CA2035986C - Biologically compatible collagenous reaction product and articles useful as medical implants produced therefrom - Google Patents

Biologically compatible collagenous reaction product and articles useful as medical implants produced therefrom Download PDF

Info

Publication number
CA2035986C
CA2035986C CA002035986A CA2035986A CA2035986C CA 2035986 C CA2035986 C CA 2035986C CA 002035986 A CA002035986 A CA 002035986A CA 2035986 A CA2035986 A CA 2035986A CA 2035986 C CA2035986 C CA 2035986C
Authority
CA
Canada
Prior art keywords
collagen
reaction product
type
product according
polymerized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002035986A
Other languages
French (fr)
Other versions
CA2035986A1 (en
Inventor
CHARLES D. kELMAN
Dale P. Devore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Collagenesis Inc
Original Assignee
Collagenesis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Collagenesis Inc filed Critical Collagenesis Inc
Publication of CA2035986A1 publication Critical patent/CA2035986A1/en
Application granted granted Critical
Publication of CA2035986C publication Critical patent/CA2035986C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F289/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds not provided for in groups C08F251/00 - C08F287/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00365Proteins; Polypeptides; Degradation products thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention provides a biologically com-patible collagenous reaction product comprising ethylenically unsaturated monomerically substituted collagen, the monomeric substituents being essentially free of nitrogen, e.g., methy-acrylate, styrene, polyvinyl, ethylene. The collagenous reaction product can be polymerized, e.g., by exposure to UV
irradiation, chemical agents or atmospheric oxygen, and molded to form useful medical implant articles. Methods of prepara-tion are also provided.

Description

s ra s ~~ .n r,~ ~
o., ~lX c~ ~ v C.'~ i.

BIOLOGICALLY COMPATIBLE COLLAGENOUS REACTION
PRODUCT AND ARTICLES USEFUL AS
MEDICAL IMPLANTS PRODUCEp THEREFROM
The present invention relates to a biologically compatible collagenous reaction product comprising ethylenical-ly unsaturated monomerically substituted collagen. More particularly, the invention relates to a collagenous reaction product that can be polymerized to form shaped articles useful in medical applications, including implants for ophthalmology, surgery, orthopedics and cardiology.
Various methods and materials have been proposed for modifying collagen to render it more suitable for biological and medical procedures. (See, e.g., Lloyd et al., "Covalent Bonding of Collagen and Acrylic Polymers," ~mPr;ean Chemical Soe'et S os um o B'ome 'c an a s Polymers, Polymer Science and Technology, Vol. 14, Plenum Press (Gebelein and Koblitz eds.), New York, 1980, pp. 59-~84; Shimizu et al . , ~ oma fed . Dev .. ~r~,s ~. ~. ( 1 ) : 4 9-6 6 ( 19? 7 ) ; and Shimizu et al. , ~.,' o~ e~ .~Y~ ~ ~9s~ ~~( 4 ) s 3?5'391 (1978), for general discussion on collagen and synthetic polymers.) .
In U.S. Patent Nos. 4,427,808 and 4,563,490, Stol et al. disclose composite polymeric materials and methods for preparing such materials. The polymeric materials consist of a hydrophilic polymer or copolymer based on methacry~ic or ~': t, ;,v, s.~ r'; '...? ~' ;:~ 'sJ ;.! ..,r e.~ '..J ~.~
acrylic esters, fibrillar collagen and a crosslinking agent.
The polymeric materials are not reacted with the fibrillar collagen. Rather, the collagen is dispersed unreacted in the hydrophilic polymer, the latter forming a matrix that is penetrated by the collagen.
In U.S. Patent No. 3,453,222, Young discloses methods of chemically modifying proteinaceous materials, e.g., col-lagen, by reaction under mild alkaline conditions with alkane and alkene sultones, e.g., 3-hydroxy-1-propene sulfonic acid sultone. Young's disclosed sultone modified protein products and methods are not useful in biological and medical procedures due to their low biocompatibility.
In U.S. Patent Nos. 4,388,428 and 4,452,925, Ruzma et al. disclose polymerized hydrophilic water-swellable composi tions made from a mixture of components consisting essentially of ',inter ~lia solubilized collagen and ethylenically un-saturated monomers containing nitrogen. (See also PCT Int.
Appl. No. PGT/US82/00889, published February 3, 1983 as WO
83/00339). A severe drawback to Kuzma et al.'s compositions which limits their usefulness as biological materials is the presence of significant quantities of acrylamides, known neurotoxins, as ethylenically unsaturated monomers. No recognition of the neurotoxicity of acrylamides is made in any of these patent.
Miyata et al., U.S. Patent No. 4,215,200, describes chemically modified polymeric collagen hemostatic agents in powder and gel forms. The specific polymeric collagen is said to assume regularly staggered quaternary structure and a high positive electrostatic charge at physiological pR, i.e., about 7.4, when guanidinated, esterified, and/or esterified-quanidi-nated. No mention or suggestion is made in the °200 patent as to acylating collagen to obtain collagenous materials with plastic-like properties.
In other developments, U.S. Patent No. 4,264,155 {issued to Miyata) discloses soft contact lenses made from collagen gels to which water-soluble organic polyhydroxy polymers, e.g.. mucopolysaccharides, polyvinyl alcohols and the b~
f' ~~5 ~.,' ~ !') ~'°
~~ 4a' t~ ;..~ :.i ~.) ~.~
like are added, followed by chemical crosslinking of the gels.
The polyhydroxy polymeric additives are said to "surround" the strands of the collagen molecules to protect them against microbial degradation. No teaching or suggestion is made in U.S. 4,264,155 of possibly acylating collagen to produce eth,ylenically unsaturated monomex~ic collagen which could then be polymerized to form useful biomedical articles having high biological and tissue acceptability.
The present inventors have discovered that a biolagi-dally compatible collagenous reaction product can be formed by reacting collagen, e.g., purified Type I collagen, with acylating agents containing ethene moieties such as ethylene/-malefic anhydride copolymer, styrene,~maleic anhydride copolymer, polyvinyl) sulfanic acid and similar acid chlorides, sulfonic acid, sulfonyl chlorides and anhydrides. The resulting acylated collagenous reaction product comprises ethylenically unsaturated monomerically substituted collagen. The monomeric substituents in the collagenous reaction product of the present invention are essentially free of nitrogen, and thus do not contain acrylamides or other neurotoxins containing nitrogen which would limit their usefulness in biological and medical applications, in contrast to the prior art.
The present inventor has also discovered that the collagenous reaction product can be polymerized to form articles, including shaped articles, useful as medical implant and transplant articles, e.g., ophthalmic lenses including contact lenses, corneal onlays and inlays and intraocular lens (IOLs). Other useful articles for implantation include synthe-tic blood vessels and molded soft tissue implants for surgery.
In the accompanying drawings:
FIGURE 1 illustates various collagen-based implants.
The present invention provides a biologically compat-ible collagenous reaction product with plastic properties which are provided by incorporating ethylenically unsaturated monomers into collagen. The monomers are incorporated by reacting suitable collagen With an acylating agent containing ethene moieties.
As employed herein, the term "biologically compatible"
refers to collagen modified in accordance with the present invention (i.e., a collagenous reaction product) which is stable when incorporated or implanted into or placed adjacent to the biological tissue of a subject and more particularly, does not deteriorate appreciably over time or induce an immune response or deleterious tissue reaction after such incorpora-tion or implantation or placement.
The type of collagen useful to form the biologically compatible collagenous reaction product of this invention is selected from the following groups: purified Type I collagen, Type IV collagen and Type III collagen, intact collagen-rich tissue, or a combination of any of the foregoing. Preferred as a collagen starting material is purified Type I collagen. Type I collagen is widely available and extracted from animal sources, e.g., mammalian tissues, including human (dermis) and bovine (cow hide).
The monomers are ethylenically unsaturated and essen-tially free of nitrogen, such as the nitrogen found in acrylamides which are known to be neurotoxins. This feature of the monomers allows them to be safely employed in collagen-based compositions for use as biomedical materials for implan-tation, surgery and the like.
The monomers useful in the practice of this invention comprise the following: methacrylate, styrene, polyvinyl and ethylene.

,-~ :r~ : > s. , f~ .~, ,~
ii:~.,..~,3p'!i ~.d It has been discovered that these monomers are chemi-cally incorporated into collagen when an effective amount of an acylating agent is allowed to xeact with collagen ox a collage-nou.s preparation. Suitable acylating agents include by way of 5 non-limiting example, methacrylic anhydride, styrene/maleic anhydride copolymer, polyvinyl sulfonic acid, ethylene/maleic anhydride copolymer, B-styrene sulfonyl chloride, each of which is available from Aldrich Company (Milwaukee, Wisconsin).
The present invention accordingly provides a number of collagenous reaction products, that is, a polymerized biologi-cally compatible collagenous reaction product useful to form medical implant articles. This polymerized reaction product comprises ethylenically unsaturated monomerically substituted collagen, the monomeric substi.tuents being essentially free of nitrogen. By way of illustration only, methacrylic anhydride and collagen can be reacted to form collagen methacrylate followed by polymerization in the presence of oxygen or Uv irradiation to make polycollagen methacrylate. Similarly, collagen can be reacted with the following acylating agents:
styrene/maleic anhydride copolymer, polyvinyl sulfonic acid and Ethylene/maleic anhydride copolymer to form collagen styrene, collagen polyvinyl and collagen ethylene compositions, respec-tively. After polymerization, the collagen styrene, collagen polyvinyl and collagen ethylene compositions will form polycol-lagen styrene, polycollagen ethylene and polycollagen polyvinyl polymers, respectively.
An effective amount of the acylating agent will vary within limits but generally comprises from about 0.5 to about 20 weight percent total collagen, preferably from about 5 to about 10 weight percent total collagen in solution. The effective amount of the acylating agent will be based on the total amount of collagen in the solution.
Acylation of the collagen is carried out at alkaline pH, for example, in the range of from about 8.0 to about 10.0 pH, preferably at about pe 9.0 or so. In order to achieve complete acylation of the collagen that is being treated, which is desirable because it leads to better performance in the ~ r.3 ~ n.. i , tl r) la E.;, d ;:) ::~.7 ,. ~.
final shaped implant articles (i.e., the properties of the incorporated monomers are better imparted to the final ar-ticles), the collagen should be filtered and solubilized.
Using conventional filtering means, e.g., a millipore filter with a 3 um pore size, the collagen can be filtered to remove impurities and contaminants. The filtered collagen can then be solubilized (i.e., dissolved or dispersed) in a suitable proteolytic solution, e.g., pepsin.
It has also been found that the reaction between the collagen and the acylating agent may require more than one reaction "run." That is, additional acylating agent can be added to the initial reaction mixture (i.e., the initial collagen and the initial acylating agent) to continue the reaction to completion, i.e., complete acylation of the collagen being treated.
The reaction time for the acylation of the collagen will vary according to a number of factors including the amount of collagen to be acylated, the type of acylating agent, the pH
and temperature of the reaction mixture, to name just a few factors. In addition, the method of addition of the acylating agent to the suitable collagen will affect the reaction time.
For example, addition of the acylating agent as a solid or in an appropriate solution will increase and decrease the reaction time, respectively. Reaction time is generally slower if the acylating agents are added as solids or powders.
In general, the acylation reaction should proceed to completion within a time ranging from about 5 to about 90 minutes, preferably from about 20 to about 40 minutes. The acylation reaction should generally be carried out at a temperature of from about 4 to about 37°C, preferably from about 4 to 25°C.
The acylation reaction can be monitored by.the decrease in pH. The reaction is complete when pH is stable at 9Ø The reaction can also be monitored by removing aliquots and measuring the free amine concentration of precipitated, washed collagen product.

i~il nt1 ~~1 i ' s'l. ~~ !5 Eel ~'':.~ :.:~ ;."".~ V
The reaction can be stopped by adjusting the pH to 12.0 for 2 minutes which ~.estroys.the ac~ylati~g-agents. The modified collagen is then precipitated by reducing the pH using hydrochloric acid, acetic acid, nitric acid, sulfuric acid, or other acid. -The amount of acid added should be sufficient to cause the pH of the reaction mixture to fall to below pH 5.0, preferably from about pH 4.0 to about 4.5 or so. When the acid is added to the mixture, and it is suggested that the addition be in small quantities, e.g., dropwise, the mixture should become cloudy indicating a change to acidic pH of the collagen mixture as the modified or reacted collagen "falls out of solution."
A precipitate of the reacted caliagen which now contains ethylenically unsaturated monomeric substituent groups can be recovered from the cloudy (acidic) reaction mixture using conventional recovery techniques, e.g., centrifugation at 4,000 to 15,000 RPM for about 10-60 minutes, preferably centrifugation at about 6,000 to about 12,000 RPM for about 20 to about 30 minutes.
After recovery, the precipitate~caii be washed with deionized water and subsequently dissolved in a physiological solution, e.g., phosphate buffer (0.1 M) at pH 6.6 or so. In order to dissolve the washed precipitate well, it may be necessary to adjust the pH from about b.3 to about 7.4 by addition of sodium hydroxide. (Sodium bicarbonate may also be used to adjust pH. However, it probably does not specifically act to sol~~bilize monomers.) Following the dissolution of the precipitate in solution, the suspension can be centra~ugated to remove air bubbles present in the suspension. art this-point, the result-ing fluid should assume a viscous consistency and slightly cloudy appearance.
The fluid thus obtained can ~e subsequently subjected to polymerizing or crosslinking conditions. Polymerization can be carried out using W irradiatit~n, e.g., W irradiation or gamma irradiation in the absence of oxygen. W polymerization s~y ,~ G~s r~ d'~ ~ ,~
rfe~l ~:.~ Zn Y> xf ~J w-may be accomplished using a short wavelength W source (254 nm) from about 4-16 watts and an exposure time of from about 10 to about 40 minutes, in the absence of oxygen. Preferably, polymerization is accomplished by exposure to an 8 watt, short wavelength source for about 20-30 minutes at a distance of from 4 cm. to about 10 cm. Polymerization using gamma irradiation has been done using from 0.5-2.5 MRads. Excess W irradiation will depolymerize collagen polymers. Gamma irradiation has also been shown to degrade collagen.
In addition, polymerization can be effected using chemical agents, e.g., glutaraldehyde, formaldehyde, isocya-nates, epoxy compounds, bifuncti~nal acylating agents, or a combination of any of the foregoing.
Preferred as a polymerizing agent is W irradiation.
It should also be pointed out that polymerization or crosslink-ing of the monomeric substituents can be carried out by simply exposing the material to atmospheric oxygen, although the rate of polymerization is appreciably slower than in the case of W
irradiation or chemical agents. Polymerization can also be done in steps. Fox example, collagen solutions can be placed in molds, exposed to W-irradiation, dehydrated in a laminar-flow hood, and again exposed to W irradiation.
The polymerized materials can assume a number of sizes and shapes consistent with their intended biomedical applica-tions, which include use in ophthalmology, plastic surgery, orthopedics and cardiology.
For example, hydrogels, e.g., polymethylmethacrylate, are currently used as biomedical materials having physical properties similar to human tissue. By including an ap-propriate collagen backbone in a hydrogel composition, the biological or tissue compatibility will be enhanced while at the same time maintaining useful plastic properties, such as flexibility, moldability, elasticity, strength and transparen-cy, to name just a few.
Thus, collagen based polymers, including collagen-based hydrogels in accordance with the present invention, are useful to make ophthalmic~lens devices, such as contact lens, corneal.

;dJ~~t7a.~

onlays and inlays, and IOLs. Methods for making such ophthal-mic lens devices are well-known in the art. For example, Miyata, U.S. Patents 4,260,228 and 4,264,155: Miyata et al>, U.S. Patents 4,223,984, 4,268,131 and 4,687,518; Wajs, U.S.
Patent 4,650,616; and Ruzma et al., U.~. Patent 4,452,925, describe a methods for constructing contact lenses. Burns et al., U.S. Patent 4,581,030, and Battista, U.S. Patent 4,264,493 describe methods for making IOLs. Such devices exhibit useful characteristics including high water content, high refractive index and high permeability to oxygen and nutrients. Styrene arid methacrylate derivatives, e.g., polycollagen styrene and polycollagen methacrylate, exhibit a very high refraction index. Styrene has an ND25 of about 1.60 and methacrylate has an ND25 of about 1.43143.
other collagen-based polymers, such as polyethylene collagen and polystyrene collagen, can be molded or fabricated to form synthetic blood vessels or soft tissue implants for plastic surgery using techniques known in the art. For example, Huc and Gimeno, French Patent Application No. 84/3181, 1984, and Chvapil and Krajicek, T~. Sura. Research, ,~: 358, 1963, describe methods for forming synthetic blood vessels.
Daniels et al., U.S. Patent No. 3,949,073, and Wallace et al., U.S. Patent No. 4,424,208, disclose the preparation of soft tissue implants. A synthetic tympanic membrane is disclosed by Abbenhaus and Hemenway, Sura. Forum, 18: 490, 1967. The preparation of other collagen-based membranes and films is disclosed by Dunn et al., Science, ,~57: 1329, 1967, and Nishihara et al., rans. er Soc. Artif. Int. ns, Vol.
XIII, pp. 243-248, 1967. A number of other collagen-based prostheses are disclosed by Luck et al., U.S. Patents 4,233,360 and 4,488,911, and Battista, U.S. Pater,.t 4,349,470. Additional uses of collagen-based implants are reviewed by Simpson in "'Collagen as a Biomaterial," Biomaterial in Reconstructive Suraerv, C.V. Mosby Co. (L. Rubin, ed.), St. Louis, 1983, pp.
109-117.
Furthermore, the polymeri~ea3 materials, i.e., polymer-ized collagenous reaction products, can be made in the form of ,.i ;_; r;_? v 1... ,.. ':~
to a fi:Lm, particularly in the case of polymethylmethacrylate monomers. As described in the examples which follow, such a film is flexible and elastic with the consistency and feel of plastic film, and yet the film exhibits high biological compatibility. Uses of such films include: Prevention of adhesion formation following tendon surgery (i.e., use as a wrap around tendons), use as a synthetic tympanic membrane, substitute facial tissue and wound dressing component.
Solutions of ethylenically unsaturated substituted collagen could be useful as vitreous replacements, viscoelastic solu-tions for ophthalmic surgery, joint lubricants, etc.
Intact collagen-rich tissue having a naturally acquired useful shape, such as human umbilical veins, can also be acylated and polymerized according to the present invention.
Such articles should be biologically compatible and have useful plastic-like properties including elasticity, strength and flexibility.
The present invention provides a method of preparing a biologically compatible col.~agenous reaction product comprising ethylenically unsaturated monomerically-substituted collagen in which the monomeric substituents are essentially free of nitrogen. This method comprises the steps of: contacting solubilized collagen with an effective amount of an acylating agent comprising ethene moieties under suitable conditions to form a precipitate and recovering the formed precipitate.
The present invention further provides a method of preparing a shaped article useful for medical implantation in which the article comprises a polymerized biologically compat-ible collagenous reaction product comprising ethylenically un-saturated substituted collagen. These substituents are essentially free of nitrogen. This method comprises the steps of: fonaing a precipitate by contacting solubilized collagen with an effective amount of an ethylenically substituted acylating agent under suitable conditions; recovering the formed precipitate: suspending the recovered precipitate in a solution: and polymerizing the suspension in a mold, to prepare a shaped article useful for medical implantation thereby. The i 1 4,,, ,~, ~z y,.. ._~ ;, ,,,, ,.'~,~ 4? ~3 e.i ry ~ 'L~
type of collagen, acylating agent, effective amount and means for precipitating and recovering the formed precipitate are as described above, in the examples which follow, or are conven-tionally known in the art.
The following examples are set forth by way of illu-stration and not limitation of the present invention.
~PA~R TION OF TYPE I COI~A.GEN ~ BOVINB HIDE 1 A. Fibrous Type I collagen was prepared from bovine material (calf hide) using the following procedure:
1. Clean, dehaired split hides, which are commercially available from the Andre Manufacturing Co., Newark, New Jersey, and stored frozen in sealed plastic bags until ready to use.
2.' Thaw approximately 200 g of cow hide at room temperature.
3. Cut the hide into small pieces, approximately 1 cm3 using a scalpel and tweezers. Weigh the wet tissue and record its weight.
4. Place the cow hide in 15 liters of 0.5M
acetic acid and stir at rocm temperature using a lightning mixer for at least one hour. The cow hide will swell.
5. Add 2$ or 3.9g of pepsin from porcine stomach mucosa (manufactured by Sigma Chemicals, St. Louis, Missouri) to the cow hide solution, after dissolving it in approximately 10 mls of 0.5M acetic acid. Continue stirring with mixer overnight.
6. Add 1$ or 1.96g of the above pepsin to the cow hide solution dissolved in approximately 10 mls of 0.5M
acetic acid. Continue stirring with mixer overnight.
7. Refrigerate the dissolved cow hide solution until it is uniformly at a temperature of about 4'C. This may take until overnight.
8. Remove the solution from the cooler and begin stirring with the lightning mixer. Increase the pH of the solution to 5.0 using lON NaOA to denature-the pepsin. Ice cubes may be added during the process to keep the solution cold. (Collagen will precipitate at pH 9.0 if the temperature is higher than 6°C.) Quickly return the solution to 4°C. The solution must remain in the cooler for at least 4 hours.
9. Remove the solution from the cooler and centrifuge at 4°C for 30 minutes at 9 rpm. Save the superna-tant, Which contains the collagen and discard the precipitate, which contains the pepsin.
10. Add enough NaCl to the solution to bring up the concentration to 2.5M. This will precipitate the desired collagen. Stir with the lightning mixer for at least two hours.
11. Centrifuge for 30 minutes at 9 rpm to recover precipitate. The resultant collagen precipitate is collected and then reconstituted in 15 liters of 0.5M acetic acid (at least two hours).
12. The collagen solution is precipitated again by adding enough NaCl to the solution to bring up the concen-tration to 0.8M. It is stirred well for at least two hours then centrifuged for 30 minutes at 9 rpm.
13. The precipitate is collected and then recon-stituted in 15 liters of 0.5M acetic acid (at least two hours).
14. Enough NaCl is added to the collagen solution to bring up the concentration to 0.8M. The precipitate is formed by mixing for at least two hours. Centrifugation at 9 rpm for 30 minutes will recover the precipitate.
15. For the final time the precipitate is collected and then reconstituted in O.1M acetic acid to provide a high purity of approximately 0.3 percent wt/wt collagen Type I solution having a pH of about 3.
16. The collagen solution is filtered first through a prefilter which has a pore size of about 0.3 um and then through a final filter which has a pore size of 0.22 um for sterilization. Thie material can now be used in the modification procedure to prepare collagenous reaction products in accordance with this invention and as described in further detail in the examples hereinbelow.

13 y'''~~''7J' i.i v'.y i.,~ F,! i,i ~~, EXAMPLE 1: PREPARATION OF METHACRYLATE SUBSTITUTED
COLZ.AGENOUS REACTION PRODUCT
One hundred milliliters of 3 a filtered, pepsin-solubilized collagen prepared above was reacted with 10 drops of methacrylic anhydride in 10 drops of anhydrous alcohol at pH
9Ø The pH was maintained at pH 9.0 during the reaction. A
second addition of 5 drops of methacrylic anhydride in 5 drops of alcohol was made to continue the acylation reaction. After forty minutes of reaction, the pH was lowered to 4.3 by the addition of 1 N HC1. The mixture became cloudy and was centrifuged at 12,000 RPM for twenty minutes. The precipitate was dissolved in 0.1 M phosphate buffer, pH 6.8. However, because the precipitate did not dissolve well, several drops of 5$ sodium bicarbonate were added. (Note: methacrylate monomers are soluble in 5~ bicarbonate). The precipitate thus dissolved and the suspension was centrifuged to remove air bubbles. The resulting fluid was viscous and slightly cloudy. An aliquot was placed on a glass slide and exposed to UV irradiation for twenty minutes. The polymerized film was clear and had the properties of a flexible plastic. It was also observed that the collagen methacrylate spontaneously polymerized over time, probably due to exposure to oxygen.
EXAMPLE IA: METHACRYLIC SUBSTITUTED COI~GEN
REACTION PRODUCT PREPARATION
A second procedure for forming methacrylic substituted collagen reaction products was conducted as follows: one hundred milliliters of 0.45 filtered, pepsin solubilized bovine collagen was reacted wtih 5 drops of methacrylic anhydride.
The collagen solution was first brought to pH 9.0 by addition of lON and 1N sodium hydroxide. The pH was maintained at pH
9.0 during the reaction by addition of 1N sodium hydroxide.
After 30 minutes, the pH was dropped to 4.3 by addition of 6N
and 1N hydrochloric acid. The precipitate was recovered by centrifugation at 8,000 rpm and washed three tunes with sterile water. The washed precipitate was then dissolved in 0.05N
phosphate buffer. Sodium hydroxide was added to bring the pH
to about 7.2. The solution was centrifuged at 8,000 rpm to ~s.. A.. ,d~:. ~ n. ,y ~~ uJ :J ~> .:..i J i~

remove bubbles introduced during mixing. The solution was slightly cloudy. Films were cast in molds and air polymerized or ;polymerized using W-irradiation. Polymerized films had physical properties similar to plastics. Methacrylic substi-tuted collagen appeared to polymerize without external cata-lysts. The polymerization was accelerated using W-irradiation in a nitrogen environment. Accelerated polymerization was also accomplished by adding 5-20 milligrams of sodium persulfate per milliliter of substituted collagen and exposing this mixture to W-irradiation. In this case polymerization occurred rapidly in air. Removal of oxygen was not necessary.
EXAMPLE 1B: PREPARATION OF METHACRYLIC/GLDTARIC
SUBSTITUTED COLLAGEN
The procedure described above was repeated except that glutaric anhydride was added along with methacrylic anhydride.
One hundred milliliters of collagen solution were brought to pH
9Ø Twenty milligrams of glutaric anhydride in 0.5 milli-liters of dimethyl formamide were added to the solution and the pH maintained at 9Ø After approximately 2 minutes, 3 drops of methacrylic anhydride were added and the pH maintained at pH
9Ø The reaction continued for 35 minutes, after which the reaction product was recovered as described in Example lA. The modified collagen was dissolved in buffer and centrifuged. The solution was clear and subsequent films were clearer than observed in Example lA.
EXAMPLE 1Cs PREPARATION OF METHACRYLIC/GLUTARIC
SUBSTITUTED COLLAGEN
The procedure in Example 1B was repeated except that an additional 20 milligrams of glutaric anhydride was added following methacrylic anhydride addition. The reaction product dissolved in buffer appeared to be clear and colorless.
EXAMPLE 1D: PREPARATION OF METHACRYLIC/GLUTARIC/
VINYL SUBSTITUTED COLLAGEN
The procedure in Example 1B was repeated except that the collagen solution was reacted wtih a mixture of 20 milli-~ ;.., ,~ ~°. r~
'' F' ' S1 _ .: :.i ...
grams of glutaric anhydride, 5 milligrams of B-styrene sulfonyl chloride, and 3 drops of methacrylic anhydride all in 0.5 milliliters of DMF. The mixture was added dropwise and the pH
maintained at 9Ø After 30 minutes, the reaction product was 5 recovered and dissolved in buffer. The pH was adjusted to 7.4 by addition of 1N sodium hydroxide. The solution was clear and viscous. Films were made as described previously. The polymerized films were clear and appeared stronger than films without styrene.
EXAMPLE 2: PREPARATION OF sSTXRENEsSUBSTITUTED COLLAGEN
The procedure of Example 1B was followed except that styrene/maleic anhydride copolymer, molecular weight 350,000 was used instead of methacrylic anhydride. The reaction product was recovered by centrifugation and dissolved in buffer at pH 7.4. The solution was slightly cloudy.
EXAMPLE 2A: PREPARATION OF STYRENE/GLUTARIC
SUBSTITUTED CO ~L~GEN
The procedure of Example 2 was followed except that ' glutaric anhydride was added before reaction with styrene/-maleic anhydride copolymer. The inclusion of glutaric resulted in a solution that was clear, colorless, and viscous. Films were also clear.
EXAMPLE 2B: PREPARATION OF STYRENE/GLOTARIC
SUBSTITDTBD COLLAGEN
The procedure of Example 2A was followed except that B-styrene sulfonyl chloride was used in place of styrene/maleic anhydride copolymer. The reaction appeared to produce a substituted collagen with better "plastic" properties than previous reactions with styrene/maleic anhydride copolymer.
(These products exhibited properties more like glutaric reaction products.) Films prepared from the styrene/glutaric substituted collagen were clear, colorless and strong.
Evaluatians of resistance to degradation by bacterial colla-genase indicated that the styrene/glutaric films were 600$ more ;a ~u :a ~~ :i resistant than films composed of only glutaric substituted collagen.
EXAhIPLE 3: PREPARATION OF POLYVINYL SOBSTITB_TED COLLAGEN
The procedure of Example 1B was followed except that polyvinyl sulfonic acid was used in place of methacrylic anhydride. One hundred milliliters of soluble, bovine-collagen at approximately 0.25% was brought to pH 9Ø Twenty-five milligrams of polyvinyl sulfonic acid solution was added to the collagen solution while maintaining the pH at 9Ø There was a minimal decrease in the pH. After approximately 60 minutes, the substituted collagen was recovered by reducing the pH. A
small amount of precipitate formed at about pH 5Ø These was recovered and washed. Reconstitution of buffer at pH 7.3 produced a cloudy, thick dispersion. Films were made which were slightly cloudy. When these films were placed in water ar buffer, they swelled to many times their original size.
EXAMPLE 3A: PREPARATION OF vINYL/GLUTARIC
2p SUBSTITUTED COLhAGEN
The procedure followed in Example 3 was repeated except that 25 milligrams of glutaric anhydride in DMF was added first to the soluble collagen at pH 9Ø After about 10 minutes, 25 milligrams of polyvinyl sulfanic acid was added. The reaction continued for 30 additional minutes, while maintaining the pH
at 9Ø The solution was clear. The reaction products) was precipitated at pH 4.3 and washed three times with sterile water at pH 4.3. The precipitate Was then reconstituted in physiological saline (0.9%) or in phosphate buffer. The pH was adjusted to pH 7.2. The solution was clear, colorless and viscous. Films were prepared by placing aliquots of the substituted collagen in glass molds and exposing the material to W-irradiation in nitrogen. Resultant films were clear and colorless and when placed in physiological solution or water swelled to many times their original size. If the substituted collagen solution was first heated in the molds to about 38°C, dried, and then exposed to W-irradiation, resultant films exhibited greater elasticity and strength and did not swell to the extent noted in films prepared without heating and drying.
Overall, vinyl substituted collagen films exhibit unusual swelling.
EXAMPLE 4: PREPARATION OF POL7tBTSYLENE
SUBSTITUTED COLLAGEN
The procedure described in Example 18 was followed except that soluble collagen was reacted with ethylene/maleic anhydride copolymer. One hundred milliliters of soluble, bovine collagen at 0.25% was brought to pH 9Ø Approximately 25 milligrams of ethylene/maleic anhydride copolymer in DMF
were added and the pH maintained at 9Ø The solution became cloudy as the reaction continued and pH decrease was slow.
After about 45 minutes, the pH was reduced to about 4.3 to precipitate the substituted collagen. There was minimal precipitate which was washed and reconstituted in buffer brought to pH 7.4. The dispersion was slightly cloudy and viscous. Films prepared as described above were also cloudy.
However, the films exhibited properties of plastic films.
EXAMPLE 4A: PREPARATION OF ETHYLENE/
GLUTARIC SUBSTITUTED COLLAGEN
Procedures were as in Example 4 except that the collagen solution was first treated with 25 milligrams of glutaric anhydride for 10 minutes before adding the ethylene/-maleic anhydride copolymer. In same cases an additional amount of glutaric anhydride was added following ethylene/maleic anhydride copolymer. pH was maintained at 9.0 throughout the reaction. The reaction product was recovered by precipitation at about 4.3. This was washed and reconstituted in saline (0.9%) or phosphate buffer at pH 7.2. Additional sodium hydroxide was added to bring the pH to 7.2. The solutions were colorless, viscous and just slightly cloudy. Films were prepared by drying and then LTV-irradiation, by UV-irradiation without prior drying, and by heating, drying and UV-irradia-tion. Unlike glutaric preparations that melted (became fluid) at 34-38°C, these ethylene/glutaric preparations were stable at v r1 sj " '~ t i ; .~
18 ~ ;~~ ~ ~ u' ci 'i.3 50°C. Films also exhibited enhanced stability as determined by rates of dissolution in physiological solution. Thus ethylene appears to impart enhanced stability to films prepared with substituted collagens. Ethylene films appeared stronger than other films prepared from substituted collagens.
EXA1~LE 5: COMBINATION SUBSTITDTIONS
Procedures described in the previous Examples were used to prepare several combination substitutions. Combinations of reaction agents included: glutaric anhydride/B-styrene sulfonyl chloride/methacrylic anhydride, glutaric anhydside/-ethylene/maleic anhydride copolymer/methacrylic anhydride, glutaric anhydride/polyvinyl sulfonic acid/methacrylic anhy-dride, glutaric anhydride/ethylene/maleic anhydride copolymer/
styrene/maleic anhydride copolymer. Glutaric substitution was important to provide a clear, colorless solution and clear films. Glutaric t~nhydride could be replaced by succinic anhydride, malefic anhydride or similar anhydrides, sulfonyl chlorides, or acid halide chlorides. Methacrylic substitution provided plastic-like properties and seemed to be associated with spontaneous polymerization. Vinyl substitution appeased to provide plastic-like groperties and films that exhibited unusual swelling ability. Styrene substitution appeared to improve the stability of formed films. Ethylene substitution also seemed to enhance the stability of films, although most ehtylene films were slightly cloudy.
EXAMPLE 6: FORMED ARTICLES
Solutions of substituted soluble collagen were made into lens-like articles by placing aliquots of the solutions in glass molds, 22 mm in diameter by 7 mm in depth. Solutions were then polymerized by UV-irradiation in nitrogen, dried in a laminar-flow hood and then subjected to W-irradiation, or heated to melt the thick solution, dried, and then subjected to UV-irradiation. Heating seemed to enhance the strength and flexibility of resultant films. Molded films were concave with diameters from 7 mm to 20 nun and thickness form 0.1 mm to 5 mm.

G~ ~,~ u~ ~ d-a ~> ~

~~e.3xtvU~~.
Flat films were also prepared by casting the substituted collagen solutions on microscope slides. Thick, lens-shaped films were also prepared by mixing 1-20 milligrams of sodium per:sulfate into the substituted collagen solutions and then exposing molded material to W-irradiation for 1-5 minutes, in air.. These films were not strong and easy to tear.

Claims (23)

We Claim:
1. A biologically compatible collagenous reaction product comprising collagen reacted with an acylating agent selected from the group consisting of glutaric anhydride, succinic anhydride, and malefic anhydride and at least one other acylating agent selected from the group consisting of methacrylic anhydride, beta-styrene sulfonyl chloride, ethylene/maleic anhydride copolymer, styrene/maleic anhydride copolymer, and poly(vinyl) sulfonic acid.
2. A biologically compatible collagenous reaction product according to claim 1 comprising collagen reacted with glutaric anhydride and at least one member of the group consisting of methacrylic anhydride, beta-styrene sulfonyl chloride, ethylene/maleic anhydride copolymer, styrene/maleic anhydride copolymer, and poly(vinyl) sulfonic acid.
3. The collagenous reaction product according to claim 1, wherein said collagen is selected from the group consisting of purified Type I collagen, Type IV
collagen, Type III collagen, intact collagen-rich tissue and combinations thereof.
4. The collagenous reaction product according to claim 3, wherein said collagen comprises Type I collagen.
5. The collagenous reaction product according to claim 4, wherein said Type I
collagen is derived from bovine tissue.
6. The collagenous reaction product according to claim 4, wherein said Type I
collagen is derived from human tissue.
7. A biologically compatible collagenous reaction product comprising collagen reacted with at least one member of the group consisting of methacrylic anhydride, beta-styrene sulfonyl chloride, ethylene/maleic anhydride copolymer, styrene/maleic anhydride copolymer, and polyvinyl) sulfonic acid.
8. The collagenous reaction product according to claim 7, wherein said collagen is selected from the group consisting of purified Type I collagen, Type IV
collagen, Type III collagen, intact collagen-rich tissue and combinations thereof.
9. The collagenous reaction product according to claim 8, wherein said collagen comprises Type I collagen.
10. The collagenous reaction product according to claim 9, wherein said Type I
collagen is derived from bovine tissue.
11. The collagenous reaction product according to claim 9, wherein said Type I
collagen is derived from human tissue.
12. A polymerized biologically compatible collagenous reaction product useful to form medical implant articles comprising the collagenous reaction product of claim 1.
13. The polymerized reaction product according to claim 12, wherein said collagen is selected from the group consisting of purified Type I collagen, Type IV
collagen, Type III collagen, intact collagen-rich tissue and combinations thereof.
14. The polymerized reaction product according to claim 13, wherein said collagen comprises Type I collagen.
15. The polymerized reaction product according to claim 14, wherein said Type I
collagen is derived from bovine tissue.
16. The polymerized reaction product according to claim 14, wherein said Type I
collagen is derived from human tissue.
17. The polymerized reaction product according to claim 12, wherein said product has been polymerized by exposure to ultraviolet irradiation, chemical agents, atmospheric oxygen or combinations of the foregoing.
18. A polymerized biologically compatible collagenous reaction product useful to form medical implant articles comprising the collagenous reaction product of claim 7.
19. The polymerized reaction product according to claim 18, wherein said collagen is selected from the group consisting of purified Type I collagen, Type IV
collagen, Type III collagen, intact collagen-rich tissue and combinations thereof.
20. The polymerized reaction product according to claim 19, wherein said collagen comprises Type I collagen.
21. The polymerized reaction product according to claim 20, wherein said Type I
collagen is derived from bovine tissue.
22. The polymerized reaction product according to claim 20, wherein said Type I
collagen is derived from human tissue.
23. The polymerized reaction product according to claim 19, wherein said product has been polymerized by exposure to ultraviolet irradiation, chemical agents, atmospheric oxygen or combinations of the foregoing.
CA002035986A 1990-02-28 1991-02-08 Biologically compatible collagenous reaction product and articles useful as medical implants produced therefrom Expired - Fee Related CA2035986C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/486,558 US5104957A (en) 1990-02-28 1990-02-28 Biologically compatible collagenous reaction product and articles useful as medical implants produced therefrom
US486,558 1990-02-28

Publications (2)

Publication Number Publication Date
CA2035986A1 CA2035986A1 (en) 1991-08-29
CA2035986C true CA2035986C (en) 2001-07-31

Family

ID=23932361

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002035986A Expired - Fee Related CA2035986C (en) 1990-02-28 1991-02-08 Biologically compatible collagenous reaction product and articles useful as medical implants produced therefrom

Country Status (3)

Country Link
US (1) US5104957A (en)
EP (1) EP0444244A3 (en)
CA (1) CA2035986C (en)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201764A (en) * 1990-02-28 1993-04-13 Autogenesis Technologies, Inc. Biologically compatible collagenous reaction product and articles useful as medical implants produced therefrom
US5529914A (en) * 1990-10-15 1996-06-25 The Board Of Regents The Univeristy Of Texas System Gels for encapsulation of biological materials
US5219895A (en) * 1991-01-29 1993-06-15 Autogenesis Technologies, Inc. Collagen-based adhesives and sealants and methods of preparation and use thereof
US5800373A (en) * 1995-03-23 1998-09-01 Focal, Inc. Initiator priming for improved adherence of gels to substrates
WO1996003456A1 (en) * 1994-07-22 1996-02-08 Vladimir Feingold Biocompatible optically transparent polymeric material based upon collagen and method of making
EP0785759B1 (en) * 1994-10-06 2004-03-31 FEINGOLD, Vladimir Intraocular contact lens
JP3647093B2 (en) * 1994-11-17 2005-05-11 株式会社メニコン Hydrophilized oxygen permeable contact lens and method for producing the same
US5900245A (en) 1996-03-22 1999-05-04 Focal, Inc. Compliant tissue sealants
BR9607977A (en) * 1995-03-23 1998-01-13 Univ Texas Photoinitiated and redox preparation systems for improved gel adhesion to substrates
EP0830412A4 (en) * 1995-06-07 1999-06-02 Vladimir Feingold Biocompatible optically transparent polymeric material based upon collagen and method of making
RU2089198C1 (en) * 1995-11-30 1997-09-10 Межотраслевой научно-технический комплекс "Микрохирургия глаза" Method of preparing biomaterial for using in ophthalmology
US6833408B2 (en) 1995-12-18 2004-12-21 Cohesion Technologies, Inc. Methods for tissue repair using adhesive materials
JP4193917B2 (en) 1995-12-18 2008-12-10 アンジオデバイス インターナショナル ゲーエムベーハー Crosslinked polymer composition and method of use thereof
ZA978537B (en) 1996-09-23 1998-05-12 Focal Inc Polymerizable biodegradable polymers including carbonate or dioxanone linkages.
US5814328A (en) 1997-01-13 1998-09-29 Gunasekaran; Subramanian Preparation of collagen using papain and a reducing agent
US6933326B1 (en) 1998-06-19 2005-08-23 Lifecell Coporation Particulate acellular tissue matrix
US20020115066A1 (en) * 1998-11-26 2002-08-22 Hope Ralph Graham Viral therapeutics
WO2000052516A2 (en) * 1999-03-01 2000-09-08 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
PL356006A1 (en) 1999-12-17 2004-05-31 CARTIFICIAL A/S, Medico Chemical Lab.ApS A prosthetic device
CA2399224A1 (en) * 2000-02-18 2001-08-23 Regeneration Technologies, Inc. Implantable tissues infused with growth factors and other additives
US20050182489A1 (en) * 2001-04-27 2005-08-18 Peyman Gholam A. Intraocular lens adapted for adjustment via laser after implantation
US6918904B1 (en) * 2001-11-07 2005-07-19 Minu, L.L.C. Method of reshaping the cornea by controlled thermal delivery
US6780840B1 (en) 2001-10-09 2004-08-24 Tissue Adhesive Technologies, Inc. Method for making a light energized tissue adhesive
US6939364B1 (en) 2001-10-09 2005-09-06 Tissue Adhesive Technologies, Inc. Composite tissue adhesive
US6773699B1 (en) 2001-10-09 2004-08-10 Tissue Adhesive Technologies, Inc. Light energized tissue adhesive conformal patch
US20070142828A1 (en) * 2001-11-07 2007-06-21 Minu, Llc Method and system for altering the refractive properties of the eye
US20050149006A1 (en) * 2001-11-07 2005-07-07 Peyman Gholam A. Device and method for reshaping the cornea
US20050177149A1 (en) * 2001-11-07 2005-08-11 Peyman Gholam A. Method and apparatus for reshaping the cornea by controlled thermal delivery
US20070088415A1 (en) * 2001-11-07 2007-04-19 Minu Llc Method of treating the eye using controlled heat delivery
JP2006516548A (en) 2002-12-30 2006-07-06 アンジオテック インターナショナル アクツィエン ゲゼルシャフト Drug delivery from rapidly gelled polymer compositions
US7015013B2 (en) * 2003-05-15 2006-03-21 3D Vision Systems, Llc Method for localized staining of an intact corneal tissue surface
US7628810B2 (en) * 2003-05-28 2009-12-08 Acufocus, Inc. Mask configured to maintain nutrient transport without producing visible diffraction patterns
US20050046794A1 (en) * 2003-06-17 2005-03-03 Silvestrini Thomas A. Method and apparatus for aligning a mask with the visual axis of an eye
US20050106270A1 (en) * 2003-10-06 2005-05-19 Devore Dale P. Chemical treatment of in vivo tissue to alter charge and net charge density characteristics
BRPI0510477B1 (en) 2004-04-28 2023-01-17 Angiotech Biomaterials Corporation METHOD FOR FORMING A GEL AND DEVICE FOR USE IN MEDICAL APPLICATIONS
US20060113054A1 (en) * 2004-12-01 2006-06-01 Silvestrini Thomas A Method of making an ocular implant
US7491350B2 (en) * 2004-12-01 2009-02-17 Acufocus, Inc. Method of making an ocular implant
US7976577B2 (en) 2005-04-14 2011-07-12 Acufocus, Inc. Corneal optic formed of degradation resistant polymer
RU2008142840A (en) 2006-03-30 2010-05-10 Джелесис, Инк. (Us) A COPOLYMER OF STYRENE AND MALEIC ANHYDRIDE / ACID (OPTIONS), A PRODUCT BASED ON IT, A METHOD FOR PRODUCING A COPOLYMER OF STYRENE AND MALEIC ANHYDRIDE / ACID
US20080001320A1 (en) 2006-06-28 2008-01-03 Knox Wayne H Optical Material and Method for Modifying the Refractive Index
WO2009070438A1 (en) * 2007-11-30 2009-06-04 Bausch & Lomb Incorporated Optical material and method for modifying the refractive index
AU2009223641A1 (en) * 2008-03-14 2009-09-17 Euclid Systems Corporation Ultraviolet irradiation to treat corneal weakness disorders
US8469779B1 (en) 2009-01-02 2013-06-25 Lifecell Corporation Method for debristling animal skin
US9492272B2 (en) 2009-08-13 2016-11-15 Acufocus, Inc. Masked intraocular implants and lenses
USD656526S1 (en) 2009-11-10 2012-03-27 Acufocus, Inc. Ocular mask
EP2696908B1 (en) 2011-04-14 2015-03-11 Lifecell Corporation Regenerative materials
US9089523B2 (en) 2011-07-28 2015-07-28 Lifecell Corporation Natural tissue scaffolds as tissue fillers
US9545303B2 (en) 2011-12-02 2017-01-17 Acufocus, Inc. Ocular mask having selective spectral transmission
EP2793964B1 (en) 2011-12-20 2019-03-20 LifeCell Corporation Sheet tissue products
DK3501558T3 (en) 2011-12-20 2021-03-01 Lifecell Corp LIQUID TISSUE PRODUCTS
US9271821B2 (en) 2012-01-24 2016-03-01 Lifecell Corporation Elongated tissue matrices
BR112014026090A8 (en) 2012-04-24 2019-08-27 Lifecell Corp flowable tissue matrix composition
WO2014011402A1 (en) 2012-07-13 2014-01-16 Lifecell Corporation Methods for improved treatment of adipose tissue
AU2013323747B2 (en) 2012-09-26 2017-02-02 Lifecell Corporation Processed adipose tissue
US20140142200A1 (en) * 2012-11-16 2014-05-22 Eyegenix LLC Keratoprosthesis
EP3659633A1 (en) 2013-02-06 2020-06-03 LifeCell Corporation Methods for localized modification of tissue products
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
GB201305281D0 (en) 2013-03-22 2013-05-01 Univ Leeds Improvements in and relating to collagen based materials
WO2017210109A1 (en) 2016-06-03 2017-12-07 Lifecell Corporation Methods for localized modification of tissue products
US11045583B2 (en) 2016-12-22 2021-06-29 Lifecell Corporation Devices and methods for tissue cryomilling
US10821205B2 (en) 2017-10-18 2020-11-03 Lifecell Corporation Adipose tissue products and methods of production
US11123375B2 (en) 2017-10-18 2021-09-21 Lifecell Corporation Methods of treating tissue voids following removal of implantable infusion ports using adipose tissue products
EP3697462B1 (en) 2017-10-19 2023-07-12 LifeCell Corporation Flowable acellular tissue matrix products and methods of production
US11246994B2 (en) 2017-10-19 2022-02-15 Lifecell Corporation Methods for introduction of flowable acellular tissue matrix products into a hand
WO2020243497A1 (en) 2019-05-30 2020-12-03 Lifecell Corporation Biologic breast implant

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1067219B (en) * 1955-12-19 1959-10-15 Farbenfabriken Bayer Aktiengesellschaft, Leverkusen - Bayerwerk Process for the preparation of photocrosslinking high polymer compounds
US3453222A (en) * 1966-02-28 1969-07-01 Swift & Co Unsaturated sultone derivatives of proteins
JPS50141320A (en) * 1974-04-30 1975-11-13
US3949073A (en) * 1974-11-18 1976-04-06 The Board Of Trustees Of Leland Stanford Junior University Process for augmenting connective mammalian tissue with in situ polymerizable native collagen solution
US4233360A (en) * 1975-10-22 1980-11-11 Collagen Corporation Non-antigenic collagen and articles of manufacture
US4488911A (en) * 1975-10-22 1984-12-18 Luck Edward E Non-antigenic collagen and articles of manufacture
US4215200A (en) * 1978-10-02 1980-07-29 Cornell Research Foundation, Inc. Chemically and enzymatically modified collagen hemostatic agent
US4264493A (en) * 1978-10-18 1981-04-28 Battista Orlando A Natural protein polymer hydrogels
US4223984A (en) * 1979-04-04 1980-09-23 Opticol Corporation Collagen soft contact lens
US4268131A (en) * 1979-04-11 1981-05-19 Opticol Corporation Fiber collagen contact lens
US4264155A (en) * 1979-07-09 1981-04-28 Opticol Corporation Collagen contact lens
US4349470A (en) * 1979-09-14 1982-09-14 Battista Orlando A Protein polymer hydrogels
US4260228A (en) * 1980-01-21 1981-04-07 Opticol Corporation Collagen gel contact lens and method of preparation
CS216992B1 (en) * 1980-07-21 1982-12-31 Miroslav Stol Composite polymere material for the biological and medicinal utilitation and method of preparation thereof
US4452925A (en) * 1981-02-09 1984-06-05 National Patent Development Corporation Biologically stabilized compositions comprising collagen as the minor component with ethylenically unsaturated compounds used as contact lenses
US4388428A (en) * 1981-07-20 1983-06-14 National Patent Development Corporation Biologically stabilized compositions comprising collagen as the major component with ethylenically unsaturated compounds used as contact lenses
US4424208A (en) * 1982-01-11 1984-01-03 Collagen Corporation Collagen implant material and method for augmenting soft tissue
US4581030A (en) * 1982-09-30 1986-04-08 Massachusetts General Hospital Collagen replacement prothesis for the cornea
CA1208558A (en) * 1982-10-07 1986-07-29 Kazuo Kigasawa Soft buccal
FR2565160B1 (en) * 1984-06-04 1987-03-06 Essilor Int PROCESS FOR PRODUCING A FLEXIBLE CONTACT LENS OF NATURAL PROTEIN POLYMER (S), AND CONTACT LENS THUS OBTAINED
US4783907A (en) * 1985-07-04 1988-11-15 Rene Ravaux Device for simultaneously cutting and treating a plant stem
US4687518A (en) * 1985-11-06 1987-08-18 Optical Corp. Method for manufacturing pyrogen-free collagen gels useful as contact lenses
EP0250571B1 (en) * 1986-01-06 1991-05-22 The University Of Melbourne Precipitation of collagen in tactoid form
JP2616960B2 (en) * 1988-05-26 1997-06-04 日本油脂株式会社 Aqueous gelling agent and aqueous gel

Also Published As

Publication number Publication date
EP0444244A2 (en) 1991-09-04
CA2035986A1 (en) 1991-08-29
EP0444244A3 (en) 1992-02-05
US5104957A (en) 1992-04-14

Similar Documents

Publication Publication Date Title
CA2035986C (en) Biologically compatible collagenous reaction product and articles useful as medical implants produced therefrom
US5201764A (en) Biologically compatible collagenous reaction product and articles useful as medical implants produced therefrom
US5219895A (en) Collagen-based adhesives and sealants and methods of preparation and use thereof
AU559551B2 (en) Hydrogels of modified solubilized collagen
AU548496B2 (en) Modified synthetic hydrogels
US5067961A (en) Non-biodegradable two phase corneal implant and method for preparing same
US5660692A (en) Method of crosslinking amino acid-containing polymers using photoactivatable chemical crosslinkers
EP0296078B1 (en) Biomaterials based on mixtures of collagen, chitosan and glycosaminoglycans, method for preparing them and their use in human medicine
US20030100666A1 (en) Compositions capable of forming hydrogels in the eye
CA2452833C (en) Compositions capable of forming hydrogels in the eye
AU2002328901A1 (en) Compositions capable of forming hydrogels in the eye
USRE33997E (en) Biologically stabilized compositions comprising collagen as the minor component with ethylenically unsaturated compounds used as contact lenses
US5856120A (en) Method of preparing a biological material for use in ophthalmology
US5936256A (en) Method of preparing a biological material for use in ophthalmology
US5993796A (en) Biocompatible polymeric materials, methods of preparing such materials and uses thereof
JPH082372B2 (en) Lens for Refractive Kerat Plastic

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20030210