CA2027623A1 - High temperature-generating method and application thereof - Google Patents
High temperature-generating method and application thereofInfo
- Publication number
- CA2027623A1 CA2027623A1 CA 2027623 CA2027623A CA2027623A1 CA 2027623 A1 CA2027623 A1 CA 2027623A1 CA 2027623 CA2027623 CA 2027623 CA 2027623 A CA2027623 A CA 2027623A CA 2027623 A1 CA2027623 A1 CA 2027623A1
- Authority
- CA
- Canada
- Prior art keywords
- flame
- high temperature
- ionizing
- substance
- generating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 46
- 230000005291 magnetic effect Effects 0.000 claims abstract description 22
- 239000000126 substance Substances 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 230000002285 radioactive effect Effects 0.000 claims abstract description 11
- 230000001590 oxidative effect Effects 0.000 claims abstract description 7
- 238000005245 sintering Methods 0.000 claims abstract description 7
- 238000000465 moulding Methods 0.000 claims abstract 5
- 238000002485 combustion reaction Methods 0.000 claims description 26
- 229930195733 hydrocarbon Natural products 0.000 claims description 13
- 150000002430 hydrocarbons Chemical class 0.000 claims description 13
- 239000004215 Carbon black (E152) Substances 0.000 claims description 12
- 239000000446 fuel Substances 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 239000013543 active substance Substances 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000002699 waste material Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000002889 diamagnetic material Substances 0.000 claims description 2
- 239000003302 ferromagnetic material Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 239000002907 paramagnetic material Substances 0.000 claims description 2
- 239000011819 refractory material Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000919 ceramic Substances 0.000 abstract description 4
- 239000002440 industrial waste Substances 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 8
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000010287 polarization Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- -1 oxides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000002906 medical waste Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004846 x-ray emission Methods 0.000 description 1
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
HIGH TEMPERATURE-GENERATING METHOD
AND APPLICATION THEREOF
ABSTRACT OF THE DISCLOSURE
A flame-ionizing material formed by molding a composition comprising a magnetic substance and a substance, the specific electric resistance of which is varied under irradiation with radioactive rays, and sintering the molded body in an oxidative atmosphere, has a function of ionizing a flame when the flame is brought into contact with this flame-ionizing material, and if a magnetic field is applied to the flame, a plasma flame having a higher temperature can be formed.
Accordingly, this high temperature-generating means and method are valuable in fields where a high temperature is required, for example, for an incineration of industrial wastes and decomposing matter containing a large quantity of water, and the metallurgical and ceramic fields.
AND APPLICATION THEREOF
ABSTRACT OF THE DISCLOSURE
A flame-ionizing material formed by molding a composition comprising a magnetic substance and a substance, the specific electric resistance of which is varied under irradiation with radioactive rays, and sintering the molded body in an oxidative atmosphere, has a function of ionizing a flame when the flame is brought into contact with this flame-ionizing material, and if a magnetic field is applied to the flame, a plasma flame having a higher temperature can be formed.
Accordingly, this high temperature-generating means and method are valuable in fields where a high temperature is required, for example, for an incineration of industrial wastes and decomposing matter containing a large quantity of water, and the metallurgical and ceramic fields.
Description
~ 2 3 SKW(ASK)-7879 HIGH TEMPE~ATURE-GENERATING METHOD
AND APPLICATION THEREOF
TECHNICAL FIELD
The present invention relates to a material having a function of ionizing a combustion flame of a hydro-carbon, and an application thereof. According to the present invention, a high-temperature plasma flame can be generated without using an electric discharge, and thus the present invention can be valuably utilized in industrial fields where a high temperature is required, for example, an incineration of industrial wastes and decomposing matter or putrefactions containing a large quantity of water, and the metallurgical and ceramic .
fields. Furthermore, it is considered that the flame ionizing material of the present invention will be able to be used as an ion-generating source for an ion-propelled engine or as a semiconductor.
BACKGROUND ART
In industrial fields where a high-temperature treatment is necessary, a plasma has been heretofore utilized as the high temperature-generating means, and since the conventional plasma-generating method utilizes an electric discharge, it has a basic problem in that a large amount of electric power is necessary, and further, the method is disadvantageous in that the means for generating the plasma is complicated and expensive.
Alternatively, a method in which a hydrocarbon is burnt by using a catalyst comprising specific metals in combination is known (see, for example, U.S. Patent No. 3,842,015), Japanese Examined Patent Publication No. 61-20764 and Japanese Unexamined Patent Publication No. 63-283751), but this method is directed to the treatment of automobile exhaust gas or factory exhaust gas, and the combustion temperature is 1500C at highest.
2027~23 DISCLOSURE OF THE INVENTION
Accordingly, a primary object of the present invention is to provide a means for generating a plasma at a high efficiency without utilizing an electric discharge. A secondary object of the present invention is to provide avm thod by~which a p~ompt and efficient incineration of wastes is carried out, as a typical .. . ... .
instance of a utilization of a high temperature generated by the above-mentioned means.
The primary ob~ect of the present invention, i.e., a generation of a plasma without utilizing an electric discharge, is attained by a material having a function of ionizing at least a part of a combustion flame of a hydrocarbon when the combustion flame comes into contact with the material (this material will be called l~flame-ionizing material' hereinafter). The second object of ~ _ . . . .
the present invention, that is, the method of generating a high temperature without utilizing an electric discharge, is attained by causing a combustion flame of a hydrocarbon to come into contact with this flame:
ionizing material.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 throuqh 3 are schematic diagrams illustrating an incinerator utilizing the method of the present invention;
Fig. 4 is a schematic diagram illustrating a modification of this incinerator;
Fig. 5 and 6 are schematic diagrams illus-trating a burner used in the method of the present invention;
Fig. 7 is a conceptual diagram illustrating a modification of this burner; and Fig. 8 is a conceptual diagram illustrating an electron beam emission tube.
BEST MODE OF CARRYING OUT THE INVENTION
The flame-ionizing material of the present invention is provided by sintering in an oxidative ... ..
_ 3 202762~ -atmosphere a composition comprising a magnetic material and, incorporated therein, a substance, the specific electric resistance of which is varied under irradiation with radioactive rays (hereinafter referred to as "optically active substance"). As the optically active substance, there can be mentioned, for example, simple substances and compounds such as oxides, sulfides and halides of selenium, cadmium, titanium, lithium, ~arium and thallium. As the magnetic material, there can be used ferromagnetic materials (for example, iron, nickel and cobalt, and compounds thereof), paramagnetic materials (for example, manganese, aluminum and tin, and compounds thereof), and diamagnetic materials (for example, bismuth, phosphorus, copper and calcium, and compounds thereof). The mixing ratio of the magnetic material to the optically active substance is 5 to 40%
by weight, preferably 8 to 30% by weight.
This composition is generally mixed with a binder, molded into a desirable shape such as a rod or sphere, and sintered. Binders customarily used in the ceramic industry, for example, clay, calcium carbonate, ca].cium oxide, kaolin and acid clay, can be optionally used.
The amount used of the binder is generally about 1 to about 2 times the amount of the above composition.
Sintering of the molded body is carried out in an oxidative atmosphere in an electric field at a tempera-ture higher than 1500C, preferably 1800 to 2000C. As the calcination is advanced, the molded body gradually exerts an ionizing function, and it is found that the firing atmosphere is accordingly ionized and the temperature of the firing atmosphere is elevated to a high level. Thus, the above-mentioned material is polarized to some extent only by firing and therefore, can be used as the flame-ionizing material. Neverthe-less, preferably the polarization degree is increased by carrying out the polarizing treatment at or after the firing operation. The polarization can be effected even . ~ ... ... .
_ 4 _ 2~27~23 at normal temperature by placing the molded body under a high voltage for a considerable time. If a voltage is applied at a high temperature, the polarization equivalent to that at normal temperature can be attained under a lower voltage. The polarization degree is not particularly critical, but preferably the polarization degree is about 5 to about 20 mV.
According to the high temperature-generating method, which is the first application of the flame-ionizing material of the present invention, theflame-ionizing material constructed in the above-mentioned manner is brought into contact with a combustion flame of a hydrocarbon. As the hydrocarbon, there can be used not only usual fuels such as fuel oil, kerosine and alcohols, but also mixtures formed by adding water or coal powder to these fuels for improving the combustion efficiency. No contrivance need be made to the method of the combustion of these hydrocarbons, and oxygen necessary for the combustion is generally supplied in the form of air. The supply of air in an amount larger than the amount necessary for the combustion is preferable, because the efficiency of the contact with the ionizing material is increased.
By the contact with the ionizing material of the present invention, the combustion flame is ionized to produce a plasma state, but this state is extinguished in a relatively short time and the flame revets to usual neutral flame. Application of a magnetic field to the combustion flame is a means effective for stabilizing the plasma state for a time as long as possible, and if this means is adopted, a long-time continuation of a high temperature becomes possible. If a high-frequency magnetic field is used as the magnetic field and is rendered rotational, an increase of the energy can be easily attained. The intensity of the magnetic field is not particularly critical, but from the practical viewpoint, a flux density of at least 10000 G and a '. -2~27~23 frequency of 20 to 50 MHz are preferably adopted. Thisis because H2O and CO2 bonded by the combustion are ionized to prevent a re-bonding thereof. A high-frequency magnetic field as mentioned above is suitable for imparting an enexgy larger than the bonding energy of H2O and CO2. A higher magnetic field can be used, but this is not advantageous from the economical viewpoint.
If irradiation with X-ray, ~-rays, ~-rays, 7-rays, -ultraviolet rays, infrared rays and visible rays (preferably~ radiations having an energy larger thanthat of infrared rays) is carried out simultaneously with the above-mentioned application of the magnetic field, the flame is more easily ionized and the ionization state is more stabilized. Therefore, this irradiation is preferred.
For bringing the combustion flame into contact with the flame-ionizing material, there is usually adopted a method in which a flame from flame-generating means (an ordinary burner can be used) is caused to impinge against the flame-ionizing material placed in a combustion furnace. According to another embodiment, a fLame-generating means lined with the flame-ionizing material is used, and the flame is introduced into the furnace while being contracted with the flame-ionizing material.
As apparent from the foregoing description, the apparatus for use in carrying out the high temperature-generating method of the present invention should be equipped with a flame-ionizing material and a means for generating a flame by burning a hydrocarbon, and preferably from the industrial viewpoint, the apparatus is further equipped with a magnetism-generating means and with a radioactive ray-irradiation means. The apparatus for use in carrying out the above-mentioned another embodiment comprises a flame-injecting cylinder having the flame-ionizing material arranged on the inner : : :
- 6 - ~0~7623 surface. In the apparatus equipped with this flame-generating means, the arrangement of the flame-ionizing material in the combustion furnace can sometimes be omitted The flame-ionizing material of the present invention and the high temperature-generating method and apparatus as typical instances of the utilization of the flame-ionizing material have been described. The present invention will now b0 described while taking an incinerator as an example with reference to the accompanying drawings.
Figure 1 is a conceptual diagram illustrating the longitudinal section of an incinerator provided with the flame-ionizing material 15 of the present invention.
The incinerator consists of a cylindrical refractory furnace 1, in which a plasma chamber 2, a psuedo-plasma chamber 3 and a neutral flame chamber 4 are arranged in order from the bottom, and porous fire grate bars 5 and 6 are arranged between adjacent chambers. Namely, the combustion flame is brought into contact with the flame-ionizing material 15 in the plasma chamber 2 to form a plasma flame, and while the plasma flame rises, it is converted to a pseudo-plasma flame in the pseudo-plasma chamber 3 and almost to a neutral flame in the neutral flame chamber 4. A waste to be incinerated is thrown into the cylindrical refractory furnace l from a throwing opening 7 formed at the top of the furnace l, is dried and burnt by the neutral flame in the neutral flame chamber 4 and is burnt at a higher temperature by the pseudo-plasma flame in the pseudo-plasma. In the plasma chamber 2, the temperature is further elevated and complete combustion is performed. A discharge opening 8 is formed at the furnace bottom to withdraw incineration ash and incombustibles, but if necessary, a screw conveyor can be arranged to withdraw the incinera-tion ash. In Fig. l, a lift for lifting up the waste tothe furnace top and a device for forced exhaustion are omitted.
- _ 7 _ 2027~23 Figures 2 and 3 are diagrams illustrating in detail the cross-section and longitudinal section of the plasma chamber 2. Three burners 12 and three electromagnetic coils 13 are equidistantly arranged on a furnace wall 11, and the burners 12 are disposed so that flames are rotated to the right, and iron cores 14 of the electromagnetic coils 13 are embedded in the furnace wall 11. The flame-ionizing member 15 is arranged in front of each burner 12. In this embodiment, three burners 12 and three flame-ioniæing members 15 are arranged . Note, only one each of the burner and flame-ionizing member may be arranged, and the burner may be directed to the center of the cylinder. The burner 12 may be a commercially available burner of the type where fuel oil or kerosine is used as the fuel and an air/fuel mixture is injected.
~ igure 4 shows modification of the incinerator shown in Figs. 1 through 3, i.e., an incinerator suitable for the incineration of a waste having a high water content, such as fish entrails or decomposin~
matter. The principle of this modification is the same as that of the above-mentioned embodiment, but in this modification, a containing cage 21 composed of a heat-resistant metal is arranged in the neutral flame chamber to effect dehydration, and many window holes are formed in the containing cage 21 and the lower end portion of a driving shaft 22 is supported on a carbon bearing 23 to rotate the containing cage 21 around the driving shaft 22. The carbon bearing 23 is formed by kneading a 7/3 mixture of graphite/silicon nitride with an alkaline solution and sintering the kneaded mixture at about 1800C for about 10 hours in an oxygen-free state and is contained in a stainless steel casing.
Entrails and the like are supplied into the containing cage 21, and the containing cage 21 is rotated by a rotating torque applied to the driving shaft 22, whereby the entrails are dehydrated and the .. . . . .
. .
2027~23 decomposed entrails are shaken out from the window holes. Since the entrails are shaken out in proportion to the centrifugal force, the feed rate of the decomposed entrails to the lower stage can be controlled by controlling the rotation number.
Figure 5 is a diagram showing still another embodiment of the contact between the flame-ionizing material and the flame. A combustion flame jetted from a fuel injection nozzle 32 arranged in the interior of a flame injection cylinder 31 having the inner surface lined with the flame-ionizing material is brought into contact with the flame-ionizing material and is at least partially ionized. Simultaneously, the flame is irradiated with radioactive rays (X-rays) emitted from a radiation tube (for example, an X-ray tube) 33 arranged in the rear of the fuel injection nozzle 32. Further-more, high-frequency magnetic fields are applied to the flame by first electromagnetic coils 34 equidistantly arranged around the flame injection cylinder 31 and second electromagnetic coils 35 arranged in the rear of the fuel injection nozzle 32, whereby the ionization of the flame is promoted and stabilized and a high-energy state is maintained.
Figure 6 is a view of the burner of Fig. 5 seen from the injection opening side of the flame injection cylinder 31. This burner can be used as the burner 12 in the embodiment shown in Figs. 1 through 3, and in this case, the arrangement of the flame-ionizing material 15 in the incinerator can be omitted.
Figure 7 shows a modification of the apparatus shown in Fig. 5. A sirocco fan 36 is arranged in the rear of the fuel injection nozzle 32 and radiation tube (for example, an X-ray tube) 33. Since this flame-generating apparatus is of a small burner type, this can be conveniently used as the burner in the embodiment shown in Fig. 1 or 4.
Figure 8 shows an example of the electron beam-. . ` ~ ' '~
. ~ .
: `
9 2~27~23 generating apparatus, which comprises a negative electrode 4l, a positive electrode 42, a control grid 43, a convergent coil 44 and a deflection coil 45.
A voltage of 15 to 30 kV is applied between the negative and positive electrodes to electrify the convergent coil 44 and deflection coil 45, whereby high-speed electron beams are emitted from the front surface. A
commercially available Tv Braun tube can be used as this electron beam-generating apparatus. Furthermore, an X-ray emission tube is marketed and is easily available.
When a combustion flame of a hydrocarbon or the like is brought into contact with the flame-ionizing \ material of the present invention, the flame is ionized ` to produce a plasma state, and a much higher temperature 15 I than the temperature attainable in other case can be / realized. If a magnetic field is further applied in ! this state, the plasma is stably maintained. Accord-ingly, such a high temperature as 3000 to 4000~C can be ~ attained without utilizing any electric discharge means.
The present invention will now be described in detail with reference to the following examples that by no means limit the scope of the invention.
Exam~les l throuqh 6 An optically active substance, a magnetic material and a binder were mixed at a weight ratio shown in Table l, and the mixture was molded into a rod and sintered according to customary procedures to obtain a flame-ionizing material of the present invention.
A flame formed by burning fuel oil as a fuel by a commercially available burner was brought into contact with this flame-ionizing material, and the temperature was measured by an optical pyrometer. The results are shown in Table l.
l ~ o o ~ .~ ~ ~ ~
a z ''I .n a ~
O 'q ~ ~ O D. C-:
~02762~
Note *: element electrode distance was 1 mm and electrode material was nickel **: comparison (flame-ionizing material was not used), 1600C (60 minutes) Exam~le 7 Medical wastes (fibers such as bandages and adsorbent cotton, rubber articles such as gloves and tubes, glass bottles, metals such as injection needles and cans, and the like) discharged from a medium-scale hospital were thrown into the incinerator shown in Fig. 1, to which the flame-ionizing material of Example 1 was attached, and the incineration test was carried out. The results are shown in Table 2. In the comparison, the flame-ionizing material was not used.
.
`: :
- 12 - 2827~23 d ~
C o ~O~D4rC 6 ,1 .!IS ~
~ '~ O O
C~ `D O~
I
I _~
P. U~
d ~~ u r~ I _ ~ 0. O U7 ~
I
I g U , ~ ooXoX
~ d u ~ v d ~ a -''~
~ H :~ O
2027~23 Exam~le 8 About 10 kg of frozen fish entrails were charged in the furnace shown in Fig. 4, to which the flame-ionizin~
materials of Example 2 was attached. In a moment, large quantities of steam and other gases were generated. The entrails were completely burnt with a small amount of ash being left.
INDUSTRIAL APPLICABILITY
According to the present invention, a temperature much higher than the temperature attainable by a usual combustion flame (neutral flame) can be obtained by a simple method using a usual fuel without the necessity of the large electric power (electric discharge) required in the conventional plasma-utilizing furnace.
Accordingly, the present invention is very valuable for an incineration and other operations for which a high temperature is necessary. For example, the present invention can be effectively utilized for an incinera-tion of industrial wastes and decomposing matter having a high water content, and in other industrial fields where a high temperature is necessary, for example, the metallurgical and ceramic industries. Moreover, it is expected that the product of the present invention will be used as an ion-generating source for an ion-propelled engine and as a semiconductor.
- , ' :
AND APPLICATION THEREOF
TECHNICAL FIELD
The present invention relates to a material having a function of ionizing a combustion flame of a hydro-carbon, and an application thereof. According to the present invention, a high-temperature plasma flame can be generated without using an electric discharge, and thus the present invention can be valuably utilized in industrial fields where a high temperature is required, for example, an incineration of industrial wastes and decomposing matter or putrefactions containing a large quantity of water, and the metallurgical and ceramic .
fields. Furthermore, it is considered that the flame ionizing material of the present invention will be able to be used as an ion-generating source for an ion-propelled engine or as a semiconductor.
BACKGROUND ART
In industrial fields where a high-temperature treatment is necessary, a plasma has been heretofore utilized as the high temperature-generating means, and since the conventional plasma-generating method utilizes an electric discharge, it has a basic problem in that a large amount of electric power is necessary, and further, the method is disadvantageous in that the means for generating the plasma is complicated and expensive.
Alternatively, a method in which a hydrocarbon is burnt by using a catalyst comprising specific metals in combination is known (see, for example, U.S. Patent No. 3,842,015), Japanese Examined Patent Publication No. 61-20764 and Japanese Unexamined Patent Publication No. 63-283751), but this method is directed to the treatment of automobile exhaust gas or factory exhaust gas, and the combustion temperature is 1500C at highest.
2027~23 DISCLOSURE OF THE INVENTION
Accordingly, a primary object of the present invention is to provide a means for generating a plasma at a high efficiency without utilizing an electric discharge. A secondary object of the present invention is to provide avm thod by~which a p~ompt and efficient incineration of wastes is carried out, as a typical .. . ... .
instance of a utilization of a high temperature generated by the above-mentioned means.
The primary ob~ect of the present invention, i.e., a generation of a plasma without utilizing an electric discharge, is attained by a material having a function of ionizing at least a part of a combustion flame of a hydrocarbon when the combustion flame comes into contact with the material (this material will be called l~flame-ionizing material' hereinafter). The second object of ~ _ . . . .
the present invention, that is, the method of generating a high temperature without utilizing an electric discharge, is attained by causing a combustion flame of a hydrocarbon to come into contact with this flame:
ionizing material.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 throuqh 3 are schematic diagrams illustrating an incinerator utilizing the method of the present invention;
Fig. 4 is a schematic diagram illustrating a modification of this incinerator;
Fig. 5 and 6 are schematic diagrams illus-trating a burner used in the method of the present invention;
Fig. 7 is a conceptual diagram illustrating a modification of this burner; and Fig. 8 is a conceptual diagram illustrating an electron beam emission tube.
BEST MODE OF CARRYING OUT THE INVENTION
The flame-ionizing material of the present invention is provided by sintering in an oxidative ... ..
_ 3 202762~ -atmosphere a composition comprising a magnetic material and, incorporated therein, a substance, the specific electric resistance of which is varied under irradiation with radioactive rays (hereinafter referred to as "optically active substance"). As the optically active substance, there can be mentioned, for example, simple substances and compounds such as oxides, sulfides and halides of selenium, cadmium, titanium, lithium, ~arium and thallium. As the magnetic material, there can be used ferromagnetic materials (for example, iron, nickel and cobalt, and compounds thereof), paramagnetic materials (for example, manganese, aluminum and tin, and compounds thereof), and diamagnetic materials (for example, bismuth, phosphorus, copper and calcium, and compounds thereof). The mixing ratio of the magnetic material to the optically active substance is 5 to 40%
by weight, preferably 8 to 30% by weight.
This composition is generally mixed with a binder, molded into a desirable shape such as a rod or sphere, and sintered. Binders customarily used in the ceramic industry, for example, clay, calcium carbonate, ca].cium oxide, kaolin and acid clay, can be optionally used.
The amount used of the binder is generally about 1 to about 2 times the amount of the above composition.
Sintering of the molded body is carried out in an oxidative atmosphere in an electric field at a tempera-ture higher than 1500C, preferably 1800 to 2000C. As the calcination is advanced, the molded body gradually exerts an ionizing function, and it is found that the firing atmosphere is accordingly ionized and the temperature of the firing atmosphere is elevated to a high level. Thus, the above-mentioned material is polarized to some extent only by firing and therefore, can be used as the flame-ionizing material. Neverthe-less, preferably the polarization degree is increased by carrying out the polarizing treatment at or after the firing operation. The polarization can be effected even . ~ ... ... .
_ 4 _ 2~27~23 at normal temperature by placing the molded body under a high voltage for a considerable time. If a voltage is applied at a high temperature, the polarization equivalent to that at normal temperature can be attained under a lower voltage. The polarization degree is not particularly critical, but preferably the polarization degree is about 5 to about 20 mV.
According to the high temperature-generating method, which is the first application of the flame-ionizing material of the present invention, theflame-ionizing material constructed in the above-mentioned manner is brought into contact with a combustion flame of a hydrocarbon. As the hydrocarbon, there can be used not only usual fuels such as fuel oil, kerosine and alcohols, but also mixtures formed by adding water or coal powder to these fuels for improving the combustion efficiency. No contrivance need be made to the method of the combustion of these hydrocarbons, and oxygen necessary for the combustion is generally supplied in the form of air. The supply of air in an amount larger than the amount necessary for the combustion is preferable, because the efficiency of the contact with the ionizing material is increased.
By the contact with the ionizing material of the present invention, the combustion flame is ionized to produce a plasma state, but this state is extinguished in a relatively short time and the flame revets to usual neutral flame. Application of a magnetic field to the combustion flame is a means effective for stabilizing the plasma state for a time as long as possible, and if this means is adopted, a long-time continuation of a high temperature becomes possible. If a high-frequency magnetic field is used as the magnetic field and is rendered rotational, an increase of the energy can be easily attained. The intensity of the magnetic field is not particularly critical, but from the practical viewpoint, a flux density of at least 10000 G and a '. -2~27~23 frequency of 20 to 50 MHz are preferably adopted. Thisis because H2O and CO2 bonded by the combustion are ionized to prevent a re-bonding thereof. A high-frequency magnetic field as mentioned above is suitable for imparting an enexgy larger than the bonding energy of H2O and CO2. A higher magnetic field can be used, but this is not advantageous from the economical viewpoint.
If irradiation with X-ray, ~-rays, ~-rays, 7-rays, -ultraviolet rays, infrared rays and visible rays (preferably~ radiations having an energy larger thanthat of infrared rays) is carried out simultaneously with the above-mentioned application of the magnetic field, the flame is more easily ionized and the ionization state is more stabilized. Therefore, this irradiation is preferred.
For bringing the combustion flame into contact with the flame-ionizing material, there is usually adopted a method in which a flame from flame-generating means (an ordinary burner can be used) is caused to impinge against the flame-ionizing material placed in a combustion furnace. According to another embodiment, a fLame-generating means lined with the flame-ionizing material is used, and the flame is introduced into the furnace while being contracted with the flame-ionizing material.
As apparent from the foregoing description, the apparatus for use in carrying out the high temperature-generating method of the present invention should be equipped with a flame-ionizing material and a means for generating a flame by burning a hydrocarbon, and preferably from the industrial viewpoint, the apparatus is further equipped with a magnetism-generating means and with a radioactive ray-irradiation means. The apparatus for use in carrying out the above-mentioned another embodiment comprises a flame-injecting cylinder having the flame-ionizing material arranged on the inner : : :
- 6 - ~0~7623 surface. In the apparatus equipped with this flame-generating means, the arrangement of the flame-ionizing material in the combustion furnace can sometimes be omitted The flame-ionizing material of the present invention and the high temperature-generating method and apparatus as typical instances of the utilization of the flame-ionizing material have been described. The present invention will now b0 described while taking an incinerator as an example with reference to the accompanying drawings.
Figure 1 is a conceptual diagram illustrating the longitudinal section of an incinerator provided with the flame-ionizing material 15 of the present invention.
The incinerator consists of a cylindrical refractory furnace 1, in which a plasma chamber 2, a psuedo-plasma chamber 3 and a neutral flame chamber 4 are arranged in order from the bottom, and porous fire grate bars 5 and 6 are arranged between adjacent chambers. Namely, the combustion flame is brought into contact with the flame-ionizing material 15 in the plasma chamber 2 to form a plasma flame, and while the plasma flame rises, it is converted to a pseudo-plasma flame in the pseudo-plasma chamber 3 and almost to a neutral flame in the neutral flame chamber 4. A waste to be incinerated is thrown into the cylindrical refractory furnace l from a throwing opening 7 formed at the top of the furnace l, is dried and burnt by the neutral flame in the neutral flame chamber 4 and is burnt at a higher temperature by the pseudo-plasma flame in the pseudo-plasma. In the plasma chamber 2, the temperature is further elevated and complete combustion is performed. A discharge opening 8 is formed at the furnace bottom to withdraw incineration ash and incombustibles, but if necessary, a screw conveyor can be arranged to withdraw the incinera-tion ash. In Fig. l, a lift for lifting up the waste tothe furnace top and a device for forced exhaustion are omitted.
- _ 7 _ 2027~23 Figures 2 and 3 are diagrams illustrating in detail the cross-section and longitudinal section of the plasma chamber 2. Three burners 12 and three electromagnetic coils 13 are equidistantly arranged on a furnace wall 11, and the burners 12 are disposed so that flames are rotated to the right, and iron cores 14 of the electromagnetic coils 13 are embedded in the furnace wall 11. The flame-ionizing member 15 is arranged in front of each burner 12. In this embodiment, three burners 12 and three flame-ioniæing members 15 are arranged . Note, only one each of the burner and flame-ionizing member may be arranged, and the burner may be directed to the center of the cylinder. The burner 12 may be a commercially available burner of the type where fuel oil or kerosine is used as the fuel and an air/fuel mixture is injected.
~ igure 4 shows modification of the incinerator shown in Figs. 1 through 3, i.e., an incinerator suitable for the incineration of a waste having a high water content, such as fish entrails or decomposin~
matter. The principle of this modification is the same as that of the above-mentioned embodiment, but in this modification, a containing cage 21 composed of a heat-resistant metal is arranged in the neutral flame chamber to effect dehydration, and many window holes are formed in the containing cage 21 and the lower end portion of a driving shaft 22 is supported on a carbon bearing 23 to rotate the containing cage 21 around the driving shaft 22. The carbon bearing 23 is formed by kneading a 7/3 mixture of graphite/silicon nitride with an alkaline solution and sintering the kneaded mixture at about 1800C for about 10 hours in an oxygen-free state and is contained in a stainless steel casing.
Entrails and the like are supplied into the containing cage 21, and the containing cage 21 is rotated by a rotating torque applied to the driving shaft 22, whereby the entrails are dehydrated and the .. . . . .
. .
2027~23 decomposed entrails are shaken out from the window holes. Since the entrails are shaken out in proportion to the centrifugal force, the feed rate of the decomposed entrails to the lower stage can be controlled by controlling the rotation number.
Figure 5 is a diagram showing still another embodiment of the contact between the flame-ionizing material and the flame. A combustion flame jetted from a fuel injection nozzle 32 arranged in the interior of a flame injection cylinder 31 having the inner surface lined with the flame-ionizing material is brought into contact with the flame-ionizing material and is at least partially ionized. Simultaneously, the flame is irradiated with radioactive rays (X-rays) emitted from a radiation tube (for example, an X-ray tube) 33 arranged in the rear of the fuel injection nozzle 32. Further-more, high-frequency magnetic fields are applied to the flame by first electromagnetic coils 34 equidistantly arranged around the flame injection cylinder 31 and second electromagnetic coils 35 arranged in the rear of the fuel injection nozzle 32, whereby the ionization of the flame is promoted and stabilized and a high-energy state is maintained.
Figure 6 is a view of the burner of Fig. 5 seen from the injection opening side of the flame injection cylinder 31. This burner can be used as the burner 12 in the embodiment shown in Figs. 1 through 3, and in this case, the arrangement of the flame-ionizing material 15 in the incinerator can be omitted.
Figure 7 shows a modification of the apparatus shown in Fig. 5. A sirocco fan 36 is arranged in the rear of the fuel injection nozzle 32 and radiation tube (for example, an X-ray tube) 33. Since this flame-generating apparatus is of a small burner type, this can be conveniently used as the burner in the embodiment shown in Fig. 1 or 4.
Figure 8 shows an example of the electron beam-. . ` ~ ' '~
. ~ .
: `
9 2~27~23 generating apparatus, which comprises a negative electrode 4l, a positive electrode 42, a control grid 43, a convergent coil 44 and a deflection coil 45.
A voltage of 15 to 30 kV is applied between the negative and positive electrodes to electrify the convergent coil 44 and deflection coil 45, whereby high-speed electron beams are emitted from the front surface. A
commercially available Tv Braun tube can be used as this electron beam-generating apparatus. Furthermore, an X-ray emission tube is marketed and is easily available.
When a combustion flame of a hydrocarbon or the like is brought into contact with the flame-ionizing \ material of the present invention, the flame is ionized ` to produce a plasma state, and a much higher temperature 15 I than the temperature attainable in other case can be / realized. If a magnetic field is further applied in ! this state, the plasma is stably maintained. Accord-ingly, such a high temperature as 3000 to 4000~C can be ~ attained without utilizing any electric discharge means.
The present invention will now be described in detail with reference to the following examples that by no means limit the scope of the invention.
Exam~les l throuqh 6 An optically active substance, a magnetic material and a binder were mixed at a weight ratio shown in Table l, and the mixture was molded into a rod and sintered according to customary procedures to obtain a flame-ionizing material of the present invention.
A flame formed by burning fuel oil as a fuel by a commercially available burner was brought into contact with this flame-ionizing material, and the temperature was measured by an optical pyrometer. The results are shown in Table l.
l ~ o o ~ .~ ~ ~ ~
a z ''I .n a ~
O 'q ~ ~ O D. C-:
~02762~
Note *: element electrode distance was 1 mm and electrode material was nickel **: comparison (flame-ionizing material was not used), 1600C (60 minutes) Exam~le 7 Medical wastes (fibers such as bandages and adsorbent cotton, rubber articles such as gloves and tubes, glass bottles, metals such as injection needles and cans, and the like) discharged from a medium-scale hospital were thrown into the incinerator shown in Fig. 1, to which the flame-ionizing material of Example 1 was attached, and the incineration test was carried out. The results are shown in Table 2. In the comparison, the flame-ionizing material was not used.
.
`: :
- 12 - 2827~23 d ~
C o ~O~D4rC 6 ,1 .!IS ~
~ '~ O O
C~ `D O~
I
I _~
P. U~
d ~~ u r~ I _ ~ 0. O U7 ~
I
I g U , ~ ooXoX
~ d u ~ v d ~ a -''~
~ H :~ O
2027~23 Exam~le 8 About 10 kg of frozen fish entrails were charged in the furnace shown in Fig. 4, to which the flame-ionizin~
materials of Example 2 was attached. In a moment, large quantities of steam and other gases were generated. The entrails were completely burnt with a small amount of ash being left.
INDUSTRIAL APPLICABILITY
According to the present invention, a temperature much higher than the temperature attainable by a usual combustion flame (neutral flame) can be obtained by a simple method using a usual fuel without the necessity of the large electric power (electric discharge) required in the conventional plasma-utilizing furnace.
Accordingly, the present invention is very valuable for an incineration and other operations for which a high temperature is necessary. For example, the present invention can be effectively utilized for an incinera-tion of industrial wastes and decomposing matter having a high water content, and in other industrial fields where a high temperature is necessary, for example, the metallurgical and ceramic industries. Moreover, it is expected that the product of the present invention will be used as an ion-generating source for an ion-propelled engine and as a semiconductor.
- , ' :
Claims (12)
1. A high temperature-generating method com-prising bringing a combustion flame of a hydrocarbon into contact with a flame-ionizing material formed by molding a composition comprising a magnetic substance and a substance, the specific electric resistance of which is varied under irradiation with radioactive rays, and sintering the molded body in an oxidative atmosphere, said method further comprising applying a magnetic field to the combustion flame.
2. A high temperature-generating method according to claim 1, wherein the hydrocarbon combustion flame is further irradiated with radioactive rays, while bringing the flame into contact with the flame-ionizing material and applying the magnetic field thereto.
3. A high temperature-generating method according to claim 2, wherein the combustion of the hydrocarbon is carried out by supplying an excess of oxygen to the hydrocarbon.
4. An incineration method comprising burning wastes by a high temperature generated by the method according to claim 3.
5. A high temperature-generating apparatus comprising a flame-generating means for generating a flame by burning a fuel, a flame-ionizing material arranged at a position at which the flame is brought into contact therewith, said flame-ionizing member being formed by molding a composition comprising a magnetic substance and a substance, the specific electric resistance of which is varied under irradiation with radioactive rays, and sintering the molded body in an oxidative atmosphere, and a magnetic field generating means for applying a magnetic field to the flame.
6. A high temperature-generating apparatus as set forth in claim 5, which further comprises a radioactive ray-generating means.
7. A high temperature-generating apparatus comprising a cylinder composed of a refractory material, the inner surface of which is lined with a flame-ionizing material formed by molding a composition comprising a magnetic substance and a substance, the specific electric resistance of which is varied under irradiation with radioactive rays, and sintering the molded body in an oxidative atmosphere, and a combustion flame injection nozzle and a magnetic-field generating means, which are arranged in the interior of the cylinder.
8. A high temperature-generating apparatus as set forth in claim 7, which further comprises a radioactive ray-generating means arranged in the cylinder.
9. A flame-ionizing material formed by molding a composition comprising a magnetic substance and an optically active substance, the specific electric resistance of which is varied under irradiation with radioactive rays, and sistering the molded body is an oxidative atmosphere.
10. A flame-ionizing material according to claim 9 wherein a ratio of the magnetic substance to the optically active substance is 5 to 40% by weight.
11. A flame-ionizing material according to claim 9 wherein said magnetic substance contains a ferromagnetic material, a paramagnetic material and a diamagnetic material.
12. A flame-ionizing material according to claim 9 which comprises a binder in an amount 1-2 times by weight that of the total of the optically active substance and the magnetic substance.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2057886A JPH0350405A (en) | 1989-04-17 | 1990-03-12 | Flame ionizing member and application thereof |
| JP2-57886 | 1990-03-12 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA2027623A1 true CA2027623A1 (en) | 1991-09-13 |
Family
ID=13068473
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA 2027623 Abandoned CA2027623A1 (en) | 1990-03-12 | 1990-10-15 | High temperature-generating method and application thereof |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU623809B2 (en) |
| CA (1) | CA2027623A1 (en) |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3383159A (en) * | 1966-02-03 | 1968-05-14 | American Thermocatalytic Corp | Combustion elements |
| DE2157625C3 (en) * | 1971-11-20 | 1980-06-19 | Hoechst Ag, 6000 Frankfurt | Support catalyst |
| JPH074527B2 (en) * | 1987-05-18 | 1995-01-25 | 三菱重工業株式会社 | Combustible gas oxidation catalyst |
-
1990
- 1990-10-15 CA CA 2027623 patent/CA2027623A1/en not_active Abandoned
- 1990-10-15 AU AU64648/90A patent/AU623809B2/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| AU6464890A (en) | 1991-09-12 |
| AU623809B2 (en) | 1992-05-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3805747B2 (en) | Small ion decomposition type melting furnace | |
| US5123362A (en) | High temperature-generating method and application thereof | |
| GR3030339T3 (en) | Platelet activating factor antagonists. | |
| EP0318598B1 (en) | Microwave incinerator | |
| EP0185931A2 (en) | Method and apparatus for processing waste matter | |
| US5363777A (en) | Waste heat treatment apparatus | |
| RU2457395C2 (en) | Solid fuel combustion intensification method | |
| CA2027623A1 (en) | High temperature-generating method and application thereof | |
| RU2065220C1 (en) | Method for recovery of highly active graphite-containing solid waste | |
| BR9106714A (en) | METHOD AND APPLIANCE FOR PIROLYSIS OF SIX MATERIALS | |
| RU2151958C1 (en) | Method for thermal decontamination of solid wastes | |
| JP2898599B2 (en) | Method for producing metal fuel and metal fuel supply device used therefor | |
| JPH0674433A (en) | Incinerating device for waste refuse | |
| CA2358644C (en) | Process for incinerating waste products | |
| JP3027827B2 (en) | Incinerator using ion flame generator | |
| JPS61153308A (en) | Incineration of waste ion exchange resin or the like effected by microwave | |
| JP3084393B2 (en) | Breeding type ion flame generator | |
| JPH01239308A (en) | Microwave incinerator | |
| JP2002336899A (en) | Method for carbonizing organic sludge and carbonization device | |
| JP2003083517A (en) | Waste plasma melting method and waste plasma melting device | |
| SU696634A1 (en) | Electrode | |
| RU1813110C (en) | Method of ignition of sintering mixture | |
| JP3036583B2 (en) | How to prevent oxidation of heat resistant pipes | |
| JP2004167305A (en) | Ultrahigh thermal decomposition furnace | |
| KR19990034663A (en) | Active reforming method and apparatus of carbon material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request | ||
| FZDE | Dead |