CA2020406C - Chromatographic separation process for recovering either 2,6-det or 3,5-det from a mixture thereof with another det isomer - Google Patents

Chromatographic separation process for recovering either 2,6-det or 3,5-det from a mixture thereof with another det isomer

Info

Publication number
CA2020406C
CA2020406C CA 2020406 CA2020406A CA2020406C CA 2020406 C CA2020406 C CA 2020406C CA 2020406 CA2020406 CA 2020406 CA 2020406 A CA2020406 A CA 2020406A CA 2020406 C CA2020406 C CA 2020406C
Authority
CA
Canada
Prior art keywords
det
isomer
desorbent
adsorbent
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 2020406
Other languages
French (fr)
Other versions
CA2020406A1 (en
Inventor
Hermann A. Zinnen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Original Assignee
UOP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UOP LLC filed Critical UOP LLC
Priority to CA 2020406 priority Critical patent/CA2020406C/en
Publication of CA2020406A1 publication Critical patent/CA2020406A1/en
Application granted granted Critical
Publication of CA2020406C publication Critical patent/CA2020406C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

3,5-diethyltoluene (3,5-DET) and/or 2,6-diethyltoluene (2,6-DET) is selectively separated from a feed mixture comprising at least one isomer from the group 3,5-DET or 2,6-DET and at least one other DET isomer by contacting the feed mixture at adsorption conditions with an adsorbent selected from the Groups consisting of A) X
zeolite exchanged with a potassium cation; B) X zeolite exchanged with sodium or copper or Y zeolite exchanged with copper, sodium, barium or calcium: and C) X zeolite exchanged with barium or lithium or with potassium and barium or Y zeolite exchanged with potassium, sodium, barium or calcium, thereby selectively adsorbing one of the DET isomers contained in the feed; thereby selectively adsorbing one or more of said DET isomers and removing one or more relatively non-adsorbed isomer(s) from contact with the adsorbent to form a raffinate stream depleted in the adsorbed isomer relative to feed and thereafter contacting the rich adsorbent with a desorbent comprising a monocyclic alkyl-substituted aromatic hydrocarbon at desorption conditions effective to form an extract stream enriched in the adsorbed isomer relative to the feed.

Description

20~040~

''~UPOM~TOGRAPHIC ~EPARATION PROCE8~
FOR RECOVERING EITHBR 2,6-DET OR 3,5-DET
FROM A MIXTURB THEREOF WITH AN~-n~K DET I80MER"

BACKGROUND OF THE I-Nv~N-llON

The field of art to which this invention pertains is the solid bed adsorptive separation of isomeric mixtures of diethyltoluene (DET). More specifically, the invention relates to a process for separating particular isomers of DET--specifically, 2,6-and 3,5-diethyltoluene from other diethyltoluene isomers by employing a solid bed adsorption system.

BACKGROUND OF THE I~v~NllON

Both 2,6- and 3,5-diethyltoluene isomers are important starting materials for making diethyltoluene diamines, from which polyureas and polyurethanes are derived. Also, 2,6- and 3,5-diethyltoluene find application as a desorbent material in certain adsorptive chromatographic separations, e.g., p-xylene from its isomers and p-xylene from mixtures of C8 and Cg aromatics.
It is well known in the separation art that certain crystalline aluminosilicates can be used to separate hydrocarbon types from mixtures thereof.
Furthermore, X and Y zeolites have been employed in a number of processes to separate individual hydrocarbon isomers. However, no previously published adsorptive chromatographic separation processes have come to light for separating diethyltoluene isomers.
It is, however, known that crystalline aluminosilicates, or zeolites, used in other adsorptive or chromatographic separations of various mixtures, can be made in the form of agglomerates having high physical strength and attrition resistance. Methods for forming the crystalline powders into such agglomerates include the : 2 addition of an inorganic binder, generally a clay comprising a silicon dioxide and aluminum oxide, to the high purity zeolite powder in wet mixture. The blended clay zeolite mixture is extruded into cylindrical type pellets or formed into beads which are subsequently calcined in order to convert the clay to an amorphous binder of considerable mechanical strength. As binders, clays of the kaolin type, water permeable organic polymers or silica are generally used.
The invention herein involves using such agglomerates as adsorbent in a chromatographic proceRs which can be practiced in fixed or moving adsorbent bed systems. The preferred system for this separation is a countercurrent simulated moving bed system, such as described in Broughton U.S. Patent 2,985,589.
Cyclic advancement of the input and output streams can be accomplished by a manifolding system, which are also known, e.g., by rotary disc valves shown in U.S. Patents 3,040,777 and 3,422,848. Equipment 20 utilizing these principles are familiar, in sizes ranging from pilot plant scale (deRosset U.S. Patent 3,706,812) to commercial scale in flow rates from a few ml per hour to many thousands of cubic meters per hour.
Also, in some cases illustrated herein, it is 25 necessary to remove components of the feed in three product streams in order to remove undesired components of the feed in an intermediate stream from the extract and raffinate streams. This intermediate stream can be termed a second raffinate stream, as in U.S. Patent 4,313,015 or 30 a second extract stream, as in U.S. Patent 3,723,302.
This case pertains when a contaminating component in the feed is more strongly adsorbed than the desired product or when two product streams are desired and additional material in the feed can be removed in an intermediate stream. In the latter case, if it is desired to keep the concentration of the -.:
"

3 ~ 4 ~

contaminating component in the product as low as possible, a first extract is taken off, high in concentration of the desired component and lower in the contaminating product followed by a second extract withdrawn at a point in the extract zone between the desorbent inlet and the first extract point, containing a high concentration of the contaminant and a lower concentration of the desired product. It may not be necessary to use a second - desorbent if the desorbent is able to first desorb the lightly held product and then desorb the remaining more strongly held contaminants.

Some separations cases discussed herein may require a two-stage process, wherein a first stage separation is operated in the rejective mode to obtain a highly purified raffinate product, e.g., 3,5-DET, and the extract from the first stage is reprocessed in the same or a different column with the same adsorbent/desorbent combination to separate the most strongly adsorbed component, the extract product, e.g., 2,6-DET, from the intermediately-held components of the feed. The separations may also be reversed with the first stage separation operation to obtain a highly purified extract product, e.g., 2,6-DET and contacting a second adsorbent with the first stage raffinate in rejective mode to obtain a highly purified second stage raffinate product, e.g., 3,5-DET. The latter modification is similar to that disclosed in deRosset U.S. Patent 4,213,913 and will be understood therefrom.
The invention may also be practiced in a cocurrent, pulsed batch or continuous process, like those described in U.S. Patents 4,159,284 and 4,402,832, respectively. The continuous process described in 4,402,832 is also capable of operating so as to obtain three product streams as mentioned above.

A

The functions and properties of adsorbents and desorbents in the chromatographic separation of liquid components are well-known, see Zinnen et al U.S. Patent 4,6~2,397.
Although numerous uses for isomers of DET or mixtures thereof are known, e.g., as precursors of reactants, e.g., curing agents or isocyanates for making polyurethanes, e.g., diethyltoluene diamine and diethyl-toluene diisocyanate, they have recently been found to be a highly advantageous heavy desorbent for a chromatographic process for separating para-xylene from mixtures of xylene isomers. DET isomer desorbents are preferred especially for separating xylene mixtures which also contain Cg aromatics, the latter of which are difficult to separate from p-diethylbenzene, (p-DEB), a frequently taught desorbent for use in this application.
Currently, mixtures of DET isomers are used in the preparation of polyurethane precursors, but it would be highly desirable to make the precursors from highly pure individual isomers of DET in order to obtain higher yields of the desired reactant. Additionally, the yield of individual DET isomers can be increased by isomerizing, at isomerization conditions, the raffinate isomer mixture with an isomerization catalyst selected for a particular isomer, for example, zeolites containing trace metals, as is known in the art, and recycling the raffinate with increased concentration in one of the isomers with the feed to the instant process.

SUMMARY OF THE INVENTION

In brief summary, the invention is in one embodiment a chromatographic process for separating 2,6-or 3,5-DET from a mixture thereof with at least one other DET
isomer of diethyltoluene. The process comprises contacting the DET isomer mixture at adsorption conditions A

with an adsorbent selected from the following Groups: A) X zeolite exchanged with a potassium cation; B) X zeolite exchanged with sodium or copper or Y zeolite exchanged with copper, sodium, barium or calcium; and C) X zeolite exchanged with barium or lithium or with potassium and barium or Y zeolite exchanged with potassium, sodium, barium or calcium, thereby selectively adsorbing one of the DET isomers contained in the feed; thereby selectively adsorbing one of the DET isomers contained in the feed thereon and removing, or eluting at least one relatively non-adsorbed DET isomer from contact with the adsorbent to form a raffinate stream. An extract stream containing the adsorbed DET isomer is thereafter recovered by subjecting the rich adsorbent to desorption conditions with a desorbent material comprising monocyclic alkyl-substituted aromatic hydrocarbon, e.g., p-xylene, p-diethylbenzene, m-diethylbenzene or toluene.
In a preferred embodiment, the invention is as described above in the first embodiment except that the feed contains 3,5-DET, the adsorbent is limited to those recited in Group A, the adsorbed isomer is 3,5-DET, the extract stream is rich in 3,5-DET and the raffinate stream is depleted in 3,5 DET relative to the feed.
In a second preferred embodiment, the invention is as described above in the first embodiment except that the feed contains 2,6-DET, the adsorbent is limited to those specified in Group B, the adsorbed isomer is 2,6-DET, the extract stream is rich in 2,6-DET and the raffinate stream is depleted in 2,6-DET relative to the feed.
In a third preferred embodiment, the invention is as described above in the first embodiment except that the feed contains 3,5-DET, the adsorbent is limited to those set forth in Group C, the non-adsorbed isomer is 3,5-DET, the extract stream is depleted in 3,5-DET and the 2~20~

raffinate stream is enriched in 3,5-DET relative to the feed.
With an adsorbent such as those listed above in Group C, which in combination with a desorbent liquid mixture will selectively adsorb all the DET isomers except 3,5-DET, which is relatively non-adsorbed and which elutes near the void volume, 3,5-DET is eluted as raffinate and other components are adsorbed and eluted as extract by desorption with the desorbent. This so-called rejective separation mode is particularly desirable where the 3,5-DET is the major component, since utilities are lower and adsorbent capacity requirement is lower per unit of output product.
One group of adsorbents, on which 2,6-DET is selectively adsorbed most strongly consists of those adsorbents that we listed above in Group B and in this case 2,6-DET is recovered in the extract and the other DET
isomers in the raffinate.
Another group of adsorbents, which least strongly adsorb 3,5-DET, consists of Y zeolites, cation exchanged with sodium, calcium or barium. With this group of adsorbents, the preferred desorbents, are toluene, p-DEB and m-DEB. It has now been established that these adsorbents will alter the selectivity pattern such that 2,6-DET is the most strongly adsorbed isomer and 3,5-DET
is the least strongly adsorbed, or rejected, isomer.
Other embodiments of our invention encompass details about feed mixtures, adsorbents, desorbent materials and operating conditions, all of which are hereinafter disclosed in the following discussion of each of the facets of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a chromatograph trace of the separation of 2,6-DET from a mixture of DET isomers with NaX zeolite adsorbent and a desorbent comprising 30 vol p-DEB and 70 vol ~ i~ooctane.
Figure 2 is a similar chromatographic trace to illustrate the separation of 3,5-DET by a rejective separation process, using a BaY adsorbent and 30 vol.%
p-DEB/70 vol.% n-heptane desorbent. This figure also illustrates an embodiment of the invention in which 2,6-DET is the most strongly adsorbed isomer, therefore permitting recovery of 3,5-DET and 2,6-DET in purified form in the same process.
Figure 3 is a chromatographic trace to illustrate the separation of 3,5-DET by a rejective separation process using a Ba-exchanged X faujasite adsorbent and a mixture of 30 vol % p-xylene and 70 vol %
n-heptane as desorbent.
Figures 4 and 5 are chromatographic traces similar to Figure 2 in that both 2,6-DET and 3,5-DET can be separated and separately recovered in the extract and raffinate, respectively, in Figure 4 with a NaY zeolite adsorbent and p-DEB desorbent and in Figure 5 with a CaY
zeolite adsorbent and 30% m-DEB in n-heptane as desorbent.
Figure 6 is a chromatographic trace of the separation of 3,5-diethyltoluene from a mixture of DET
isomers with KX zeolite adsorbent and a desorbent comprising 30% p-DEB and 70% isooctane.
Figure 7 is a chromatographic trace similar to Figure 1, except that the desorbent is 100% p-cymene.

DETAILED DESCRIPTION OF THE INVENTION
Adsorbents used in the process of this invention comprise specific crystalline aluminosilicates or molecular sieves, namely, X and Y zeolites. The zeolites have known cage structures in which the alumina and silica tetrahedra are intimately connected in an open three-dimensional network to form cage-like structures with .~".
s 2~040~

window-like pores. The tetrahedra are cross-linked by the sharing of oxygen atoms with spaces between the tetrahedra occupied by water molecules prior to partial or total dehydration of this zeolite. The dehydration of the zeolite results in crystals interlaced with cells having molecular dimensions and thus the separation which they effect is dependent essentially upon differences between the sizes of the feed molecules as, for instance, when smaller normal paraffin molecules are separated from larger isoparaffin molecules by using a particular molecular sieve. In the process of this invention, however, the term "molecular sieves", although widely used, is not strictly suitable since the separation of specific aromatic isomers is apparently dependent on differences in electrochemical attraction between the different isomers and the adsorbent rather than on pure physical size differences between the isomer molecules.
In hydrated form, the crystalline aluminosilicates encompass type X zeolites which are represented by Formula 1 below in terms of moles of oxides:

Formula 1 25 (o.9po.2)M2/no:Al2o3:(2.5po.5)sio2:yH2o where "M" is a cation having a valence of not more than 3 which balances the electrovalence of the tetrahedra and is generally referred to as an exchangeable cation, "n"
represents the valence of the cation, and "y", which represents the moles of water, is a value up to about 9 depending upon the identity of "M" and the degree of hydration of the crystal. As noted from Formula 1, the SiO2/A1203 mole ratio is 2.5pO.5. As the X zeolite is initially prepared, the cation "M" is usually predominately sodium, that is, the major cation at the exchangeable cationic sites is sodium and the zeolite is therefore referred to as a sodium-X zeolite. Depending upon the purity of the reactants used to make the zeolite, other cations mentioned above may be present, however, as impurities.
In one embodiment of the invention, in which 3,5-DET is substantially non-adsorbed and recovered as a raffinate product, operative adsorbents are formed when the sodium cation of an X zeolite, as prepared, is substantially completely cation exchanged by barium, lithium or mixtures of barium and potassium. In another embodiment, in which 2,6-DET is selectively adsorbed by the adsorbent, operative adsorbents are formed when the cation of an X zeolite is exchanged with copper or sodium (i.e., original form as prepared). In yet another embodiment wherein 3,5-DET is selectively adsorbed, the preferred adsorbent is X zeolite exchanged with potassium.
The type Y structured zeolite, in the hydrated or partially hydrated form, can be similarly represented in terms of moles of oxides as in Formula 2 below:

Formula 2 (0.9+0.2) M2/no:Al2o3:wsio2 yH2o where "M", "n" and "y" are the same as above and "w" is a value greater than about 3 up to about 6. The SiO2/A1203 mole ratio for type Y structured zeolites can thus be from about 3 to about 6. For both zeolites, the cation "M" may be one or more of a variety of cations but, as the Y type zeolites are initially prepared, the cation "M" is also usually predominately sodium. The type Y zeolite containing predominately sodium cations at the exchangeable cationic sites is, therefore, referred to as a sodium-exchanged type-Y, or NaY, zeolite. Depending upon the purity of the reactants used to make the zeolite, ~, "~

202~ ~Q~

other cations mentioned above may be present, however, as impurities.
In additional embodiments of the invention, 2,6-DET is selectively adsorbed by a Y zeolite exchanged with barium or copper or 3,5-DET can be recovered in a rejective separation with a Y zeolite in the sodium form or exchanged with barium or potassium.
In further embodiments, in which the exchangeable cation sites are exchanged with certain cations, the selectivity order is unexpectedly altered such that 2,6-DET is the most strongly adsorbed DET isomer while 3,5-DET is the rejected, or least strongly adsorbed, DET isomer. In other words, both species can be isolated with a chromatographic process using the same adsorbent and it is further possible to recover both rejected and most strongly adsorbed isomers in a single process. The adsorbents, in which it has been discovered that the selectivity order is as above described, are Y zeolites, cation exchanged with sodium (i.e., in the initial form, or as prepared), calcium or barium cations. In the case of barium-exchanged Y zeolite, the separation of 2,6-DET
from the 2,3-DET isomer in the extract is considered somewhat marginal, although operative, but if a feed were used in which little or no 2,3-DET is present, the separation is quite viable. Feed preparation could include either removal of 2,3-DET prior to separation, or isomerization to convert 2,3-DET to another isomer or modification of reaction conditions, e.g., selection of the catalyst, to minimize the formation of 2,3-DET. In some cases, it might be acceptable to produce a 2,6-DET
extract containing considerable amounts of 2,3-DET and/or 2,5-DET, for example, as a preferred mixture for use as a desorbent in separating p-xylene from its isomers and ethylbenzene.
Typically, adsorbents used in separative processes contain the crystalline zeolite material 11 2~2~
dispersed in an amorphous matrix or binder, having channels and cavities therein which enable liquid access to the crystalline material. Silica, alumina, clay or mixtures thereof are inorganic substances typical of such matrix materials. Organic materials, such as polymers of styrene/divinyl-benzene, are also used as a matrix. The binder aids in forming or agglomerating the crystalline particles which otherwise would comprise a fine powder.
The adsorbent may thus be in the form of particles such as extrudates, aggregates, tablets, macrospheres or granules having a desired particle range, preferably from about 16 to about 60 mesh (Standard U.S. Mesh) which corresponds to a nominal apperture of 0.25 to 1.19 mm.
Feed mixtures which can be utilized in the process of this invention will comprise at least one of the isomers, 3,5-DET or 2,6-DET, and may additionally contains at least one other DET aromatic isomer. Crude hydrocarbon streams containing substantial quantities of Cll aromatic isomers are produced by alkylation and isomerization processes, which are well known to the refining and petrochemical arts. Cll aromatics other than DET isomers, such as butyltoluenes and cymenes, may be formed which may necessitate their removal by other means, such as fractionation, or isomerization to DET isomers.
Otherwise, they may be coextracted with the product DET
isomer or be eluted with the raffinate (non-adsorbed) product, and, of course, reduce the purity of the desired DET isomer product.
In a rejective mode of operation designed to separate the 3,5-DET from a feed mixture containing 3,5-DET and at least one other DET aromatic, the mixture is contacted with an adsorbent, selected from the group aforementioned, on which 3,5-DET is least strongly adsorbed, consisting of X zeolites, cation exchanged with barium, mixtures of barium and potassium or lithium and Y
zeolites, cation exchanged with barium, potassium or 2 ~ J\ ~

sodium (i.e., in the original form as prepared), at adsorption conditions whereby the 3,5-DET is the least selectively adsorbed isomer. The other isomers are adsorbed and retained by the adsorbent while the 3,5-DET
is relatively unadsorbed and is eluted from the interstitial void spaces between the particles of adsorbent and from the surface of the adsorbent. The adsorbent containing the more selectively adsorbed isomer is referred to as a "rich" adsorbent. The other isomers, which may include 2,6-DET and other DET isomers in the feed are then recovered from the rich adsorbent by contacting the rich adsorbent with a desorbent material at desorption conditions. As aforementioned, the relatively more strongly adsorbed isomers of DET, referred to as the extract, can be isomerized to increase the concentration of one or more of said isomers and can be recycled to the separation process to increase the recovery of 3,5-DET.
The general flow scheme for such a rejective adsorptive separation involves recovering the less adsorbed feed component(s) from the non-selective void volume and weakly adsorbing volume before the more strongly adsorbed component(s); the relatively unadsorbed component(s) is thereby recovered in the raffinate. A
particular advantage of such a system lies where the unadsorbed fraction or component is large in relation to the other fraction or components, since substantially less adsorbent and smaller sized equipment is required for a given feed throughout than if the large fraction is selectively adsorbed on the adsorbent.
To separate 2,6-DET from a feed mixture containing 2,6-DET and at least one other DET isomer, the mixture is contacted with an adsorbent selected from the group mentioned above, on which 2,6-DET is most strongly adsorbed, consisting of X zeolites, cation exchanged with sodium (as prepared) or copper and Y zeolites, cation 2 ~

exchanged with sodium (as prepared), calcium, copper or barium.
In the present invention, it is generally preferred to operate continuously at substantially - 5 constant pressures and temperatures to ensure liquid phase and thus the desorbent material relied upon must be judiciously selected to satisfy several criteria. First, the desorbent material should displace an extract component from the adsorbent with reasonable mass flow rates without itself being so strongly adsorbed as to unduly prevent the extract component from displacing the desorbent material in a following adsorption cycle.
Secondly, the desorbent material must be compatible with the particular adsorbent and the particular feed mixture.
More specifically, it must not reduce or destroy the critical selectivity of the adsorbent for an extract component with respect to the raffinate component or react chemically with the feed components. The desorbent material should additionally be easily separable from the feed mixture that is passed into the process. Both the raffinate components and the extract components are typically removed from the adsorbent in admixture with desorbent material, and without a method of separating at least a portion of desorbent material, the purity of the extract product and the raffinate product would not be very high nor would the desorbent material be available for reuse in the process. It is, therefore, contemplated that any desorbent material used in this process will have a substantially different average boiling point than that of the feed mixture or any of its components, i.e., more than about 5~C difference, to allow separation of at least a portion of the desorbent material from feed components in the extract and raffinate streams by simple fractional distillation, thereby permitting reuse of desorbent material in the process.

14 2~P403 Finally, desorbent materials should be readily available and reasonable in cost. However, a suitable desorbent or desorbents for a particular separation with specific adsorbent are not always predictable. In the preferred isothermal, isobaric, liquid-phase operation of the process of this invention, it has now been determined that desorbent materials comprising monocyclic alkyl-substituted aromatic hydrocarbons, such as p-DEB, m-DEB, toluene, p-cymene or p-xylene, must be selected with regard to the specific separation in order to effectively desorb the extract from the adsorbent. In well-known manner, the desorbent can be separated from the extract product by distillation. Diluents for the desorbent may also be used in some instances to modify the desorbent strength to achieve better separation, resolution and desorption rates. Examples of such dilution agents include normal paraffins, isoparaffins, ethers, and halogenated hydrocarbons.
Adsorption conditions will include a temperature range of from about 20 to 250~C with about 60 to about 200~C being more preferred and a pressure just sufficient to maintain liquid phase, which may be from about atmospheric to 4240 kPa. Desorption conditions will include the same range of temperatures and pressure as used for adsorption conditions.
Although both liquid and vapor phase operations can be used in many adsorptive separation processes, liquid-phase operation is preferred for this process because of the lower temperature requirements and because of the higher yields of extract product that can be obtained with liquid-phase operation over those obtained with vapor-phase operation.
A dynamic testing apparatus is employed to test various adsorbents and desorbent material with a 3S particular feed mixture to measure the adsorbent characteristics of adsorptive capacity and exchange rate.

2 ~ Q ~

The apparatus consists of a helical adsorbent chamber of approximately 70-75 ml volume having inlet and outlet portions at opposite ends of the chamber. The chamber is contained within a temperature control means and, in addition, pressure control equipment is used to operate the chamber at a constant predetermined pressure.
Quantitative and qualitative equipment, such as refractomers, polarimeters, chromatographs, etc., can be attached to the outlet line of the chamber and used to analyze, "on-stream", the effluent stream leaving the adsorbent chamber.
A pulse test, performed using this apparatus and the following general procedure, is used to determine data, e.g., selectivities, for various adsorbent systems.
The adsorbent in the chamber is filled to equilibrium with a particular desorbent by passing the desorbent material through the adsorbent chamber. At a convenient time, a pulse of feed containing known concentrations of a tracer and of a particular extract component or of a raffinate component, or both, normally diluted in desorbent material is injected for a duration of several minutes. Desorbent flow is resumed, and the tracer and the extract and raffinate components are eluted as in a liquid-solid chromatographic operations. The effluent can be analyzed by on-stream chromatographic equipment and traces of the envelopes of corresponding component peaks developed.
Alternatively, effluent samples can be collected periodically and later analyzed separately by gas chromatography.
From information derived from the test, adsorbent performance can be rated in terms of void volume, retention volume for an extract or a raffinate component, and the rate of desorption of an extract component from the adsorbent and selectivity. Void volume 3s is the non-selective volume of the adsorbent, which is expressed by the amount of desorbent pumped during the 2~2~

interval from the initial flow to the center of the peak envelope of the tracer. The net retention volume (NRV) of an extract or a raffinate component may be characterized by the distance between the center of the peak envelope (gross retention volume) of the extract or raffinate component and the center of the peak envelope (void volume) of the tracer component or some other known reference point. It is expressed in terms of the volume in cubic centimeters of desorbent material pumped during this time interval, represented by the distance between the peak envelopes. The rate of exchange or desorption rate of an extract component with the desorbent material can generally be characterized by the width of the peak envelopes at half intensity. The narrower the peak width, the faster the desorption rate. The desorption rate can also be characterized by the distance between the center of the tracer peak envelope and the disappearance of an extract component which has just been desorbed. This distance is again the volume of desorbent material pumped during this time interval. Selectivity, ~, is determined by the ratio of the net retention volumes (NRV) of the more strongly adsorbed component to each of the other components.
The following non-limiting examples are presented to illustrate the process of the present invention and are not intended to unduly restrict the scope of the claims attached hereto.

The previously described pulse test apparatus was used to obtain data for this example, which illustrates the separation of 2,6-DET, in the extract, from the other isomers of DET. The liquid temperature was 165~ and the flow was up the column at the rate of 1.26 ml/min. The feed stream comprised 2.0 ml pulses of a - ~ 17 ~ Q ~

solution containing 1.5 ml of a mixture of the diethyltoluene isomers, 2,3-, 2,5-, 2,6- and 3,5-DET, and 0.3 ml of n-hexane tracer and 1.0 ml of desorbent, 30%
vol. p-diethylbenzene in 70% vol. iSooCtane. The mixture of DET isomers was approximately 43 % (vol) 3,5-DET, 20%
2,5 DET, 23% 2,6-DET and 7% 2,3-DET with the balance consisting of other C11 aromatics. The column was packed with clay bound Na-X faujasite adsorbent of 20-50 mesh particle size corresponding to an apperature size of 0.297 to 0.84 mm. The 2,6-DET isomer was selectively adsorbed and recovered as the extract product.
The selectivity (~), as earlier described, was calculated from the trace of the peaks generated for the components. The results of this example are shown in the following Table 1 and Figure 1.

Component NRV BETA(~) (ml) (ml) n-C6 0.0 tracer 2,3-DET 22.9 2.51 3,5-DET 36.4 1.58 2,6-DET 57.4 reference 2,5-DET 29.8 1.93 In general, the above data does show that the present invention provides a 2,6-diethyltoluene selective system, with adequate selectivities for the commercial use of the separation of the present invention.

The previously described pulse test was also used to obtain data similar to that of Example 1, but using a different adsorbent in place of the NaX zeolite exemplified above. In the first test, the feed was 2.0 ml .. . ~
~' 18 ~ ~ 2 ~

of a solution containing 1.5 ml of the DET isomer mixture of Example 1, 0.3 ml n-hexane tracer and 1 ml of the same desorbent, 30% p-diethylbenzene in isooctane. The adsorbent was Cu-X. The column temperature was 165~C, flow rate up the column was 1.14 ml per min. The results of the pulse test, shown in Table 2 below, also indicate a 2,6-DET selective process. In a second test at 145~C and flow rate of 1.02 cc/min, a feed, comprising 2 cc of a solution containing 1 cc of the same mixture of DET
isomers, 1 cc desorbent and 0.3 cc n-C8, was separated in the column filled with Y zeolite exchanged with copper ions in exchangeable sites. The desorbent was 100%
diethylbenzene (p-DEB). The results are also shown in the following Table 2.

Test No. comPonentNRV BETA(~) (ml) 1 n-C6 0.0 tracer 3,5-DET28.9 1.69 2,3-DET26.6 1.84 2,6-DET48.9 reference 2,5-DET26.3 1.86 2 n-C8 0.0 tracer 3,5-DET9.7 1.71 2,3-DET11.7 1.42 2,6-DET16.6 reference 2,5-DET 8.7 1.90 Further pulse tests were run to demonstrate a process for selectively adsorbing the other isomers of DET
in preference to the 3,5-isomer, i.e., the relatively non-adsorbed species, and thereby rejectively separating and ..

19 ~ 4 ~ ~

recovering 3,5-DET in the raffinate. In the tests, p-DEB
or p-xylene was the desorbent, either undiluted or diluted to 30% with either n-heptane, n-dodecane, or iSOOCtane.
Table 3 shows the results of each of the pulse tests in this example. NRV is the net retention volume, discussed previously. For clarity, the Cl1 impurities are not reported.
In Test No. 1, the adsorbent was a Y zeolite, exchanged with barium ions at the exchangeable sites and the desorbent was 30% p-DEB diluted with n-heptane. The feed pulse was 2 ml of a solution containing 1.7 ml of the DET isomer mixture of Example 1 and 0.3 ml n-Cll tracer.
The results of the pulse test are shown in Fig. 2 and Table 3 below. As can also be seen in Fig. 2, 2,6-DET was most strongly adsorbed onto the BaY zeolite and therefore illustrates one adsorbent which can be employed to separate either or both 2,6- and 3,5-DET isomers in a single process. In Test No. 2, the adsorbent was X
zeolite exchanged with a mixture of barium and potassium ions and the desorbent was 30~ p-DEB in n-heptane. The feed pulse was the same as in Test No. 1. In Test No. 3, the adsorbent was X zeolite, exchanged with lithium ions and the desorbent was 30% p-DEB in i~ooctane. The feed pulse was the same as in Example 1. In Test No. 4, the adsorbent was Y zeolite exchanged with barium at the exchangeable sites and the desorbent was 30% toluene in n-heptane. The feed pulse was the same as in Test No. 1.
In Test No. 5, the adsorbent was KY and the desorbent was 30% p-xylene in n-heptane. The feed pulse was 5 cc of a solution containing 1.5 cc of the DET isomer mixture of Example 1, 0.29 cc n-Cg tracer, and 3 cc desorbent. In Test No. 6, the adsorbent was X faujasite, exchanged with barium cations, and the desorbent was 30~ p-xylene in n-heptane. The feed pulse was 2 cc of a solution containing 1.7 cc of the DET isomer mixture of Example 1 and 0.3 cc n-C12. As can be seen in Figure 3, 3,5-DET was the least - 2~2~5~

strongly adsorbed isomer, illustrating a separating system which can be employed to separate 3,5-DET in a rejective process.

~ D20 ~3B

TABLE 3 ~

Test No. ComponentNRV BETA(~) (ml) 1 n-Cll 0.0 tracer BaY 3,5-DET8.0 3.69 Temp: 120~C 2,3-DET22.6 1.30 Flow Rate: 2,6-DET29.4 1.00 1.26 cc/min 2,5-DET 16.2 1.81 2 n-Cll 0.0 tracer BaKX 3,5-DET3.9 reference Temp: 145~C 2,3-DET5.8 0.67 Flow Rate: 2,6-DET7.0 0.56 1.32 cc/min 2,5-DET 8.5 0.46 3 n-C6 0.0 tracer LiX 3,5-DET30.2 reference Temp: 165~C 2,3-DET51.5 0.59 Flow Rate: 2,6-DET49.6 0.61 1.17cc/min 2,5-DET34.0 0.89 4 n-Cll 0.0 tracer BaY 3,5-DET3.1 reference Temp: 125~C 2,3-DET15.9 0.19 Flow Rate: 2,6-DET15.2 0.20 1.02 cc/min 2,5-DET 12.8 0.24 n-Nonane0.0 tracer KY 3,5-DET20.6 reference Temp: 150~C 2,3-DET26.6 0.77 Flow Rate: 2,6-DET28.1 0.73 1.22 cc/min 2,5-DET 29.8 0.69 ~20~0~

Test No. Component NRV BETA(B) (ml) 6 n-C12 0.0 tracer S BaX 3,5 DET 5.9 reference Temp: 200~C 2,3-DET 16.5 0.36 Flow Rate: 2,6-DET 14.4 0.41 1.23 cc/min 2,5-DET 16.9 0.35 DET * 12.7 0.46 DET * 12.1 0.49 * Undetermined isomer Further pulse tests were run to demonstrate an additional adsorbent whereby 2,6-DET and 3,5-DET can be recovered as the extract product and/or the raffinate product, respectively, in a single stage, if desired, or in a two-stage process, as aforementioned. In a single stage, a third, intermediate product stream is required, but both isomers can be separately recovered in purified form in a two-stage process, where the 2,6-DET extract is the product in the first stage and the raffinate, 3,5-DET, is the product in the second stage, which is a rejective process as described above. The adsorbent and desorbent can be the same in both stages, resulting in lower capital costs, or a different combination may be used. Also, the sequence of the stages, as set forth above, can be reversed. In Test No. 1, the feed pulse was 2 cc of a solution containing 1 cc of the DET isomer mixture of Example 1, 1 cc of the desorbent and 0.3 cc n-C8. The desorbent was 100% p-DEB. In Test No. 2, the feed pulse was 5 cc of a solution containing 1 cc desorbent, 0.3 cc n-C10 tracer, and 4 cc of a DET isomer mixture with the following composition: 41.2 vol % 3,5-DET, 5.4% 2,3-DET, 2 ~

14.3% 2,6-DET, and 9.2% 2,5-DET, with the balance consisting of other Cll aromatics such as butyl toluene isomers and p-cymene. The desorbent in this test was 50%
p-DEB in n-heptane. In Test No. 3, at 200~C and column flow of 1.21 cc/min, the feed pulse was 2 cc of the same solution as Test 1. The desorbent was 30% m-diethyl-benzene (m-DEB) diluent with n-heptane. The adsorbent in each of the preceding tests was Y zeolite, with sodium ions in the cation-exchangeable sites. In Test No. 4, at 200~C and column flow rate of 1.23 cc/min., the feed pulse was 2 cc of the same solution as Test 1. The adsorbent in this test was Y zeolite with calcium ions in the cation-exchangeable sites. The desorbent in this test was 30% m-DEB in n-heptane. The results of the experiments are shown in Table 4 below. Pulse Test No. 1 is illustrated in the chromatograph of Figure 4; Pulse Test No. 4 is illustrated in the chromatograph of Figure 5. It is noted from Test No. 2 that even in the presence of Cll impurities such as p-cymene and butyltoluenes, 2,6-DET and 3,5-DET can be recovered in purified form, since they are the most strongly adsorbed and least strongly adsorbed species, respectively.

2~4~ ~

Test No. ComponentNRV BETA(B) (ml) 1 n-C8 0.0 tracer Temp: 145~C 3,S-DET8.7 2.46 Flow Rate: 2,3-DET13.3 1.61 1.02 cc/min 2,6-DET21.4 reference 2,5-DET9.9 2.16 2 n-C10 0.0 tracer Temp: 150~C 3,5-DET8.1 3.99 Flow Rate: p-cymene16.5 1.75 1.26 cc/min 2,3-DET17.6 1.64 2,6-DET28.8 reference 2,5-DET14.2 2.02 butyl toluene isomer 19.3 1.49 butyl toluene isomer 14.2 2.03 3 n-C10 ~ ~ tracer Temp: 200~C 3,5-DET9.4 3.21 Flow rate: 2,5-DET19.4 1.56 1.21 cc/min 2,3-DET20.5 1.47 2,6-DET30.2 reference 4 n-C10 ~ ~ tracer Temp: 200~C 3,5-DET9.1 4.19 Flow Rate: 2,3-DET24.5 1.56 1.23 cc/min 2,5-DET24.9 1.54 2,6-DET38.2 reference The liquid temperature in this pulse test was 165~C and the flow was up the column at the rate of 1.26ml/min. The feed stream comprised 2.0 ml pulses of a solution containing 1.5 ml of a mixture of diethyltoluene isomers, and 0.3 ml of n-hexane tracer and 1.0 ml of desorbent, 30% vol p-diethylbenzene in 70% (vol)isooctane.
The mixture of DET isomers was approximately the same as in Example 1. The column was pac~ed with clay bound K-X
faujasite adsorbent of 0.297 to 0.84 mm particle size.
The 3,5-DET isomer was selectively adsorbed and recovered is the extract product.
The selectivity (~), as earlier described, was calculated from the trace of the peaks generated for the components. The results of this example are shown on the following Table 5 and Figure 6.

Component GRV NRV BETA(~) (ml) (ml) n-hexane 41.6 0.0 tracer 3,5-DET 76.4 34.8 reference 2,3-DET 69.8 28.2 1.24 2,6-DET 68.0 26.4 1.32 2,4-DET 58.0 16.4 2.13 2,5-DET 57.2 15.7 2.22 In general, the above data does show that the present invention provides a 3,5-diethyltoluene selective system, with adequate selectivities for the commercial use of the separation of the present invention.

.
~ .
~; ~

2~2~

The previously described pulse test was also used to obtain data similar to that of Example 5, but using a desorbent other than exemplified above. In this case, the feed was 2 ml of a solution containing 1 ml of the same DET isomer mixture used in Example 1, 0.3 ml n-octane tracer, and 1 ml of desorbent. The desorbent was p-cymene. The column temperature was 145~C, flow rate up the column was 1.14 ml per min. The results of the pulse test are shown in Figure 7 and Table 6 below.

15Component GRV NRV BETA(B) (ml) (ml) n-octane 38.9 0.0 tracer 3,5-DET 51.3 12.4 reference 2,4-DET 43.2 4.2 2.93 2,3-DET 49.0 10.1 1.23 2,6-DET 48.8 9.8 1.26 2,5-DET 43.9 4.9 2.51 Another pulse test was run using a 2 ml feed pulse of a solution containing 1.3 ml of the same DET isomer mixture of Example 1 and 0.7 ml of tracer, n-decane.
After the feed pulse, the desorbent flow, which in this case was m-diethylbenzene (m-DEB), was resumed. Column flow was 1.3 ml per minute and the temperature was 200~C.
Again, 3,5-DET was selectively adsorbed on the zeolite and desorbed with desorbent as shown in the following Table 7.

2 ~ 2 0 b Q t~

Component GRV NRV BETA B
(ml) (ml) n-C10 38.5 0.0 tracer 3,5-DET 67.9 29.3 reference 2,4-DET 49.2 10.7 2.75 2,3-DET 64.1 26.5 1.15 10 2,6-DET 61.3 22.7 1.29 2,5-DET 52.1 13.5 2.17

Claims (16)

1. A process for separating 3,5- or 2, 6-diethyltoluene (DET) from a feed mixture comprising 3, 5-or 2,6- diethyltoluene and at least one other DET isomer thereof, said process comprising contacting said feed mixture at adsorption conditions with one adsorbent selected from the Group consisting of A) X zeolite exchanged with a potassium cation; B) X zeolite exchanged with sodium or copper or Y zeolite exchanged with copper, sodium, barium or calcium; and C) X zeolite exchanged with barium or lithium or with potassium and barium or Y
zeolite exchanged with potassium, sodium, barium or calcium, thereby selectively adsorbing one of the DET
isomers contained in the feed; removing at least one relatively non-adsorbed DET isomer from contact with said adsorbent to form a raffinate stream and recovering said adsorbed DET isomer by subjecting the resulting rich adsorbent to desorption, at desorption conditions, with a desorbent material comprising a monocyclic alkyl-substituted aromatic hydrocarbon to form an extract stream.
2. The process of Claim 1 wherein the feed contains 3, 5-DET, wherein the adsorbent is selected from Group A, wherein the adsorbed isomer is 3,5-DET and wherein the extract stream is rich in this isomer whereas the raffinate stream is depleted in this isomer relative to feed.
3. The process of Claim 1 wherein the feed contains 2,6-DET, wherein said adsorbent is selected from Group B, the desorbent is selected from the group consisting of p-diethylbenzene, m-diethylbenzene and toluene, wherein the adsorbed isomer is 2,6-DET and wherein the extract stream is rich in this isomer and the raffinate stream is depleted in this isomer relative to feed.
4. The process of Claim 1 wherein the feed contains 3,5-DET, wherein said adsorbent is selected from Group C, wherein the non-adsorbed isomer is 3,5-DET and wherein the raffinate is rich in this isomer and the extract stream is depleted in this isomer relative to feed.
5. The process of Claim 3 wherein said adsorbent is Na-Y, and said desorbent comprises p-diethylbenzene.
6. The process of Claim 3 wherein said adsorbent is BaY, and said desorbent comprises p-diethylbenzene or toluene.
7. The process of Claim 3 wherein said adsorbent is CaY and said desorbent comprises m-diethylbenzene.
8. The process of Claim 1 wherein said desorbent is selected from the group consisting of toluene, p-diethylbenzene, m-diethylbenzene, p-xylene and p-cymene.
9. The process of Claim 4 wherein said desorbent is selected from the group consisting of p-diethylbenzene, m-diethylbenzene, toluene and p-xylene.
10. The process of Claim 1, 2, 3, 4, 5, 6, 7, 8, or 9 wherein said adsorption and desorption conditions include a temperature within the range of from about 20°C to about 200°C
and a pressure sufficient to maintain liquid phase.
11. The process of Claim 1, 2, 3, 4, 5, 6, 7, 8, or 9 wherein said process is effected with a simulated moving bed flow system.
12. The process of Claim 10 wherein said process is effected with a simulated moving bed flow system.
13. The process of Claim 1, 2, 3, 4, 5, 6, 7, 8, or 9 wherein said desorbent contains a diluent selected from the group consisting of normal paraffins, isoparaffins, ethers and halogenated hydrocarbons.
14. The process of Claim 10 wherein said desorbent contains a diluent selected from the group consisting of normal paraffins, isoparaffins, ethers and halogenated hydrocarbons.
15. The process of Claim 11 wherein said desorbent contains a diluent selected from the group consisting of normal paraffins, isoparaffins, ethers and halogenated hydrocarbons.
16. The process of Claim 12 wherein said desorbent contains a diluent selected from the group consisting of normal paraffins, isoparaffins, ethers and halogenated hydrocarbons.
CA 2020406 1990-07-04 1990-07-04 Chromatographic separation process for recovering either 2,6-det or 3,5-det from a mixture thereof with another det isomer Expired - Fee Related CA2020406C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA 2020406 CA2020406C (en) 1990-07-04 1990-07-04 Chromatographic separation process for recovering either 2,6-det or 3,5-det from a mixture thereof with another det isomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2020406 CA2020406C (en) 1990-07-04 1990-07-04 Chromatographic separation process for recovering either 2,6-det or 3,5-det from a mixture thereof with another det isomer

Publications (2)

Publication Number Publication Date
CA2020406A1 CA2020406A1 (en) 1992-01-05
CA2020406C true CA2020406C (en) 1999-07-06

Family

ID=4145406

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2020406 Expired - Fee Related CA2020406C (en) 1990-07-04 1990-07-04 Chromatographic separation process for recovering either 2,6-det or 3,5-det from a mixture thereof with another det isomer

Country Status (1)

Country Link
CA (1) CA2020406C (en)

Also Published As

Publication number Publication date
CA2020406A1 (en) 1992-01-05

Similar Documents

Publication Publication Date Title
US4886930A (en) Zeolitic para-xylene separation with tetralin heavy desorbent
EP0464277B1 (en) Process for the separation by adsorption of 2,6- or 3,5-diethyltoluene from a mixture thereof with another diethyltoluene isomer
US5057643A (en) Zeolitic para-xylene separation with tetralin derivatives as heavy desorbent
US5849981A (en) Adsorptive separation of para-xylene using isopropylbenzene desorbent
US5012038A (en) Zeolitic para-xylene separation with diethyltoluene heavy desorbent
US4529828A (en) Separation of ortho-xylene
EP0683148B1 (en) Process for the separation of ethylbenzene by adsorption on cesium exchanged zeolite X
US4886929A (en) Separation of para-xylene
US5107062A (en) Zeolitic para-xylene separation with tetralin derivatives as heavy desorbent
US5495061A (en) Adsorptive separation of para-xylene with high boiling desorbents
US5159131A (en) Zeolitic para-xylene separation with indan and indan derivatives as heavy desorbent
US4482777A (en) Separation of ortho bi-alkyl substituted monocyclic aromatic isomers
HU205058B (en) Process for adsorption separation of paraxylol by using tetraline desorbent
US4876390A (en) Process for separating dichlorodiphenylsulfone isomers
US4956522A (en) Zeolitic para-ethyltoluene separation with tetralin heavy desorbent
CA2020406C (en) Chromatographic separation process for recovering either 2,6-det or 3,5-det from a mixture thereof with another det isomer
US5019271A (en) Extractive chromatographic separation process for recovering 3,5-diethyltoluene
KR930003210B1 (en) 2,6-det or 3,5-det seperating method by chromatography
AU636849B2 (en) Sharps destruction and disposal apparatus
US4992621A (en) Separation of coumarone from indene
JPH08143485A (en) Method for adsorptive separation of meta-xylene from aromatic hydrocarbon
KR920002056B1 (en) Adsorptive seperation of paraxylene using a tetralin desorbent
KR910009123B1 (en) Adsorptive seperation of para-xylene using diethyltoluene desorbent
US5223589A (en) Process for separating durene from substituted benzene hydrocarbons
RU1838286C (en) Method for isolating 3,5-and/or 2,6-diethyltoluene of its mixture with other isomers of diethyltoluene

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed