CA2044798C - Towing and wrecker truck - Google Patents
Towing and wrecker truck Download PDFInfo
- Publication number
- CA2044798C CA2044798C CA 2044798 CA2044798A CA2044798C CA 2044798 C CA2044798 C CA 2044798C CA 2044798 CA2044798 CA 2044798 CA 2044798 A CA2044798 A CA 2044798A CA 2044798 C CA2044798 C CA 2044798C
- Authority
- CA
- Canada
- Prior art keywords
- rails
- frame
- deck
- pair
- wheeled vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Body Structure For Vehicles (AREA)
Abstract
A towing truck incorporating both an elevated deck and a stinger for towing and hauling vehicles. Both are hydraulically operated with the deck sliding along a pair of oppositely spaced rails which are pivotally secured to the framework of the truck. A locking assembly is disclosed Which engages the deck's sub-structure, thereby restraining the deck in place.
Description
t..
ti f th I
ld i ~U44798 2 nven on e e o 1. F
ti f th I
ld i ~U44798 2 nven on e e o 1. F
3 This invention pertains to towing trucks in general 4 and, more particularly, to a towing truck that is capable of towing two (2) vehicles at the same time, if 6 necessary.
7 2. General Background 8 There are at least three (3) methods used to tow 9 vehicles. The first utilizes a small boom from which a cable is attached to the to-be-towed vehicle. The 11 second incorporates a rigid stinger that lifts the to-12 be-towed vehicle via its wheels or bumper. The third 13 literally pulls the to-be-towed vehicle up a ramp and t j 14 onto an elevated deck. This invention pertains to the i latter two methods of towing vehicles.
16 The advantage of the stinger method of towing 17 vehicles is that it is relatively easy to accomplish.
18 Preferably the front tires of the to-be-towed vehicle 19 are lifted above the pavement before being towed away much like the boom and cable arrangement. A drawback 21 to this method is when the to-be-towed vehicle is 22 wrecked in such a manner that its frame is bent or both 23 tires on the same side are damaged; then, the towed 24 vehicle will not tow properly and instead will "fishtail" behind the tow truck, thereby creating a 26 traffic hazard.
27 An advantage to the elevated deck method of towing 28 is that no matter what shape the car is in, it can 29 always be pulled onto the deck and transported elsewhere. A disadvantage to this method is that once ~~' 31 the vehicle is loaded, care must be taken to prevent it 32 from shifting laterally as this puts an undue burden c.:
1 on the sub-frame of the elevated deck. Also, as can 2 be surmised, the smaller or less steep the ramp s 3 incline, the less force that is needed to pull the 4 vehicle up the ramp and onto the deck. Further, vehicles with low ground clearance require a low-angle 6 ramp to avoid damage in being pulled up a ramp.
T It is thus an object of this invention to provide a 8 towing truck that incorporates the advantages of both 9 the stinger method and the elevated deck method of towing. It is also an object of this invention to 11 provide a towing vehicle having an elevated deck that i 12 is operated to achieve a low-incline ramp angle.
13 Another object of this invention is to provide stronger i 14 rails upon which the deck slides to withstand larger lateral forces. Still another object of this invention 16 is to provide a locking/alignment mechanism for the 17 deck that securely retains it in the horizontal towing 18 position. These and other objects of this invention 19 will become obvious upon further investigation.
SUMMARY OF THE PRESENT INVENTION
21 The preferred embodiment of the apparatus of the 22 present invention solves the aforementioned problems in 23 a straight forward and simple manner. What is provided 24 is a towing truck having both an elevated deck and an extendable stinger each configured to secure a vehicle 26 thereto. The elevated deck is pivotally supported upon 27 a sub-frame with the deck being slidable along 28 oppositely spaced rails. Means are provided for both 29 tilting the deck vertically about a hinge and for horizontally extending the deck behind the back of the 31 truck along the rails. When the deck is in the 32 untilted, retracted position, a locking assembly r secures the deck in place to prevent any possible 2 ~ ~ ~. 7 9 8 _.
1 ,_ 2 mishap, due to accidental bed-tilting or the like, 3 during vehicle transportation.
For a further understanding of the nature and 6 objects of the present invention, reference should be i 7 had to the following description taken in conjunction i ' g with the accompanying drawing in which like parts are 9 given like reference numerals and, wherein:
E
FIGURE 1 is a side view of the wrecker truck 11 of the present invention, minus the stinger, with all 12 components in the normal position;
13 FIGURE 2 is a side view, partially cut away, 14 of the wrecker truck of the present invention with the deck slid backward;
16 FIGURE 3 is a side view, partially cut away, 17 of the wrecker truck of the present invention with the 18 deck pivoted;
1g FIGURE 4 is a top perspective view, partially broken away, illustrating the construction of the 21 wrecker truck of the present invention;
22 FIGURE 5 is a pictorial view, partially broken 23 away, illustrating the dual flange locks;
24 FIGURE 6 is a pictorial view, partially broken away, of the dual flange locks with the I-beam engaging 26 the locks;
2~ FIGURE 7 is a pictorial view, partially broken 28 away, of the spring lowering plate in the down or 29 normal position;
FIGURE 8 is a pictorial view, partially broken 31 away, of the spring lowering plate in the up or raised 32 position; and, 1 FIGURE 9 is a perspective view of the stinger 2 assembly.
4 Referring now to the drawing, and in particular FIGURES 1 - 4, the apparatus of the present invention 6 is designated generally by the numeral 10. Apparatus 7 10 having elevated deck 12 used for hauling vehicles 8 such as passenger cars or light trucks. Deck 12 9 incorporates side guide rails 14, a forward stop 16 and an angled end plate 18 to aid in the loading and 11 operation of deck 12.
12 Normally, deck 12 is in the lowered or down 13 position, but during the loading and unloading phases, t 14 deck 12 is slid rearward via central underdeck hydraulic cylinder 20. Additionally, the separate 16 operation of side hydraulic cylinders 22 causes deck 12 17 to pivot about hinge 24 thereby creating a ramp as 18 shown in FIGURE 3. Should any final adjustments of 19 cylinders 20 or 22 be required, such adjustments are , then made.
21 The construction of wrecker truck 10 is better 22 illustrated in FIGURE 4, where a pair of I-beams 26 are 23 shown fixedly secured to the underside of deck 12.
24 These I-beams 26 not only support and brace deck 12 and prevent any sideways movement, they also enable deck 12 26 to slide forward and backward. This is accomplished by f 27 having each I-beam 26 slide between and along opposite 28 pairs of spaced rails 28. As can be seen, the gap 29 between the individual adjacent rails 28 is slightly greater than the thickness of the web of I-beam 26.
31 Additionally, the height of the adjacent rails 28 are 32 such that they will fit between the top and bottom a ~~i44 i 9d 1 flanges of I-beam 26. In this fashion, each I-beam 26 2 can slide between and along rails 28 as needed while 3 also being restrained and supported by rails 28.
4 Furthermore, by incorporating two pair of rails 28, any sideways movement of deck 12 is effectively prevented.
6 Due to the large loads involved, it is oftentimes s 7 practical to insert a thin wear plate along the top of 8 rails 28 to prevent any premature wear thereto.
9 Rails 28 themselves are secured to the underlying framework 30 of truck 10 which includes lateral and 11 transverse members 32 and 34. As shown in FIGURE 4, a 12 central underdeck hydraulic cylinder 20 is secured at 13 end 36 to one such transverse member 34 while the other 14 end, end 38, is connected to the underside of deck 12.
Consequently, the operation of cylinder 20 (its 16 hydraulic reservoir and connecting lines not being 17 shown) forces deck 12 and hence I-beam 26 to slide 18 along and within rails 28.
19 Each side hydraulic cylinder 22, which are illustrated in FIGURES 1 - 4, have one end pivotally 21 connected to lateral member 32 of framework 30 via 22 hinged connection 40. The opposite end of each 23 hydraulic cylinder 20 is also pivotally connected, but 24 this time to forward end 42 of its respective pair of rails 28. As illustrated, as side hydraulic cylinders 26 20 are operated (which are operated only in unison with 27 each other, never independently), forward end 42 of 28 rails 28 are pivoted upward (FIGURE 3) about hinge 24 29 until the proper loading or unloading ramp angle is achieved.
31 As stated earlier, prior to the operation of side 32 hydraulic cylinder 22, deck 12 has been moved rearward 1 by central hydraulic cylinder 20. This is necessary 2 in order to disengage deck 12 from flange locks 44, 3 thereby permitting it to be pivoted upward. Flange 4 locks 44, which are illustrated in FIGURES 5 and 6, are secured to framework 30 just behind cab 46. As shown, x 6 as deck 12 is moved forward, the lower flange of its 7 dual I-beams 26 slide within each flange lock 44 where ' 8 it is securely held in place. Flange locks 44 comprise t j 9 upper and lower spaced plates 48 and 50 that are angled to aid in the capture of I-beams 26. Once within 11 flange locks 44, I-beams 26, and hence deck 12, are 12 prevented from any further sideways shifting or 13 movement as well as being prevented from accidentally 14 pivoting upward.
i Referring now to FIGURES 7 and 8, there is showing 16 spring lowering plate 52 secured to framework 30 just 17 in front of tires 54. As shown, one end of spring 18 lowering plate 52 is hinged to beam 56 via pin 58 while 19 the other end is connected to spring 60. In this fashion, beam 56 and hence framework 30 may be lowered 21 or moved closer to axle 62 by pivoting spring lowering """"'-' 22 plate 52 upward and locking it in position via locking 23 pin 64. Obviously, then, both roller 66 and hinge 24 24 act as fulcrums for deck 12. This permits a loading angle of about 7 - 11 degrees and an unloading angle of 26 about 11 - 20 degrees.
27 Referring now to FIGURE 9, there is shown stinger 28 68 secured to framework 30 of truck 10. As shown, the 29 end of stinger 68 moves as support 70 retracts within/extends from guides 72. While support 70 is 31 moved horizontally by conventional hydraulic means, 32 guide 72 can be moved vertically by similar means to 2~4479d 1 eventually raise the end of stinger 68 well above the 2 pavement.
3 Support 70 is pivotally connected to separate cross 4 bars 74 which can be pivoted to rest along opposite sides of support 70 as shown by ARROWS 76. The 6 opposite end of each cross bar 74 contains an oversized 7 sliding member 78 which can be locked in place as 8 needed to adjust the width of cross bar 74 (see ARROWS .
9 80). Each end of sliding member 78 is pivotally connected to tire support 82 that engages tire 84 and 11 prevents it from turning. ARROW 86 indicates how tire 12 support 82 can pivot with respect to sliding members 78 13 with tire support 82 also being able to be locked in 14 place as needed. Extending out the end of tire support 82 is adjustable tire brace 88 which, for storage 16 purposes, can be removed from car support 82. Tire 17 base 88 fits behind tire 84 and closes the gap between 18 tire brace 88 and tire stop 90. Tire stop 90 also L~~' 19 engages tire 84 and between tire stop 90 and tire brace 88, tire 84 is lifted vertically upon the upward 21 movement of guide 72. ARROW 92 illustrates how tire 22 stop 90 can be pivoted onto sliding member 78 so that 23 stinger 68 can be compactly folded and stored under-24 neath truck 10. Obviously, all pivoting parts are lockable in place to prevent their movement during use.
26 (Stinger 68 when folded-up can be used as a tow bar 27 with chains to carry an auto that has been wrecked or 28 has no wheels or suspension on one end).
29 Because many varying and differing embodiments may be made within the scope of the inventive concept 31 herein taught and because many modifications may be 32 made in the embodiment herein detailed in accordance f' °' '~~ 204479c~
with the descriptive requirement of the law, it is to be understood that the details herein are to be 3 interpreted as illustrative and not in a limiting sense.
What is claimed as invention is:
a
7 2. General Background 8 There are at least three (3) methods used to tow 9 vehicles. The first utilizes a small boom from which a cable is attached to the to-be-towed vehicle. The 11 second incorporates a rigid stinger that lifts the to-12 be-towed vehicle via its wheels or bumper. The third 13 literally pulls the to-be-towed vehicle up a ramp and t j 14 onto an elevated deck. This invention pertains to the i latter two methods of towing vehicles.
16 The advantage of the stinger method of towing 17 vehicles is that it is relatively easy to accomplish.
18 Preferably the front tires of the to-be-towed vehicle 19 are lifted above the pavement before being towed away much like the boom and cable arrangement. A drawback 21 to this method is when the to-be-towed vehicle is 22 wrecked in such a manner that its frame is bent or both 23 tires on the same side are damaged; then, the towed 24 vehicle will not tow properly and instead will "fishtail" behind the tow truck, thereby creating a 26 traffic hazard.
27 An advantage to the elevated deck method of towing 28 is that no matter what shape the car is in, it can 29 always be pulled onto the deck and transported elsewhere. A disadvantage to this method is that once ~~' 31 the vehicle is loaded, care must be taken to prevent it 32 from shifting laterally as this puts an undue burden c.:
1 on the sub-frame of the elevated deck. Also, as can 2 be surmised, the smaller or less steep the ramp s 3 incline, the less force that is needed to pull the 4 vehicle up the ramp and onto the deck. Further, vehicles with low ground clearance require a low-angle 6 ramp to avoid damage in being pulled up a ramp.
T It is thus an object of this invention to provide a 8 towing truck that incorporates the advantages of both 9 the stinger method and the elevated deck method of towing. It is also an object of this invention to 11 provide a towing vehicle having an elevated deck that i 12 is operated to achieve a low-incline ramp angle.
13 Another object of this invention is to provide stronger i 14 rails upon which the deck slides to withstand larger lateral forces. Still another object of this invention 16 is to provide a locking/alignment mechanism for the 17 deck that securely retains it in the horizontal towing 18 position. These and other objects of this invention 19 will become obvious upon further investigation.
SUMMARY OF THE PRESENT INVENTION
21 The preferred embodiment of the apparatus of the 22 present invention solves the aforementioned problems in 23 a straight forward and simple manner. What is provided 24 is a towing truck having both an elevated deck and an extendable stinger each configured to secure a vehicle 26 thereto. The elevated deck is pivotally supported upon 27 a sub-frame with the deck being slidable along 28 oppositely spaced rails. Means are provided for both 29 tilting the deck vertically about a hinge and for horizontally extending the deck behind the back of the 31 truck along the rails. When the deck is in the 32 untilted, retracted position, a locking assembly r secures the deck in place to prevent any possible 2 ~ ~ ~. 7 9 8 _.
1 ,_ 2 mishap, due to accidental bed-tilting or the like, 3 during vehicle transportation.
For a further understanding of the nature and 6 objects of the present invention, reference should be i 7 had to the following description taken in conjunction i ' g with the accompanying drawing in which like parts are 9 given like reference numerals and, wherein:
E
FIGURE 1 is a side view of the wrecker truck 11 of the present invention, minus the stinger, with all 12 components in the normal position;
13 FIGURE 2 is a side view, partially cut away, 14 of the wrecker truck of the present invention with the deck slid backward;
16 FIGURE 3 is a side view, partially cut away, 17 of the wrecker truck of the present invention with the 18 deck pivoted;
1g FIGURE 4 is a top perspective view, partially broken away, illustrating the construction of the 21 wrecker truck of the present invention;
22 FIGURE 5 is a pictorial view, partially broken 23 away, illustrating the dual flange locks;
24 FIGURE 6 is a pictorial view, partially broken away, of the dual flange locks with the I-beam engaging 26 the locks;
2~ FIGURE 7 is a pictorial view, partially broken 28 away, of the spring lowering plate in the down or 29 normal position;
FIGURE 8 is a pictorial view, partially broken 31 away, of the spring lowering plate in the up or raised 32 position; and, 1 FIGURE 9 is a perspective view of the stinger 2 assembly.
4 Referring now to the drawing, and in particular FIGURES 1 - 4, the apparatus of the present invention 6 is designated generally by the numeral 10. Apparatus 7 10 having elevated deck 12 used for hauling vehicles 8 such as passenger cars or light trucks. Deck 12 9 incorporates side guide rails 14, a forward stop 16 and an angled end plate 18 to aid in the loading and 11 operation of deck 12.
12 Normally, deck 12 is in the lowered or down 13 position, but during the loading and unloading phases, t 14 deck 12 is slid rearward via central underdeck hydraulic cylinder 20. Additionally, the separate 16 operation of side hydraulic cylinders 22 causes deck 12 17 to pivot about hinge 24 thereby creating a ramp as 18 shown in FIGURE 3. Should any final adjustments of 19 cylinders 20 or 22 be required, such adjustments are , then made.
21 The construction of wrecker truck 10 is better 22 illustrated in FIGURE 4, where a pair of I-beams 26 are 23 shown fixedly secured to the underside of deck 12.
24 These I-beams 26 not only support and brace deck 12 and prevent any sideways movement, they also enable deck 12 26 to slide forward and backward. This is accomplished by f 27 having each I-beam 26 slide between and along opposite 28 pairs of spaced rails 28. As can be seen, the gap 29 between the individual adjacent rails 28 is slightly greater than the thickness of the web of I-beam 26.
31 Additionally, the height of the adjacent rails 28 are 32 such that they will fit between the top and bottom a ~~i44 i 9d 1 flanges of I-beam 26. In this fashion, each I-beam 26 2 can slide between and along rails 28 as needed while 3 also being restrained and supported by rails 28.
4 Furthermore, by incorporating two pair of rails 28, any sideways movement of deck 12 is effectively prevented.
6 Due to the large loads involved, it is oftentimes s 7 practical to insert a thin wear plate along the top of 8 rails 28 to prevent any premature wear thereto.
9 Rails 28 themselves are secured to the underlying framework 30 of truck 10 which includes lateral and 11 transverse members 32 and 34. As shown in FIGURE 4, a 12 central underdeck hydraulic cylinder 20 is secured at 13 end 36 to one such transverse member 34 while the other 14 end, end 38, is connected to the underside of deck 12.
Consequently, the operation of cylinder 20 (its 16 hydraulic reservoir and connecting lines not being 17 shown) forces deck 12 and hence I-beam 26 to slide 18 along and within rails 28.
19 Each side hydraulic cylinder 22, which are illustrated in FIGURES 1 - 4, have one end pivotally 21 connected to lateral member 32 of framework 30 via 22 hinged connection 40. The opposite end of each 23 hydraulic cylinder 20 is also pivotally connected, but 24 this time to forward end 42 of its respective pair of rails 28. As illustrated, as side hydraulic cylinders 26 20 are operated (which are operated only in unison with 27 each other, never independently), forward end 42 of 28 rails 28 are pivoted upward (FIGURE 3) about hinge 24 29 until the proper loading or unloading ramp angle is achieved.
31 As stated earlier, prior to the operation of side 32 hydraulic cylinder 22, deck 12 has been moved rearward 1 by central hydraulic cylinder 20. This is necessary 2 in order to disengage deck 12 from flange locks 44, 3 thereby permitting it to be pivoted upward. Flange 4 locks 44, which are illustrated in FIGURES 5 and 6, are secured to framework 30 just behind cab 46. As shown, x 6 as deck 12 is moved forward, the lower flange of its 7 dual I-beams 26 slide within each flange lock 44 where ' 8 it is securely held in place. Flange locks 44 comprise t j 9 upper and lower spaced plates 48 and 50 that are angled to aid in the capture of I-beams 26. Once within 11 flange locks 44, I-beams 26, and hence deck 12, are 12 prevented from any further sideways shifting or 13 movement as well as being prevented from accidentally 14 pivoting upward.
i Referring now to FIGURES 7 and 8, there is showing 16 spring lowering plate 52 secured to framework 30 just 17 in front of tires 54. As shown, one end of spring 18 lowering plate 52 is hinged to beam 56 via pin 58 while 19 the other end is connected to spring 60. In this fashion, beam 56 and hence framework 30 may be lowered 21 or moved closer to axle 62 by pivoting spring lowering """"'-' 22 plate 52 upward and locking it in position via locking 23 pin 64. Obviously, then, both roller 66 and hinge 24 24 act as fulcrums for deck 12. This permits a loading angle of about 7 - 11 degrees and an unloading angle of 26 about 11 - 20 degrees.
27 Referring now to FIGURE 9, there is shown stinger 28 68 secured to framework 30 of truck 10. As shown, the 29 end of stinger 68 moves as support 70 retracts within/extends from guides 72. While support 70 is 31 moved horizontally by conventional hydraulic means, 32 guide 72 can be moved vertically by similar means to 2~4479d 1 eventually raise the end of stinger 68 well above the 2 pavement.
3 Support 70 is pivotally connected to separate cross 4 bars 74 which can be pivoted to rest along opposite sides of support 70 as shown by ARROWS 76. The 6 opposite end of each cross bar 74 contains an oversized 7 sliding member 78 which can be locked in place as 8 needed to adjust the width of cross bar 74 (see ARROWS .
9 80). Each end of sliding member 78 is pivotally connected to tire support 82 that engages tire 84 and 11 prevents it from turning. ARROW 86 indicates how tire 12 support 82 can pivot with respect to sliding members 78 13 with tire support 82 also being able to be locked in 14 place as needed. Extending out the end of tire support 82 is adjustable tire brace 88 which, for storage 16 purposes, can be removed from car support 82. Tire 17 base 88 fits behind tire 84 and closes the gap between 18 tire brace 88 and tire stop 90. Tire stop 90 also L~~' 19 engages tire 84 and between tire stop 90 and tire brace 88, tire 84 is lifted vertically upon the upward 21 movement of guide 72. ARROW 92 illustrates how tire 22 stop 90 can be pivoted onto sliding member 78 so that 23 stinger 68 can be compactly folded and stored under-24 neath truck 10. Obviously, all pivoting parts are lockable in place to prevent their movement during use.
26 (Stinger 68 when folded-up can be used as a tow bar 27 with chains to carry an auto that has been wrecked or 28 has no wheels or suspension on one end).
29 Because many varying and differing embodiments may be made within the scope of the inventive concept 31 herein taught and because many modifications may be 32 made in the embodiment herein detailed in accordance f' °' '~~ 204479c~
with the descriptive requirement of the law, it is to be understood that the details herein are to be 3 interpreted as illustrative and not in a limiting sense.
What is claimed as invention is:
a
Claims (15)
1. A wheeled vehicle having a sliding deck for receiving and carrying a load such as another vehicle, comprising:
a vehicle frame;
a pair of spaced rails supported by the frame, the rails defining an elongated vertical channel;
a deck having an upper load support surface and a beam fixed to the underside of the deck, the beam having an elongated vertical web slidably fitted in the vertical channel; and wherein the beam includes spaced upper and lower flanges, the vertical dimension of each rail being such as to extend adjacent to and in sliding engagement with both the upper and lower beam flanges.
a vehicle frame;
a pair of spaced rails supported by the frame, the rails defining an elongated vertical channel;
a deck having an upper load support surface and a beam fixed to the underside of the deck, the beam having an elongated vertical web slidably fitted in the vertical channel; and wherein the beam includes spaced upper and lower flanges, the vertical dimension of each rail being such as to extend adjacent to and in sliding engagement with both the upper and lower beam flanges.
2. The wheeled vehicle recited in claim 1 further comprising a wear plate between an upper surface of each rail and the upper flange of the beam.
3. The wheeled vehicle recited in claim 1 further comprising means for sliding the beam relative to the rails and pivotably tilting the sub-frame and deck relative to the vehicle frame.
4. The wheeled vehicle recited in claim 1 further comprising means for releasably locking at least one of the beam flanges, to restrain a sliding movement of the beam along the corresponding rail.
5. The wheeled vehicle recited in claim 4 wherein the releasable locking means comprises a pair of spaced plates supported at one end of the sub-frame, the spaced plates aligned with the lower flange of the beam to engage the lower flange as the beam moves toward the one end.
6. The wheeled vehicle recited in claim 1 wherein the sub-frame comprises transverse members having spaced upstanding braces, and wherein the rails are fixed to the upstanding braces.
7. The wheeled vehicle recited in claim 1 further comprising means for lowering the sub-frame toward the ground.
8. A wheeled vehicle having a sliding deck for receiving and carrying a load such as another vehicle, comprising:
a frame;
two spaced pairs of rails, each pair of rails supported upon the frame and with each rail extending parallel with all of the other rails, each pair of rails defining an elongated vertical channel;
a deck having an upper load support surface and a pair of spaced I-beams fixed to an underside of the deck, each I-beam having an elongated vertical web slidably fitted in the vertical channel of a corresponding rail pair; and wherein each I-beam includes spaced upper and lower flanges, each rail having a vertical dimension such as to extend adjacent to and in sliding engagement with both the upper and lower I-beam flanges.
a frame;
two spaced pairs of rails, each pair of rails supported upon the frame and with each rail extending parallel with all of the other rails, each pair of rails defining an elongated vertical channel;
a deck having an upper load support surface and a pair of spaced I-beams fixed to an underside of the deck, each I-beam having an elongated vertical web slidably fitted in the vertical channel of a corresponding rail pair; and wherein each I-beam includes spaced upper and lower flanges, each rail having a vertical dimension such as to extend adjacent to and in sliding engagement with both the upper and lower I-beam flanges.
9. The wheeled vehicle recited in claim 8 further comprising a low friction state between each rail and the adjacent upper flange of the corresponding I-beam.
10. The wheeled vehicle recited in claim 8 further comprising:
an axle supporting the frame;
an elongated spring supported at an intermediate point by the axle, the spring having first and second ends;
a movable spring lowering plate supported by the frame at a point spaced from the axle and attached to the first end of the spring;
a lowering beam removably attached at one end to the spring lowering plate, the lowering beam extending over the axle and attached with the second end of the spring; and wherein movement of the spring lowering plate relative to the axle effectuates a raising or lowering of the second end of the spring thereby permitting a loading angle reduction when the deck is angularly displaced with respect to the axle for loading.
an axle supporting the frame;
an elongated spring supported at an intermediate point by the axle, the spring having first and second ends;
a movable spring lowering plate supported by the frame at a point spaced from the axle and attached to the first end of the spring;
a lowering beam removably attached at one end to the spring lowering plate, the lowering beam extending over the axle and attached with the second end of the spring; and wherein movement of the spring lowering plate relative to the axle effectuates a raising or lowering of the second end of the spring thereby permitting a loading angle reduction when the deck is angularly displaced with respect to the axle for loading.
11. The wheeled vehicle recited in claim 8 further comprising a stinger supported by the frame for engaging a vehicle to be towed.
12. The wheeled vehicle recited in claim 11 wherein the stinger comprises:
a movable elongated support;
a cross-bar extending lateral to and pivotably attached with the support;
two sliding end members, each telescoping with an outer end of the cross-bar to permit a lateral adjustment of the cross-bar;
two tire supports, each extending laterally from, and pivotably attached with a corresponding one of the sliding end members, each tire support rotatable between a storage position parallel with the cross-bar and an operational position lateral to the cross-bar; and two tire braces, each telescoping with a corresponding one of the tire supports.
a movable elongated support;
a cross-bar extending lateral to and pivotably attached with the support;
two sliding end members, each telescoping with an outer end of the cross-bar to permit a lateral adjustment of the cross-bar;
two tire supports, each extending laterally from, and pivotably attached with a corresponding one of the sliding end members, each tire support rotatable between a storage position parallel with the cross-bar and an operational position lateral to the cross-bar; and two tire braces, each telescoping with a corresponding one of the tire supports.
13. A wheeled vehicle having a sliding and tilting deck for receiving and carrying a load such as another vehicle, comprising:
a wheeled vehicle cab;
a pair of rear wheels spaced from the cab and a rear axle supported by the rear wheels;
a frame supported by the axle and extending rearwardly from the cab;
a sub-frame supported by the frame;
means for tilting the sub-frame relative to the frame in a rearward direction with respect to the cab;
a pair of elongated spaced rails fixed to and extending along the sub-frame in a direction generally transverse to the rear axle, each rail having a generally horizontal bearing surface and a vertical surface;
a deck having an upper load support surface;
beam means including a beam fixed under the deck for sliding engagement with both of the rails, the beam including a generally horizontal flange supported in low friction contact upon the horizontal bearing surfaces of both rails, the beam further including a generally vertical web extending in sliding relationship with the vertical surface of both rails;
elongated springs supported at a respective intermediate point by the rear axle, each spring having first and second ends;
a pair of movable spring lowering plates supported by the frame at each rear wheel at a point spaced from the axle, and attached to one end of the corresponding spring;
a pair of lowering members, each removably attached at one end to a corresponding spring lowering plate and extending over the axle and attached with the second end of the corresponding spring; and wherein movement of the spring lowering plates relative to the rear axle effectuates a raising or lowering of the second end of the springs, thereby permitting a loading angle reduction when the deck is angularly displaced with respect to the rear axle.
a wheeled vehicle cab;
a pair of rear wheels spaced from the cab and a rear axle supported by the rear wheels;
a frame supported by the axle and extending rearwardly from the cab;
a sub-frame supported by the frame;
means for tilting the sub-frame relative to the frame in a rearward direction with respect to the cab;
a pair of elongated spaced rails fixed to and extending along the sub-frame in a direction generally transverse to the rear axle, each rail having a generally horizontal bearing surface and a vertical surface;
a deck having an upper load support surface;
beam means including a beam fixed under the deck for sliding engagement with both of the rails, the beam including a generally horizontal flange supported in low friction contact upon the horizontal bearing surfaces of both rails, the beam further including a generally vertical web extending in sliding relationship with the vertical surface of both rails;
elongated springs supported at a respective intermediate point by the rear axle, each spring having first and second ends;
a pair of movable spring lowering plates supported by the frame at each rear wheel at a point spaced from the axle, and attached to one end of the corresponding spring;
a pair of lowering members, each removably attached at one end to a corresponding spring lowering plate and extending over the axle and attached with the second end of the corresponding spring; and wherein movement of the spring lowering plates relative to the rear axle effectuates a raising or lowering of the second end of the springs, thereby permitting a loading angle reduction when the deck is angularly displaced with respect to the rear axle.
14. The wheeled vehicle recited in claim 13 wherein the rail means comprises two spaced pairs of rails, each pair of rails supported upon the sub-frame and with each rail extending parallel with all of the other rails, each pair of rails defining an elongated vertical channel and with each rail having a generally horizontal bearing surface and a corresponding vertical surface.
15. The wheeled vehicle recited in claim 14 wherein the beam means comprises a pair of spaced beams, each of which includes a generally horizontal flange in low friction contact with the horizontal bearing surface of both rails in one pair of the rails, each beam also including a vertical web extending in sliding engagement with the vertical channel of the corresponding pair of rails.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53954790A | 1990-06-18 | 1990-06-18 | |
US539,547 | 1990-06-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2044798A1 CA2044798A1 (en) | 1991-12-19 |
CA2044798C true CA2044798C (en) | 2001-11-06 |
Family
ID=24151694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA 2044798 Expired - Fee Related CA2044798C (en) | 1990-06-18 | 1991-06-17 | Towing and wrecker truck |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2044798C (en) |
-
1991
- 1991-06-17 CA CA 2044798 patent/CA2044798C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA2044798A1 (en) | 1991-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5352083A (en) | Towing and wrecker truck construction having an extensible wheel lift | |
US5249909A (en) | Towing and wrecker truck | |
US5380141A (en) | Platform and method for lifting and transporting vehicles | |
US3934740A (en) | Transport vehicle with tiltable chassis | |
US4065825A (en) | Loading ramp | |
US4702662A (en) | Trailer | |
US5088875A (en) | Roll-off hoist for variable positioning of containers | |
US5730577A (en) | Motorcycle loading and unloading device | |
US5297653A (en) | Pickup truck mounted lift apparatus | |
US5246329A (en) | Multi-position flat bed truck | |
US5662453A (en) | Truck bed lift system and method | |
USRE32736E (en) | Alignment system for vehicle load bed | |
US4568094A (en) | Alignment system for vehicle load bed | |
US7063494B2 (en) | Truck bed design for automotive and equipment delivery | |
KR20130046391A (en) | Flatbed tow truck pivoting platform assembly and method of use | |
US5871328A (en) | Wrecker truck with sliding deck | |
CA1139272A (en) | Load carrying device | |
US4815915A (en) | Under-vehicle towing apparatus | |
US5975828A (en) | Trailer tilt system | |
CA2165369A1 (en) | Loading and recovery apparatus | |
US6032809A (en) | Apparatus for reducing the axle load of a multiaxle movable telescopic crane | |
US8292557B2 (en) | Vehicle transporter | |
US5934860A (en) | System for removably installing equipments on the frame of a truck | |
US4026429A (en) | Method of unloading container from transport vehicle | |
CA2044798C (en) | Towing and wrecker truck |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |