in more detail.
The use of complex fluorides of titanium, zirconium or hafnium according to DE-B-1,300,415 (=
U.S. Pat. No. 3,440,050) also leads to additional 1~: , J `. ~
hydrophilizing of aluminum oxide layers on printing plate support materials.
In addition to these most widely known hydrophilizing methods, the use of numerous polymers 5 in this f ield of application has also been described. For example, in DE-B-1, 056, 931t the use of water-soluble, linear copolymers based on alkyl vinyl ethers and maleic anhydrides in light-sensitive layers for printing plates is described.
10 In addition, those copolymers in which the maleic anhydride component has been reacted partially or fully with ammonia, an alkali metal hydroxide or an alcohol are also mentioned.
DE-B-1, 091, 433 has disclosed hydrophilizing 15 of printing plate support materials based on metals by means of film-forming organic polymers, such as polymethacrylic acid or sodium carboxymethyl-cellulose or sodium hydroxyethyl-cellulose for aluminum supports or by means of a copolymer of 20 methyl vinyl ether and maleic anhydride for magnesium supports.
According to DE-B-l,173,917 (= UK 907,719), water-solu~le polyfunctional synthetic amino/urea/aldehyde resins or sulfonated synthetic 25 urea/aldehyde resins, which are cured on the metal support for conversion into a water-insoluble state, are used for hydrophilizing printing plate support materials of metals.
To produce a hydrophilic layer on printing 30 plate support materials, a) an aqueous dispersion of a modified urea/formaldehyde resin, of an alkylated methylolmelamine resin or of a ' ' ', i~
. .
: - ..
melamine/formaldehyde/polyalkylenepolyamine resin and b~ an aqueous dispersion of a polyh~droxy compound or polycarboxy compound, such as sodium carboxymethylcellulose are applied, according to DE-B-1,200,847 (= U.S. Pat. No. 3,232,783), successively to the support and the substrate c) thus coated is then treated with an aqueous solution of a salt of Zr, Hf, Ti or Th.
In DE-B-1,257,170 (= U.S. Pat. No. 2,991,204) a copolymer which, in addition to units of acrylic acid, acrylate, acrylamide or methacrylamide, also contains Si-trisubstituted vinylsilane units, is described as a hydrophilizing agent for printing plate support materials.
DE-A-1,471,706 (= U.S. Pat. No. 3,298,852) has disclosed the use of polyacrylic acid as a hydrophilizing agent for printing plate support materials of aluminum, copper or zinc.
According to DE-C-2,107,901 (= U.S. Pat. No.
3,733,200), the hydrophilic layer on a printing plate support material is formed from a water-insoluble hydrophilic homopolymer or copolymer of acrylate or methacrylate, having a water absorption of at least 20~ by weight.
In DE-B-2,305,231 t= UK 1,~14,575) hydrophilizing of printing plate support materials is described, in which a solution or dispersion of a mixture of an aldehyde and a synthetic polyacrylamide is applied to the support.
DE-A-2,308,196 (= U.S. Pat. No. 3,861,917) has disclosed hydrophilizing of roughened and anodically oxidized aluminum printing plate supports .
;
1,` i? ~ `~
with ethylene/maleic anhydride copolymers or ~ethyl vinyl ether/maleic anhydride copolymers, with polyacrylic acid, carboxymethylcellulose, sodium poly(vinylbenzene-2,4-disulfonic acid) or polyacrylamide.
In DE-B-2,364,177 (= U.S. Pat. No.
3,860,426), a hydrophilic adhesion layer for aluminum offset printing plates is described, which layer is located between the anodically oxidized sur~ace of the printing plate support and the light-sensitive layer and which. in addition to a cel-lulose ether, also contains a water-soluble salt of Zn, Ca, Mg, Ba, Sr, Co or Mn. The layer weight of cellulose ether in the hydrophilic adhesion layer is 0.2 to 1.1 mg/dm2, and the same layer weight is also quoted for the water-soluble salts. The mixture of cellulose ether and salt is applied to the support in aqueous solution, if appropriate with the addition of an organic solvent and/or of a surfactant.
According to U.S. Pat. No. 3,672,966, anodically oxidized aluminum surfaces are, before or during the sealing with hot water, treated with aqueous solutions of acrylic acid, polyacrylic acid, polymethacrylic acid, polymaleic acid or copolymers of maleic acid with ethylene or vinyl alcohol in order to avoid seal deposits.
According to U.S. Pat. No. 4,049,746, hydrophilizing agents for printing plate support materials contain salt-like reaction products of water-soluble polyacrylic resins having carboxyl groups and polyalkyleneimine/urea/aldehyde resins.
In UX 1,246,696, hydrophilic colloids such as hydroxyethylcellulose, polyacrylamide, polyethylene oxide, polyvinylpyrrolidone, starch or gum arabic, are described as hydrophilizing agents for anodically oxidized aluminum printing plate supports.
EP-B-0,149,490 describes, for hydrophilizing, compounds which additionally contain carboxyl groups or carboxylate groups, sulfo groups or hydroxyl groups, apart from amino groups. These compounds have a molecular weight of at most 1000.
The state of the art has also disclosed the use of metal complexes, which contain low-molecular ligands, for hydrophilizing printing plate support materials. Examples of such complexes are: complex ions of divalent or polyvalent metal cations and ligands, such as ammonia, water, ethylenediamine, nitric oxide, urea or ethylenediamine tetraacetate (DE-A-2,807,396 = U.S. Pat. No. 4,208,212); iron cyanide complexes such as K,~(Fe(CN)6) or Na3(Fe(CN)6) in the presence of heteropolyacids, such as phosphomolybdic acid or salts thereof, and of phosphates (U.S. Pat. No. 3,76'3,043 and/or U.S. Pat.
No. 4,420,549); and iron cyanide complexes in the presence of phosphates and complex formers such as ethylenediamine tetraac:etic acid for electrophotographic printing plates having a zinc oxide surface (U.S. Pat. No. 3,672,885).
In EP-A-0,069,320 (= U.S. Pat. No.
DE-A-1,134,093 (= U.S. Pat. No. 3,276,868) and DE-C-1,621,~78 (= U.S. Pat. No. 4,153,461) have disclosed the use of polyvinyl-phosphonic acid or copolymers based on vinyl phosphonic acid, acrylic acid and vinyl acetate for hydrophilizing printing plate support materials basedl on aluminum which may have been anodically oxidizecl. The use of salts of these compounds is also mentioned, but not specified in more detail.
The use of complex fluorides of titanium, zirconium or hafnium according to DE-B-1,300,415 (=
U.S. Pat. No. 3,440,050) also leads to additional 1~: , J `. ~
hydrophilizing of aluminum oxide layers on printing plate support materials.
In addition to these most widely known hydrophilizing methods, the use of numerous polymers 5 in this f ield of application has also been described. For example, in DE-B-1, 056, 931t the use of water-soluble, linear copolymers based on alkyl vinyl ethers and maleic anhydrides in light-sensitive layers for printing plates is described.
10 In addition, those copolymers in which the maleic anhydride component has been reacted partially or fully with ammonia, an alkali metal hydroxide or an alcohol are also mentioned.
DE-B-1, 091, 433 has disclosed hydrophilizing 15 of printing plate support materials based on metals by means of film-forming organic polymers, such as polymethacrylic acid or sodium carboxymethyl-cellulose or sodium hydroxyethyl-cellulose for aluminum supports or by means of a copolymer of 20 methyl vinyl ether and maleic anhydride for magnesium supports.
According to DE-B-l,173,917 (= UK 907,719), water-solu~le polyfunctional synthetic amino/urea/aldehyde resins or sulfonated synthetic 25 urea/aldehyde resins, which are cured on the metal support for conversion into a water-insoluble state, are used for hydrophilizing printing plate support materials of metals.
To produce a hydrophilic layer on printing 30 plate support materials, a) an aqueous dispersion of a modified urea/formaldehyde resin, of an alkylated methylolmelamine resin or of a ' ' ', i~
. .
: - ..
melamine/formaldehyde/polyalkylenepolyamine resin and b~ an aqueous dispersion of a polyh~droxy compound or polycarboxy compound, such as sodium carboxymethylcellulose are applied, according to DE-B-1,200,847 (= U.S. Pat. No. 3,232,783), successively to the support and the substrate c) thus coated is then treated with an aqueous solution of a salt of Zr, Hf, Ti or Th.
In DE-B-1,257,170 (= U.S. Pat. No. 2,991,204) a copolymer which, in addition to units of acrylic acid, acrylate, acrylamide or methacrylamide, also contains Si-trisubstituted vinylsilane units, is described as a hydrophilizing agent for printing plate support materials.
DE-A-1,471,706 (= U.S. Pat. No. 3,298,852) has disclosed the use of polyacrylic acid as a hydrophilizing agent for printing plate support materials of aluminum, copper or zinc.
According to DE-C-2,107,901 (= U.S. Pat. No.
3,733,200), the hydrophilic layer on a printing plate support material is formed from a water-insoluble hydrophilic homopolymer or copolymer of acrylate or methacrylate, having a water absorption of at least 20~ by weight.
In DE-B-2,305,231 t= UK 1,~14,575) hydrophilizing of printing plate support materials is described, in which a solution or dispersion of a mixture of an aldehyde and a synthetic polyacrylamide is applied to the support.
DE-A-2,308,196 (= U.S. Pat. No. 3,861,917) has disclosed hydrophilizing of roughened and anodically oxidized aluminum printing plate supports .
;
1,` i? ~ `~
with ethylene/maleic anhydride copolymers or ~ethyl vinyl ether/maleic anhydride copolymers, with polyacrylic acid, carboxymethylcellulose, sodium poly(vinylbenzene-2,4-disulfonic acid) or polyacrylamide.
In DE-B-2,364,177 (= U.S. Pat. No.
3,860,426), a hydrophilic adhesion layer for aluminum offset printing plates is described, which layer is located between the anodically oxidized sur~ace of the printing plate support and the light-sensitive layer and which. in addition to a cel-lulose ether, also contains a water-soluble salt of Zn, Ca, Mg, Ba, Sr, Co or Mn. The layer weight of cellulose ether in the hydrophilic adhesion layer is 0.2 to 1.1 mg/dm2, and the same layer weight is also quoted for the water-soluble salts. The mixture of cellulose ether and salt is applied to the support in aqueous solution, if appropriate with the addition of an organic solvent and/or of a surfactant.
According to U.S. Pat. No. 3,672,966, anodically oxidized aluminum surfaces are, before or during the sealing with hot water, treated with aqueous solutions of acrylic acid, polyacrylic acid, polymethacrylic acid, polymaleic acid or copolymers of maleic acid with ethylene or vinyl alcohol in order to avoid seal deposits.
According to U.S. Pat. No. 4,049,746, hydrophilizing agents for printing plate support materials contain salt-like reaction products of water-soluble polyacrylic resins having carboxyl groups and polyalkyleneimine/urea/aldehyde resins.
In UX 1,246,696, hydrophilic colloids such as hydroxyethylcellulose, polyacrylamide, polyethylene oxide, polyvinylpyrrolidone, starch or gum arabic, are described as hydrophilizing agents for anodically oxidized aluminum printing plate supports.
EP-B-0,149,490 describes, for hydrophilizing, compounds which additionally contain carboxyl groups or carboxylate groups, sulfo groups or hydroxyl groups, apart from amino groups. These compounds have a molecular weight of at most 1000.
The state of the art has also disclosed the use of metal complexes, which contain low-molecular ligands, for hydrophilizing printing plate support materials. Examples of such complexes are: complex ions of divalent or polyvalent metal cations and ligands, such as ammonia, water, ethylenediamine, nitric oxide, urea or ethylenediamine tetraacetate (DE-A-2,807,396 = U.S. Pat. No. 4,208,212); iron cyanide complexes such as K,~(Fe(CN)6) or Na3(Fe(CN)6) in the presence of heteropolyacids, such as phosphomolybdic acid or salts thereof, and of phosphates (U.S. Pat. No. 3,76'3,043 and/or U.S. Pat.
No. 4,420,549); and iron cyanide complexes in the presence of phosphates and complex formers such as ethylenediamine tetraac:etic acid for electrophotographic printing plates having a zinc oxide surface (U.S. Pat. No. 3,672,885).
In EP-A-0,069,320 (= U.S. Pat. No.
4,427,765), a process is describ~d in which salts of polyvinylphosphonic acids, polyvinylsulfonic acids, ,, polyvinylmethylphosphonic acids and other polyvinyl compounds are used as aftertreatment agents.
In DE-A-2,615,075 (= UK 1,~95,895), a process for treating image-bearing offset printing plates with polyacrylamide or a mixture of polyacrylamide and polyacrylic acid is used.
In SU-A-547,142, a copolymer of acrylamide and vinyl monomers is used for hydrophilizing offset printing plates.
10DE-C-1,091,433 describes a process for the aftertreatment of offset printing plate supports with polymers of methacrylic acid, methyl vinyl ether and maleic anhydride.
Acrylamide for the treatment of printing 15plate supports is also mentioned in DE-A-2,540,561.
For the same purpose, especially for improving the storage stability of printing plates, DE-A-2,947,708 describes, inter alia, Ni salt solutions of acrylamide and acrylic acid and also 0 acrylamide and vinylpyrrolidone.
All the methods de~;cribed above, are, however, affected by greater or lesser disadvantages, so that the sllpport materials thus produced frequently no longer meet the current demands of offset printing with respect to developer resistance, hydrophilic properties, free-running behavior and steady print runs. Thus, after the treatment with alkali metal silicates, which lead to good developability and hydrophilic character, a certain deterioration in the storage stability of light-sensitive layers applied thereto must be ' accepted, and the print run of a printing plate thus aftertreated drops drastical:ly.
Although the complexes of the transition metals in principle promote the hydrophilic character of anodically oxidized aluminum surfaces, they have the disadvantage of being very readily soluble in water, so that they can easily be removed during the development of the layer with aqueous developer systems which recently increasingly contain surfactants and/or chelate formers which have a high affinity to these metals. As a result, the concentration of the transition metal complexes on the surface is reduced to a greater or lesser extent, and this can lead to a weakening of the hydrophilic effect.
In the treatment of supports with water-soluble polymers without scope for anchorage, their high solubility, especially in aqueous-alkaline developers such as are predominantly used for developing positive-wor~ing, light-sensitive layers, also leads to a marked weakening of the hydrophiliz-ing effect.
Monomeric h~drophilic c:ompounds such as those described, for example, in EP-B-0,149,490, quite generally have the disadvantas~e of being washed away relatively rapidly .from the bared non-image area surface during the development and printing process and losing their hydrophilic- effect, since the anchorage points in the surface are insufficient.
The combination of a mixture of a water-soluble polymer, such as a cellulose ether, and a water-soluble metal salt leads, since the layer weights and hence the layer thic~ness are selected at a relatively high level (see DE-B-2,364,177), to reduced adhesion of the resist- layer, and this can manifest itself, for example, in parts of the developer fluid undermining image areas during the development.
Summary of the Invention Accordingly, it is an object of the present invention to provide a high-polymeric hydrophilizin~
agent for support materials for offset printing plates which does not adversely affect the storage stability of the light-sensitive layers of the offset printing plates.
Another object of the present invention is to provide an agent which, in addition to good adhesion to the surface of the aluminum support on the one hand and to the light-sensitive layer on the other hand, effects a durable hydrophilic character of the non-image areas of the finished developed offset printing plates.
A further object of the present invention is to provide an agent which is difficult to wash out of the support material treated with it.
Still another object of the present invention is to provide a binder ill a light-sensitive photopolymer system which can be stripped in an aqueous medium.
Yet another object of the present invention is to provide a process for producing the agent and binder.
:, In accomplishing the foregoing objectives, there has been provided, in accordance with one aspect of the present invention, a hydrophilic copolymer having the general structure:
... -(A)~-.. -(B) D- - (C) o~ - (D)p-in which A is at least one polymerizablQ
monomer having an acidic side group, B is at least one polymerizable monomer having a basic side group, C is at least one polymerizable monomer having a non-polar, non-hydrophilic side group, and D is at least one polymerizable monomer capable of increasing the hydrophilic character of monomer A
or to form a chelate with monomer A, m, n, o and p are the monomer contents of monomers A, B, C and D, respectively, in mol%, with m + n + o + p = 100 mol%, with the proviso that m and n are each > 2 mol% and p is > 1 mol%, wherein the copolymer is a linear copolymer having a random structure o~ the above-desrribed -.
f; ~
monomers. Preferably, the polymerizable monomers are free-radically polymerizable.
In accordance with another aspect of the present invention there is provided a process for producing the above-described hydrophilic copolymer which comprises the step of free-radically polymerizing monomers A, B, C and D in the presence of a free-radical initiator.
Lithographic and offset printing plates comprising the inventive copolymer as a hydrophilizing agent, light-sensitive mixtures comprising the inventive copolymer as a binder, and light-sensitive recording materials comprising light-sensitive layers which include the inventive copolymer as a binder are also provided.
Other objects, features and advantages of the present invention will become apparent to those skilled in the art from the following detailed description. It is to be understood, however, that the detailed description and speciEic examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not limitation. Many changes and modifications within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications.
Detailed DescriPtion of the Preferred Embodiments The copolymers of the type described above are not only highly effective hydrophilizing agents which, in addition, can be prepared in a simple manner, but they can also be used with advantage as binders in light-sensitive layers. The degree of the solubility of the light-sensitive layer can be varied as desired and very advantageously adjusted by varying the type and quantity of the basic monomers.
The concentration of the hydrophilic groups can be selected such that the polymers according to the invention are suitable as binders for light-sensitive layers, with aqueous or aqueous/alcoholicstripping. At an even higher concentration of the hydrophilic groups, they can also be used as hydrophilizing agents. The hydrophilic polvmers are distinguished by having, along a polymeric chain, acidic and basic side groups which are ionizable and capable of forming salts.
The hydrophilic copolymers which, inter alia, are used as hydrophilizing agents, are linear polymers with acidic and basic side groups and have the following structure:
...~(A)m~...-(B)~-...~(C)O-...-(D)p-..
with m + n + o ~ p = 100 mol~.
The values of m and n are in the range from about 2 to 97 mol% and fol].ow mutually opposed curves, i.e. a high value of m corresponds to a low value of n, and vice versa. Preferably, however, m and n are approximately equal, i.e., A and B are present in an approximately e~uimolar ratio. The resulting range for the value o is about 0 to 95 mol%, and that ~or p is a~out 1 to 96 mol~. In :
~ .
~? ~ r` ;~
r.~ ,J ~
particular, the values o and p are ~ithin the ranges of about 10 to 50 mol% and about l to 20 mol%
respectively.
The polymeric hydrophilizing agents have a random structure and average molecular weights of at least 1,000, preferably about S,000 to 50,000, but polymers having a molecular weight even higher than 50,000 can also be used with technical advantage.
The monomer types A, B, C and D are exemplified below:
Monomer type A: Acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, and monoesters of aliphatic and cycloaliphatic alcohols having 1 to 17 carbon atoms with maleic acid, fumaric acid, and itaconic acid, vinylsulfonic acid, vinylbenzoic acid, vinylphosphonic acid and other polymerizable monomers containing acidic groups.
Monomer type B: Dimethylaminoethyl acrylate and methacrylate, diethylaminoethyl acrylate and methacrylate, dimethylaminopropyl acrylate and methacrylate, dimethylaminobutyl acrylate and methacrylate, and other monomers suitable for polymerization and containing amino groups.
Vinylpyridine, styrenes containing dialkylamino groups and many others are also suitable.
Monomer type C: Acrylates, methacrylates, maleates, fumarates, and itaconates of aliphatic and cycloaliphatic alcohols having 1 to 17 carbon atoms, styrene and substituted styrenes, vinyl chloride and other non-polar, non-hydrophilic monomer units. The use of the monomer type C and the concentration thereof allow a defined adjustment of the solubility of the copolymers.
Monomer tY~e D: Monomer units which are able to boost the hydrophilic character of monomer type A
and/or to form chelates with monomer type A, for example hydroxylated acrylates of the type of hydroxyethyl acrylate or polyethylene glycol monoacrylate or polypropylene glycol monoacrylate, or the corresponding monomethacrylates.
More than one of each of monomer types A, B, C and/or D can be used in producing the hydrophilic agents according to the invention.
lS The synthesis of the hydrophilizing agents is advantageously carried out by a polymerization, initiated by free radicals, in organic solvents.
The free-radical initiators used can be the conventional compounds, such as peroxides, for example benzoyl peroxide, or azo compounds such as azobisisobutyronitri.le (AIB~). In addition, regulators for adjusting the molecular weight can be used. The polymerization in non-polar solvents, carried out as a precipitation polymerization, has the advantage that low-molecular, oligomeric and chemically inhomogeneous ~ractions, for example products which contain only a few ionizable groups, remain in solution and can thus easily be separated from the precipitated polymers. This type of polymerization also has the advantage that it is ' ` ' . ' ' .
simple and economical. The precipitation polymerization in organic solvents such as, for example, in petroleum spirit fractions in the suit-able boiling point range from 100 to 140C can be carried out very easily and with good yield of copolymers in which the ionizable monomer units of types A and B are present in the preferably used concentrations of m = n = lO to 50 mol~. At concentrations in the range of m and n = 2 to 10 mol%, the polymers are isolated by distilling off the organic solvent.
The examples which follow explain the fundamental polymerization method for some preferred copolymers, but the invention is not restricted to the examples given.
The support materials used are preferably aluminum supports such as are described in German Application P 40 23 267.0 (corresponding to docket No. 1687~/403), filed simultaneously. The manner in which these aluminum supports are coated or surface-treated with the hydrophilizing agents according to the invention is also descri~ed in detail in this application. The hydrophilizing a~ents are anchored in the way of an "absorption", a "complex formation"
or a "salt formation" on the specially pretreated aluminum surface in such a way that a permanent hydrophilic character is obtained.
- , Example 1 A copolymer of methacrylic acid, dimethylaminoethyl methacrylate, ethyl acrylate and a hydroxyethyl methacrylate chain-extended with 4.5 5 mol of ethylene oxide per mole is prepared. For this purpose 524 g of dimethylaminoethyl methacrylate 300 g of ethyl acrylate 287 g of methacrylic acid and 1034 g of hydroxyethyl methacrylate which was reacted for chain extension with 4.5 mol of ethylene oxide per mole, were dissolved in 1145 g of methyl ethyl ketone (MEK).
114S g of methyl ethyl ketone, 20% by weight of the solution of monomers described above and 1% by weight of azobisisobutyronitri.le (AIBN), relative to the total weight of the monomers, are introduced under a nitrogen blanket gas atmosphere into a three-necked flask provided ~ith a stirrer, reflux condenser, dropping funnel with pressure balance line and a gas inlet tube, and polymerized for 1 hour. Using a dropping funnel, the remaining monomer mixture is then added within 1 hour and the whole is polymerized for a further 2 hours under reflux. A further 0.5% by weight of azobisisobuty-ronitrile is then added and the polymerization is continued for 2 hours under reflux. The product is worked up by filtering off the precipitate formed , - :' , , - :;
, ~
,a~ ?
,. .J
with suction and washing the precipitate with three tlmes 500 ml of methyl ethyl ketone.
The product is dried at 70C.
Yield: 78%
The copolymer has outstanding hydrophilizing properties for aluminum supports. It forms a clear solution in an aqueous 2 N Na2CO3 solution.
Completely analogously to the polymerization method described in Example 1, the copolymers listed in the following table (Examples 2 and 3) can be prepared.
Example 2 Example 3 Monomer A Methacrylic acid Vinylphosphonic 30 mol% acid 20 mol%
Monomer B DMAEMA1) DMAEMA
30 mol% 20 mol%
Monomer C Ethyl acrylate Ethyl acrylate 30 mol% 50 mol%
Monomer D Esterification Esterification : .
product of PEG product of PEG .
(350)2) (350)2) monomethyl ether monomethyl with methacrylic ether with acid 10 mol% methacrylic l _ acid 10 mol%
S Solvent MEK MEK
67 parts by 67 parts by weight weight AIBN 1.5% by weight, 1.5% by weight, relative to relative to monomer monomer I
¦Yield 92% by weight 90% by weight 1) DMAEM = dimethylaminoethyl methacrylate 2) PEG (350) = polyethylene glycol of molecular weight 350 - `
: - ~
In DE-A-2,615,075 (= UK 1,~95,895), a process for treating image-bearing offset printing plates with polyacrylamide or a mixture of polyacrylamide and polyacrylic acid is used.
In SU-A-547,142, a copolymer of acrylamide and vinyl monomers is used for hydrophilizing offset printing plates.
10DE-C-1,091,433 describes a process for the aftertreatment of offset printing plate supports with polymers of methacrylic acid, methyl vinyl ether and maleic anhydride.
Acrylamide for the treatment of printing 15plate supports is also mentioned in DE-A-2,540,561.
For the same purpose, especially for improving the storage stability of printing plates, DE-A-2,947,708 describes, inter alia, Ni salt solutions of acrylamide and acrylic acid and also 0 acrylamide and vinylpyrrolidone.
All the methods de~;cribed above, are, however, affected by greater or lesser disadvantages, so that the sllpport materials thus produced frequently no longer meet the current demands of offset printing with respect to developer resistance, hydrophilic properties, free-running behavior and steady print runs. Thus, after the treatment with alkali metal silicates, which lead to good developability and hydrophilic character, a certain deterioration in the storage stability of light-sensitive layers applied thereto must be ' accepted, and the print run of a printing plate thus aftertreated drops drastical:ly.
Although the complexes of the transition metals in principle promote the hydrophilic character of anodically oxidized aluminum surfaces, they have the disadvantage of being very readily soluble in water, so that they can easily be removed during the development of the layer with aqueous developer systems which recently increasingly contain surfactants and/or chelate formers which have a high affinity to these metals. As a result, the concentration of the transition metal complexes on the surface is reduced to a greater or lesser extent, and this can lead to a weakening of the hydrophilic effect.
In the treatment of supports with water-soluble polymers without scope for anchorage, their high solubility, especially in aqueous-alkaline developers such as are predominantly used for developing positive-wor~ing, light-sensitive layers, also leads to a marked weakening of the hydrophiliz-ing effect.
Monomeric h~drophilic c:ompounds such as those described, for example, in EP-B-0,149,490, quite generally have the disadvantas~e of being washed away relatively rapidly .from the bared non-image area surface during the development and printing process and losing their hydrophilic- effect, since the anchorage points in the surface are insufficient.
The combination of a mixture of a water-soluble polymer, such as a cellulose ether, and a water-soluble metal salt leads, since the layer weights and hence the layer thic~ness are selected at a relatively high level (see DE-B-2,364,177), to reduced adhesion of the resist- layer, and this can manifest itself, for example, in parts of the developer fluid undermining image areas during the development.
Summary of the Invention Accordingly, it is an object of the present invention to provide a high-polymeric hydrophilizin~
agent for support materials for offset printing plates which does not adversely affect the storage stability of the light-sensitive layers of the offset printing plates.
Another object of the present invention is to provide an agent which, in addition to good adhesion to the surface of the aluminum support on the one hand and to the light-sensitive layer on the other hand, effects a durable hydrophilic character of the non-image areas of the finished developed offset printing plates.
A further object of the present invention is to provide an agent which is difficult to wash out of the support material treated with it.
Still another object of the present invention is to provide a binder ill a light-sensitive photopolymer system which can be stripped in an aqueous medium.
Yet another object of the present invention is to provide a process for producing the agent and binder.
:, In accomplishing the foregoing objectives, there has been provided, in accordance with one aspect of the present invention, a hydrophilic copolymer having the general structure:
... -(A)~-.. -(B) D- - (C) o~ - (D)p-in which A is at least one polymerizablQ
monomer having an acidic side group, B is at least one polymerizable monomer having a basic side group, C is at least one polymerizable monomer having a non-polar, non-hydrophilic side group, and D is at least one polymerizable monomer capable of increasing the hydrophilic character of monomer A
or to form a chelate with monomer A, m, n, o and p are the monomer contents of monomers A, B, C and D, respectively, in mol%, with m + n + o + p = 100 mol%, with the proviso that m and n are each > 2 mol% and p is > 1 mol%, wherein the copolymer is a linear copolymer having a random structure o~ the above-desrribed -.
f; ~
monomers. Preferably, the polymerizable monomers are free-radically polymerizable.
In accordance with another aspect of the present invention there is provided a process for producing the above-described hydrophilic copolymer which comprises the step of free-radically polymerizing monomers A, B, C and D in the presence of a free-radical initiator.
Lithographic and offset printing plates comprising the inventive copolymer as a hydrophilizing agent, light-sensitive mixtures comprising the inventive copolymer as a binder, and light-sensitive recording materials comprising light-sensitive layers which include the inventive copolymer as a binder are also provided.
Other objects, features and advantages of the present invention will become apparent to those skilled in the art from the following detailed description. It is to be understood, however, that the detailed description and speciEic examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not limitation. Many changes and modifications within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications.
Detailed DescriPtion of the Preferred Embodiments The copolymers of the type described above are not only highly effective hydrophilizing agents which, in addition, can be prepared in a simple manner, but they can also be used with advantage as binders in light-sensitive layers. The degree of the solubility of the light-sensitive layer can be varied as desired and very advantageously adjusted by varying the type and quantity of the basic monomers.
The concentration of the hydrophilic groups can be selected such that the polymers according to the invention are suitable as binders for light-sensitive layers, with aqueous or aqueous/alcoholicstripping. At an even higher concentration of the hydrophilic groups, they can also be used as hydrophilizing agents. The hydrophilic polvmers are distinguished by having, along a polymeric chain, acidic and basic side groups which are ionizable and capable of forming salts.
The hydrophilic copolymers which, inter alia, are used as hydrophilizing agents, are linear polymers with acidic and basic side groups and have the following structure:
...~(A)m~...-(B)~-...~(C)O-...-(D)p-..
with m + n + o ~ p = 100 mol~.
The values of m and n are in the range from about 2 to 97 mol% and fol].ow mutually opposed curves, i.e. a high value of m corresponds to a low value of n, and vice versa. Preferably, however, m and n are approximately equal, i.e., A and B are present in an approximately e~uimolar ratio. The resulting range for the value o is about 0 to 95 mol%, and that ~or p is a~out 1 to 96 mol~. In :
~ .
~? ~ r` ;~
r.~ ,J ~
particular, the values o and p are ~ithin the ranges of about 10 to 50 mol% and about l to 20 mol%
respectively.
The polymeric hydrophilizing agents have a random structure and average molecular weights of at least 1,000, preferably about S,000 to 50,000, but polymers having a molecular weight even higher than 50,000 can also be used with technical advantage.
The monomer types A, B, C and D are exemplified below:
Monomer type A: Acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, and monoesters of aliphatic and cycloaliphatic alcohols having 1 to 17 carbon atoms with maleic acid, fumaric acid, and itaconic acid, vinylsulfonic acid, vinylbenzoic acid, vinylphosphonic acid and other polymerizable monomers containing acidic groups.
Monomer type B: Dimethylaminoethyl acrylate and methacrylate, diethylaminoethyl acrylate and methacrylate, dimethylaminopropyl acrylate and methacrylate, dimethylaminobutyl acrylate and methacrylate, and other monomers suitable for polymerization and containing amino groups.
Vinylpyridine, styrenes containing dialkylamino groups and many others are also suitable.
Monomer type C: Acrylates, methacrylates, maleates, fumarates, and itaconates of aliphatic and cycloaliphatic alcohols having 1 to 17 carbon atoms, styrene and substituted styrenes, vinyl chloride and other non-polar, non-hydrophilic monomer units. The use of the monomer type C and the concentration thereof allow a defined adjustment of the solubility of the copolymers.
Monomer tY~e D: Monomer units which are able to boost the hydrophilic character of monomer type A
and/or to form chelates with monomer type A, for example hydroxylated acrylates of the type of hydroxyethyl acrylate or polyethylene glycol monoacrylate or polypropylene glycol monoacrylate, or the corresponding monomethacrylates.
More than one of each of monomer types A, B, C and/or D can be used in producing the hydrophilic agents according to the invention.
lS The synthesis of the hydrophilizing agents is advantageously carried out by a polymerization, initiated by free radicals, in organic solvents.
The free-radical initiators used can be the conventional compounds, such as peroxides, for example benzoyl peroxide, or azo compounds such as azobisisobutyronitri.le (AIB~). In addition, regulators for adjusting the molecular weight can be used. The polymerization in non-polar solvents, carried out as a precipitation polymerization, has the advantage that low-molecular, oligomeric and chemically inhomogeneous ~ractions, for example products which contain only a few ionizable groups, remain in solution and can thus easily be separated from the precipitated polymers. This type of polymerization also has the advantage that it is ' ` ' . ' ' .
simple and economical. The precipitation polymerization in organic solvents such as, for example, in petroleum spirit fractions in the suit-able boiling point range from 100 to 140C can be carried out very easily and with good yield of copolymers in which the ionizable monomer units of types A and B are present in the preferably used concentrations of m = n = lO to 50 mol~. At concentrations in the range of m and n = 2 to 10 mol%, the polymers are isolated by distilling off the organic solvent.
The examples which follow explain the fundamental polymerization method for some preferred copolymers, but the invention is not restricted to the examples given.
The support materials used are preferably aluminum supports such as are described in German Application P 40 23 267.0 (corresponding to docket No. 1687~/403), filed simultaneously. The manner in which these aluminum supports are coated or surface-treated with the hydrophilizing agents according to the invention is also descri~ed in detail in this application. The hydrophilizing a~ents are anchored in the way of an "absorption", a "complex formation"
or a "salt formation" on the specially pretreated aluminum surface in such a way that a permanent hydrophilic character is obtained.
- , Example 1 A copolymer of methacrylic acid, dimethylaminoethyl methacrylate, ethyl acrylate and a hydroxyethyl methacrylate chain-extended with 4.5 5 mol of ethylene oxide per mole is prepared. For this purpose 524 g of dimethylaminoethyl methacrylate 300 g of ethyl acrylate 287 g of methacrylic acid and 1034 g of hydroxyethyl methacrylate which was reacted for chain extension with 4.5 mol of ethylene oxide per mole, were dissolved in 1145 g of methyl ethyl ketone (MEK).
114S g of methyl ethyl ketone, 20% by weight of the solution of monomers described above and 1% by weight of azobisisobutyronitri.le (AIBN), relative to the total weight of the monomers, are introduced under a nitrogen blanket gas atmosphere into a three-necked flask provided ~ith a stirrer, reflux condenser, dropping funnel with pressure balance line and a gas inlet tube, and polymerized for 1 hour. Using a dropping funnel, the remaining monomer mixture is then added within 1 hour and the whole is polymerized for a further 2 hours under reflux. A further 0.5% by weight of azobisisobuty-ronitrile is then added and the polymerization is continued for 2 hours under reflux. The product is worked up by filtering off the precipitate formed , - :' , , - :;
, ~
,a~ ?
,. .J
with suction and washing the precipitate with three tlmes 500 ml of methyl ethyl ketone.
The product is dried at 70C.
Yield: 78%
The copolymer has outstanding hydrophilizing properties for aluminum supports. It forms a clear solution in an aqueous 2 N Na2CO3 solution.
Completely analogously to the polymerization method described in Example 1, the copolymers listed in the following table (Examples 2 and 3) can be prepared.
Example 2 Example 3 Monomer A Methacrylic acid Vinylphosphonic 30 mol% acid 20 mol%
Monomer B DMAEMA1) DMAEMA
30 mol% 20 mol%
Monomer C Ethyl acrylate Ethyl acrylate 30 mol% 50 mol%
Monomer D Esterification Esterification : .
product of PEG product of PEG .
(350)2) (350)2) monomethyl ether monomethyl with methacrylic ether with acid 10 mol% methacrylic l _ acid 10 mol%
S Solvent MEK MEK
67 parts by 67 parts by weight weight AIBN 1.5% by weight, 1.5% by weight, relative to relative to monomer monomer I
¦Yield 92% by weight 90% by weight 1) DMAEM = dimethylaminoethyl methacrylate 2) PEG (350) = polyethylene glycol of molecular weight 350 - `
: - ~
Claims (29)
1. A hydrophilic copolymer having the general structure:
...-(A)m-...-(B)n-...-(C)o-...(D)p-...
in which A is at least one polymerizable monomer having an acidic side group, B is at least one polymerizable monomer having a basic side group, C is at least one polymerizable monomer having a non-polar, non-hydrophilic side group, and D is at least one polymerizable monomer capable of increasing the hydrophilic character of monomer A
or to form a chelate with monomer A, m, n, o and p are the monomer contents of monomers A, B, C and D, respectively, in mol%, with m + n + o + p = 100 mol%, with the proviso that m and n are each ? 2 mol% and p is ? 1 mol%, wherein said polymer is a linear polymer having a random structure of said monomers.
...-(A)m-...-(B)n-...-(C)o-...(D)p-...
in which A is at least one polymerizable monomer having an acidic side group, B is at least one polymerizable monomer having a basic side group, C is at least one polymerizable monomer having a non-polar, non-hydrophilic side group, and D is at least one polymerizable monomer capable of increasing the hydrophilic character of monomer A
or to form a chelate with monomer A, m, n, o and p are the monomer contents of monomers A, B, C and D, respectively, in mol%, with m + n + o + p = 100 mol%, with the proviso that m and n are each ? 2 mol% and p is ? 1 mol%, wherein said polymer is a linear polymer having a random structure of said monomers.
2. A hydrophilic copolymer as claimed in claim 1, wherein said monomers A, B, C and D are free-radically polymerizable.
3. A hydrophilic copolymer as claimed in claim 2, wherein monomer A is selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, and monoesters of aliphatic and cycloaliphatic alcohols having 1 to 17 carbon atoms with maleic acid, fumaric acid, and itaconic acid, vinylsulfonic acid, vinylbenzoic acid and vinylphosphonic acid.
4. A hydrophilic copolymer as claimed in claim 1, wherein monomer B contains side groups with tertiary amino groups.
5. A hydrophilic copolymer as claimed in claim 4, wherein monomer B is selected from the group consisting of dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate, dimethylaminopropyl methacrylate, dimethylaminobutyl acrylate and dimethylaminobutyl methacrylate.
6. A hydrophilic copolymer as claimed in claim 1, wherein monomer B is a dialkylamino-substituted styrene or vinylpyridine.
7. A hydrophilic copolymer as claimed in claim 1, wherein monomer C is selected from the group consisting of acrylates and methacrylates of aliphatic and cycloaliphatic alcohols having 1 to 17 carbon atoms, styrene, alkyl-substituted styrenes, vinyl chloride, maleates, fumarates and itaconates.
8. A hydrophilic copolymer as claimed in claim 7, wherein monomer C is methyl acrylate, methyl methacrylate, ethyl acrylate or ethyl methacrylate.
9. A hydrophilic copolymer as claimed in claim 1, wherein monomer D is selected from the group consisting of hydroxylated alkyl acrylates, hydroxylated alkyl methacrylates, polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monoacrylate or polypropylene glycol monomethacrylate.
10. A hydrophilic copolymer as claimed in claim 1, wherein said monomers A are present in a quantity of m = 2 to 97 mol% and simultaneously said monomers B are present in a quantity of n = 97 to 2 mol%.
11. A hydrophilic copolymer as claimed in claim 10, wherein said monomers A and B are in approximately equal ratio.
12. A hydrophilic copolymer as claimed in claim 1, wherein said monomers A and B are each present in a quantity from about 10 to 50 mol%.
13. A hydrophilic copolymer as claimed in claim 11, wherein said monomers A and B are each present in a quantity from about 10 to 50 mol%.
14. A hydrophilic copolymer as claimed in claim 1, wherein said monomer C is present in a quantity (o) from about 2 to 95 mol%.
15. A hydrophilic copolymer as claimed in claim 14, wherein said monomer C is present in a quantity (o) from about 10 to 50 mol%.
16. A hydrophilic copolymer as claimed in claim 1, wherein said monomer D is present in a quantity (p) from 1 to 96 mol%.
17. A hydrophilic copolymer as claimed in claim 16, wherein said monomer D is present in a quantity (p) from 1 to 20 mol%.
18. A hydrophilic copolymer as claimed in claim 1, wherein said copolymer has an average molecular weight of at least 1000.
19. A hydrophilic copolymer as claimed in claim 18, wherein said copolymer has an average molecular weight from about 5000 to 50,000.
20. A process for producing a hydrophilic copolymer having the general structure:
...-(A)m-...-(B)n-...-(C)o-...-(D)p-...
in which A is at least one free-radically polymerizable monomer having an acidic side group, B is at least one free-radically polymerizable monomer having a basic side group, C is at least one free-radically polymerizable monomer having a non-polar, non-hydrophilic side group, and D is at least one free-radically polymerizable monomer capable of increasing the hydrophilic character of monomer A or to form a chelate with monomer A, m, n, o and p are the monomer contents of monomers A, B, C and D, respectively, in mol%, with m + n + o + p = 100 mol%, with the proviso that m and n are each 2 2 mol% and p is 2 1 mol%, wherein said polymer is a linear polymer having a random structure of said monomers, which comprises the step of free-radically polymerizing said monomers A, B, C and D in the presence of a free-radical initiator.
...-(A)m-...-(B)n-...-(C)o-...-(D)p-...
in which A is at least one free-radically polymerizable monomer having an acidic side group, B is at least one free-radically polymerizable monomer having a basic side group, C is at least one free-radically polymerizable monomer having a non-polar, non-hydrophilic side group, and D is at least one free-radically polymerizable monomer capable of increasing the hydrophilic character of monomer A or to form a chelate with monomer A, m, n, o and p are the monomer contents of monomers A, B, C and D, respectively, in mol%, with m + n + o + p = 100 mol%, with the proviso that m and n are each 2 2 mol% and p is 2 1 mol%, wherein said polymer is a linear polymer having a random structure of said monomers, which comprises the step of free-radically polymerizing said monomers A, B, C and D in the presence of a free-radical initiator.
21. A process as claimed in claim 20, wherein said polymerization is carried out in an organic solvent.
22. A process as claimed in claim 20, wherein said polymerization is a precipitation polymerization carried out at a temperature at which said monomers are homogeneously soluble and at which said copolymer so formed is insoluble and precipitates.
23. A hydrophilic copolymer produced by a process as claimed in claim 20.
24. A hydrophilic copolymer produced by a process as claimed in claim 21.
25. A hydrophilic copolymer produced by a process as claimed in claim 22.
26. A lithographic substrate comprising a support and, applied to at least one surface thereof, a hydrophilizing agent comprising a hydrophilic copolymer as claimed in claim 1.
27. An offset printing plate comprising an aluminum support and, applied to at least one surface thereof, a hydrophilizing agent comprising a hydrophilic copolymer as claimed in claim 1.
28. A light-sensitive mixture comprising a light-sensitive compound and a binder, wherein said binder is a hydrophilic copolymer as claimed in claim 1.
29. A light-sensitive recording material comprising a lithographic substrate and a light-sensitive layer, wherein said layer comprises a light-sensitive mixture as claimed in claim 28.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4023268.9 | 1990-07-21 | ||
DE4023268A DE4023268A1 (en) | 1990-07-21 | 1990-07-21 | HYDROPHILIC MIXED POLYMERS AND THEIR USE IN REPROGRAPHY |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2047463A1 true CA2047463A1 (en) | 1992-01-22 |
Family
ID=6410774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002047463A Abandoned CA2047463A1 (en) | 1990-07-21 | 1991-07-19 | Hydrophilic copolymers and their use in reprography |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0468312B1 (en) |
JP (1) | JPH07120037B2 (en) |
KR (1) | KR920002646A (en) |
BR (1) | BR9103110A (en) |
CA (1) | CA2047463A1 (en) |
DE (2) | DE4023268A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6114089A (en) * | 1997-04-08 | 2000-09-05 | Fuji Photo Film Co., Ltd. | Positive working photosensitive lithographic printing plate |
US6558873B1 (en) | 1999-10-05 | 2003-05-06 | Fuji Photo Film Co., Ltd. | Lithographic printing plate precursor |
JP4691497B2 (en) * | 2003-05-15 | 2011-06-01 | アーチ ユーケイ バイオサイドズ リミテッド | Composition and its use (2) |
CN101010633A (en) * | 2004-09-01 | 2007-08-01 | 柯达彩色绘图有限责任公司 | Interlayer for lithographic printing plates |
JP2005097630A (en) * | 2004-12-07 | 2005-04-14 | Nippon Junyaku Kk | Method for producing water-soluble crosslinked copolymer powder |
JP5147415B2 (en) * | 2008-01-07 | 2013-02-20 | 富士フイルム株式会社 | Planographic printing plate precursor |
JP5692626B2 (en) * | 2008-01-23 | 2015-04-01 | ジャパンコーティングレジン株式会社 | Polymer emulsifier and polyolefin resin emulsion using the same |
JP5403387B2 (en) * | 2008-01-23 | 2014-01-29 | 中央理化工業株式会社 | Polymer emulsifier and polyolefin resin emulsion using the same |
JP5615351B2 (en) * | 2010-04-14 | 2014-10-29 | 日本曹達株式会社 | Method for producing block copolymer and copolymer precursor |
WO2011129078A1 (en) | 2010-04-14 | 2011-10-20 | 日本曹達株式会社 | Novel copolymer |
KR102612431B1 (en) * | 2021-05-17 | 2023-12-11 | 주식회사 켐폴 | Pattern forming material for semiconductor device manufacturing |
KR102601872B1 (en) * | 2021-09-09 | 2023-11-13 | 한국전통문화대학교산학협력단 | Sol-type natural adhesive and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2829018A1 (en) * | 1978-07-01 | 1980-01-10 | Roehm Gmbh | STABLE AQUEOUS SOLUTION OF VINYLCOPOLYMERISATS HAVING ANIONIC GROUPS AND MULTI-VALUE CATIONIC COMPOUNDS OR CATIONEN SIDES AND THEIR USE |
DE3047688A1 (en) * | 1980-12-18 | 1982-07-22 | Basf Ag, 6700 Ludwigshafen | Amphoteric copolymers esp. used as emulsifiers for polymerisation - are of styrene!, methacrylate(s)! or acrylonitrile! with (meth)acrylic! acid or maleic anhydride and aminoalkyl (meth)acrylate(s) |
JPS6081252A (en) * | 1983-10-08 | 1985-05-09 | Kansai Paint Co Ltd | Aqueous pigment dispersion |
JPS60139712A (en) * | 1983-12-28 | 1985-07-24 | Mitsubishi Rayon Co Ltd | Acrylic resin coating composition |
-
1990
- 1990-07-21 DE DE4023268A patent/DE4023268A1/en not_active Withdrawn
-
1991
- 1991-07-12 EP EP91111642A patent/EP0468312B1/en not_active Expired - Lifetime
- 1991-07-12 DE DE59109223T patent/DE59109223D1/en not_active Expired - Fee Related
- 1991-07-19 BR BR919103110A patent/BR9103110A/en unknown
- 1991-07-19 JP JP3203353A patent/JPH07120037B2/en not_active Expired - Fee Related
- 1991-07-19 KR KR1019910012313A patent/KR920002646A/en not_active Application Discontinuation
- 1991-07-19 CA CA002047463A patent/CA2047463A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
DE59109223D1 (en) | 2001-12-13 |
DE4023268A1 (en) | 1992-01-23 |
JPH07120037B2 (en) | 1995-12-20 |
JPH06128336A (en) | 1994-05-10 |
BR9103110A (en) | 1992-04-28 |
KR920002646A (en) | 1992-02-28 |
EP0468312A1 (en) | 1992-01-29 |
EP0468312B1 (en) | 2001-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4458005A (en) | Polyvinylmethylphosphinic acid, process for its manufacture and use | |
EP0110417B1 (en) | Presensitized lithographic plate | |
US4427765A (en) | Hydrophilic coating of salt-type phosphorus or sulfur polymer on aluminum support materials for offset printing plates and process for manufacture and use with light sensitive layer thereon | |
CA2047463A1 (en) | Hydrophilic copolymers and their use in reprography | |
US5262244A (en) | Hydrophilic copolymers and their use in reprography | |
CA1184448A (en) | Hydrophilic support materials for offset printing plates and process for manufacture and use thereof | |
EP0092794B2 (en) | Light-sensitive printing plate | |
JP3101663B2 (en) | Novel derivatives of polyethyleneimine and polyvinylamine | |
US5178963A (en) | Hydrophilic copolymers and their use in reprography | |
US5178961A (en) | Thermally crosslinkable hydrophilic copolymers and their use in reprography | |
GB2057704A (en) | Photosensitive resin composition and planographic printing plates therewith | |
US5219664A (en) | Hydrophilic copolymers and their use in reprography | |
US4221859A (en) | Photopolymerizable composition with oxalic acid photoinitiator | |
CA1299007C (en) | Hydrophilized support materials for offset printing plates | |
US5302460A (en) | Support material for offset-printing plates in the form of a sheet, a foil or a web process for its production and offset-printing plate comprising said material | |
EP0066452A2 (en) | Photosensitive composition for photosensitive printing plate | |
DE9016661U1 (en) | Hydrophilic copolymers | |
EP0530815A1 (en) | Presensitized plate for use in making lithographic printing plate | |
JPS61284759A (en) | Photosensitive composition for negative type lithographic plate | |
JP2650322B2 (en) | Photosensitive composition | |
EP0556001B1 (en) | Improvements in or relating to printing plates | |
JP2888839B2 (en) | Photosensitive lithographic printing plate | |
JPH06348014A (en) | Photosensitive composition | |
JPH03243961A (en) | Production of photosensitive planographic printing plate | |
JPH082132A (en) | Aluminum support for planographic printing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Dead |