CA2015063A1 - Multifunctional viscosity index modifier additives derived from amido amines - Google Patents

Multifunctional viscosity index modifier additives derived from amido amines

Info

Publication number
CA2015063A1
CA2015063A1 CA002015063A CA2015063A CA2015063A1 CA 2015063 A1 CA2015063 A1 CA 2015063A1 CA 002015063 A CA002015063 A CA 002015063A CA 2015063 A CA2015063 A CA 2015063A CA 2015063 A1 CA2015063 A1 CA 2015063A1
Authority
CA
Canada
Prior art keywords
composition
anhydride
molecular weight
alpha
polyamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002015063A
Other languages
French (fr)
Inventor
Antonio Gutierrez
Dean Lundberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CA2015063A1 publication Critical patent/CA2015063A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2493Organic compounds containing sulfur, selenium and/or tellurium compounds of uncertain formula; reactions of organic compounds (hydrocarbons, acids, esters) with sulfur or sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/92Carboxylic acids
    • C10M129/93Carboxylic acids having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/12Thio-acids; Thiocyanates; Derivatives thereof
    • C10M135/14Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/20Thiols; Sulfides; Polysulfides
    • C10M135/22Thiols; Sulfides; Polysulfides containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/20Thiols; Sulfides; Polysulfides
    • C10M135/22Thiols; Sulfides; Polysulfides containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M135/26Thiols; Sulfides; Polysulfides containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/02Polyethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/14Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
    • C10M149/18Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M151/00Lubricating compositions characterised by the additive being a macromolecular compound containing sulfur, selenium or tellurium
    • C10M151/02Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • C10M2215/122Phtalamic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/044Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/083Dibenzyl sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/085Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/02Macromolecular compounds obtained by reactions of monomers involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2221/041Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds involving sulfurisation of macromolecular compounds, e.g. polyolefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2221/043Polyoxyalkylene ethers with a thioether group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Abstract

ABSTRACT OF THE DISCLOSURE

The present invention is directed to a composition of matter useful as a multifunctional viscosity improver-dispersant for oleaginous compositions, particularly lubricating oil compositions, comprising at least one adduct or reaction product of (A) ethylene copolymer, preferably ethylene propylene copolymer of at least 15,000 number average molecular weight grafted with monounsaturated mono- or dicarboxylic acid material; and (B) amido-amine or thioamido-amine comprising reaction product of at least one amine, preferably polyamine, and an alpha, beta-unsaturated compound represented by the formula wherein X is sulfur or oxygen, Y is -OR4, -SR4, or

Description

- 201~063 FIELD OF THE INVENTION

The invention relates to oil soluble polymeric compositions of matter useful as multifunctional viscosity index improver additives, particular viscosity index improver-dispersant additives, for oleaginous compositions such as fuel and lubricating oil compositions, and to oleaginous compositions containing said additives.

BACXG~<OUND OF THE INVENT;~Q~

The concept of derivatizing V.I. improving high molecular weight ethylene copolymers, with acid moieties such as maleic anhy~ride, followed by reaction with an amine to form a V.I.-dispersant oil additive is known as indicated by the following patents.
U.S. Pat. No. 3,316,177 teaches ethylene-propylene-diene, which are heated to elevated temperatures in the pre~.ence of oxygen so as to oxidize the polymer and cause its reaction with maleic anhydride which is present during the oxidation. The resulting polymer can then be reacted with alkylene polyamines.
U.S. Pat. No. 4,089,794 teaches grafting the ethylene copolymer with maleic anhydride using peroxide in a lubricating oil solution, wherein the grafting is pre~erably carried out under nitrogen, followed by reaction with polyamine.
U.S. Pat. No. 4,137,185 teaches reacting Cl to C30 monocarboxylic acid anhydrides, and dicarboxylic anhydrides, such as acetic anhydride, succinic anhydride, etc. with an ethylene copolymer reacted with maleic anhydride and a polyalkylene polyamine to inhibit cross linking and viscosity increase due to further reaction of any primary amine groups which were initially unreacted.

20~ ~0~3 U.S. Pat. No. 4,144,181 is similar to 4,137,185 in that it teaches using a sulfonic acid to inactivate the remaining primary a~ine qroups when a maleic anhydride grafted ethylene-propylene copolymer is reacted with a polyamine.
U.S. Pat. No. 4,169,063 reacts an ethylene copolymer in the absence of oxygen and chlorine at temperatures of 150- to 250~C with maleic anhydride followed by reaction with polyamine.
A number of prior disclosures teach avoiding the u~e of polyamine having two primary amine groups to thereby reduce cross-linking problems which become more of a problem as the number of a~ine moieties added to the polymer molecule is increased in order to increase dispersancy .
German Published Application No. P3025274.5 teaches an ethylene copolymer reacted with maleic anhydride in oil using a long chain alkyl hetero or oxygen-containing amine.
U.S. Pat. No. 4,132,661 grafts ethylene copolymer, using peroxide and/or air blowing, with maleic anhydride and then reacts with a primary-tertiary diamine.
U.S. Pat. No. 4,160,739 teaches an ethylene copolymer which is grafted, using a free-radical technique, with alternating maleic anhydride and a second pol~eri2able monomer such as methacrylic acid, which material8 ar~ reacted with an amine having a single primary, or a singl~ secondary, amine group.
U.S. Pat. No. 4,171,273 reacts an ethylene copolymer with maleic anhydride in the presence of a free-radical initiator and then with mixtures of C4 to C~2 n-alcohol and amine s~ch as N-aminopropylmorpholine or dimethylamino propyl amine to form a V.I.-dispersant pour depressant additive.

. . ~ . .. - . . ..
. ,, ... , . . ., ,-,. . : . ,, .. : - , - -201~0~3 U.s. Pat. No. 4,219,432 teaches maleic anhydride grafted ethylene copolymer reacted with a mixture o~ an amine having only one primary group together with a second amine having two or more primary groups.
German published application No. 2753569.9 shows an ethylene copolymer reacted with maleic anhydride by a free-radical technique and then reacted with an amine having a single primary group.
Ger~an published application No. 2845288 grafts maleic anhydride on an ethylene-propylene copolymer by thermal grafting at high temperatures and then reacts with amine having one primary group.
French published application No. 2423530 teaches the thermal reaction of an ethylene copolymer with maleic anhydride at 150-C to 210~C followed by reaction with an amine having one primary or secondary group.
The early patents such as U.S. Pat. Nos. 3,316,177 and 3,326,804 taught the general concept o~ grafting an ethylene-propylene copolymer with maleic anhydride and then reacting with a polyalXylene polyamine such as polyethylene amines. Subsequently, U.S. Pat. No. 4,089,794 was directed to using an oil solution for free radical peroxide grafting the ethylene copolymer with maleic anhydride and then reacting with the polyamine. This concept had the advantage that by using oil, the entire reaction could be carried out in an oil solution to form an oil concentrate, which i~ the commercial form in which such additives are ~old. This was an advantage over using a volatile solvent ~or tho reactions, which has to be subsequently removed and r-placed ~y oil to form a concentrate. Subsequently, in oporating at higher polyamine levels in order to further incrQase the dispersing effect, increased problems occurred with the unreacted amine groups cross-linking and thereby cau~ing visc03ity increase og the oil concentrate during -, ~ ' ' ' - . .
2~15~3 storage and subsequent formation of haze and i~ some instancas gelling. Even though one or more moles of the ethylene polyamine was used per mole of maleic anhydride during imide formation, cross-linking became more of a problem as the nitrogen content of the polymers was increased. One solution was to use the polyamines and then to react the remaining primary amino groups with an acid anhydride, preferably acetic anhydride, of U.S. Pat. No.
4,137,185 or the sulfonic acid or U.S. Pat. No. 4,144,181.
The cross-linking problem could also be minimized by avoidance o~ the ethylene polyamines and instead using amines having one primary group which would react with the maleic anhydride while the other amino groups would be tertiary groups which were substantially unreactive.
Patent~ or published applications showing the use of such primary tertiary amines noted above are U.S. Pat. No.
4,219,432, wherein a part of the polyamine was replaced with a primary-tertiary amine; U.S. Pat. No. 4,132,661:
U.S. Pat. No. 4,160,739; U.S. Pat. No. 4,171,273; German No. P2753569.9; German No. 2,845,288; and French No.
2,423,530.
U.S. Patent No. 4,517,104 discloses polymeric viscosity index (V.I.~ improver-dispersant additive for petroleum oils, particularly lubricating oils, comprising a copolymer o~ ethylene with one or more C3 to C28 alpha-olefins, preferably propylene, which has been gra~ted wlth acid moieties such as maleic anhydride using a free radical initiator in a solvent such as lubricating oil, and then reacted with a carboxylic acid component including hydrocarbyl substituted succinic anhydride or acid having 12-400 carbon atoms in said hydrocarbyl group or long chain monocarboxylic acid, and a polyamine having two or more primary amine groupR. Or the grafted polymer may be reacted with said acid component prereacted with said polyamine to for~ salts, amides, imides, etc. and then .. . . . . .
' '' ' '' ' ' ~ ~ ' reacted with said grafted olefin polymer. These reactions can permit the incorporation of varnish inhibition and dispersancy into ths ethylene copolymer while inhibiting cross-linking or gelling.
U.S. Patent No. 4,632,769 discloses oil soluble viscosity index improving ethylene copolymers, such as copolymers of ethylene and propylene, reacted or grafted with ethylenically unsaturated carboxylic acid moieties, preferably maleic anhydride moieties, and then reacted with polyamines having two or more primary amine groupq and a C22 to C28 olefin carboxyli~ acid component. These reactions can permit the incorporation of varnish inhibition and dispersancy into the ethylene copolymer while inhibiting cross-linking or gelling.
U.S. Patent 2,921,085 relates to the preparation of beta-aminopropionamides by reaction of an alkyl amine with an acrylate to form an alkyl aminopropionate and reaction of the latter compound with an amine. ~he re~ulting compounds are disclosed to have utility as sur~ace active agents, specifically as emulsifying, wetting, foaming and detergent agents.
U.S. Patent 3,337,609 relates to adducts of hydroxyalkyl alkylene polyamines and acrylates. The rosulting adducts are added to polyepoxides to provide compositions whic~ are suitable for us~ as a barrier coating for polyethylene surfaces, and for additional end uses, such as in molding. In addition, the adducts are disclosed to be useful as catalysts in resin preparation and as corrosion inhibitors in water systems for ferrous metals.
U.S. Patent 3,417,149 relates to the preparation o~ amido-amine compositions, which are useful as epoxy resin curing agents, by reacting a polyalkylene polyamine and a fatty amine (comprising a mono- or diamine having as .

.. ~ .. .

2015~3 one of the substituents on a nitrogen atom a hydrocarbyl radical having 8 to 24 carbon atoms) with an alpha-beta unsaturated carbonylic compound. It is disclosed that this reaction occurs through the Michael addition of an amine group across the unsaturated group of the carbonylic compound and through the condensation of an amine group with the carbonylic group.
U.S. Patent 3,247,163 also relates to curing agents for polyepoxide compositions, which curing agents are prepared by rea,,ting an organi,, amine and an acrylate.
U.S. Patent 3,445,441 relates to amino-amido polymer~ characterized ~y being a reaction product of at least a polyamine and an acrylate type compound, such as methyl or ethyl acrylate, and methyl or ethyl methacrylate. Thff~ patent states that the polymers are us~e~ul in a wide variety o~ applications, such as ~loculating agents, water clarifying additives, corrosion inhibitors in oil and gas wells, and as lube oil additlv,a~4. The patent further discloses that the polymers may bf,a df,a,rivitized, including acylation with monocarboxylic acida and polycarboxylic acids, aliphatic dicarboxylic acld~, aromatic, dicarboxylic acids, for example, dlglycolic, phthalic, succinic, etc., acids.
U'.S. Patent 3,903,003 relates to lubricating composltlon~ containing an amido-amine reaction product of ,~ torolnally carboxylated isoprene polymer which is formed by reacting a terminally carboxylated ~ubstantially compl,,a~t,,aly hydrogenated polyi~oprene having an average mol~acular weight between about 20,000 and 250,000 and a nitrog~,an compound of the group consisting of polyalkylene amlnes and hydroxyl polyalkylene amines.
U.S. Patent 4,493,771 relates to scale inhibiting with compounds containing ,,~uaternary ammonium and mathylene phosphonlc acid groups. Thes,, compounds are derivatives of f .

20150~3 polyamines in which the amine hydrogens have been substituted with both methylene phosphonic acid groups or their salts and hydroxypropyl quaternary ammonium halide groups. The patent discloses that any amine that contains reactive amino hydrogens can be utilized, for example, polyglycol amines, amido-amines, oxyacylated amines, and others.
U.S. Patent 4,459,241 contains a similar disclosure to U.S. Patent 4,493,771.
The materials of the present invention are an improvement over those of the aforediscussed prior disclosures because of their effectiveness and their ability to provide enhanced lubricating oil dispersancy.

SUMMARY OF THE INVENTION

Compositions of matter useful as multifunctional viscosity , index improvers for oLea~inous compositions, including fuel and lubricating oil compositions, comprising high molecular weight ethylene copolymers, such as ethylene-~-olefin copolymers, reacted or grafted with ethylenically unsaturated carboxylic acid materials, such as maleic anhydride, and reacted with an amido-amine. The amido-amine is characterized by being a reaction product of at least one polyamine and an ~ unsaturated compound of the formula Rl _ C = C - C _ Y (I) wherein X is sulfur or oxygen, Y is -oR4~ -SR4, or -NR4~R5), and Rl, R2, R3 R4 and R5 are the same or different and are hydragen or substituted or unsubstituted hydrocarbyl.

201~063 DETAILED DESCRIPTION OF THE INvENTIoN
The compositions of matter of the instant invention comprise high molecular weight, i.e., at least 15,000 number average molecular weight, copolymers of ethylene, preferably copolymers of ethylene and at least one other C3 to C28 alpha-olefin such as propylene, reacted or grafted with ethylenically unsaturated carboxylic acid material to form a grafted ethylene copolymer, followed by reaction with an amido-amine. These materials are useful as multifunctional viscosity index improver additives, particularly viscosity index improver-dispersant additives for oleaginous compositions such as fuel and lubricating oil compositions.

ETHYLENE COPOLYMER
Oil soluble ethylene copolymers used in the invention are those capable of modifying or improving the viscosity index of oleaginous compositions, particularly lubricating oil compositions, i.e., polymers useful as V.I.
improvers. ~herefor, they generally will have a number-average molecular weight (~n) f greater than about 10,000, preferably at least about 15,000. These copolymers preferably have number average molecular weights o~ from about 15,000 to about 500,000, more preferably about 20,000 to about 300,0C0, and most preferably from about 30,000 to about 150,000. These V.I. improvers will generally have a narrow range of molecular weight, as determined by the ratio of weight-average molecular weight ~) to number-average molecular weight (~n) Polymers having a ~w/~n of less than 10, pre~erably less than 7, and more preferably 4 or less are most desirable. As used herein (~n) and (~w/~n) are measured by the well known techniques of vapor phase osmometry (VPO), membrane osmometry and gel permeation chromatography. In general, polymers having a narrow range of molecular weight may be obtained by a choice of ~ ' , , , ~ .
. . . - . .
- ' :,- . . .. . .
- ' .'.. ' ~ ' ' ..
' - : ':.' ' .' .'. '' ' ,. ' ' .. .''.. ' ' . ' 201~0~3 g synthesis conditions such as choice of principal catalyst and cocatalyst combination, addition of hydrogen during the synthesis, etc. Post synthesis treatment such as extrusion at elevated temperature and under high shear through small orifices, mastication under elevated temperatures, thermal degradation, fractional precipitation from solution, etc.
may also be used to o~tain narrow ranges of desired molecular weights and to break down higher molecular weight polymer to di~ferent molecular weight grades for V.I. use.
These polymers are prepared from ethylene and ethylenically unsaturated hydrocarbons including cyclic, alicyclic and acyclic, containing from 3 to 28 carbons, e.g. 2 to 18 carbons. These ethylene copolymers may con-tain from 15 to 9o wt. % ethylene, preferably 30 to 80 wt.
% of ethylene and 10 to 85 wt. ~, preferably 20 to 70 wt.
~ of one or more C3 to C28, preferably C3 to C18 more preferably C3 to C8, unsaturated hydrocarbons, preferably alpha olefins. While not essential, such copolymers pre~erably have a degree of crystallinity of le~5 than 25 wt. %, as determined by X-ray diffraction and differential scanning calorimetry. Copolymers of ethylene and propylene are most preferred. Other alpha-olefins suitable in place of propylene to form the copolymer, or to be used in combination with ethylene and propylene, to .
~orm a terpolymer, tetrapolymer, etc., l-pentene, l-hexene, l-heptene, l-octene, l-nonene, l-decene, etc.; also branched chain alpha-olefins, such as 4-methyl-1-pentene, 4-methyl-1-hexene, 5-methylpentene-1, 4,4-dimethyl-1-pentene, and 6-methylheptene-1, etc., and mixtures thereof.
The term copolymer as used herein, unless other-wi9e indicated, includes terpolymers, tetrapolymers, etc., of ethylene, said C3-28 alpha-olefin and/or a non-conju-gated diolefin or mixtures of such diolefins which may also be used. The amount of the non-conjugated diolefin will .
.
.. . . .. . .
- .. . - .: . . . . .. .
: .

~ . - : :
. . .

201~063 generally range from about 0.5 to 20 mole percent, prefer-ably about 1 to about 7 mole percent, based on the total amount of ethylene and alpha-olefin present.
Representative examples of non-conjugated d$enes tha~ may b~ used as the third monomer in the terpolymer include:
a. Straight chain acyclic dienes such as:
1,4-hexadiene; 1,5-heptadiene; l,~-o~tadiene.

b. Branched chain acyclic dienes such as:
5-methyl-1,4-hexadiene; 3,7-dimethyl 1,60ctadiene;
3,7-dimethyl 1,7-octadiene; and the mixed isomers o~ dihydro-myrcene and dihydro-cymene.

c. Single ring alicyclic dienes such as:
1,4-cyclohexadiene; 1,5-cyclooctadiene; 1,5-cyclo-dodecadiene; 4-vinylcyclohexene; 1-allyl-4-isopropylidene cyclohexane: 3-allyl-cyclopentene;
4-allyl-cyclohexene and 1-isopropenyl-4-(4-butenyl) cyclohexane.

d. Multi-single ring alicyclic dienes such as:
4,4'-dicyclopentenyl and 4, 4 ' -dicyclohexenyl diene e. Multi-ring alicyclic fused and bridged ring diene~ such as: tetrahydroindene; methyl tetrahydroindene: dicyclopentadiene; bicyclo (2.2.1) hepta-2,5-diene; alkyl, alkenyl, alkylldene, cycloalkenyl and cycloalkylidene norbornenes such as: ethyl norbornene: 5-methyl-ene-6-methyl-2-norbornene; 5-methylene-6,6-dimethyl-2-norbornenet 5-propenyl-2-norbornene;
5-(3-cyclopentenyl)2-norbornene and 5-cyclohexyl-idene-2-norbornene; norbornadiene; etc.

.'' - . :. .
. - .
- .,. . :, : .
: , .

2~ 0~3 .

CARBOXYLIC ACID MATER~A~
The carboxylic acid material which is grafted to or reacted with the ethylene copolymer to form the grafted ethylene copolymer is pre~erably ethylenically unsaturated, preferably monounsaturated, carboxylic acid material and can be either a monocarboxylic or dicarboxylic acid material. The dicarboxylic acid materials include (i) monounsaturated C4 to C10 dicarboxylic acid wherein (a) the carboxyl groups are vicinyl, i.e., located on adjacent carbon atoms, and (b) at least one, preferably both, of ~aid adjacent carbon a~oms are part of said monounsaturation; and (ii) derivatives of (i) such as anhydride or Cl to C5 alcohol derived mono- or diesters of (i). Upon reaction with the ethylene copolymer the monounsaturation of the dicarboxylic acid, anhydride, or ester becomes saturated. Thus, for example, maleic anhydride becomes an ethylene copolymer substituted succinic anhydride.
The monocarboxylic acid materials include ti) monounsaturated C3 to C10 monocarboxylic acid wherein th- carbon-carbon bond is conjugated to the carboxy group, i.e., of the structure o - C = C - C - ; and (il) derivatives of (i) such as C1 to C5 alcohol d-rived monoesters of (i). Upon reaction with the ethylene copolymer, the monounsaturation of the monounsaturated carboxylic acid material becomes saturated. Thus, for xample, acryllc acid becomes an ethylene copolymer substituted propionic acid, and methacrylic acid becomes an ethylene copolymer substituted isobutyric acid.
Exemplary of such unsaturated mono- and dicarboxylic acids, or anhydrides and thereof include fumaric acid, itaconic acid, maleic acid, maleic anhydride, chloromaleic anhydride, acrylic acid, methacrylic acid, . ~ ~,'. .''' - ' . . ~

crotonic acid, cinnamic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, etc.
Preferred carboxylic acid materials are ~he dicarboxylic acid anhydrides. Maleic anhydride or a derivative thereof is particularly preferred as it doe~ not appear to homopoly~erize appreciably but grafts onto the ethylene copolymer to give two carboxylic acid functionalities. Such preferred materials have the generic formula R' R "
C - C
= C C = O

o wherein R' and R'' are independently hydrogen or a halogen.
Additionally, as taught by U.S. Patent Nos.
4,160,739 and 4,161,4~2, various unsaturated comonomers may be gra~ted on the ethylene copolymer together with the unsaturated carboxyl~c acid material. Such graft monomer systems may comprise one or a mixture of comonomers dir~erent ~rom said unsaturated carboxylic acid material, and which conta$n only one copolymerizable double bond and are copolymerizable with said unsaturated acid compo~ent.
Typically, such comonomers do not contain free carboxylic acid groups and are esters containing alpha-thyleni¢ unsaturation in the acid or alcohol portion;hydrocarbon~, both aliphatic and aromatic, containing , alph~-ethylenic unsaturation, such as the C4-C12 alpha olerins, ~or example hexene, nonen~, dodecene, etc.;
styrenes, ~or exa~ple styrene, alpha-methyl styrene, p-methyl styrene, butyl styrene, etc.; and vinyl monomers, ror example vinyl acetate, vinyl chloride, vinyl ketones .. , , .~
- . .
'' ' ' ~ ' .
: . . .. :

201~0~'3 such a~ methyl and ethyl vlnyl ketone, and nitrogen containing vinyl monomer such as vinyl pyridino and vinyl pyrrolidine, etc. ComonomerS containing functional groups which may cause crosslinking, gelation or other interfering reactions should be avoided, although minor amounts of such comonomers (up to about 10~ ~y weight of the comonomer system) often can be tolerated.
Specific useful copolymeri2able comonomers include th~ following:
(A) Esters of saturated acids and unsaturated alcohols wherein the saturated acids may be monobasic or polybasic acids containing up to about 40 carbon atoms such as the following: acetic, propionic, butyric, valeric, caproic, stearic, oxalic, malonic, succinic, glutaric, ad~pic, pimelic, suberic, azelaic, sebacic, phthalic, isophthalic, terephthalic, hemimellitic, trimellitic, trimesic and the like, including m~xtures. Tho unsaturated alcohols may be monohydroxy or polyhydroxy alcohols and may contain up to a~out 40 carbon atoms, such as the ~ollowing: allyl, methallyl, crotyl, l-chloroallyl, 2-chloroallyl, cinnamyl, vinyl, methyl vinyl, l-phenallyl, butenyl, propargyl, l-cyclohexene-3-ol, oleyl, and the like, including mixtures.
(B) Esters of unsaturated monocarboxylic acids containing up to about 12 carbon atoms such as acrylic, methacrylic and crotonic acid, and an esterifying agent conta$ning up to about 50 carbon atoms, selected from ~aturated alcohol~ and alcohol epoxides. The saturated alcohol~ may preferably contain up to about 40 carbon atoms and include monohydroxy compounds such as: methanol, ethanol, propanol, ~u~anol, 2-ethylhexanol, octanol, dod-canol, cyclohexanol, cyclopentanol, neopentyl alcohol, and benzyl alcohol: and alcohol ethers such as the mono-mQthyl or monobutyl ethers of ethylene or propylene glycol, ~ ~ . . . . .
:
::
-- ' ~ . . '' .' : ' , . .
.. - - ~ ..... . .

and the like, including mixtures. The alcohol ep~xides include fatty alcohol epoxides, glycidol, and various derivatives of alkylene oxides, epichlorohydrin, and the like, including mixtures.
The components of the graft copolymerizable system are used in a ratio of unsaturated carboxylic acid material monomer component to comonomer component of about 1:4 to 4:1, preferably about 12 to 2:1 by weight.

GR~F~ING OF THE~ E~E COPOLYMER
The grafting of the ethylene copolymer with the carboxylic acid material may be by any suitable method, such as thermally by the "ene" reaction, using copolymers containing unsaturation, such as e~hylene-propylene-diene polymers either chlorinated or unchlorinated, or more prererably it is by free-radical induced grarting in sol-vent, preferably in a mineral lubricating oil as solvent.
The radical grafting is preferably carried out using ~ree radical initiators such as peroxides, hydro-peroxides, and azo compounds and preferably those which have a boiling point greater than about lOO-C. and which decompose thermally within the grafting temperature range to provide said free radicals. Representative of these ~re~-radical initiators are a20butyro-nitrile, 2,5-di- -m~thyl-hex-3-yne-2, 5 bis-tertiary-butyl peroxide (sold.
a~ Lupersol 130) or its hexane analogue, di-tertiary butyl p-roxide and dicumyl peroxide. The initiator is generally usod at a level of between about 0.005% and about 1%, based on the total weight of the polymer solution, and tempera-tures Or about 150 to 220'C.
The ethylenically unsaturated carboxylic acid material, such as maleic-anhydride, will be generally used in an amount ranging from about 0.01% to about 10%, prererably 0.1 to 2.0%, based on weight of the initial TM - Trade mark ,- . . ~', . ' ' .
' ~ ' ~' . ' ' ' -- 201~01~3 total solution. The aforesaid carboxylic acid material and free radical initiator are generally used in a weight percent ratio range of 1.0:1 to ~0:1, preferably 3.0:1 to 6:1.
The initiator grafting is preferably carried out in an inert atmosphere, such as that obtained by nitrogen blanketing. While the grafting can b~ carried out in the presence of air, the yield of the desired graft polymer is generally thereby decreased as compared ~o grafting under an inert atmosphere substantially free of oxygen. The grafting tim~ will usually range from about 0.1 to 12 hoùrs, preferably from about 0.5 to 6 hours, more prefer-ably 0.5 to 3 hours. The graft reaction will be usually carried out to at least approximately 4 times, preferably at least about 6 times the half-life of the free-radical initiator at the reaction temperature employed, e.g. with 2,5-dimethyl hex-3-yne-2, 5-bis(t-butyl peroxide) 2 hours at 160-C. and one hour at 170'C., etc.
In the grafting process, usually the copolymer solution is first heated to grafting temperature and thereafter said unsaturated carboxylic acid material and initiator are added with agitation, although they could have been added prior to heating. When the reaction is complete, thQ excess acid material can be eliminated by an inert gas purge, e.g. nitrogen sparging. Preferably the carboxylic acid material that is added is kept below its ~olubility limit in the polymer solution, e~g. below a~out 1 wt. ~, pre~erably below 0.4 wt. % or less, of free maleic anhydride based on the total weight of polymer-solvent solution, e.g. ethylena copolymer mineral lubricatinq oil solution. Continuous or periodic addition of the carboxylic acid material along with an appropriate portion o~ initiator, during the course of the reac~ion, can be utilized to maintain the carboxylic acid below its - 201~06~

solubility limits, while still obtaining the desired degree of total grafting.
In the initiator gra~ting step the maleic anhydride or other carboxylic acid material used will ~e grafted onto both the polymer and the solvent for the reaction. Many solvents such as dichlorobenzene are rela-tively inert and may be only slightly grafted, while mineral oil will tend to be more grafted. The exact split o~ graft between the substrate present depends upon the polymer and its reactivity, the reactivity and type o~ oil, the concentration of the polymer in the oil, and also upon the maintenance o~ the carboxylic acid material in solution during the course of the reaction and minimizing the presence o~ dispersed, but undissolved acid, e.g. the maleic anhydride. The undissolved acid material appears to have an increased tendency to react to form oil insoluble materials as opposed to dissolved acid material. ~he split botween grafted oil and grafted polymer may be measured empirically from the infrared analyses of the product dlalyzed into oil and polymer fractions.
The graftin~ is preferably carried out in a mineral lubricating oil which need not be removed after the gra~ting step but can be used as the solvent in the sub~equent reaction of the graft polymer with the amine material and as a solvent for the end product to form the lubricating additive concentrate. The oil having attached, gra~ted carboxyl groups, when reacted with the amine mat-rial will also be converted to the corresponding der~vat~ves.
~ he solution grafting step when carried out in the presence of a high temperature decomposable peroxide can be accomplished without substantial degradation of the chain l-ngth (molecular weight) of the ethylene containing polymer. This can be an advantage as opposed to high temperature thermal reactions which depend on degradation to apparently form free radical reactive sites. Measure-ment of molecular weights and degradation can be evaluated by determination of the thickening efficiency (T.E.) of the polymer as will later be described.
The amount of carboxylic acid material used in the grafting reaction is an amount which is effective to provide a grafted ethylene copolymer which upon further reaction with an amido-amine as described hereinafter provides a material exhibiting the properties of a multifunctional viscosity index improver additive, more specifically a viscosity index improver-dispersant additive, i.e., a material having both V.I. improving and dispersancy properties in an oleaginous composition. That is to say, an amount which is effective to provide, upon reaction of the grafted ethylene copolymer with the amido amine, an oleaginous compositicn exhibiting improved viscometric and dispersancy properties. Generally, this amount of grafting material, e.g., moles of carboxylic acid material such as maleic anhydride, is an amount which is effective to provide a grafted ethylene copolymer, e.g., ethylene-alpha-olefin substituted carboxylic acid material such as ethylene- propylene substituted succinic anhydride, containing an average number of acid material moieties, e.g., succinic anhydride, grafted to or present on a 10,000 number average molecular weight segment of a mole of ethylene copolymer of at least about 0.1, preferably at least about 0.5, and more preferably at least about 1. The maximum average number of grafted moieties present per 10,000 average number molecular weight segment of a mole of ethylene copolymer backbone should not exceed about 10, preferably about 7 and more preferably about 5.
Preferably, the average number, moles, of grafted moieties present per mole of ethylene copolymer backbone is at least about 0.6, preferably at least about 0.8, and more preferably at least about 1. Preferably, the maximum 201~0~3 average number of grafted moieties grafted to or present per mole of ethylene copolymer back~one should generally not exceed about lO, preferably about 7, and more preferably about 5. Thus, for example, a ~ole of grafted ethylene copolymer, e.g., ethylene- propylene substituted succinic anhydride, containing an ethylene copolymer backbone such as an ethylene- propylene backbone having an average number molecular weight of 50,000 contains grafted to said bacXbone an average number of succinic anhydride moieties of from about 0.5 to about 50, preferably from about 0.6 to about 10. Typically, from about 0.2 to about 12, preferably from about 0.4 to about 6 moles of said carboxylic acid material are charged to the reactor per mole of ethylene copolymer charged.
Normally, not all of the ethylene copolymer reacts with the carboxylic acid material, e.g., maleic anhydride, to produce a grafted ethylene copolymer, e.g., ethylene-propylene substituted succinic anhydride. The resultant reaction product mixture, therefore, contains reacted or grafted ethylene copolymer, e.g., ethylene-propylene substituted succinic anhydride, unreacted or ungrafted ethylene copolymer, and unreacted grafting material, e.g., maleic anhydride. The unreacted ethylene copolymer is typically not removed from the reaction product mixture, and the reaction product mixture, generally stripped of any unreacted grafting ma~erial, is utilized as is or is employed for further reaction with the amine as described hereinafter.
Chaxacterization of the average number of moles of carboxylic acid material, e.g., maleic anhydride, which have reacted per mole of ethylene copolymer charged to the reaction (whether it has undergone reaction or not) is derined herein as the average number of grafted moieties grafted to or present per mole of ethylene copolymer backbone. This number is defined solely with reference to the resulting reaction product mixture. Although the amount of said unreacted ethylene copolymer contained in the resulting reaction product mixture can be subsequently modified, i.e., increased or decreased by techniques known in the art, such modifications do not alter the average number of grafted moieties as defined above. The term grafted ethylene copolymer is intended to refer to the reaction product mixture whether it has undergone such modification or not.

As described above, the amido-amine comprises a reaction product of at least a polyamine and an alpha, beta ethylenically unsaturated compound of formula (I) above.
The polyamines useful in this invention comprise polyamines, most preferably polyalkylene polyamines, of about 2 to 60, preferably 2 to 40 (e.g. 3 to 20), total car~on atoms and about 1 to 12, preferably 2 to 12, more prefcrably 3 to 12, and most preferably at least 5 (e.g., 5 to 9) nitrogen atoms in the molecule. These amines may be hydrocarbyl amines or may be hydrocarbyl amines including other groups, e.g, hydroxy groups, alkoxy groups, amide groups, nitriles, imidazoline groups, and the like. Hydroxy amines with 1 to 6 hydroxy groups, preferably l to 3 hydroxy groups are particularly useful. Preferred amines are aliphatlc saturated amines, including those of the general formulas:

R-N-R~, and R-N-(CH2)s ~ l~(cH2)5 ~ I R
R" R' R " ' R' (II) (III) wherein R, R', R "-and R " ' are independently selected from .

. ' ~
- .

20150~3 - 20 ~

alkylene radicals; and C1 to C12 alkylamino c2 to C6 alkylene radicals: and wherein R"' can additionally comprise a moiety o~ the formula:

~ (CH2)9, - N ~ H (IV) wherein R' is as defined above, and wherein s and s' can be the same or a different number of from 2 to 6, preferably 2 to 4; and t and t' can be the same or dif ferent and are numbers of from 0 to 10, preferably 2 to 7, and most preferably about 3 to 7, with tha proviso that ~he sum of t and t' is not grea$er than 15. To assure a facile reaction, it is preferred that R, R', R", R" ', s, s', t and t' be selected in a manner sufficient to provide the coDpounds of Formulas II and III with typically at least one primary or secondary amine group, preferably at least two primary or secondary amine groups. This can be achieved by selecting at least one of said R, R', R" or R " ' groups to be hydrogen or by le~ting t in Formula III be at least one when R"' i~ H or when the IV moiety possesses a secondary amino group. The most preferred amine of the abovo formula~ are represented by Formula III and co~tain at least two primary amine groups and at least one, and prQferably at least threQ, secondary amine groups.
Non-llmiting examples o~ suitable amine compounds lnclude: 1,2-diaminoethane: 1,3-diaminopropane:
1,4-diaminobutane: 1,6-diaminohexane; polye~hylene amines ~uch as diethylene triamine: triethylene tetramine;
t~traethylene pentamine: polypropylene amines such as 1,2-propylene diamine: di-(1,2-propylene)triamine;
d~ 3-propylene) triamine; N,N-dimethyl-1,3-di-amlnopropanQ: N,N-di-(2-aminoethyl) ethylene diamine;
N,N-d~(2-hydroxyethyl)-1,3-propylen~ diamine;
~-dod-cyloxypropylamine; N-dodecyl-l t 3-propane diamine;

- -. . :

aminopropane; N,N-di-(2-aminoethyl) ethylene diamine;
N,N-di(2-hydroxyethyl)-1,3-propylene diamine;
3-dodecyloxypropylamine; N-dodecyl-1,3-propane diamine;
tris hydroxymethylaminomethane (THAM): diisopropanol amine;
diethanol amine; triethanol amine; mono-, di-, and tri-tallow amines; amino morpholines such as N-(3-amino-propyl)morpholine; and mixtures thereof.
Other useful amine compounds include: alicyclic diamines such as 1,4-di(aminomethyl) cyclohexane, and heterocyclic nitrogen compounds such as imidazolines, and N-aminoalkyl piperazines o~ the general formula (V):

(CH~ C~2-CH2 ~ C~2~P2-NH ~ H
nl CH2-CH2 n2 . . .
wherein P1 and P2 are the same or different and are each integers of from 1 to 4, and nl, n2 and n3 are the same or different and are each integers of from 1 to 3. Non-limiting examples of such amines include 2-pentadecyl imidazoline: N-~2-aminoethyl) piperazine; etc.-Commercial mixtures of amine compounds mayadvantageously be used. For example, one process for preparing alkylene amines involv~s the reaction of an alkylene dihalide (such as ethylene dichloride or propylene dichloride) with ammonia, which results in a complex mixture of alkylene amines wherein pairs of nitrogens are joined by alkylene groups, ~orming such compounds as diethylene triamine, triethylenetetramine, tetraethylene pentamine and isomeric piperazines. Low cost poly(ethyleneamines) compounds averaging about 5 to 7 nitrogen atoms per molecule are available commercially under trade marks such as "Polyamine H", "Polyamine 400", "Dow Polyamine E-100", etc.

- . - - . : , :
.: . . .. :, ., . :
, . . , : :
.. ..
- , -- . .
. . .
`, . . : ~ ': : , NH2 (alkylene O-alkylene ) ~ NH2 (VI) m where m has a value of about 3 to 70 and preferably 10 to 35: and R ( alXylene-~-O-alkylene ) NH2 ) n a (VII) where "n" has a value of about 1 to 40 with the provision that the sum o~ all the n's is from about 3 to about 70 and pre~erably fro~ about 6 to about 35, and R is a polyvalent saturated hydrocarbon radical of up to ten carbon atoms whQrein the number of subst~tuents o~ the ~ group is represented by the value of "a", which is a number of from 3 to 6. The alkylene groups in either form~la (VI) or (VII) may be straight or branched chains containing about 2 to 7, and preferably about 2 to 4 carbon atoms.
The polyoxyalkylene polyamines of formulas ~VI) or ~VII) above, preferably polyoxyalXylene diamine~ and polyoxyalkyl~ne tria~inesO may have average molecular w-ight~ ranging fro~ about 200 to about 4000 and preferably ~rom about 400 to about 2000. The preferred polyoxyal-kyl~ne polyoxyalkylene polyamines include the polyoxyethylQne and polyoxypropylene diamines and the .
polyoxypropylene triamines having average molecular weights ranging from about 200 to 2000. The polyoxyalkylene polyamines are commercially available and may be obtained, ~or ~xample, from thè Jefferson Chemical Company, Inc.
under the trade marks "Jeffamines D-230, D-400, D-1000, D-2000, T-403", etc.
Additional amine~ useful in the present invention -arQ described in U.S. Patent 3,445,441.
Thus, any polyamine, whether aliphatic, oycloaliphatic, aromatic, heterocylic, etc., can be - . . . . ~ ~ - .

- - ' " ' ' ' ' ~,: .', , ' -- ` 20~0~3 employed provided it is capable of adding across the acrylic double bond and amidifying with for example the carbonyl group (-C[0)-) o~ the acrylate-type compound of formula I, or with the thiocarbonyl group (-c(S)-) of the thioacrylate-type compound of formula I.
The alpha, beta ethylenically unsaturated compounds employed in this invention comprise at least one member selected from the group consisting of alpha, beta ethylenically unsaturated compound~ of the formula:

R - c = C - C ~ Y (I) wherein X is sulfur or oxygen, Y is -oR4~ -SR4, or -N~4(R5), and Rl R2 R3, R4 and R5 are the same or di~ferent and are hydrogen or substituted or unsubstituted hydrocarbyl.
When Rl~ R2~ R3, R4 or R5 are hydrocarbyl, these groups can comprise alkyl, cycloalXyl, aryl, alkaryl, aralkyl or heterocyclic, which can be substituted with groups which are substantially inert to any component of the reaction mixture under conditions selected ~or prepara~ion of the amido-amine. Such substituent groups include hydroxy, halide te.g., Cl, Fl, I, Br), -SH and alkylthio. When one or more of Rl through R5 are alkyl, such alkyl groups can be straight or branched chain, and will generally contain from 1 to 20, more usually fro~ 1 to 10, and preferably from 1 to 4, carbon atoms. Illustrative of such alkyl groups are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tridecyl, hexadecyl, octadecyl and the like. When one or more of Rl through R5 are aryl, the aryl group will generally contain from 6 to 10 carbon atoms (e.g., phenyl, naphthyl).

- ' ' ~ ' .`; : . `

2~1~0~

When one or more of Rl through RS are alkaryl, the alkaryl group will generally contain from about 7 to 20 carbon atoms, and preferably from 7 to 12 carbon atoms.
Illustrative of such alkaryl groups are tolyl, m-ethyl-phenyl, o-ethyltolyl, and m-hexyltolyl. When one or more of R1 through R5 are aralkyl, the aryl component generally consists of phenyl or (Cl to C6) alkyl-sub-stituted phenol and the alkyl component generally contains from 1 to 12 carbon atoms, and preferably from 1 to 6 carbon atoms. Examples of such aralkyl groups are benzyl, o-ethylbenzyl, and 4-isobutylbenzyl. When one or more of R1 and R5 are cycloalkyl, the cycloalkyl group will gonQrally contain from 3 to 12 carbon atoms, and preferably ~rom 3 to 6 carbon atoms. Illustrative of such cycloalkyl groups are cyclopropyl, cyclobutyl, cyclohexyl, cyclooctyl, and cyclododecyl. When one or more of R1 through R5 are heterocyclic, the heterocyclic group ~enerally consists of a compound having at least one ring of 6 to 12 members in which on or.more ring carbon atoms is replaced by oxygen or nitro~en. Examples of such heterocyclic groups are ~uryl, pyranyl, pyridyl, piperidyl, dioxanyl, tetrahydro-furyl, pyrazinyl and 1,4-oxazinyl.
The alpha, beta ethylenically unsaturated carboxylate compounds employed herein have the following ~ormula:
R2 R3 o Rl- I = I - C - oR4 (VIII) wh-rein R , R2, R3, and R4 are the same or dl~foront and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of such alpha, b-t~-othylenically unsaturated carboxylate compounds of ~ormula VIII are acrylic acid, methacrylic acid, the mothyl, ethyl, isopropyl, n-butyl, and isobutyl esters of - 2~151~

acrylic and methacrylic acids, 2-butenoic acid, 2-hexenoic acid, 2-decenoic acid, 3-methyl-2-heptenoic acid, 3-methyl-2-butenoic acid, 3-phenyl-2-propenoic acid, 3-cyclohexyl-2-butenoic acid, 2-methyl-2-butenoic acid, 2-propyl-2-propenoic acid, 2-isopropyl-2-hexenoic acid, 2,3-dimethyl-2-butenoic acid, 3-cyclohexyl-2-methyl-2-pen-tenoic acid, 2-propenoic acid, methyl 2-propenoate, methyl 2-methyl 2-propenoate, methyl 2-butenoate, ethyl 2-hex-enoate, isopropyl 2-decenoate, phenyl 2-pentenoate, tertiary butyl 2-propenoate, octadecyl 2-propenoate, dodecyl 2-de~enoate, cyclopropyl 2,3-dimethyl-2-butenoate, methyl 3-phenyl-2-propenoate, and the like.
The alpha, beta ethylenically unsaturated carboxylate thioester compounds employed herein have the following formula:
R2 R3 o Rl- 1 = 1 ~ C - SR4 ~IX) wherein R , R2, R3, and R4 are the same or dl~erent and are hydrogen or substituted or unsubstituted hydrocarbyl as de~ined above. Examples of such alpha, beta-ethylenically unsaturated carboxylate thioesters of ~ormula IX are methylmercapto 2-butenoate, ethylmercapto 2-hexenoate, isopropylmercapto 2-decenoate, phenylmercapto 2-pentenoate, tertiary butylmercapto 2-propenoate, octa-docylmercapto 2-propenoate, dodecylmercapto 2-decenoate, cyclopropylmercapto 2,3-dimethyl-2-butenoate, methyl-m-rcapto 3-phenyl-2-propenoate, . methylmercapto 2-pro-po~oate, methylmercapto 2-methyl-2-propenoate, and the like.
The alpha, beta ethylenically unsa~urated carboxyamide compounds employed herein have the following formula:

R~ - C - NR4(R5) (X~

. .

201~0~3 wherein R1, R2, R3, R4 and RS are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of alpha, beta-ethylenically unsaturated carboxyamides of formula X
are 2-butenamide t 2-hexenamide, 2-decenamide, 3-methyl-2-heptenamide, 3-methyl-2-butenamide, 3-phenyl-2-propen-amide, 3-cyclohexyl-2-butenamide, 2-methyl-2-butenamide, 2-propyl-2-propenamide, 2-isopropyl-2-hexenamide, 2,3-di-methyl-2-butenamide, 3-cyclohexyl-2-methyl-2-pentenamide, N-methyl 2-butenamide, N,N-diethyl 2-hexenamide, N-iso-propyl 2-decenamide, N-phenyl 2-pentenamide, N-tertiary butyl 2-propenamide, N-octadecyl 2-propenamide, N-N-di-dodecyl 2-decenamide, N-cyclopropyl 2,3-dimethyl-2-buten-amide, N-methyl 3-phenyl-2-propenamide, 2-propenamide, 2-methyl-2-propenamide, 2-ethyl-2-propenamide and the like.
The alpha, beta ethylenically unsaturated thiocarboxylate compounds employed herein have the ~ollowing formula:
~2 R3 S
R~ - C - oR4 (XI) whorein Rl, R2, R3, and R4 are the same or dlf~erent and are hydrogen or substituted or unsubstituted hydrocarbyl a~ defined above. Examples of alpha, beta-ethylenically unsaturated thiocar~oxylate compounds of ~ormula XI are 2-butenthioic acid, 2-hexenthioic acid, 2-decenthioic acid, 3-methyl-2-heptenthioic acid, 3-methyl-2-butenthioic acid, 3-phenyl-2-propenthioic acid, 3-cyclohexyl-2-butenthioic acid, 2-methyl-2-butenthioic acid, 2-propyl-2-propenthioic acid, 2-isopropyl-2-hex enthioic acid, 2,3-dimethyl-2-butenthioic acid, 3-cyclo-hexyl-2-methyl-2-pententhioic acid, 2-propenthioic acid, methyl 2-propenthioate, methyl 2-methyl 2-propenthioate, methyl 2-butenthioate, ethyl 2-hexenthioate, isopropyl 201~3 2-decenthioate, phenyl 2-pententhioate, tertiary butyl 2-propenthioate, octadecyl 2-propenthioate, dodecyl 2-decenthioate, cyclopropyl 2,3-dimethyl-2-butenthioate, methyl 3-phenyl-2-propenthioate, and the like The alpha, ~eta ethylenically unsaturated dithioic acid and acid ester compounds employed herein have the ~ollowing formula Rl- 1 = 1 - C - SR4 (XII) wherein R , R ' R3, and R4 are the same or dif~erent and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above Examples of alpha, bota-ethylenically unsaturated dithioi~ acids and acid esters of formula XII ara 2-butendithioic acid, 2-hexendithioic acid, 2-decendithioic acid, 3-methyl-2-hep-tendithioic acid, 3-methyl-2-butendithioic acid, 3-phenyl-2-propendithioic acid, 3-cyclohexyl-2-buten-dlthioic acid, 2-methyl-2-butendithioic acid, 2-propyl-2-propendithioic acid, 2-isopropyl-2-hexendithioic acid, 2,3-dimethyl-2-butendithioic acid, 3-cyclo-hoxyl-2-methyl-2-pentendithioic acid, 2-propendithioic acid, methyl 2-propendithioate, methyl 2-methyl 2-pro-ndlthioate, methyl 2-butendithioate, ethyl 2-hexendith~oate, isopropyl 2-decendithioate, phenyl 2-pentendithioate, tertiary butyl 2-propendithioate, octad-cyl 2-propendithioate, dodecyl 2-decendithioate, cyclopropyl 2,3-dimethyl-2-butendithioate, methyl 3-phenyl-2-propendithioate, and the like The alpha, beta ethylenically unsaturated thiocarboxyamide compounds employed herein have the following formula R~ I - C - NR4(R5) (XIII) - -.
.
.
' . .. . ~ . ' " , ~ ' -: . , . ::

201~063 wherein Rl, R2, R3, R4 and R5 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of alpha, beta-ethylenically unsaturated thiocarboxyamides of formula XIII are 2-butenthioamide, 2-hexenthioamide, 2-decen-thioamide, 3-methyl-2-heptenthioamide, 3-methyl-2-buten-thioamide, 3-phenyl-2-propenthioamide, 3-cyclohexyl-2-buten-thioamide, 2-methyl-2-butenthioamide, 2-propyl-2-propen-thioamide, 2-isopropyl-2-hexenthioamide, 2,3-di-methyl-2-butenthioamide, 3-cyclohexyl-2-methyl-2-penten-thioamide, N-methyl 2-butenthioamide, N,N-diethyl 2-hexenthioamide, N-isopropyl 2-decenthioamide, N-phenyl 2-pententhioamide, N-tertiary butyl 2-propenthioamide, N-octadecyl 2-propenthioamide, N-N-didodecyl 2-decen-thioamide, N-cyclopropyl 2,3-dimethyl-2-butenthioamide, N-methyl 3-phenyl-2-propenthioamide, 2-propenthioamide, 2-methyl-2-propenthioamide, 2-ethyl-2-propenthioamide and the like.
Preferred compounds for reaction with the polyamines in accordance with this invention are lower alkyl esters of acrylic and (lower alkyl) substituted acrylic acld. Illustrative of such preferred compounds are compounds o~ the formula:

CH2 = C - COR (XIV) where R3 is hydrogen or a Cl to C4 alkyl group, such as methyl, and ~4 is hydro~en or a Cl to ~4 alkyl group, capable of being removed so as to form an amido group, ~or example, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, aryl, hexyl, etc. In the prererred embodiments these compounds are acrylic and methacrylic esters such as methyl, ethyl or propyl acrylate, methyl, ethyl or propyl methacrylate. When the selected alpha, beta-unsaturated compound comprises a 2 0 1 ~ ,3 compound of formula I wherein X is oxygen, the resulting reaction product with the polyamine contains at least one amido linkage (-C(O)N<) and such materials are herein termed "amido-amines." Similarly, when the selected alpha, beta unsaturated compound of formula I comprises a compound wherein X is sulfur, the resulting reaction product with the polyamine contains thioamide linkage (-C(S)N<) and these materials are herein termed "thioamido-amines." For convenience, the following discussion is directed to the preparation and use of amido-amines, although it will be understood that such discussion is also applicable to the thioamido-amines.
The type of amido-amine formed varies with reaction conditions. For example, a more linear amido-amine is formed where substantially equimolar amo~nts of the unsaturated carboxylate and polyamine are reacted.
~he presence o~ excesse3 of the ethylenically unsaturated reactant of formula I tends to yield an amido-amine which is more cross-.linked than that obtained where substantially equimolar amounts of reactants are employed. Where for economic or other reasons a cross-linked amido amine using exce~s amine is desired, generally a molar excess of the ethylQnically unsaturated reactant of about a~ least 10%, such as 10-300%, or greater, for example, 25-200%, is employed. For more efficient cross-linking an excess of carboxylated mater~al should preferably be used since a cl~aner reaction ensues. For example, a molar excess of about 10-100~ or greater such as 10-50%, but preferably an exces~ of 30-50%, of the carboxylated material. Larger excess can be employed if desired.
In summary, without considering other factors, equi~olar amounts of reactants tend to produce a more linear amido-amina whereas excess of the formula I reactan~
tends to yield a more cross-linked amido-amine. It should - .. .: : ., . : , - .. . . . - ~
- ' . :.
- . ... . . ~ - :
. .
., - , .

201~0~

be noted that the higher the polyamine (i.e., in greater the number o~ amino groups on the molecule) the greater the statistical probability of cross-linking since, for example, a tetraalkylenepentamine, such as tetraethylene pentamine H

NH2(CH2CH2N)4H
has more labile hydrogens than ethylene diamine.
These amido-amine adducts so formed are characterized by both amido and amino groups. In their simplest embodiments they may be represented by units of the following idealized formula:
R R R O
l 11 - N ~ A - N ~ CH2 - CH - C -wherQin the R's, which may be the same or different, are hydrogen or a substituted group, such as a hydrocarbon group, ~or example, alkyl, al~enyl, alkynyl, aryl, etc., and A is a moiety of the polyamine which, for example, may b- aryl, cycloalkyl, alkyl, etc., and n is an integer such a~ 1-10 or greater. The amido-amine adducts preferably contain an average of form 1 to 3 amido groups per molecule o~ the amido-amine adduct.
The above ~impli~ied formula represents a linear amldo-amine polymer. However, crcss-linked polymers may also be formed by employing certain conditions since the polymer has labile hydrogens which can further react with lth-r tha unsaturated moiety by adding across the double bond or by amidifying with a carboxylate group.
Pre~erably, however, the amido-amines of this ~n~ention are not cross-linked to any substantial degree, and more preferably are substantially linear.

,: -, -. : . . , . .: . . . ~ :
... . . . .
. - ~ .
, . . ' '.. ' .. . . . .
,. .~ . ..
. . .: . , .

201~63 Preferably, the polyamine reactant contains at least one primary amine (and more preferably from 2 to 4 primary amines) group per molecule, and the polyamine and the unsaturated reactant o~ formula I are contacted in an amount of from about l to lO, more preferably from about 2 to 6, and most pre~erably ~rom about 3 to 5, equivalents of primary amine in the polyamine reactant per mole of the unsaturated reactant of formula I.
The reaction between the selected polyamine and acrylate-type compound is carried out at any suitable temperature. Temperatures up to the decomposition points of reactants and products can be employed. In practice, ono generally carries out the reaction by heating the reactant below lOO-C, such as 80-90'C, for a suitable per$od of time, such as a few hours. Where an acrylic-type ester is employed, the progress of the reaction can be ~udged by the removal of the alcohol in forming the amide.
During the early part of the reaction alcohol is removed quit~ readily below lOO-C in the case of low boiling alcohols such a~ methanol or ethanol. As the reaction slows, the temperature is raised to push the polymerization to completion and the temperature may be raised to 150-C
toward the end of the reaction. Removal of alcohol is a convenient method of judging the progress and completion of the reaction which is generally continued until no more alcohol iB evolved. Based on removal of alcohol, the yleldR are generally stoichiometric. In more difficult reactions, yield of at least 95% are generally obtained.
Similarly, it will be understood that the reaction Or an ethylenically unsaturated carboxylate thioester of ~ormula IX liberates the corresponding HSR4 compound (e.g., H2S when R4 is hydrogen) as a ~y-product, and the react$on o~ an ethylenically unsaturated carboxyamide of formula X liberate~ the corresponding HNR4(R5~

.. .

,: -: , ' .
. .

201~063 compound (e-g-, ammonia when R4 and R5 are each hydrogen) as by-product.
The reaction time involved can vary widely depending on a wide variety of factors. For example, there is a relationship between time and temperature. In general, lower temperature demands longer times. Usually, reaction times of from about 2 to 30 hours, such as 5 to 25 hours, and preferably 3 to 10 hours will be employed.
Although one can employ a solvent, the reaction can be run without the use of any solvent. In fact, where a high degree of cross-linking is desired, it is preferably to avoid the use of a solvent and most particularly to avoid a polar solvent such as water. However, taking into consideration the effect of solvent on the reaction, where desired, any suitable solvent can be employed, whether organic or inorganic, polar or non-polar.
As an example of the amido-amine adducts, the reaction of tetraethylene pentaamine (TEPA) with methyl acrylate can be illustrated as follows:
O

H2NtCH2CH2NH]3CH2CH2NH2 + CH2=CH C-OCH3 O ~
H2N~cH2cH2NH~3cH2cH2NHc~2cH2cN~cH2cH2[NHcH2cH2]3 2 REACTION OF GRAFTED ETHYLENE
COPOLYMER WITH AMIDO AMINE
The grafted high molecular weight ethylene copolymer, preferably in solution, such as an oil solution, containing 5 to 95 wt.%, preferably 5 to 30 wt. %, and more preferably 10 to 20 wt.% of said grafted ethylene copolymer, is readily reacted with the amido-amine by introducing the amido amine into said grafted ethylene copolymer containing solution and heating at a temperature .

. , . : -2015~63 of from about 100C to 250~C, preferably from 125 to 175'C, for from about 1 to lO hours, usually about 2 to about 6 hours. The heating is preferably carried out, in the case of ethylene copolymer substituted dicarboxylic acid material, to favor formation of imides or mixtures of imides and amides rather than amides and salts. In the case of ethylene copolymer substituted monocarboxylic acid material heating is preferably carried out to favor formation of amides rather than salts. Removal of water assures completion of the imidation/ amidation reaction.
Reaction ratios can vary considerably, depending upon the reactants, amounts of excess, type of bonds formed, etc.
Generally, from about 1 to 5, preferably from about 1.5 to 3 moles of ethylene copolymer substituted monocarboxylic or dicarboxylic acid moiety content, e.g., grafted succinic anhydride content, is used per equivalent of amido amine reactant, e.g., amine.
An example of the reaction of an amido amine reactant with ethylene copolymer substituted dicarboxylic acid material is the reaction of ethylene-propylene copolymer substituted succinic anhydride (EPSA) with a poly amido-amine having two terminal -NH2 groups, which can be illustrated as follows:
EP r O + H2N t (CH2)3 NHC (CH2)3NH ~ t (CH2)3 NHC~CH2)3 ~ NH2 O
r 1 r N t (CH2)2 NHC(CH2~3N~ ~ (CH2)2 NHC(CH2~3 ~ NH2 , -- .

20150~3 wherein x and y are each integers of from 0 to 10, with the proviso that the sum of x + y is at least 1, e.g., 1 to 20.
An example of the reaction of an amido-amine reactant with an ethylene copolymer substituted monocar-boxylic acid material is the reaction of ethylene-propylene copolymer substituted propionic acid (EPA) with a poly amido-amine having two terminal -N~2 groups, which can be illustrated as follows:
O o EP - CH2C-O~ + H2N(CH2~2NH _ zl x-22 y~C(CH2~2NH(CH2)2NH

0 ~ o H O
.. I .. I -EP -CH2C-O----N(CH2)2NH-ZlX-Z2y~ C(CH2)2NH(CH2)2N-O-C-CH2-EP
wherein x and y are each integers of from 0 to 10, with the proviso that the sum of x + y is at least 1, e.g., 1 to 20 and wherein 21 and z2 are the same or different and are each moieties of the formula:
o - C(CH2) 2NH(CH2) 2NH

~ t will be understood that the amido-amine reac~-ant can be employed alone or in admixture with any of the above described amines, such as the polyalkylene poly-amines, useful in preparing the amido-amine reactant.
Prefera~ly, the ethylene copolymer substituted mono- or dicarboxylic acid material and amido-amine will be contacted for a time and under conditions sufficient to react substantially all o~- the primary nitrogens in the amido-amine reactant. The progress of this reaction can be ~ollowed by infra-red analysis.

.
- . . . .
.. .
.. : : : . - . :
- --. . .- - . . :

. :. - , :; ' '.' . . ~ . , - - , . .

201~063 This reaction can be conducted in a polar or non-polar solvent, e.g., xylene, toluene, benzene, and the like, and is preferably conducted in the presence of a mineral or synthetic lubricating oil.
In another, and generally preferred, embodiment of the instant invention, the grafted high molecular weight ethylene copolymer is reacted with the amido-amine and a carboxylic acid component or with the preformed reaction products, e.g., salts, amides, imides, of said amido-amine and carboxylic acid component.
CARBOXYLIC_ACID COMPONENT
The carboxylic acid component includes:
hydrocarbyl substituted dicarboxylic acid or anhydride, preferably succinic anhydride or acid, having 12 to 49 carbons, preferably 16 to 49 carbons in said hydrocarbyl group; long chain monocarboxylic acid of the formula RCOOH
where R is a hydrocarbyl group of about 50 to about 400 carbons: and long chain hydrocarbyl substituted dicarboxylic acid or anhydride, preferably succinic anhydride or acid, having from about 50 to about 400 carbons in said hydrocarbyl group. The preferred carboxylic acid component is the long chain hydrocarbyl substituted dicarboxylic acid or anhydride, preferably succinic acid or anhydride, having from about 50 to about 400 carbon atoms in said hydrocarbyl group. Said hydrocarbyl groups are essentially aliphatic and include alkenyl and alkyl groups. The longer chain acids and anhydrides are preferred, particularly when the grafting reaction is carried out in lubricating oil.
The about C50-C400 hydrocarbyl subtituted dicarboxylic acid or anhydride includes the reaction product of the C50-C400 hydrocarbon polymer, generally a polyolefin, with (i) monounsaturated C4 to C10 dicarboxylic acid wherein (a) the carboxyl groups are vicinyl, i.e., located on adjacent carbon atoms, and (b) at lea~t one, preferably both, of said adjacent carbon atoms .

.
.

20~0~

are part of said monounsaturation; or with (ii) derivatives of (i) such as anhydrides of (i). Upon reaction with the hydrocarbon polymer, the monounsaturation of the dicarboxylic acid, anhydride, etc. becomes saturated. Thus for example, maleic anhydride becomes a hydrocarbyl substituted succinic anhydride.
Typically, from about 0.7 to about 4.0 (e.g., 0.8 to 2.6), preferably from about 1.0 to about 2.0, and most preferably from about 1.1 to about 1.7 moles of said unsaturated ~4 to C10 dicarboxylic acid, anhydride or ester are charged to the reactor per mole of polyolefin charged.
Normally, not all of the polyolefin reacts with the unsaturated acid or derivative and the hydrocarbyl substituted dicarboxylic acid material will contain unreacted polyolefin. The unreacted polyolefin is typically not removed from the reaction mixture (because such removal is difficult and would be commercially infeasible) and the product mixture, stripped of any unreacted monounsaturated C4 to C10 dicarboxylic acid or anhydridej is employed as the carboxylic acid component.
Characterization of the average number of moles of dicarboxylic acid or anhydride, which have reacted per mole of polyolefin charged to the reaction (whether it has undergone reaction or not) is defined herein as functionality. Said functionality is based upon (i) determination of the saponification number of the r sulting product mixture using potassium hydroxide; and (ii) the number average molecular weight of the polymer charged, using techni~ues well known in the art. Functionality is defined solely with reference to the resulting product mixture~ Although the amount of said reacted polyolefin contained in the resulting product mixture can be subsequently modified, i.e., increased or decreased by techniques known in the art, such modifications do not -- ~ 20150G3 alter functionality as defined above. The term C50-C400 hydrocarbyl substituted dicarboxylic acid material is intended to refer to the product mixture whether it has undergone such modification or not.
Accordingly, the functionality of the C50-c400 hydrocarbyl substituted dicarboxylic acid material will be typically at least about 0.5, preferably at least about 0.8, and most preferably at least about 0.9 and will vary typically from about 0.5 to about 2.8 (e.g., 0.6 to 2), preferably from about 0.8 to about 1.4, and most preferably from about 0.9 to about 1.3.
Exemplary of such unsaturated dicarboxylic acids or anhydrides thereof are fumaric acid, itaconic acid, maleic acid, maleic anhydride, chloromaleic acid, chloromaleic anhydride, etc.
Preferred about C50 to about C400 olefin polymers for reaction with the unsaturated dicarboxylic acids or derivatives thereof are polymers comprising a ma~or molar amount f C2 ~ C10, e-g-, C2 to C5 monoolefin. Such olefins include ethylene, propylene, butylene, isobutylene, pentene, octene-1, styrene, etc.
The polymers can be homopolymers such as polyisobutylene, a~ well as copolymers of two or more of such olefins suoh as copolymers of: ethylene and propylene; butylene and isobutylene; propylene and isobutylene; etc. Other copolymers include those in which a minor molar amount of the copolymer monomers, e.g., 1 to 10 mole %, is a C4 to C18 non-conjugated diolefin, e.g., a copolymer of isobutylene and butadiene; or a copolymer of ethylene, propylene and 1,4-hexadiene; etc.
In some cases, the olefin polymer may be completely saturated, for example an ethylene-propylene copolymer made by a Ziegler-Natta synthesis usig hydrogen as a moderator to control molecular weight.
The olefin polymers used will usually have number average molecular weights within the range of about 700 and about 5,600, more usually between about 800 and about 3000~ Particularly useful olefin polymers have number average molecular w~ights within the range of about 900 and about 2500 with approximately one terminal double bond per polymer chain. An especially useful starting material is polyisobutylene. The number average molecular weight for such polymers can be determined by several known techniques. A convenient method for such determination is by gel permeation chromatography (GPC) which additionally provides molecular weight distribution information, see w.
W. Yau, J. J. Kirkland and D> D. Bly, ~Modern Size Exclusion Liquid Chromatography", John WIley and Sons, New York, 1979.
Processes for reacting the about CSO to about C400 olefin polymer with the C4_10 unsaturated dicarboxylic acid or anhydride are known in the art. For example, the olefin polymer and the dicarboxylic acid or derivative may be simply heated together as disclosed in U.S. Patents 3,361,673 and 3,401,118 to cause a thermal "ene" reaction to take place. Or, the olefin polymer can be first halogenated, for example, chlorinated or brominated to about 1 to ~ wt. %, preferably 3 to 7 wt. %
chlorine, or bromine, based on the weight of polymer, by passin~ the chlorine or bromine through the polyolefin at a temperature of 60 to 250C, e.g. 120 to 160CC, for about 0.5 to 10, preferably 1 to 7 hours. The halogenated polymer may then be reacted with sufficient unsaturated acid or derivative at 100 to 250~C, usually about 180 to 235'C, for about 0.5 to 10, e.g. 3 to 8 hours, so the product obtained will contain the desired number of moles of the unsaturated acid or derivative per mole of the halogenated polymer. Processes of this general type are taught in U.S. Patents 3,087,936; 3,172,892; 3,272,746 and others.
Alternatively, the olefin polymer, and the unsaturated acid or derivative are mixed and heated while - : , ~ : . . .

f adding chlorine to the hot material. Processes of this type are disclosed in U.S. Patents 3,215,707; 3,231,587;
3,912,764; 4,110,349; and in U.K. 1,550,219.
By the use of halogen, about 65 to 95 wt. % of the polyolefin, e.g. polyisobutylene wili normally reacted with the dicarboxylic acid or derivative. Upon carrying out a thermal reaction without the use of halogen or a catalyst, then usually only about 50 to 75 wt. % of the polyiso-butylene will react. Chlorination helps increased the reactivity.
Particularly pre~erred as the acid component is polyisobutenyl succinic anhydride.

PRE-REACTED AMIDO AMINE-CARBOXYLIC ACID COMPONENT

The aforesaid amido-amine and carboxylic acid component may be pre-reacted, with the acid being generally attached to the amido-amine through salt, imide, amide, or other linkages so that a primary or secondary amine group o~ the amido-amine is s~ill available for reaction with the acid moieties of the grafted high molecular weight ethylene copolymer. A convenient source of these pre-reacted materials are the lubricating oil dispersant, provided they retain primary amine groups capable of further reaction ~-with the grafted ethylene copolymer, described in U.S. Patent No. 4,857,217 issued August 15, 1989 and Canadian Appl~cation Serial No. 2,001,460 filed October 25, 1989.

The grafted high molecular weight ~thylene copolymer i5 reacted with the amido-amine and carboxylic acid component or pre-reacted amido-amine-carboxylic acid component substantially as described hereinafore for the reaction of the grafted high molecular weight ethylene copolymer with the amido-amine. Thus, for example a reaction mixture containing the grafted high molecular weight ethylene copolymer, e.g., ethylene-propylene - . , ' ~ .

I' " ~ ' - 201~

substituted succinic anhydride, and carboxylic acid component, e.g., polyisobutylene substituted succinic anhydride, is prepared by admixing these two reactants, and the amido-amine is then introduced into this reaction mixture and the reaction is carried out as described hereinafore. Alternatively, the carboxylic acid component and amido-amine may be added substantially simultaneously to a reaction mixture containing the grafted high molecular weight ethylene copolymer.
Generally, the amount of the carboxylic acid component utilized is an amount sufficient to provide about 0.5 to about 4, preferably from about 1 to about 2 moles of said carboxylic acid component per molar amount of the carboxylic acid moieties present in the grafted ethylene copolymer. For example, with a grafted ethylene-propylene copolymer of about 40,000 ~n~ i.e., a thickening efficiency of about 2.1 g and averaging 4 succinic anhydride groups per molecule, about 4 moles of polyisobutenyl succinic anhydride would preferably be used per mole of grafted copolymer. Generally, from about 1 to 5, preferably from about 1.5 to 3 moles of the combined carboxylic acid moiety content of the grafted ethylene copolymer and the carboxylic acid content are used per equivalent of amido-amine reactant, e.g., amine.
The compositions of matter of the instant invention, i.e., grafted ethylene copolymers reacted with the amido-amine, can be post-treated with a variety of material~, particularly acid materials! to inactivate any remaining primary amino groups of the adduct and thereby prevent crosslinking and gellation of the adduct. Thus, for example, the adduct may be post-reacted or post-treated with Cl ~ C30 monocarboxylic acids or anhydrides, preferably acetic anhydride, or unsubstituted or C1 -C30 monocarboxylic monocarboxylic acids or anhydrides,preferably acetic anhydride, or unsubstituted or Cl to C28 hydrocarbyl substituted dicarboxylic acid anhydrides -: - :

: .
-', ' ~ .' ' ' ' . ~ ' as disclosed in U.S. Patent No. 4,137,185, incorporated herein by reference; and the sulfonic acids of U.S. Patent No. 4,144,181.
The multifunctional VlSCOslty index improvers of this invention can be used alone or in admixture with other viscosity index improvers ox dispersants. The other viscosity index improvers or viscosity modifiers are generally high molecular weight hydrocarbon polymers including polyesters. These other viscosity modifiers may also be derivatized, as by grafting with a carboxylic acid material of the type described hereinafore and thereafter reacting with a polyamine of the type described hereinafore as a polyol, to include other properties or functions, such as the addition of dispersancy properties. These oil soluble viscosity modifying polymers will generally have number average molecular weights of from 103 to 106, preferably 104 to 1o6, e.g., 20,000 to ~50,000, as determined by gel permeation chromatography or osmometry.
Examples of suitable hydrocarbon polymers include homopolymers and copolymers of two or more monomers of C2 to C30, e.g. C2 to C8 olefins, including both alpha olefins and internal olefins, which may be straight or branched, aliphatic, aromatic, alkyl-aromatic, cycloaliphatic, etc. Frequently they will be of ethylene with C3 to C30 olefins, particularly preferred being the copolymers of ethylene and propylene. Other polymers can be used such as polyisobutylenes, homopolymers and copolymers of C6 and higher alpha olefins, atactic polypropylene, hydrogenated polymers and copolymers and terpolymers of styrene, e.g. with isoprene andJor butadiene and hydrogenated derivatives thereof. ~he polymer may be degraded in molecular weight, for example by mastication, - ; , . : .
,:

' 201.~6~3 extrusion, oxidation or thermal degradation, and it may be oxidized and contain oxygen. Also included are derivatiZed polymers such as post-grafted interpolymers of ethylene-propylene with an active monomer such as maleic anhydride which may be further reacted with an alcohol, or amine, e.g. an alkylene polyamine or hydroxy amine, e.g.
see U.S. Patent Nos. 4,089,794; 4,160,739; 4,137,185; or copolymers of ethylene and propylene reacted or grafted with nitrogen compounds such as shown in U.S. Patent Nos.
4,068,056; 4,068,058; 4,146,489 and 4,149,984.
The preferred hydrocarbon polymers are ethylene copolymers containing from 15 to 90 wt.% ethylene, preferably 30 to 80 wt.% of ethylene and 10 to 85 wt.%, preferably 20 to 70 wt.% of one or more C3 to C28, preferably c3 to C18, more preferably C3 to C8, alpha-olefins. While not essential, such copolymers preferably have a degree of crystallinity of less than 25 wt.~, as determined by X-ray and differential scanning calorimetry. Copolymers of ethylene and propylene are most preferred. Other alpha-olefins suitable in place of propylene to form the copolymer, or to be used in combin-ation with ethylene and propylene, to form a terpolymer, tetrapolymer, etc. , include l-butene, 1-pentene, l-hexene, 1-heptene, l-octene, 1-nonene, l-decene, etc.; also bra~ched chain alpha-olefins, such as 4-methyl-1-pentene, 4-methyl-1-hexene, 5-methylpentene-1, 4,4-dimethyl-1-pentene, and 6-methylheptene-1, etc., and mixtures thereof.
Terpolymers, tetrapolymers, etc., of ethylene, said C3_28 alpha-olefin, and a non-conjugated diolefin or mlxtures of such diolefins may also be used. The amount of the non-conjugated diolefin generally ranges from about 0.5 to 20 mole percent, preferably from about 1 to about 7 mole percent, based on the total amount of ethylene and alpha-olefin present.
The polyester V.I. improvers are generally polymers of esters of ethylenically unsaturated C3 to .

- - ~
- : .
- . - .

- 20150~

C8 mono- and dicarboxylic acids such as methacrylic and acrylic acids, maleic acid, maleic anhydride, fumaric acid, etc.
Examples of unsaturated esters that may be used include those of aliphatic saturated mono alcohols of at least 1 carbon atom and preferably of from 12 to 20 carbon atoms, such as decyl acrylate, lauryl acrylate, stearyl acrylate, eicosanyl acrylate, docosanyl acrylate, decyl methacrylate, diamyl fumarate, lauryl methacrylate, cetyl methacrylate, stearyl methacrylate, and the like and mixtures thereof.
Other esters include the vinyl alcohol esters of C2 to C22 fatty or mono carboxylic acids, preferably saturated such as vinyl acetate, vinyl laurate, vinyl palmitate, vinyl stearate, vinyl oleate, and the like and mixtures thereof. Copolymers of vinyl alcohol esters with unsaturated acid esters such as the copolymer of vinyl acetate with dialkyl fumarates, can also be used.
The esters may be copolymerized with still other unsaturated monomers such as olefins, e.g. 0.2 to 5 moles f C2 ~ C20 aliphatic or aromatic olefin per mole of unsaturated ester, or per mole of unsaturated acid or anhydride followed by esterification. For example, copolymers of styrene with maleic anhydride esterified with alcohols and amines are known, e.g., see U.S. Patent 3,702,300.
Such ester polymers may be grafted with, or the ester copolymerized with, polymerizable unsaturated nitrogen-containing monomers to impart dispersancy to the V.I. improvers. Examples of suitable unsaturated nitrogen-containing monomers include those containing 4 to carbon atoms such as amino substituted olefins as p-(beta-diethylaminoethyl)styrene; basic nitrogen-con-taining heterocycles carrying a polymerizable ethylenically unsaturated substituent, e.g. the vinyl pyridines and the vinyl alkyl pyridines such as 2-vinyl-5-ethyl pyridine, ~V150~3 , . , 2-methyl-5-vinyl pyridine, 2-vinyl-pyridine, 4-vinyl-pyridine, 3-vinyl-pyridine, 3-methyl-5-vinyl-pyridine, 4-methyl-2-vinyl-pyridine, 4-ethyl-2-vinyl-pyridine and 2-butyl-1-s-~inyl-pyridine and the like.
N-vinyl lactams are also suitable, e.g. N-vinyl pyrrolidones or N-vinyl piperidones.
The vinyl pyrrolidones are preferred and are exemplified by N-vinyl pyrrolidone, N-(l-methylvinyl) pyrrolidone, N-vinyl-5-methyl pyrrolidone, N-vinyl-3, 3-dimethylpyrrolidone, N-vinyl-5-ethyl pyrrolidone, etc.
Dispersants maintain oil insolubles, resulting from oxidation during use, in suspension in the fluid thus preventing sludge flocculation and precipitation as deposition on metal parts. Suitable dispersants include alkyl succinimides, the reaction product of oil-soluble polyisobutylene succinic anhydride with polyamines such as tetraethylene pentamine, and borated salts thereof. Such dispersants are disclosed, inter alia, in Belgium Patent No. 658,236 and U.S. Patent No. 3,272,746.
Other dispersants include the esters derived from long chain hydrocarbon substituted dicarboxylic acid material and hydroxy compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and naphthols, etc. The polyhydric alcohols are the most preferred hydroxy compound and preferably contain from 2 to about 10 hydroxy radicals, for example, ethylene glycol, diethylene qlycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and other alkylene glycols in which the alkylene radical contains from 2 to about 8 carbon atoms. Other useful polyhydric alcohols include glycerol, mono-oleate of glycerol, monostearate of glycerol, monomethyl ether of glycerol, pentaerythritol, dipentaerythritol, and mixtures thereof.
The ester dispersant may also be derived from unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, 1-cyclohexane-3-ol, and oleyl ~: . . . : .
. .. .

. : : . . , : . . - ~ :.
- , : ~ - . . :
- : , 201~06~

alcohol. Still other classes of the alcohols capable of yielding the esters of this invention comprise the ether-alcohols and amino-alcohols including, for example, the oxy-alkylene, oxy-arylene-, amino-alkylene-, and amino-arylene-substituted alcohols having one or more oxy-alkylene, amino-alXylene or amino-arylene oxy-arylene radicals. They are exemplified by Cellosolve, Carbitol, N,N,N',N'-tetrahydroxy-trimethylene di-amine, and ether-alcohols having up to about 150 oxy-alkylene radicals in which the alkylene radical contains from 1 to about 8 carbon atoms.
The ester dispersant may be di-esters of dicarboxylic acids (e.g., succinic acid or anhydride) or acidic esters, i.e., partially esterified succinic acids;
as well as partially esterified polyhydric alcohols or phenols, i.e., esters having free alcohols or phenolic hydroxyl radicals. Mixtures of the above illustrated esters likewise are contemplated within the scope of this invention.
The ester dispersant may be prepared by one of several known methods as illustrated for example in U.S.
Patent 3,3~1,022. The ester dispersants may also be borated, similar to the nitrogen containing dispersants.
Hydroxyamines which can be reacted with the polymer-substituted monocarboxylic acid materials to form dispersants include 2-amino-1-butanol, 2-amino-2-methyl-l-propanol, p-(beta-hydroxyethyl)-aniline, 2-amino-1-propanol, 3-amino-1-propanol, 2-amino-2-methyl-1, 3-propane-diol, 2-amino-2-ethyl-1, 3-propanediol, N-(beta-hydroxy-propyl)-N'-(beta-aminoethyl~-piperazine, tris(hydroxymethyl) amino-methane (also known as trismethylolaminomethane), 2-amino-1-butanol, ethanolamine, beta-(beta-hydroxyethoxy)ethylamine, and the like.
Mixtures of these or similar amines can also be employed.
'rhe above description of nucleophilic reactants suitable for reaction with the polymer-substituted monocarboxylic ~ 2~1~0~3 acid materials includes amines, alcohols, and compounds of mixed amine and hydroxy containing reactive functional groups, i.e., amino-alcohols.
The tris(hydroxymethyl) amino methane (THAM) can be reacted with the aforesaid acid materials to form amides, imides or ester type additives as taught by U.K.
984,409, or to form oxazoline compounds and borated oxazoline compounds as described, for example, in U.S.
4,102,798; 4,116,876 and 4,113,639.
The multifunctional viscosity index improvers of the present invention can be incorporated into a lubricating oil in any convenient way. Thus, they can be added directly to the oil by dispersing or dissolving the same in the oil at the desired level of concentration of the multifunctional viscosity index improvers. Such blending into the additional lube oil can occur at room temperature or elevated temperatures. Alternatively, the multifunctional viscosity index improvers can be blended with a suitable oil-soluble solvent and base oil to form a concentrate, and then blending the concentrate with a lubricating oil basestock to obtain the final formulation.
Such multifunctional viscosity index improver concentrates will typically contain (on an active ingredient (A.I.) basis) from about 3 to about 45 wt.%, and preferably from about 10 to about 35 wt.%, multifunctional viscosity index improver additive, and typically from about 30 to 90 wt.~, preferably from about 40 to 60 wt.~, base oil, based on the concentrate weight.
The lubricating oil basestock for the multifunctional viscosity index improver typically is adapted to perfo~m a selected function by the incorporation of additional additives therein to form lubricating oil compositions (i.e., formulations).
The amounts of the multifunctional viscosity improver additives of the instant invention which are incorporated into an oleaginous composition, e.g., .

: . ' .'' ` ' ,. . ~ . ~ ' ' .
,.

- 201~6~

lubricating oil, is an amount which is effective to improve the viscometric properties, e.g., viscosity index, of said oleaginous composition and impart dispersancy thereto, i.e., a viscosity improving and dispersant effective amount. Generally, this amount is from about 0.01 to about 20, preferably from about 0.1 to about 10, and more preferably from about 0.2 to about 5 weight percent, based on the wei~ht of the oleaginous composition.
The oleaginous composition into which the multifunctional viscosity improvers or modifiers of the instant invention are incorporated or added include lubricating oil compositions, e.g., automatic transmission fluids, heavy duty oils suitable for gasoline and diesel engines, etc.
The multifunctional viscosity improvers of this invention may be added to the oleaginous composition in the form of an oil concentrate. Typically such oil concentrate contains from about 5 wt.% up to about 49 wt.%, preferably 7 to 25 wt.%, of the multifunctional viscosity improver in oil, e.g., mineral lubricating oil.
The fully formulated oil compositions, or the oil concentrate, may optionally contain other conventional additives such as pour point depressants, antiwear agents, antioxidants, other viscosity index improvers, dispersants, corrosion inhibitors, anti-foaming agents, detergents, rust inhibitors, friction modifiers, and the like.
Corrosion inhibitors, also known as anti-corrosive agents, reduce the degradation of the metallic parts contacted by the lubricating oil co~position. Illustrative of corrosion inhibitors are phosphosulfurized hydrocarbons and the products obtained by reaction of a phosphosulfurized hydrocarbon with an alkaline earth metal oxide or hydroxide, preferably in the presence of an alkylated phenol or of an alkylphenol thioester, and also preferably in the presence of carbon dioxide.

. .

. .. ~ - :. . .: . . . .

201~0~

Other oxidation inhibitors or antioxidants useful in this invention comprise oil-soluble copper compounds.
The copper may be blended into the oil as any suitable oil soluble copper compound. By oil soluble it is meant that the compound is oil soluble under normal blending conditions in the oil or additive package. The copper compound may be in the cuprous or cupric form. The copper may be in the form of the copper dihydrocarbyl thio- or dithio-phosphates. Alternatively, the copper may be added as the copper salt of a synthetic or natural carboxylic acid. Examples of same thus include ClO to C18 fatty acids, such as stearic or palmitic acid, but unsaturated acids such s oleic or branched carboxylic acids such as napthenic acids of molecular weights of from about 200 to 500, or synthetic carboxylic acids, are preferred, because of the improved handling and solubility properties of the resulting copper carboxylates. Also useful are oil-soluble copper dithiocarbamates of the general formula (RR,NCSS)nCu (where n is l or 2 and R and R, are the same or different hydrocarbyl radicals containing from 1 to 18, and preferably 2 to 12, carbon atoms, and including radicals such as alkyl, alkenyl, aryl, aralkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R, groups are alkyl groups of from 2 to 8 carbon atoms.
Thus, the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-heptyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl, etc. In order to obtain oil solubility, the total number of carbon atoms (i.e., R and R,) will generally be about 5 or greater.
Copper sulphonates, phenates, and acetylacetonates may also be used.
Exemplary of useful copper compounds are copper CuI and/or CuII salts of alkenyl succinic acids or anhydrides. The salts themselves may be basic, neutral or :: . . . , ~ : . : .

- . .: . . : .
: . . . . ...
`. " , .
' ~
.

201~0~3 acidic. They may be formed by reacting (a) polyalkylene succinimides (having polymer groups of Mn of 700 to 5,000) derived from polyalkylene-polyamines, which have at least one free carboxylic acid group, with (b) a reactive metal compound. Suitable reactive metal compounds include those such as cupric or cuprous hydroxides, oxides, acetates, borates, and carbonates or basic copper carbonate.
Examples of these metal salts are Cu salts of polyisobutenyl succinic anhydride, and Cu salts of polyisobutenyl succinic acid. Preferably, the selected metal employed is its divalent form, e.g., Cu+2. The preferred substrates are polyalkenyl succinic acids in which the alkenyl group has a molecular weight greater than about 700. The alkenyl group desirably has a Mn from about 900 to 1,400, and up to 2,500, with a Mn of about 950 being most preferred. Especially preferred is polyisobutylene succinic anhydride or acid. These materials may desirably be dissolved in a solvent, such as a mineral oil, and heated in the presence of a water solution (or slurry) of the metal bearing material.
Heating may take place between 70. and about 200 C.
Tempsratures of 110C to 140C are entirely adequate. It may be necessary, depending upon the salt produced, not to allow the reaction to remain at a temperature above about 140'C for an extended period of time, e.g., longer than 5 hours, or decomposition of the salt may occur.
The copper antioxidants (e.g., Cu-polyisobutenyl succinic anhydride, Cu-oleate, or mixtures thereof) will be generally employed in an amount of from about 50 to 500 ppm by weight of the metal, in the final lubricating or fuel composition.
Friction modifiers serve to impart the proper ~riction characteristics to lubricating oil compositions such as automatic transmission fluids.

- - .
.. - . ' . : ' ' - . :' ~ .
.- . : . :
,. : - , . - . ~ : :
', ~'',' "''" ~ ' Representative examples of suitable friction modifiers are found in U.S. Patent No. 3,933,659 which discloses fatty acid esters and amides; U.S. Patent No.
4,176,074 which describes molybdenum complexes of polyisobutenyl succinic anhydride-amino alkanols; U.S.
Patent No. 4,105,571 which discloses glycerol esters of dimerized fatty acids; U.S. Patent No. 3,779,928 which discloses alkane phosphonic acid salts; U.S. Patent No.
3,778,375 which discloses reaction products of a phosphonate with an oleamide; U.S. Patent No. 3,852,205 which discloses S-carboxyalkylene ~ydrocarbyl succinimide, S-carboxyalkylene hydrocarbyl succinamic acid and mixtures thereo~; U.S. Patent No. 3,879,306 which discloses N(hydroxyalkyl)alkenyl-succinamic acids or succinimides;
U.S. Patent No. 3,932,290 which discloses reaction products of di- (lower alkyl) phosphites and epoxides; and U.S~ Patent No. 4,028,258 which discloses the alkylene oxide adduct of phosphosulfurized N-(hydroxyal~yl) alkenyl suc¢inimides. The most preferred friction modifiers are succinate esters, or metal salts thereof, of hydrocarbyl substituted succinic acids or anhydrides and thiobis-alkanols such as described in U.S.
Patent No. 4,344,853.
Pour point depressants, otherwise known as lube oil flow improvers, lower the temperature at which the fluid will flow or can be poured. Such additives are well known. Typically of those additives which usefully optimize the low temperature fluidity of the fluid are C8-C18 dialkylfumarate vinyl acetate copolymers, polymethacrylates, and wax naphthalene. Foam control can be provided by an antifoamant of the polysiloxane type, e.g., silicone oil and polydimethyl siloxane.
Anti-wear agents, as their name implies, reduce wear of metal parts. Representatives of conventional antiwear agents are zinc dialkyldithiophosphate and zinc diaryldithiosphate.
A

. . ~
., . . . ~ ~ . . -- . . . . . . .
~. . .

Detergents and metal rust inhibitors include the metal salts of sulphonic acids, alkyl phenols, sulfurized alkyl phenols, alkyl salicylates, naphthenates and other oil soluble mono- and di-carboxylic acids. Highly basic (viz, overbased) metal salts, such as highly basic alkaline earth metal sulfonates (especially Ca and Mg salts) are frequently used as detergents. Representative examples of such materials, and their methods of preparation, are found in Canadian Patent No. 1,262,721 issued November 7, 1989.

Some of these numerous additives can provide a multiplicity of effects, e.g., a dispersant-oxidation inhibitor. This approach is well known and need not be further elaborated herein.
Compositions when containing these conventional additives are typically blended into the base oil in amounts which are effective to provide their normal attendant function. Representative effective amounts of such additives.are illustrated as follows:

Additive Wt.% a.i. Wt. % a.i.
(Broad) (Preferred) Viscosity Nodifier .01-12 .01-4 Corrosion Inhibitor 0.01-5 .01-1.5 Oxidation Inhi~itor 0.01-5 .01-1.5 Dispersant 0.1-20 0.1-8 Pour Point Depressant 0.01-5 .01-1.5 Anti-Foaming Agents 0.001-3 .001-0.15 Anti-Wear Agents 0.001-5 .001-1.5 Friction Modifiers 0.01-5 .01-1.5 Detergents/~ust Inhibitors .01-10 .01-3 Mineral Oil Base Balance Balance When other additives are employed, it may be desirable, although not necessary, to prepare additive concentrates comprising concentrated solutions or A

:
, : . ... ~.. ... .- . ~ - .
... . . .-., .....

:

2~1~0~3 dispersions of the multifunctional viscosity improver (in concentrate amounts hereinabove described), together with one or more of said other additives (said concentrate when constituting an additive mixture being referred to here in as an additive package) whereby several additives can be added simultaneously to the base oil to form the lubricating oil composition. Dissolution of the additive concentrate into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential. The concentrate or additive-package will typically be formulated ~o contain the dispersant additive and optional additional additives in proper amounts to provide the desired concentration in the final formulation when the additive-package is combined with a predetermined amount of base lubricant. Thus, the products of the present invention can be added to small amounts of base oil or other compatible solvents along with other desirable additives to form additive-packages containing active ingredients in collective amounts of typically from about 2.5 to about 80%, and preferably from about 5 to about 60%, and most preferably from about 8 to about 49% by weight additives in the appropriate proportions with the remainder being base oil.
The final formulations may employ typically about wt. % of the additive-package with the remainder being base oil.
All of said weight percents expressed herein are based on active ingredient (a.i.) content of the additive, and/or upon the total weight of any additive-package, or formulation which will be the sum of the a.i. weight of each additive plus the weight of total oil or diluent.
The instant compositions of matter useful as multifunctional viscosity modifiers or improvers are oil-soluble, dissolvable in oil with the aid of a suitable solvent, or are stably dispersible materials. Oil-soluble, dissolvable, or stably disparsible as that terminology is .
, : ~
. - . . . .

201~063 used herein does not necessarily indicate that the materials are soluble, dissolvable, miscible, or capable of being suspended in oil in all proportions. It does mean, however, that the additives, for instance, are soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed. Moreover, the additional incorporation of other additives may also permit incorporation of higher levels of a particular copolymer hereof, if desired.
The following Examples further illustrate the instant invention. They are presented by way of illustration and not limitation. Unless otherwise indicated, all parts and percentages are on a weight basis.
The following examples illustrate the preparation of amido-amines of the instant invention.

Into a reactor vessel are charged 148 grams (2 moles) of 1,3-propane diamine and stirred at room temperature under a nitrogen atmosphere. 86 grams (one mole) of methyl acrylate are slowly introduced into the reactor vessel while keeping the resulting reaction mixture below 50C. After the methyl acrylate addition is complete the reaction mixture is heated at 80C until infrared analysis shows the absence of the ester bond. The reaction mixture is then stripped at 80~C for one hour to distill off the methanol byproduct. Analysis of the resulting amido-amine product indicates 9.93 meq. of primary nitrogen per gram of sample and 27.64% nitrogen.

The procedure of Example l is repeated except that the 148 grams of 1,3-propane diamine are replaced with 203 grams (2 moles) of diethylene triamine. Analysis of the resulting amido-amine product indicates 4.48 meq. of primary nitrogen per gram of sample and 25.85% nitrogen.

The procedure of Example 1 is repeated except that the 148 grams of 1,3-propane diamine are replaced with 292 grams (2 moles) of triethylene triamine. Analysis of the resulting amido-amine product indicates 3.67 meq. of primary nitrogen per gram of sample and 26.76% nitrogen.

The procedure of Example 1 is repeated except that the 148 grams of 1,3-propane diamine are replaced with 378 qrams (2 moles) of tetraethylene pentamine. Analysis of the resulting amido-amine product indicates 4.3g meq. of primary nitrogen per gram of sample and 28.3% nitrogen.
The following Examples illustrate the preparation of the nitrogen containing carboxylic acid material grafted ethylene propylene copolymers of the instant invention.

Into a reactor vessel are charged 200 grams of a wt. % oil solution of succinic-anhydride grafted ethylene-propylene copolymer (containing about 43 wt.%
ethylene and 57~ wt.% propylene, the ethylene-propylene bac~bone having a ~n of about 80,000, and having a thickenlng efficiency of about 1.2), 21.3 grams of polyisobutenyl succinic anhydride (having a succinic anhydride to polyisobutenyl mole ratio of 1.04, a polyisobutylene ~n f about 960, ASTM
Sapon~fication Number of 112, and 90 wt.% active lngredient, i.e., polyisobutenyl succinic anhydride, the remainde~ being primarily unreacted polyisobutylene), and 130 grams of S130N mineral oil. The reactor vessel is blanketed with nitrogen and heated to 175C for one-half hour. To this reactor vessel are then added 4.12 grams of ~mldo-amine prepared in accordance with the procedure of Example 1. The reaction mixture is nitrogen stripped for 3 hours at 175C. At the end of this period the reaction mlxture is cooled to lOO~C and is discharged from the reaction vessel.

. . .
.: . . ~ .
: ..... :
-. : .'.,', .~ .' . ' :~: ' . ' .
- . . . . . .. . , . . . : .
: .. ' - .: ....... . . ' ..... .: . . , . -~ ........... .
- . . : :: ,: :.

: :. .... .. . ., . , ~ . . .

EXAMPL~ 6 The procedure of Example 5 is repeated except that the 4.12 grams of the amido-amine prepared in accordance with the procedure of Example 1 are replaced with 9.02 grams of amido-amine prepared in accordance with the procedure of Example 2.

The procedure of Example 5 is repeated except that the 4.12 grams of the amido-amine prepared in accordance with the procedure of Example 1 are replaced with 11.0 grams of amido-amine prepared in accordance with the procedure of Example 3.

The procedure of Example 5 is repeated except that the 4.12 grams of the amido-amine prepared in accordance with the procedure of Example 1 are replaced with 9.2 grams of amido~amine prepared in accordance with the procedure of Example 4.
Thickening efficiency (T.E.) is defined as the rati.o of the we~ght percent of a polyisobutylene (sold as an oil solution by Exxon Chemical Company as Paratone N~, having a Staudinger molecular weight of 20,000, required to thicken a solvent-extracted neutral mineral lubricating oil, having a viscosity of 150 SUS at 37.8C, a viscosity index of 105 and an ASTM pour point of 0F. (Solvent 150 Neutral) to a viscosity of 12.4 centistokes at 98.9C to the weight percent of a test copolymer required to thicken the same oil to the same viscosity at the same temperature. For linear polymers of a given ethylene content, the thickening efficiency is approximately proportional to the 0.75 power of the weight-average molecular weight.

TM - ~rade mark , .

., : ~ ~ --.. .. . ~ .

.
.

Claims (158)

1. An oil soluble composition of matter useful as a multifunctional viscosity improver additive for oleaginous composition comprising adduct of:
(A) high molecular weight ethylene copolymer substituted carboxylic acid material comprising reaction product of (i) ethylene copolymer having a number average molecular weight of at least about 15,000, and (ii) monounsaturated carboxylic acid material; and (B) amido-amine or thioamido-amine comprising reaction product of (i) polyamine, and (ii) alpha, beta-unsaturated compound represented by the formula wherein X is oxygen or sulfur, Y is -OR4, -5R4, or , and R1, R2, R3, R4 and R5 are independently selected from hydrogen, hydrocarbyl, and substituted hydrocarbyl.
2. The composition of matter according to claim 1 wherein said polyamine (B)(i) comprises polyamines containing from 2 to about 60 carbon atoms and from 2 to about 12 nitrogen atoms per molecule.
3. The composition of matter according to claim 2 wherein said polyamine (B)(i)comprises alkylenepolyamine or polyalkylenepolyamine wherein each alkylene group contains 2 to 6 carbons and said alkylenepolyamine or polyalkylene-polyamine contains from 2 to about 5 nitrogen atoms per molecule.
4. The composition of matter according to claim 1 wherein said monounsaturated carboxylic acid material (A)(ii) is selected from the group consisting of C4 to C10 monounsaturated dicarboxylic acid material, C3 to C10 monounsaturated monocarboxylic acid material, and mixtures thereof.
5. The composition of matter according to claim 4 wherein said adduct comprises (A), (B) and (C) C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride, or C50-C400 hydrocarbyl substituted monocarboxylic acid.
6. The composition of matter according to claim wherein said (C) is C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride.
7. The composition of matter according to claim 6 wherein said C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride is C12-C400 hydrocarbyl substituted succinic acid or anhydride.
8. The composition of matter according to claim 7 wherein said C12-C400 hydrocarbyl substituted succinic acid or anhydride is polyisobutylene succinic acid or anhydride.
9. The composition of matter according to claim 4 wherein said monounsaturated carboxylic acid material (A) (ii) comprises C4 to C10 monounsaturated dicarboxylic acid material.
10. The composition of matter according to claim 9 wherein said C4 to C10 monounsaturated dicarboxylic acid material is selected from the group consisting of maleic anhydride, maleic acid, and mixtures thereof.
11. The composition of matter according to claim 4 wherein said ethylene copolymer (A)(i) comprises copolymer of ethylene and at least one C3 to C28 alpha-olefin.
12. The composition of matter according to claim 11 wherein said C3 to C28 alpha-olefin is propylene.
13. The composition of matter according to claim 11 wherein said adduct comprises (A), (B) and (C) C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride, or C50-C400 hydrocarbyl substituted monocarboxylic acid.
14. The composition of matter according to claim 13 wherein said (C) is C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride.
15. The composition of matter according to claim 14 wherein said C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride is C12-C400 hydrocarbyl substituted succinic acid or anhydride.
16. The composition of matter according to claim wherein said C12-C400 hydrocarbyl substituted succinic acid or anhydride is polyisobutylene succinic acid or anhydride.
17. The-composition of matter according to claim 9 wherein said ethylene copolymer (A)(i) comprises a copolymer of ethylene and at least one C3 to C28 alpha-olefin.
18. The composition of matter according to claim 17 wherein said C3 to C28 alpha-olefin is propylene.
19. The composition of matter according to claim wherein said ethylene copolymer (A)(i) comprises copolymer of ethylene and at least one C3 to C28 alpha-olefin.
20. The composition of matter according to claim 19 wherein said C3 to C28 alpha-olefin is propylene.
21. The composition of matter according to claim 4 wherein said monounsaturated dicarboxylic acid material (A)(ii) comprises C3 to C10 monounsaturated mono-carboxylic acid material.
22. The composition of matter according to claim 21 wherein said C3 to C10 monounsaturated monocar-boxylic acid material is selected from the group consisting of acrylic acid, acrylic ester, methacrylic acid, methacrylic acid, and mixtures thereof.
23. The composition of matter according to claim 21 wherein said ethylene copolymer (A)(i) comprises a copolymer of ethylene and at least one C3 to C28 alpha-olefin.
24. The composition of matter according to claim 15 wherein said C3 to C28 alpha-olefin is propylene.
25. The composition of matter according to claim 1 wherein said polyamine (B)(i) contains from 2 to about 60 carbon atoms and from 2 to about 12 nitrogen atoms, with at least two of said nitrogen atoms being primary nitrogens, and said alpha, beta-unsaturated compound (B)(ii) comprising C1 to C4 alkyl esters of acrylic or methacrylic acid.
26. The composition of matter according to claim wherein said ethylene copolymer (A)(i) comprises ethylene-propylene copolymer.
27. The composition of matter according to claim 26 wherein said monounsaurated carboxylic acid material (A)(ii) comprises maleic anhydride.
28. The composition of matter according to claim 27 comprising reaction product of (A), (B) and (C) C50 to C400 polybutenyl substituted succinic anhydride.
29. The composition of matter according to claim 22 wherein said ethylene copolymer (A)(i) comprises copolymer of ethylene and at least one C3 to C28 alpha-olefin.
30. The composition of matter according to claim 29 wherein said C3 to C28 alpha-olefin is propylene.
31. The composition of matter according to claim 1 wherein said ethylene copolymer (A)(i) comprises a co-polymer of ethylene and at least one C3 to C28 alpha-olefin.
32. The composition of matter according to claim 31 wherein said C3 to C28 alpha-olefin is propylene.
33. The composition of matter according to claim 1 wherein said alpha-, beta-unsaturated compound (B)(ii) comprises at least one member selected from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
34. The composition of matter according to claim 33 wherein said amine comprises alkylenepolyamine or polyalkylene-polyamine wherein each alkylene group contains 2 to 6 carbons and said alkylenepolyamine polyalkylenepolyamine contains from 2 to about 5 nitrogen atoms per molecule.
35. The composition of matter according to claim 34 wherein said high molecular weight ethylene copolymer substituted carboxylic acid material comprises at least one of ethylene-propylene copolymer substituted with succinic anhydride and ethylene-propylene copolymer substituted with succinic acid, wherein said ethylene-propylene copolymer has a number average molecular weight of at least about 15,000.
36. The composition of matter according to claim wherein said polyamine (B)(i) comprises ethylenepolyamine, propylenepolyamine, polyethylene-polyamine, or polypropylenepolyamine.
37. The composition of matter according to claim 36 wherein said adduct comprises (A), (B) and (C) C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride, or C50-C400 hydrocarbyl substituted monocarboxylic acid.
38. The composition of matter according to claim 37 wherein said (C) is C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride.
39. The composition of matter according to claim 38 wherein said C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride is C12-C400 hydrocarbyl substituted succinic acid or anhydride.
40. The composition of matter according to claim 39 wherein said C12-C400 hydrocarbyl substituted succinic acid or anhydride is polyisobutylene succinic acid or anhydride.
41. The composition of matter according to claim 34 wherein said high molecular weight ethylene copolymer substituted carboxylic acid material comprises ethylene-propylene copolymer substituted with propionic acid, wherein said ethylene-propylene copolymer has a number average molecular weight of at least about 15,000.
42. The composition of matter according to claim 41 wherein said polyamine (B)(i) comprises ethylenepolyamine, propylenepolyamine, polyethylene-polyamine or polypropylenepolyamine.
43. The composition of matter according to claim wherein said polyamine (B)(i) contains an average of at least 2 primary amine groups per molecule.
44. The composition of matter according to claim 43 wherein X of (B)(ii) is oxygen.
45. The composition of matter according to claim 44 wherein from about 3 to about 5 equivalents of said polyamine, based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (B) (ii).
46. The composition of matter according to claim wherein said amido amine contains an average of from 1 to 3 amido groups per molecule.
47. The composition of matter according to claim 43 wherein X of (B)(ii) is sulfur.
48. The composition of matter according to claim 47 wherein from about 3 to about 5 equivalents of said polyamine, based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (B)(ii).
49. The composition of matter according to claim 48 wherein said thioamido-amine contains an average of from 1 to 3 thioamido groups par molecule.
50. The composition of matter according to claim 41 wherein said polyamine (B)(i) contains at least 2 primary amine groups per molecule.
51. The composition of matter according to claim 50 wherein X of (B) (ii) is oxygen.
52. The composition of matter according to claim 51 wherein from about 3 to about 5 equivalents of said polyamine (B)(i), based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (B)(ii).
53. The composition of matter according to claim 52 wherein said amido-amine contains an average of from 1 to 3 amido groups per molecule.
54. The composition of matter according to claim 50 wherein X of (B)(ii) is sulfur.
55. The composition of matter according to claim 54 wherein from about 3 to about 5 equivalents of said polyamine (B)(i), based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (B)(ii).
56. The composition of matter according to claim wherein said thioamido-amine contains an average of from 1 to 3 thioamido groups per molecule.
57. The composition of matter according to claim 2 wherein said polyamine (B)(i) contains at least 2 primary amine groups per molecule.
58. The composition of matter according to claim 57 wherein X of (B)(ii) is oxygen.
59. The composition of matter according to claim 58 wherein from about 3 to about 5 equivalents of said polyamine (B)(i), based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (B)(ii).
60. The composition of matter according to claim 59 wherein said amido amine contains an average of from 1 to 3 amido groups per molecule.
61. The composition of matter according to claim 57 wherein X of (B)(ii) is sulfur.
62. The composition of matter according to claim 61 wherein from about 3 to about 5 equivalents of said polyamine (B)(i), based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (B)(ii).
63. The composition of matter according to claim 62 wherein said thioamido-amine contains an average of from 1 to 3 thioamido groups per molecule.
64. An oleaginous composition exhibiting improved viscometric properties and dispersancy comprising:

(I) oleaginous material; and (II) multifunctional viscosity improver-dispersant additive comprising adduct of (A) high molecular weight ethylene copolymer substituted carboxylic acid material comprising reaction product of (i) ethylene copolymer having a number average molecular weight of at least about 15,000, and (ii) monounsaturated carboxylic acid material; and (B) amido-amine or thioamido-amine comprising reaction product of (i) polyamine, and (ii) alpha, beta-unsaturated compound represented by the formula wherein X is oxygen or sulfur, Y is -OR4, -5R4, or , and R1, R2, R3, R4 and R5 are independently selected from hydrogen, hydrocarbyl, and substituted hydrocarbyl.
65. The composition according to claim 64 containing a major amount of (I) and a minor amount of (II).
66. The composition according to claim 65 (I) is a lubricating oil.
67. The composition according to claim 66 which is a fully formulated lubricating oil composition.
68. The composition according to claim 66 which contains from about 5 to about 49 wt. % of (II).
69. The composition according to claim 67 containing a viscosity improving and dispersant effective amount of (II).
70. The composition according to claim 69 containing from about 0.01 to about 20 weight percent of (II).
71. The composition according to claim 70 containing from about 0.1 to about 10 weight percent of (II).
72. The composition according to claim 71 containing from about 0.2 to about 5 weight % of (II).
73. The composition according to claim 64 wherein said polyamine (II)(B)(i) comprises polyamines containing from 2 to about 60 carbon atoms and from 2 to about 12 nitrogen atoms per molecule.
74. The composition according to claim 73 wherein said polyamine (II)(B)(i)comprises alkylenepolyamine or polyalkylenepolyamine wherein each alkylene group contains 2 to 6 carbons and said alkylenepolyamine or polyalkylenepolyamine contains from 2 to about 5 nitrogen atoms per molecule.
75. The composition according to claim 64 wherein said monounsaturated carboxylic acid material (II)(A)(ii) is selected from the group consisting of C4 to C10 monounsaturated dicarboxylic acid material, C3 to C10 monounsaturated monocarboxylic acid material, and mixtures thereof.
76. The composition according to claim 75 wherein said adduct (II) comprises (A), (B) and (C) C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride, or C50-C400 hydrocarbyl substituted monocarboxylic acid.
77. The composition according to claim 76 wherein said (C) is C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride.
78. The composition according to claim 77 wherein said C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride is C12-C400 hydrocarbyl substituted succinic acid or anhydride.
79. The composition according to claim 78 wherein said C12-C400 hydrocarbyl substituted succinic acid or anhydride is polyisobutylene succinic acid or anhydride.
80. The composition according to claim 75 wherein said monounsaturated carboxylic acid material comprises C4 to C10 monounsaturated dicarboxylic acid material.
81. The composition according to claim 80 wherein said C4 to C10 monounsaturated dicarboxylic acid material is selected from the group consisting of maleic anhydride, maleic acid, and mixtures thereof.
82. The composition according to claim 75 wherein said ethylene copolymer (II)(A)(i) comprises copolymer of ethylene and at least one C3 to C28 alpha-olefin.
83. The composition according to claim 82 wherein said C3 to C28 alpha-olefin is propylene.
84. The composition according to claim 80 wherein said ethylene copolymer (II)(A)(i) comprises a copolymer of ethylene and at least one C3 to C28 alpha-olefin.
85. The composition according to claim 84 wherein said C3 to C28 alpha-olefin is propylene.
86. The composition according to claim 84 wherein said adduct (II) comprises (A), (B) and (C) C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride, or C50-C400 hydrocarbyl substituted monocarboxylic acid.
87. The composition according to claim 86 wherein said (C) is C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride.
88. The composition according to claim 87 wherein said C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride is C12-C400 hydrocarbyl substituted succinic acid or anhydride.
89. The composition according to claim 88 wherein said C12-C400 hydrocarbyl substituted succinic acid or anhydride is polyisobutylene succinic acid or anhydride.
90. The composition according to claim 81 wherein said ethylene copolymer (II)(A)(i) comprises copolymer of ethylene and at least one C3 to C28 alpha- olefin.
91. The composition according to claim 90 wherein said C3 to C28 alpha-olefin is propylene.
92. The composition according to claim 75 wherein said monounsaturated dicarboxylic acid material (A)(ii) comprises C3 to C10 monounsaturated mono- carboxylic acid material.
93. The composition according to claim 92 wherein said C3 to C10 monounsaturated monocarboxylic acid material is selected from the group consisting of acrylic acid, acrylic ester, methacrylic acid, methacrylic acid, and mixtures thereof.
94. The composition according to claim 93 wherein said ethylene copolymer (II)(A)(i) comprises a copolymer of ethylene and at least one C3 to C28 alpha-olefin.
95. The composition according to claim 94 wherein said C3 to C28 alpha-olefin is propylene.
96. The composition according to claim 94 wherein said adduct (II) comprises (A), (B) and (c) C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride, or C50-C400 hydrocarbyl substituted monocarboxylic acid.
97. The composition according to claim 96 wherein said (C) is C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride.
98. The composition according to claim 97 wherein said C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride is C12-C400 hydrocarbyl substituted succinic acid or anhydride.
99. The composition according to claim 98 wherein said C12-C400 hydrocarbyl substituted succinic acid or anhydride is polyisobutenylene succinic acid or anhydride.
100. The composition according to claim 93 wherein said ethylene copolymer (II)(A)(i) comprises copolymer of ethylene and at least one C3 to C28 alpha-olefin.
101. The composition according to claim 100 wherein said C3 to C28 alpha-olefin is propylene.
102. The composition according to claim 64 wherein said ethylene copolymer (II)(A)(i) comprises a copolymer of ethylene and at least one C3 to C28 alpha-olefin.
103. The composition according to claim 102 wherein said C3 to C28 alpha-olefin is propylene.
104. The composition according to claim 64 wherein said alpha, beta-unsaturated compound (II)(B)(ii) comprises at least one member selected from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
105. The composition according to claim 104 wherein said polyamine (II)(8)(i) comprises alkylenepolyamine or polyalkylenepolyamine wherein each alkylene group contains 2 to 6 carbons and said alkylenepolyamine or polyalkylenepolyamine contains from about 5 to about 9 nitrogen atoms per molecule.
106. The composition according to claim 105 wherein said high molecular weight ethylene copolymer substituted carboxylic acid material comprises at least one of ethylene-propylene copolymer substituted with succinic anhydride and ethylene-propylene copolymer substituted with succinic acid, wherein said ethylene-propylene copolymer has a number average molecular weight of at least about 15,000.
107. The composition according to claim 106 wherein said polyamine (II)(B)(i) comprises ethylenepolyamine, propylenepolyamine, polyethylene-polyamine or polypropylenepolyamine.
108. The composition according to claim 105 wherein said high molecular weight ethylene copolymer substituted carboxylic acid material comprises ethylene-propylene copolymer substituted with propionic acid, wherein said ethylene-propylene copolymer has a number average molecular weight of at least about 15,000.
109. The composition according to claim 108 wherein said adduct (II) comprises (A), (B) and (C) C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride, or C50-C400 hydrocarbyl substituted monocarboxylic acid.
110. The composition according to claim 109 wherein said (C) is C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride.
111. The composition according to claim 110 wherein said C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride is C12-C400 hydrocarbyl substituted succinic acid or anhydride.
112. The composition according to claim 111 wherein said C12-C400 hydrocarbyl substituted succinic acid or anhydride is polyisobutenylene succinic acid or anhydride.
113. The composition according to claim 108 wherein said polyamine (II)(B)(i) comprises ethylene-polyamine, propylene-polyamine, polyethylenepolyamine or polypropylenepolyamine.
114. The composition according to claim 106 wherein said polyamine (II)(B)(i) contains an average of at least 2 primary amine groups per molecule.
115. The composition according to claim 114 wherein X of (II)(B)(ii) is oxygen.
116. The composition according to claim 115 wherein from about 3 to about 5 equivalents of said amine based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (II)(B)(ii).
117. The composition according to claim 116 wherein said amido amine contains an average of from 1 to 3 amido groups per molecule.
118. The composition according to claim 114 wherein X of (II)(B)(ii) is sulfur.
119. The composition according to claim 118 wherein from about 3 to about 5 equivalents of said polyamine (II)(B)(i), based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (II)(B)(ii).
120. The composition according to claim 119 wherein said thioamido-amine contains an average of from 1 to 3 thioamido groups per molecule.
121. The composition according to claim 108 wherein said polyamine (II)(B)(i) contains at least 2 primary amine groups per molecule.
122. The composition according to claim 121 wherein X of (II)(B)(ii) is oxygen.
123. The composition according to claim 122 wherein from about 3 to about 5 equivalents of said poly-amine (II)(B)(i), based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (II)(B)(ii).
124. The composition according to claim 123 wherein said amido-amine contains an average of from 1 to 3 amido groups per molecule.
125. The composition according to claim 121 wherein X of (II)(B)(ii) is sulfur.
126. The composition according to claim 64 wherein from about 3 to about 5 equivalents of said poly-amine (II)(B)(i), based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (II)(B)(ii).
127. The composition according to claim 126 wherein said thioamido-amine contains an average of from 1 to 3 thioamido groups per molecule.
128. The composition according to claim 73 wherein said polyamine (II)(B)(i) contains at least 2 primary amine groups per molecule.
129. The composition according to claim 128 wherein X of (II)(B)(ii) is oxygen.
130. The composition according to claim 129 wherein from about 3 to about 5 equivalents of said poly-amine (II)(B)(i) based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (II)(B)(ii).
131. The composition according to claim 130 wherein said amido amine contains an average of from 1 to 3 amido groups per molecule.
132. The composition according to claim 64 wherein X of (II)(B)(ii) is sulfur.
133. The composition according to claim 132 wherein from about 3 to about 5 equivalents of said poly-amine (II)(B)(i), based on said primary amine content thereof, are reacted per mole of said alpha, beta-unsaturated compound (II)(B)(ii).
134. The composition according to claim 133 wherein said thioamido-amine contains an average of from 1 to 3 thioamido groups per molecule.
135. A process for producing composition of matter useful as multifunctional viscosity improver oil additive comprising:

(A) providing carboxylic acid material grafted high molecular weight ethylene copolymer comprising reaction product of (i) ethylene copolymer having a number average molecular weight of at least 15,000, and (ii) monounsaturated carboxylic acid material;
(B) providing amido amine or thioamido amine compound containing at least one primary amino group comprising reaction product of (i) at least one polyamine, and (ii) at least one alpha, beta-unsaturated compound represented by the formula wherein X is sulfur or oxygen, Y is -OR4, -R4, or , and R1, R2, R3, R4 and R5 are independently selected from hydrogen, hydrocarbyl, and substituted hydrocarbyl radicals; and (c) contacting said carboxylic acid material grafted high molecular weight ethylene copolymer with said amido amine or thioamido amine in amounts and under conditions sufficient to effect reaction of at least a portion of the primary amino group of said amido amine with at least a portion of said carboxylic acid material groups in said carboxylic acid material grafted high molecular weight ethylene copolymer to form said composition of matter.
136. The process according to claim 135 wherein in (A) a mixture of (a) carboxylic acid material grafted high molecular weight ethylene copolymer and (b) C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride or C50-C400 hydrocarbyl substituted mono-carboxylic acid is provided.
137 The process according to claim 136 wherein (b) is C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride.
138. The process according to claim 137 wherein said C12-C400 hydrocarbyl substituted dicarboxylic acid or anhydride is C12-C40 hydrocarbyl substituted succinic acid or anhydride.
139. The process according to claim 138 wherein said C12-C400 hydrocarbyl substituted succinic acid or anhydride is polyisobutylene succinic acid or anhydride.
140. The process according to claim 135 wherein said carboxylic acid material grafted high molecular weight ethylene copolymer is C4-C10 dicarboxylic acid material grafted high molecular weight ethylene copolymer.
141. The process according to claim 140 wherein said C4-C10 dicarboxylic acid material grafted high molecular weight ethylene copolymer is succinic anhydride grafted high molecular weight ethylene copolymer.
142. The process according to claim 141 wherein said succinic anhydride grafted high molcular weight ethylene copolymer is succinic anhydride grafted high molecular weight ethylene-propylene copolymer.
143. The process according to claim 136 wherein said carboxylic acid material grafted high molecular weight ethylene copolymer is C4-C10 dicarboxylic acid material grafted high molecular weight ethylene copolymer.
144. The process according to claim 143 wherein said C4-C10 dicarboxylic acid material grafted high molecular weight ethylene copolymer is succinic anhydride grafted high molecular weight ethylene copolymer.
145. THe process according to claim 144 wherein said succinic anhydride grafted high molecular weight ethylene copolymer is succinic anhydride grafted high molecular weight ethylene-propylene copolymer.
146. The process according to claim 135 wherein said carboxylic acid material grafted high molecular weight ethylene copolymer is C3-C10 monocarboxylic acid material grafted high molecular weight ethylene copolymer.
147. The process according to claim 143 wherein said C4-C10 dicarboxylic acid material grafted high molecular weight ethylene copolymer is succinic anhydride grafted high molecular weight ethylene copolymer.
148. The process according to claim 144 wherein said succinic anhydride grafted high molecular weight ethylene copolymer is succinic anhydride grafted high molecular weight ethylene-propylene copolymer.
149. The process according to claim 135 wherein said carboxylic acid material grafted high molecular weight ethylene copolymer is C3-C10 monocarboxylic acid material grafted high molecular weight ethylene copolymer.
150. The process according to claim 146 wherein said C3-C10 monocarboxylic acid material grafted high molecular weight ethylene copolymer is C3-C10 mono-carboxylic acid material grafted high molecular weight ethylene-propylene copolymer.
151. The process according to claim 136 wherein said carboxylic acid material grafted high molecular weight ethylene copolymer is C3-C10 monocarboxylic acid material grafted high molecular weight ethylene copolymer.
152. The process according to claim 151 wherein said C3-C10 monocarboxylic acid material grafted high molecular weight ethylene copolymer is C3-C10 mono-carboxylic acid material grafted ethylene-propylene copolymer.
153. The process according to claim 135 wherein said polyamine (B)(i) comprises polyamines containing from 2 to 60 carbon atoms and from 2 to 12 nitrogen atoms per molecule.
154. The process according to claim 153 wherein said polyamine (B)(i) comprises alkylenepolyamine or polyalkylenepolyamine wherein each alkylene group contains 2 to 6 carbons and alkylenepolyamine or said poly-alkylenepolyamine contains from 2 to about 5 nitrogen atoms per molecule.
155. The process according to claim 135 wherein said carboxylic acid material grafted high molecular weight ethylene copolymer comprises succinic anhydride grafted ethylene-propylene copolymer of a number average molecular weight of at least about 15,000, said polyamine comprises alkylenepolyamine or polyalkylenepolyamine wherein each alkylene group contains 2 to 6 carbons and said alkylene-polyamine or polyalkylenepolyamine contains 2 to about 5 nitrogen atoms per molecule, and X is oxygen.
156. The process according to claim 136 wherein said polyamine (B)(i) comprises polyamines containing from 2 to 60 carbon atoms and from 2 to 12 nitrogen atoms per molecule.
157. The process according to claim 156 wherein said polyamine (B)(i) comprises alkylenepolyamine or polyalkylenepolyamine wherein each alkylene group contains 2 to 6 carbons and said alkylenepolyamine or poly-alkylenepolyamine contains from 2 to about 5 nitrogen atoms per molecule.
158. The process according to claim 136 wherein said carboxylic acid material grafted high molecular weight ethylene copolymer comprises succinic anhydride grafted ethylene-propylene copolymer of a number average molecular weight of at least about 15,000, and (b) is polyisobutylene substituted succinic anhydride, said polyamine (B)(i) comprises alkylenepolyamine or polyalkylenepolyamine wherein each alkylene group contains 2 to 6 carbons and said alkylenepolyamine or polyalkylenepolyamine contains 2 to about 5 nitrogen atoms per molecule, and X in (B)(ii) is oxygen.
CA002015063A 1989-05-30 1990-04-20 Multifunctional viscosity index modifier additives derived from amido amines Abandoned CA2015063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35907089A 1989-05-30 1989-05-30
US359,070 1989-05-30

Publications (1)

Publication Number Publication Date
CA2015063A1 true CA2015063A1 (en) 1990-11-30

Family

ID=23412191

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002015063A Abandoned CA2015063A1 (en) 1989-05-30 1990-04-20 Multifunctional viscosity index modifier additives derived from amido amines

Country Status (5)

Country Link
EP (1) EP0400874B1 (en)
AU (1) AU623525B2 (en)
BR (1) BR9002543A (en)
CA (1) CA2015063A1 (en)
DE (1) DE69001389T2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1258249B (en) * 1992-11-06 1996-02-22 POLYMERIC ADDITIVE FOR LUBRICANT OILS
US5672573A (en) * 1996-04-10 1997-09-30 Exxon Chemical Patents Inc. Amicloamine derivatives of carboxylic and thiocarboxylic-functionalized hydrocarbon polymers
ES2948723T3 (en) * 2019-07-29 2023-09-18 Clariant Int Ltd Wax inhibitors with improved fluidity
CN114875412B (en) * 2022-05-19 2023-03-10 西安交通大学 Preparation method of polynuclear amorphous solid corrosion inhibitor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2568876A (en) * 1949-11-14 1951-09-25 Socony Vacuum Oil Co Inc Reaction products of n-acylated polyalkylene-polyamines with alkenyl succinic acid anhydrides
US3445441A (en) * 1965-03-25 1969-05-20 Petrolite Corp Amino-amido polymers
US3448049A (en) * 1967-09-22 1969-06-03 Rohm & Haas Polyolefinic succinates
US3630902A (en) * 1969-07-23 1971-12-28 Chevron Res Lubricant additives derived from catalytically polymerized reaction products of succinimides and unsaturated monocarboxylic acids or anhydrides
US4240804A (en) * 1978-01-24 1980-12-23 Sherex Chemical Company, Inc. Alkyl acrylate adducts of polyamines, ether amines and ether polyamines
US4517104A (en) * 1981-05-06 1985-05-14 Exxon Research & Engineering Co. Ethylene copolymer viscosity index improver-dispersant additive useful in oil compositions
US4557847A (en) * 1983-11-21 1985-12-10 Exxon Research & Engineering Co. Ethylene copolymer viscosity index improver-dispersant additive useful in oil compositions
US4963275A (en) * 1986-10-07 1990-10-16 Exxon Chemical Patents Inc. Dispersant additives derived from lactone modified amido-amine adducts
US4857217A (en) * 1987-11-30 1989-08-15 Exxon Chemical Patents Inc. Dispersant additives derived from amido-amines

Also Published As

Publication number Publication date
AU623525B2 (en) 1992-05-14
EP0400874A1 (en) 1990-12-05
DE69001389D1 (en) 1993-05-27
EP0400874B1 (en) 1993-04-21
AU5599290A (en) 1990-12-06
BR9002543A (en) 1991-08-13
DE69001389T2 (en) 1993-08-19

Similar Documents

Publication Publication Date Title
EP0295853B1 (en) Ethylene copolymer viscosity index improver dispersant additive useful in oil compositions
US5035821A (en) End-capped multifunctional viscosity index improver
US5744429A (en) Mixed ethylene alpha olefin copolymer multifunctional viscosity modifiers useful in lube oil compositions
EP0146162B1 (en) Preparation of ethylene copolymer viscosity index improver - dispersant additive useful in oil compositions
US4632769A (en) Ethylene copolymer viscosity index improver-dispersant additive useful in oil compositions
CA2110649C (en) Gel-free alpha-olefin dispersant additives useful in oleaginous compositions
US5219480A (en) Ethylene alpha-olefin mannich base viscosity index improver/dispersant additives derived from amino phenols and monosecondary amines
US5328624A (en) Stabilized grafted ethylene copolymer additive useful in oil compositions
CA2015062C (en) Viscosity stable multifunctional viscosity index modifier additives derived from amido amines
US4933098A (en) Lactone modified viscosity modifiers useful in oleaginous compositions
EP0352070B1 (en) Improved multifunctional viscosity index improver
US5118433A (en) Multifunctional viscosity index improver derived from amido-amine and degraded ethylene copolymer exhibiting improved low temperature viscometric properties
EP0295854B1 (en) Stabilised grafted ethylene copolymer additive useful in oil compositions
EP0400866A1 (en) Improved multifunctional viscosity index modifier additives derived from polyamines containing one primary amino group and at least one secondary amino group
US5053151A (en) Multifunctional viscosity index improver derived from amido-amine exhibiting improved low temperature viscometric properties
EP0369674B1 (en) Improved multifunctional viscosity index improver
CA2015063A1 (en) Multifunctional viscosity index modifier additives derived from amido amines
EP0357217B1 (en) Ethylene alpha-olefin copolymer substituted amino phenol mannich base lubricant dispersant additives
US5252238A (en) Multifunctional viscosity index improver derived from amido-amine exhibiting improved low temperature viscometric properties

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead